Computing 69, 1-35 (2002) .
Digital Object Identifier (DOT) 10.1007/s00607-002-1450-4 ComPUtlng

Printed in Austria

Data-sparse Approximation by Adaptive /#2-Matrices
W. Hackbusch and S. Borm, Leipzig

Received April 17, 2002
Published online: July 26, 2002
© Springer-Verlag 2002

Abstract

A class of matrices (#>-matrices) has recently been introduced for storing discretisations of elliptic
problems and integral operators from the BEM. These matrices have the following properties: (i) They
are sparse in the sense that only few data are needed for their representation. (ii) The matrix-vector
multiplication is of linear complexity. (iii) In general, sums and products of these matrices are no
longer in the same set, but after truncation to the s#?-matrix format these operations are again of
quasi-linear complexity.

We introduce the basic ideas of - and #’-matrices and present an algorithm that adaptively
computes approximations of general matrices in the latter format.

AMS Subject Classifications: 65F05, 65F30, 65F50, 65N38, 68P05, 45B05, 35C20.

Keywords: Hierarchical matrices, nested bases, full matrices, fast matrix-vector multiplication, BEM,
FEM.

1. Introduction

For linear systems with a sparse n X n-matrix 4, several optimal iteration methods
are known, where optimality is characterised by estimating the arithmetic oper-
ations by (n). Usually, it is a well-established rule to avoid any consideration of
A~! for numerical purposes because of the fill-in (usually, 4! is a full matrix).
Under this restriction, one tries to express all algorithmical steps by means of the
non-zero entries of 4 or by the action of the matrix 4 to a vector. ILU-decom-
positions or Krylov methods are typical results. A particular problem arises for
the iterative solution of Sx = y, where S is a Schur complement. Since the exact
calculation of S is “forbidden” because it involves the inversion of a submatrix,
only the action of S can be considered. There are cases where this is not sufficient
for constructing a fast iterative method.

The techniques introduced in [5] show that, nevertheless, one can handle full
matrices like 4~! with (almost) linear cost. In particular, in [7] a class of matrices
(called #*-matrices) was introduced for discrete elliptic problems and discrete
integral operators from the boundary element method (BEM, cf. [4]). In the latter

2 W. Hackbusch and S. Borm

case, full matrices arise directly. It is shown in [7] that 2#?-matrices have the
following properties:

(1) They are data-sparse in the sense that only @(n) data are needed for their
representation.

(2) The matrix-vector multiplication is of linear complexity.

(3) Sums of these matrices can be computed with linear complexity.

In the case of sparse matrices 4 resulting from finite element discretisations of
elliptic boundary value problems, the inverse 4~ approximated by the #-for-
mat is the interesting object. Depending on the accuracy of the approximation
B~ A", we have (a) a new fast iteration x'*! := x' — B(4x’ — y), if B is a rough
approximation to A~!, or (b) By can be considered as the discrete solution, if the
error B — A~ is of the size of the discretisation error for y.

The notation #” refers to two different hierarchical structures. The (first) hier-
archy of the underlying cluster tree leads to the definition of the s#-matrices
introduced in detail in [5] and [6]. A second hierarchy concerns the nested bases
used in the definition of #*-matrices.

In Sect. 3, we review the definition of #-matrices. The following Sect. 4 considers
the efficient implementation of some basic operations on this type of matrices.

The computation of an optimal #-approximation of a given general matrix can
be done in principle by using the singular value decomposition for all matrix
blocks and requires ¢(n*) operations. This trivial but costly algorithm no longer
works if an #?-approximation is desired. In Sect. 5, we present an algorithm that
computes such an approximation with only ©(n*) operations. If the original
matrix is given in J-format, the algorithm can be modified to use only an almost
linear amount of operations.

2. #’-Matrices

In Subsects. 2.1 and 2.2, we define the cluster tree and block cluster tree which,
together with an admissibility condition for matrix blocks described in Subsect. 2.3,
form the basis of the #-matrix format introduced in Subsect. 2.4. An introductory
example is presented in Subsect. 2.5. These preparations will lead to the nested bases
A -matrices (#>-matrices) in Sect. 3.

2.1. The Cluster Tree

We use the usual notations for trees: For a given tree 7 = (N, E), the elements of
N will be called nodes, the elements of EC N x N will be called edges. If
(t,0) € E, then ¢ will be called a son of 7.

We define the mapping S : N — #(N) by

S(t):={6 €N :0isasonof 1} for r € N,

Data-sparse Approximation by Adaptive #>-Matrices 3

i.e., S(t) is the set of sons of a given node t. Obviously, the tree is uniquely
determined if only N and S are given.

If for T € N the equation S(t) = 0 holds, 7 is called a leaf. The set of leaves is
denoted by # (7).

Let 7 be the index set of the finitely many degrees of freedom. The elements of 7
may be {1,...,n} or the nodal points of the finite element discretisation, etc. The
precise definition of the cluster tree 7 (I) is given in

Definition 2.1. Let I be an index set. A tree T (I) is called a cluster tree (based on I)
if the following conditions hold.

(1) I is the root of 7 (I).
(2) #S(t) £ 1 for all t € N.
(3) For all T € N, we have
o /
St)#0 =1 fUT,Gsmf , (2.1)
i.e., if T is not a leaf, S(7) is a partition of t.
(4) There is a constant C; € N independent from I satisfying
St)=0=n,<C, (2.2)
for all T € N with n, := #7, i.e., the size of each leaf is bounded. The set of nodes
will be denoted by T(I).
For technical reasons, condition 2 is sometimes omitted, but then two different

vertices of T(I) may correspond to identical subsets of I (cf. (2.1)).

Remark 2.2 (Geometrical Cluster Trees). Typical algorithms for constructing
cluster trees based on geometrical information can be found in [2, Beispiel 3.10] and
[1, Example 2.1].

We define:
level : T(I) — Ny by
level(/) :=0 and level(t') :=level(z) + 1 for 7’ € S(1).

The maximal level of the cluster tree J (I) is fmax := maxlevel(T (1)), i.e., the
depth of 7 (I). T(I) can be partitioned into

Linax
() = Jno,
=0

where Ty(1) := {t € T(I) : level(r) = £} for £ € {0,. .., lmax}.

2.2. The Block Cluster Tree

Since we are dealing with matrices 4 = (a;;); ;c;» we have to consider the index set
I x I. A hierarchical partitioning of this set is given by the block cluster tree

4 W. Hackbusch and S. Bérm

T (I x I) (with nodes T(I x 1)) that is derived from 7 (I) by the following
inductive construction:

Construction 2.3. The root of 7 (I x I)isI x I. Givenavertexb=1x g € T(I xI)
witht,0 € T(I), the set of sons of b is defined to be

S(b) :=={t' xd :7 €8(1r),6' € S(a)}. (2.3)

Note that b is a leaf, i.e., S(b) = 0, if either S(t) = 0 or S(o) = 0, i.e., if either T or ¢
is a leaf.

Remark 2.4. A binary cluster tree 7 (I) leads to a quad-tree 7 (I x I).
The mapping level(-) defined on T(7) is extended to T(I x I) as explained in

Remark 2.5. For all b=1x o € T(I xI), we define level(b) = level(t). Due to
(2.3), we also have level(b) = level(a). We can partition T(I x I) into

Lmax

T x1) =] <),
=0

where Ty(I x I) ={b € T(I xI) : level(b) = £} for all £ € {0,. .., lmax}-

2.3. Admissibility

Each index i € I is associated with a compact subset X; C R?. This may be a grid
point (i.e., X; = {x;}) or the support of the i-th finite element basis function:

X; := supp(b;) (b; : i-th finite element basis function). (2.4)

This notation is extended to clusters T € T(/) by

X=X (2.5)

We introduce the diameter and the distance of 7,6 € T(I) by setting
diam(t) := ggéllx —y|| and dist(r,0) := xe)rgm){ﬂ”x =yl

A block b=1x 0 e T(x1I)is called admissible, if b is a leaf or if the following
admissibility condition' holds for a fixed parameter 5 < 1:

max{diam(t), diam(o)} < 25 dist(z, o). (2.6)

'For general H-matrices the maximum on the left-hand side in (2.6) can be replaced by the minimum.
However, for some proofs in the context of H>-matrices we need the maximum.

Data-sparse Approximation by Adaptive #>-Matrices 5

2.4. Admissible Matrix Partitionings and #-Matrices

We introduce the set-valued functions

cols : T(1) x 2(T(I) x T(I)) — 2(T(1))
(

rows : T(I) x 2(T(1) x T(I)) — 2(T(I)),
(6,P)—{r€T() : 1x0€P}

that associate a given cluster with all blocks in which it occurs.

Aset P, € 2(T(I) x T(I)) satisfying
IxI=-J{b : beP} and P, CT(IxI) (2.7)

is called a hierarchical partitioning of I x I. The subscript 2 in P, should indicate
that P, partitions the twofold product index set / x I. Note that the second
condition implies level(t) = level(o) for all 7,0 € T(/) with T X ¢ € P>.

For any P, there exists exactly one subtree 7, of T(/ x I) with root I x I satisfying
Sh)y=0<=bepP, forallbeT. (2.8)

A partitioning P, is called admissible if all blocks b € P, are admissible.

Definition 2.6 (#-matrix). Let I be an index set, let P, be a block partitioning of
I x Iandletk € N A matrix A € K™ is an # -matrix with respect to P, and the
rank distribution k, if for each b € P the condition rank(A|,) < ky holds.

Here, A|, = (ai) ; e denotes the block matrix with respect to b € P;.

The set of all these matrices is denoted by M (I X I, Py, k).

2.5. Example

To fix the ideas, we give a 1D example of what an admissible partitioning may
look like. We consider piecewise constant finite elements on the unit interval [0, 1]
having the supports X; = [(i — 1)A,ih] for i = 1,...,n with the step size h = 1 /n.
Assume n = 27. Then an obvious recursive construction of the cluster tree is as
follows: I = {1,...,n} is the root, and whenever

t={inii+1,.. i +n— 1} (2.9)

is not a leaf (i.e., n, > C;, cf. (4)), the sons of 7 are the two clusters
v ={ii;+1,...,i,+n/2—1} and " = {i; + n,/2,... i, + n, — 1} of half the
size. An equivalent way would be to say that the support X; is divided into equal
parts X and X.». We have t € T;(I) if and only if n, = 27~/ where p = lpax.
Furthermore, diam(t) =2°"'h=2"" and dist(r,0) = max{0, |i, — i,|h — 27"}
for 7,0 € T;(I), where the notation i, refers to (2.9).

6 W. Hackbusch and S. B6rm

Fig. 1. Admissible partitioning

The partitioning P, defined by the admissibility condition (2.6) for n = 1/2 takes
the form outlined in Fig. 1.

3. #*-Matrices

The #*-matrices, which we are going to explain in this section, were first intro-
duced in [7]. They are a subset of the general s#-matrices 4 (I x I, Py, k). For
A€ Myl x1,P k), we allow 4], to be any block-matrix of rank < k.

Now we will restrict 4|, to a certain subspace ¥”), of matrices with rank < k; in
order to reduce the amount of work necessary for operations on this new type of
matrix. This restriction can be seen as a three-step procedure: The first step is to
consider arbitrary; but fixed, subspaces of the set of all s -matrices
My (I x I,P, k). The second step is to restrict the spaces corresponding to the
blocks b = 1 x ¢ € P, to tensor product form. The last step is to consider nested
spaces.

3.1. Restriction to a Fixed Subspace

The set 4 (I x I, P,,k) is, in general, not a vector space: Each block b € P, is in
the set

Ry :={A4c K’ . rank(4) <k},

Data-sparse Approximation by Adaptive #>-Matrices 7

and this set is not a vector space, not even convex. This is a disadvantage con-
sidering the theoretical treatment of s -matrices, since standard linear algebra
cannot be applied.

In order to remedy this, we fix a kp-dimensional subspace ¥, of %, for each
b € P, and define the space
May(Ix1,Py, V) i={4 €K™ 1 4], € ¥},

where V" = (V"5) pep, -

If we equip K/ with the Frobenius inner product

<A,B>F = Z a,jB,-j,

ijel

we get a Hilbert space with the standard Frobenius norm of which
My (I x 1,P,7") is a subspace.

So the best approximation (with respect to the Frobenius norm) for any matrix 4
in this subspace can be expressed by means of the orthogonal projection

I: K> — (I x1,P,7") with
(TI4,B), = (4,B), foralld € K" and Be€ M (I x1,P,,7").

3.2. Uniform #-Matrices

In many practical applications, a certain 7 € T(I) occurs more than once in the
blocks b € P, of the given partition. Therefore, it is desirable to do as much work
on the “cluster level” and as little as possible on the “block level” in order to
reduce the total amount of work.

One way of doing this is to fix spaces ¥, ; (corresponding to rows of the matrix)
and 7., (corresponding to columns), both with dimension k., and choosing 77,
forb=tx0€P to be

. H . .
V= span{uv, : ur € V1,06 € Vegh,

i.e., the tensor product of ¥",., and ¥ .. As usual for tensor product spaces, the
dimension of ¥ is k.k,. The rank of matrices in this space is obviously bounded
by ky = min{k;, ks }.

If for each b € P, the space ¥ is defined as above, # (I x I,P,,7") is denoted
by M y(I xI1,P,V ., 7,) and called the space of uniform #-matrices with re-
spect to I, P, ¥ . = (“//'C‘T)Tem), and v, = (AV.KT)TGT(I)'

In standard applications, the spaces ¥, ; and ¥, , will coincide for T = o, but this
is not required.

8 W. Hackbusch and S. B6rm

If we choose bases for ¥7,. . and ¥, i.e., matrices V; ; € K™ and V.. € K% of
full rank satisfying

“er,r — rangec Vr.,r and “VVC_’T = range Vc,r,

we get the characterization
Vo = {VSVh + 8, € Kk (3.1)

The tensor product structure can be used in the following way to reduce the total
amount of work per matrix-vector multiplication:

The computation of a matrix-vector product y, = Mpx, with M, € ¥ is
equivalent to the computation of y, = VmeVC{ixa. The three matrix-vector
products occurring in this expression can be used to devise an algorithm con-
sisting of three steps for computing matrix-vector products with uniform
J-matrices:

First Step: Forward Transformation. Since %, := V" x, does not depend on b, but
only on o, it has to be computed only once for each cluster. The procedure of
computing all x, is called forward transformation:

for ¢ € T(I) do %, := Vx|,

o

Second Step: Multiplication. The multiplication with S, has to be done for each
block b € P, but it has only a complexity of O(k.k,), not of O((n, + n,)k,) as in
the case of original J#-matrices:

forteT(I) do y,:=0;
forb=tx0€ P do J, =P, + SpXs.

Third Step: Backward Transformation. The last step is the computation of y; by
multiplying by ¥, ;. As in the first step, this operation is performed only once per
cluster:

forr S T([) do y|1 ::y‘r+ I/V;T.)}T'

3.3. Nested Spaces

Although the amount of work per matrix-vector multiplication can be signifi-
cantly reduced by using uniform J#-matrices instead of full #’-matrices, it is, for

Data-sparse Approximation by Adaptive #>-Matrices 9

standard applications with constant k; =k, still of order O(nklogn), i.e., not
optimal.

The logarithmic factor is caused by the forward and backward transformations,
while the multiplication step typically has a complexity of (/(nk). The basic idea
for reaching the same complexity for the transformations is to reuse data: For a
given level £, k2¢ coefficients will be computed by the forward transformation. So
there will be “more information” on finer levels (i.e., 7;(/) with large ¢, corre-
sponding to small clusters) than on coarser levels, therefore there is a chance of
devising a scheme that allows us to use the coefficients computed on lower levels
in order to compute those on higher levels.

We make two observations:

(1) If the coarser bases cannot be expressed in terms of the finer bases, the ap-
proach given above must fail since then information is lost when switching
from finer to coarser levels.

(2) In order to get a reasonable complexity, the computation of x; for a given
1€ T(I)\ Z(7 (1)) should require no more than ((k*) operations.

A simple way to meet these criteria is to require that the sets ¥", and 7", form a
nested hierarchy:

Definition 3.1. A4 hierarchy v = (V" T)reT(l) of spaces is consistent, if for all
teT(H)\ L(TU)) and all 7' € S(t) we have

Ve 2{d =ul, cues .} and Vo2 =v|, : veS .} (3.2)

If, e.g., 77, is consistent, the space ¥", . for a given t € T(I) \ £(Z (I)) is spanned
by zero-extensions of vectors in the spaces {77, : 7 € S(1)} corresponding to
its sons, so the coefficients x; can be computed using the coefficients x, corre-
sponding to the sons of 1, i.e., to the next-lower level.

Definition 3.2 (#°-matrix). Let a partitioning Py and consistent families of spaces
Vo =V rt)eerays Ve = (Vet)wer be given. Then the set of A#*-matrices is given
by

Mo (I X TP,V V) = {M € R 2 M|, € ¥ for all b € P,}.

An immediate conclusion from (3.2) is

Remark 3.3. Let b=1x0 €P. The restriction of M|, €V, to a subblock
b =1 xd,b €8(b), yields a matrix M|, € V.

The consistency condition can be reformulated for the matrices V, ., V. ,:

Lemma 3.4. The families V", and V", with their corresponding bases (Vr,r)rer(N and
(Vc,r)rem) are consistent if and only if there exist matrices B,y 1, Bcr . € Ik ke
satisfying

10 W. Hackbusch and S. Bérm
Vr,‘r|-;’><kr = Vr‘r’Br,‘r’,r and Vc,r‘flxkr = Vc,r’Bc,r’,f (33)
forallte T(H)\ L(7 (1)), 7 € S(1).

Using the matrices B, , from Lemma 3.4, we can express X, in terms of X,: Let
S(o) ={a1,...,05} be the set of sons of . We find

VC,GlBC,GMT

NN
Q
I
—
b
a
~

Vc,aA.Bc,as,a

leading to

x|0’1
s _ pH _ H H pH H
Xo = V;‘,O’XLT - (Bc,m‘a'Vc,o' Bc,o‘s.,(ch.o)
X a,
s s
_ § H H _§ : H ~
- Bc,ai,al/c‘,ofx|o; - Bc,ai,oxﬂﬁ (35)
i=1 i=1

i.e., the coefficient vector x, can be indeed computed using only the coefficient
vectors X, corresponding to its immediate sons. This leads to an improved version
of the transformations introduced for uniform J#-matrices:

Fast Forward Transformation. In order to make use of (3.5), we compute the
coefficients x, proceeding from the “finer” towards the “coarser” levels:

procedure FastForward(o);
begin
if S(o) =0 then %, := Vx|,
else
begin
Xs :=0;
for ¢ € S(o) do
begin
FastForward(d'); £, := %, + Bfa,‘gfar
end
end

end

Data-sparse Approximation by Adaptive #>-Matrices 11

Fast Backward Transformation. In a similar fashion, we can represent y, in terms
of the coefficients y,, corresponding to the sons 7’ of 7, so by proceeding from the
“coarser” towards the “finer” levels and updating the coefficients according to
(3.4), we get the following algorithm:

procedure FastBackward(t);

begin
if S(r) =0 then y|, :== V,J,
else
for 7 € 8(1) do
begin
Vo i= Yy + Brv .y, FastBackward(t')
end
end

In the case of constant &, the “fast” versions of the transformations require only
O(k*) operations to compute the coefficients corresponding to a certain cluster.

3.4. Choice of k.

The simplest choice of the dimension k; is a constant kcyus. Since the dimension
cannot exceed the size n, of a cluster, the exact requirement is

ke = min{kconst, 1< }- (3.6)
In the case of the example from Subsect. 2.5, k; depends only on the cluster level:
ke = k¢ = min{kconstv 2p7[}

for all = € Ty(I).

If an #°-matrix has to approximate a BEM matrix up to the error O(h") with 7
being the consistency order, the choice of k.onst sShould be of the order log n, where

n = #l.

As proved in [7], it is not necessary to use kconst = logn for all blocks. This size is
only needed for large blocks. A reasonable choice is

ky := lmax — level(z) + 1

or, more generally,

ke := min{n;, a + f(lmax — level(7))} for some «, § > 1. (3.7)

12 W. Hackbusch and S. B6rm

If n, depends only on level(z), also k; = k; is only a function of the level number.
Note that for small-sized clusters, k(7) is of order 1, while large clusters (with
small level(t)) lead to k&, = O(logn), since £, = O(logn).

3.5. Choice of the Bases in the Case of Piecewise Constant Functions

We consider the one-dimensional case of piecewise constant functions on X;, i € 1,
where X; is an interval. We choose k; to be “constant’ according to (3.6).

Given an integral operator with a kernel function x(x, y), consider the expansion

Y) =Y s Pix)PI(y) in the range of (x,y) € X; x X, (3.8)
v,1u=0

with X, X, (cf. (2.5)) satisfying the admissibility condition (2.6). Here,
{P; : p€ Ny} is the orthogonal system of Legendre polynomials; more precisely,
P7 is the uth Legendre polynomial transformed from [—1, 1] onto the interval X,
such that

(P, Py) 12(x,) = Ovu (Kronecker symbol).

We consider a finite part of the expansion (3.8) by setting K, := {0,..., &k — 1}
and

K, k, (%,) Z Zs\, Pr(x)P7 (v (3.9)

vek, uek,

In the Galerkin setting, the entry a;; of the discrete matrix 4 is given by the double
integral

ay= [] Kb

(we recall that X; = supp b; and X; = supp b;).

We replace x by the approximation xy, 4, and get
ar= [[sontennen s
eI I RGO R ATTIDES
J

veK, nek,

I / O AR

vekK, nek,

so by setting

Data-sparse Approximation by Adaptive #>-Matrices 13

7. (/ Pr)bilr)dx) € ROk,
Xz iet,vek

i (/ P"(y)b,-(y)dy> e Rok,
Xo jeo,uck

we have

kT 1k,—1
svu(V; Veo) i (V;TSVT) foriect and je€o
=0

,
I

o
=

if we set § = (sv,),, € Rk We let
V. = range 17,,71 and 7 ., = range 176‘0,

and find that the approximation I7V7TSI7(,T6 is in ¥, (cf. (3.1)) for b =1 x 0. The
dimension of ¥, (or ¥ ¢4) 1S kconst fOT 11z > keonst (OT 15 > keonst) and n; (or ng)
otherwise, satisfying (3.6).

Now we consider the consistency condition (3.2) in the case of “constant” k
according to (3.6). Let 7 € S(z).

For each polynomial P} of degree < kconst, the restriction P}| X, is again a poly-
nomial of degree < keonst. Therefore, there are coefficients b, satisfying

Py, =Y booPy|
viXy — vV Xy

\’/EKII
We have
ok = ([P) = ([3 eiptwbax
X iety X viek, ’ iv
- (Z be / P (x)b; (x)dx> =V (bijl) ,
VeK iy _fi)/
::Ba,r,r/

$0

YV 2y = range I7”|T,Xkr = range V,vBriv C Vv (3.10)

holds, therefore the condition (3.7) is fulfilled.

Remark 3.5. In the case of variable k (cf. (3.7)), this simple polynomial-based
construction is no longer possible: The rank of a polynomial on a cluster © may be
larger than that of all the polynomials on one of its sons v € S(), so the restriction

14 W. Hackbusch and S. B6rm

property of the spaces cannot be derived from the restriction property of the poly-
nomials.

In [10], the polynomials are replaced by other functions that satisfy the restriction
property while still allowing a suitable approximation of certain kernel functions.

4. Complexity and Storage Requirements
4.1. Storage Requirements
Assume the cluster tree from Subsect. 2.5.

Remark 4.1. If k. is “constant” (cf. (3.6)), the restriction matrices By , B¢
require not more than O(nkeonst) storage.

Proof: The number of clusters on level / is bounded by #7;(I) < 2°. We have to
store the ky X k;-matrices B.p. and B.p. for each father-son pair
t e T,(I),7 € S(7), so the total storage requirement is

)
linax —

Sconst 1= 2 Z Z Z keky.

(=0 zeT,(I) veS(x)
Let #1 = n =2 and set
le:=min{l : Ve T)(I) : n; <keonst} = |p —10gy (keonst)] - (4.1)
Then we can split the sum as follows:

Lo—1 Linax

=23 T T kk 25 T 5 ke

(=0 zeTy(I) v'eS(z (=l teTy(I) 7eS(t
Lo—1

gzZz#n km+2§f > Z Moty

(=L, 1T, (I) TeS(x

Z 71 n]‘])(émax
S 4 Z 2Z const + 2 Z Z < 4k30nst2& + 2 Z 2%22;77%
l=L. €Ty (I l=t,
2 2% 2, o 2, Le
4kconstk _1_22;722 < 8keonstt +4 27 27
const =,
k.

< Skeonstht + 4 2% 7‘ = 12keonsth- O

In [7], a proof of the following estimate for the case of variable &, can be found:

Remark 4.2. If k. grows linearly (cf. (3.7)), the restriction matrices By iz, B+
require not more than O(n) storage.

Data-sparse Approximation by Adaptive #>-Matrices 15

Note that the matrices B, ., and By, describing the #>-format are to be
computed and stored only once for a subspace of #>-matrices, since they are
independent of any individual #>-matrix.

Each matrix M € M ,2(I x I,P>,? 4,7) is completely described by the matrices
(Sb)bep2 from (3.1) carrying the entries s,, from (3.9).

Using a similar proof as above, the following estimate can be derived:

Remark 4.3. The storage needed for all block coefficient matrices (Sp),cp, is bounded
by O(n) in the variable case (3.7) and by O(nkeonst) in the constant case (3.6).

4.2. Complexity Bound for Arithmetical Operations
4.2.1. Fast Matrix-Vector Multiplication

As mentioned in Subsects. 3.2 and 3.3, the fast matrix-vector multiplication
algorithm is performed in three steps: (i) a forward transformation computes the
coefficients of a given vector in the bases corresponding to each cluster, (ii) in a
block-multiplication phase, the ‘scaling matrices” S, are applied to these
coefficient before the (iii) backward transformation computes the result vector
from the coefficients on all clusters.

It can be easily seen that in all the steps the arithmetical work is proportional to
the number of entries in the matrices B, v ¢, B. . and S, (cf. [7]). Therefore, the
previous results about the storage show a respective complexity of @(n) or
(/ﬁ(nkconst)

4.2.2. Matrix Addition with Matching Bases

Different from general #-matrices, the sum of two #’-matrices (with the same
partitioning and the same nested bases) can be performed exactly. Since only the
matrices (Sp),.p, are to be added, the cost is clearly the same as the storage needed
for the family (Sp),cp,-

4.2.3. Matrix Addition with Arbitrary Bases

The sum of two #’-matrices 4 and B with different bases but identical P, and
7 (I) can be represented exactly by doubling the dimensions &, and simply
copying the data associated with 4 and B, so this operation requires ((n) oper-
ations in the case of variable rank and O (nkeons) in the case of constant rank.

Of course, the potential doubling of the ranks leads to an unattractive complexity
when computing sums of a large number of matrices. To avoid this, the algorithm
introduced in Sect. 5 can be applied after each addition to reduce the dimensions
by removing unnecessary basis functions.

16 W. Hackbusch and S. B6rm

5. Approximation of General Matrices by .#2-Matrices

The a priori computation of the bases for an #>-matrix requires that the kernel x
and its expansion (3.8) are known. In many applications, this requirement is not
met, so another method of computing these bases is desirable.

In this section, we present an algorithm that computes an approximation of the
optimal nested bases from a given general matrix. Furthermore, a certain accu-
racy can be guaranteed by applying a slight modification of the algorithm that will
be discussed in Sect. 7.

We assume that a suitable partitioning P, is given. Since we allow general matrices
with n? entries in the first stage, the following algorithm needs at least ©(n?)
operations.

5.1. Optimal Approximation on One Level

We fix a v € T, 1 and want to compute an optimal #~, ;. Before we can do this,
we first have to investigate the meaning of “optimal” in this context. The space
V.. will be used in all blocks b € P, that have the form b = 1 x ¢ for a certain
o € T(I), so it seems straightforward to minimize

D Al — Ty, Al 7 (5.1)

beP;

with respect to all ¥, ;, where I1,_, is the orthogonal projection from R* to ¥,
and P; is defined by

Po:={beP, : JocT):b=1xo}={tx0 : g€cols(t,Pr)}. (5.2)

This minimization will not lead to a good approximation of 4, since the space 77, ;
is not only used for b € P,, but, due to the consistency condition (3.2), acts as a
restriction for the computation of ¥7, for all ¢ € T(I) with © C 7.

So we aim to minimize the quantity

> Ny — Ty, A7, (5.3)

bePS
summed over all blocks from

Pr:={b:3JceT():b=1x0c and It eP:b=>b"NtxI}, (54)

T

i.e., all blocks b that are subsets of a block b* € P, and that have the form
b=1xoforaceTT().

Note that the sets b € P are disjoint because P; is a partitioning of disjoint
blocks.

Data-sparse Approximation by Adaptive #>-Matrices 17

Since all elements of P have the form 7 x ¢, we can introduce the sets of clusters
and indices corresponding to blocks in P

Coi={ceT(l) : txoePl} and I :=|]C.

Obviously, we have P = {t x ¢ : ¢ € C}, so the expression (5.3) can be re-
written as

2 2
> Ny = Ty, A7 = (|42 = TTy, A7 (5.5)
bepr;

with
A = (16,(0)Arx) yer € R/, (5.6)

where . is the characteristic function of ., i.e.,

_J1 ifegecC
1c.(0) = {0 else.

In Fig. 2, the blocks in P for a given partitioning P, corresponding to different
clusters t are marked.

It is well-known that approximation problems of this type can be handled by
using the singular value decomposition of 4.: We let id,., := (51';)5’;1:1 for all
p,q € N. Let I € N>, be the rank of 4,. Then there are U € K™/, € IK"*/ and a
matrix X := diag(ay,...,0;) with

A, =UZV 6/ >0,>-->0,>0, UU=V"V =id)y,.

To determine the optimal rank-k-approximation of 4., we replace ¥ by the
truncated diagonal matrix X := diag(ay,...,04.,0,...,0) € R™ and set
A, = UTVH. We still have to show that A4, is of the form Il A, for a k.-di-
mensional subspace 77, of R*.

We et U:=U idy,, ie., U contains the first &k, columns of U. Since
UHU:iderkT,~the mapping Il := UU? is the orthogonal projection onto
). = range(U) satisfying

Ngd. = UUPUSVY = Uidj, id}, U UV
= Uidu, id), V7 = USV? = 4..

1 1 1
7 T T
o 1 1

il il T
il T il
il il il

Fig. 2. Blocks P for different clusters

18 W. Hackbusch and S. B6rm

Since A, is the optimal rank-k-approximation of 4., 7., = range(U) is the op-
timal choice.

Since we are only interested in 7", we can eliminate the computation of the
matrix ¥ by characterizing U and X in terms of the Gram matrix

G, := 4. 4" =y u? = ux?u”
and thus arriving at a symmetric positive semidefinite eigenvalue problem.

Remark 5.1 (Adaptivity). The approximation error is given by

/
|4 — H“/”},IAT”% = Z 0'37
v=k,+1

so it is possible to choose k. adaptively in order to ensure that the approximation
error is below a given bound.

Applying this method to 4 instead of 4, we can find the optimal column-related
spaces ¥ ¢ ;.

5.2. Global Approximation by a Greedy-Type Algorithm

Using the above procedure, we can compute optimal bases for all clusters, but
they do not necessarily satisfy the consistency condition (3.2). In order to compute
consistent bases, we start from the finest level £y,y.

We compute bases V.. for all clusters 7’ € T, (/) using the method described in
Subsect. 5.1. Let us now consider a cluster © € Ty(I) on the next level £ = {yax — 1.
We want to compute a basis V. of a space ¥",; minimizing

e — Ty, A7 (5.7)
Since (4. — Iy, A, 11y, A:)p =0, we get by the Pythagoras identity
2 2 2
[4e = Ty, Acllp = el — [Ty, Ael[7-
If we require the matrix V.. to be orthonormal, we have IT,- =V, . Vfg and find

2 2 2
Iy Acllz = VeV Al = VAl

T

Therefore, the problem of minimizing the error (5.7) can be reformulated as the
problem of finding an orthonormal matrix ¥, € K™% maximizing

17714 A |7 (5-8)

Data-sparse Approximation by Adaptive #>-Matrices 19

We do not only look for an optimal basis, but for a hierarchy of bases being
consistent, so we have to satisfy the condition (3.3). Therefore, we reformulate our
maximization problem in terms of B, .: We look for a family (Br,r’,r)r'es(r) of
matrices maximizing

H H 2
5 Bi‘,rl,r V;,IIAT|11 xI
H H .
BVt o BreVi) ad| = || :
H
BVJ:J Vr,‘chT Ty X1 F
for S(7) = {71,..., 7}
Since ¥} ; has to be orthonormal and
I/}“Tl BI‘,‘E],‘C
Vr,‘r =)
Vr,rs Br,rsﬁr
we get
H
Br,rl,r Bh‘[],f
H . .
1= Vr,rV;T = ’
BriIA7T Br7157
so the combined matrix
Br,rl,r
0, = : € K"k (5.9)
Bz

with m, := ZT,ESM k., must be orthonormal, too. We set

(5.10)

%I

~ o
Ar.r’ = VrA’T/AI|

and

So now we look for an orthonormal matrix Q, € K"~** that maximizes

104 4|7

20 W. Hackbusch and S. B6rm

This problem has the same structure as the original problem (5.8) and can
therefore be treated in a similar fashion, i.e., by computing the eigenvectors of

A\T TIA{—IT] e A\TJIA\:T:
G. = A.A" . - (5.11)
o . S
Acr A, Afﬂ'sA‘c,Is

Making use of (5.10) in combination with (5.6), we have

N H

ATJiAr,rk,‘ = rr,A |r,><IA |r xI ”T - E : V/ r,xa T; ><UV”~,‘§/'
oeT (I
= E 7C rt,A |r ><0A |r Xa r‘f/ § : rr,A|r,><er‘r Xa rTﬂ
aeT(I) ocC;

so we can rewrite the computation of G in terms of single blocks by using

G.=> G, (5.12)
geC,
with Gw = A_T’(,A_f”J for
AAn.o’
Aoi=| (5.13)
e

with Ay, = V4], for all 7 € S(x).

%0
The explicit computation of AATr_,(7 takes O(kynyn,) operations. Once more, it is

possible to make use of the consistency condition in the form of Eq. (3.5) to get
the equation

VieBroo\ " VieBrao\ " [Alexo
ATU - VHA'IX(T - A|r><(7 =
]7)‘,‘5.; Bl',‘ElW‘E VI",TX B}’,TM‘E A |TS Xa
Br,‘c],‘c " VrﬁlA|rl><U AArl,o
= =0/ | =04,
B”aTmT Vrh;A TgXa AAT:‘O'

Data-sparse Approximation by Adaptive #>-Matrices 21

Le., by using the matrices AAW7 corresponding to the sons 7’ of 7, we can compute
A, with only O(k,m.n,) operations.

Combining all the basic steps mentioned above with a recursive bottom-up
strategy, we get the following algorithm:

procedure ComputeRowBasis(7);

begin
if S(t) =0 then
begin
G, :=0;
foroe C, do G, =G, + 4|, A" ;
Compute the Schur decomposition Qf GTQT =D
with D = diag{o1,...,0,.},01 > -+ > 0,.;

Vrﬁr = Qr idnrxkI S RTXkT;
for o€ C; do AAW = VrHA|

T txe

end

else
begin
for 7 € S(r) do ComputeRowBasis(7');
GT = 0;
for o€ C; do
begin
Build 4, , according to (5.13);
(A?T = GI +/17w/fgg
end;
Compute the Schur decomposition Qf GTQT =D
with D = diag{o1,...,0m.},01 > -+ > 0Op,;
O::= Q. i,k
for o € C; do AAT_ﬁ = QfAfw;
If necessary, copy B, . from Q. according to (5.9)
end

end

22 W. Hackbusch and S. B6rm

5.3. Complexity

Now we aim to estimate the complexity of our algorithm. We recall the definition
of C; in condition 4 of Definition 2.1:

St)=0=n<C

for all leaves © € £ (7 (I)).

We assume that there are sequences (k¢),cy, (m¢),cn satisfying
ke < klevel(r) and m, < Mievel(t) (514)

i.e., that k; and m, are bounded by constants depending only on the level of 7, and
that there is a constant Cx satisfying

o0 o0

Z 2k, < C, Z 20wy, < Cy,

0 B (5.15)
D 2 temi < Ceoand Y 2k < Gk

(=0 =0

Usually, &, and my will be polynomials in ¢ and therefore fulfil this requirement.

We let wy := #T;(I) and assume that 7 (I) is an “almost balanced” binary tree,
i.e., that there is a constant Cy satisfying

wy < Cp2ttmasp,

5.3.1. Computational Complexity for G, and G,

Let us first consider the number of operations necessary for the computation of
the Gram matrix G, for a leaf t of 7 (I). The initialisation of G, requires ((n?)
operations, the computation of one of the increments 4| A|” requires O(n’n,)
operations for each ¢ € C,. Since C; is a partitioning of a subset of /, we have

> ne<n, (5.16)

geC,

leading to a total complexity of /(nn) for the computation of G. Since 7 is a leaf,
we have n, < Cy, so only a complexity of (/(n) remains.

Let now 7 € T(I) be a node that is not a leaf of .7 (7). We estimate the number of
operations necessary for the computation of G, from (5.12). The initialisation of
G, requires (/(m?) operations, the computation of one of the increments AAT’UAAMT
takes ((mn,) operations. Due to (5.16), we end up with a complexity of @(m?n)
for the computation of G..

Data-sparse Approximation by Adaptive #>-Matrices 23

If we denote the number of operations for the computation of G, (for leafs) or G,
(for other clusters) by E¢ ., we get the estimate

Eg. < Com*n

for a constant Cz. Summing up, we get the following estimate for the number of
operations necessary for the computation for all t € T(J):

m\x

ZEGT<CGan <CGnZZm

el (! el (=0 zeTy(I)
km‘dx zmux
< Cony _wim; < CgCyn® Y 2wy < CC Cn’. (5.17)
=0 =0

5.3.2. Computational Complexity for QT

Now, we will derive an estimate for the number of operations necessary for the
computation of Qr, i.e., for solving the symmetric positive definite eigenproblem.
We assume that an algorithm with cubic complexity is used, so the computation
for a leaf © € T(I) takes ((n?) operations, while the computation for the other
nodes t € T(I) requires (/(m) operations.

If we denote the number of operations for the computation of QT once more by
Eo., we get the estimate

Eg. < Com}

for a constant Cp. We sum up and get the estimate

Zmz\x
Eg:= Y Eg:<Cp Y m<Cp». Z m
(=0 teT,(I

el (I) el (I)
Zmax mA
< Cp Y wim < CoCyn» 2w < CoCyCyn. (5.18)
(=0 =0

5.3.3. Computational Complexity for Aw

To complete the complexity estimate, we consider the number of operations in-
volved in the computation of the transformed matrices Ar,g. The computation for
aleaft € T(/) and a ¢ € P (cf. (5.3)) takes O(k.n.n,) operations. By using (5.16),
we get a complexity of O(k.n.n) for all updates corresponding to .

If T € T(Z) is not a leaf of .7 (I), the computation requires ((k.m.n,) operations.
By (5.16), the complexity for all updates corresponding to t is of order O(k.m.n).

24 W. Hackbusch and S. B6rm

We denote by E, . the number of operations for the computation of AAW for all
o € C; by C; and get the estimate

EA,‘L’ S CA krmrn

with a constant Cy4. For all = € T(J), the complexity is therefore bounded by

Lmax

ZEATSCAn Z kaSCAnZ Z k.m;

el (I €Tl =0 teT,(I

Lmax Lmax

< Cyn ZW{k/WI[< CACWI’l2 22/((m“/qm/ < CACWCKII (519)
— —0

Summing up Eg, Ep, and E,4, we find that the complexity of the algorithm is
O(n?).

5.4. #*-Approximation Error Estimate

In Subsect. 2, we introduced an algorithm that computes consistent nested bases
#",. The algorithm can be applied to A7 in order to get the bases ¥..

This leaves us with the question if using both bases we can control the error of the
A*-approximation of the matrix A.

We define Frobenius-orthogonal projections

le . KIXI N [KIXI7

4= (Ab)bePz = (H'Vr,rAb)b:rxrrePﬁ (5:20)
and
I, : K> — K s21)
A= (Ab)bePz = (Abn'/”c,a)h:rxaepz-
They commute, and the product
n:=1, I, =1, I1,, (5.22)

is the Frobenius-orthogonal projection onto .# ,2(I X I, P>, V",V c).

Due to the orthogonality of the projections, we get the following approximation
error estimate:

Data-sparse Approximation by Adaptive #>-Matrices 25
Lemma 5.2. Let A € K™, Then the inequality

2 2 2
|4 — 4|z < [|4 =Ty Al|z + [[4 — Ty Al

holds.

Proof: For a matrix 4 € K™/ we have

|4 = TLA||f. = [|4 = T, Ty A7 = |4 = Ty A + Ty, A — T, Ty Al
= ||(— T1y,)4 + Ty (4 — Ly A)|}
= |(I = X1y A7 + [|TLy, (4 — Ty A)][7
< |14 = Ty A7 + | Ty [7]14 — Ty 4] 7
< |l4 =Ty A7 + |4 — T 4] 7. O

Of course, we are interested in an optimal approximation. The following lemma
states that quasi-optimal row and column bases lead to a quasi-optimal #2-
representation:

Lemma 5.3. Let A € K!*!. Then the inequality
max{||[4 — 1, A4

2 2 2
|F7 ||A - H”VCA |F} < ||A - HA”F

holds.
Proof: Due to (5.22), we have

2 2 2 2 2 2

4 = Ty, Al = 41l = T Al[p < (|4l — [Ty [Ty Al|z
2 2 2 2 2
< (|47 = [Ty Ty, Al = [[4llF — [TA[z = (|4 — TLA][-

Swapping the roles of I1,-, and I1,, completes the proof. O

6. Approximation of s/-Matrices

The complexity of the algorithm for the computation of nested row bases is
optimal for full matrices: Since we have to consider n*> matrix entries, any algo-
rithm will be O(n?).

Now we consider the computation of nested row bases for #-matrices. We
assume that the rank is “constant” (cf. (3.6)).

We require the partition P; to satisfy the condition

#P, < Cyp (6.1)

for a constant Cy, and all = € T(Z) (cf. (5.2)).

26 W. Hackbusch and S. B6rm

Since a cluster T € T(/) can have no more than ¢,,,x father clusters, we conclude
that

#P;L S Cspgmax
(cf. (5.4)).

6.1. Efficient Computation of G,

We fix a matrix 4 € # (I x I, Py, k). Since 4|, is a rank-k-matrix for each block
b =1 x ¢ € P, there are matrices X, € K”** and ¥, € K™~ satisfying

Al, = XY (6.2)

We will make use of this structure in order to speed up the computation of the
Gram matrices G; and G,: We have

H H
G, = ZA|T><0A|T><(7 = Z(A|b)|r><a(A|b)|r><a

eC: beP;

— H H

- E Xb|r><ky,Yb YbXb|T><krf’
oeC,

so we can compute Z, := Y/Y, for all blocks P, in advance. Since #7(I) = O(n),
we can conclude from (6.1) that #P, = (/(n), so the computation of all the (Zp),cp,
can be accomplished in @(nk?,) operations.
By using

XTJJ = V;,[ZX])|

TXky

instead of AAM (cf. (5.10)), we can rewrite (5.11) as

AT,T]A?"Tl e AT_,TIAfJS
Go—id=| .
Ar,nA{—{rl e AHSAZA
~ ~H A ~H
XflﬁthX‘tl,b ce XTIA,beX‘tS.b
= . S (6:3)
beP; ~ ~ H - 5 H
: XepZpXo oo XepZpX,
for S(z) = {z1,..., 7}
As in (5.13), we combine the matrices X, ; to get
X‘L‘],b
Xr,b = , (6.4)

X T5,b

Data-sparse Approximation by Adaptive #>-Matrices 27

so we can rewrite (6.3) in the form

Go=S x| . |x (6.5)
bePy Z

The computation of G, therefore requires only O(m k. (m, + ky)lmax) Operations,
while in the case of the general matrix (/(m2n) operations were necessary.

Due to the equation X, = Q"X ,, we can use X, to compute X, efficiently, i.e.,
in only O(k.m ky) operations, while in the case of a general matrix O(k,m.n)
operations are necessary.

6.2. Algorithm

The computation of the auxiliary matrices Z, is straightforward, so we only give
the recursive algorithm for the computation of a nested row bases for a given
A -matrix:

procedure ComputeRowBasisHMatrix(7);

begin
if S(t) =0 then
begin
G, :=0;

for b€ Pl do G: := G+ Xy, ZoXoltos, :

Compute the Schur decomposition Qf’ GTQT =D
with D = diag{o1,...,0,. },01 > -+ > 0,;

Vig = QI idy «k, € Rk

for b€ P" do X, := Vr{iXb|

end

‘[><k,%/

else
begin
for 7' € S(r) do ComputeRowBasis(7');

G, :=0;
for b€ P do
begin
Build an according to (6.4);
Compute G, according to (6.5)

end;

28 W. Hackbusch and S. B6rm

Compute the Schur decomposition Q‘;’ GTQT =D
with D = diag{oy,...,0,.},01 > -+ > 0m,;
0: := 0, idm k.
for b € P do X, := 0" X,y;
If necessary, copy B, . from Q. according to (5.9)
end

end

6.3. Complexity

The computation of Q. in the #-matrix algorithm requires the same number of
operations as in the full matrix algorithm, i.e., O(n) operations.

The computation of X p takes O(k.m.ky) operations in the s -matrix case and
O(k,m.n) operations in the full matrix case. Proceeding as in Subsect. 5.3.3, we
find that the computation for all clusters = € T(7) and all blocks b € P, requires
O(nky) operations.

As stated above, the computation of G. requires O(mky (m; + ky)lmax) Opera-
tions, i.e., there is a constant Cy; satisfying

E/G.,r < C,Gmfkyf (mr + k]/)gmaxa

where Ef; . denotes the number of operations involved in the computation of G..
Summing up, we get

Z Eg. < Coklmax Y m2+ Cohoyplmas > me

el (I el (I) el (I)
lnd)(
! 2
< Cijgmax § E mg + CGk max E § ml
(=0 €Ty (I (=0 teTy(I
m\)\ 2 [lﬂl‘(
/ /
< Ciknlmax E ng[+ Cikyplmax E ng(,
=0 (=0
kmz\x kn]i\x
/ C—limax 11,2 ! 2 L—tina
< CoCwkyplmaxh E 257 my + CpCwkyplmaxh E 25 tmaxpy,
=0 =0

< CLCwCrky (1 + ko)maxn,

so the complexity of the entire algorithm is in O(nlmaxk>,).

Data-sparse Approximation by Adaptive #>-Matrices 29

7. Adaptivity

As mentioned in Remark 5.1, it is possible to choose the rank &, in order to reach
a given precision €., i.e., to satisfy the condition

me

Ty = Y 2= <e. (7.1)

v=k.+1

The following Lemma combines the cluster-oriented quantities e; to form the
global error:

Lemma 7.1. Let P, be a partitioning and let V", = (AV"’-,T)IGT(I) be a consistent
family of spaces. Then the equation

l4 =T Al = > e (7.2)
el (1)
holds for the Frobenius-orthogonal projection 11y, introduced in (5.20).

Proof: We consider auxiliary partitionings

Pi={becTUxI) : (level(b) >LAbc P)V (level(b) =L A3 € P,bC I},
with auxiliary Frobenius-orthogonal projections

Hy//“”/{ . KIX] N KIXI,
A= (Ap)pepy = (T, Ap)

b=txoeP,"

The partitionings for a standard example can be found in Fig. 3.

We have P) = P, and Pf‘“““ =T,,.. (I xI) and, consequently, IT, o = IT,, and
Iy 4. =1. Since the family 7. is consistent, the equation

max

Iy, o Ty, 0, = Ty, minge, 0y holds for all £y, 4, € {0,. .., fnax}, therefore we get

|4 =Tl gll7 = |4 = Ty g1 A + Ty, o1 4 — Ty A 7

= (I =Ty)4+ Ty (I = Ty) Al

= |4 = Ty, et ll7 + 1Ty, 14 — Ty oA

i i i
i s s
i s s
i s s

Fig. 3. Partitionings P, P7, P} and P) = P, for the example from Fig. 2

30 W. Hackbusch and S. B6rm

Since the error introduced by changing from the J#2-matrix approximation cor-
responding to the partitioning Pf“ to that corresponding to Py is given by the
equation

T iid = T ed7 = Y €,

teTy(1)

we get the desired equality (7.2) by summing up these terms for all
e {0,...,lmax}- O

A straightforward approach to computing an #’-matrix for a given matrix
A4 € K would be to set

€ =

2#T(0)

for a fixed € € R and choose &, in order to satisfy (7.1), leading to

eH#T(1 -
=24 Z ‘= 2#T((1)):62/2'

weT(I) el (I

|4 — 11y 4

Applying the algorithm for the computation of the column bases, we get
|4~ 4|z < &
by Lemma 5.2.

Obviously, feeding any other vector € = (€:) () satisfying

> e<eV2
eT(I)

into our algorithm will y1eld the same approximation error. Therefore, we are
looking for a vector e € R 0> with ||e[l, < &/v/2 that minimizes a certain cost
functional.

If, for example, matrix-vector multiplications are very important for the appli-
cation in question, the functional

= k(e

el (I)

where k. (¢) is the rank required to satisfy the condition (7.1), should be mini-
mized.

Data-sparse Approximation by Adaptive #>-Matrices 31

The functions k,(e) depend not only on e, but also on the values of e, for any
descendant of 7 in the tree 7 (I), so finding an optimal € usually means solving a
complicated nonlinear minimization problem on the ball with radius é/v/2.

8. Examples

In this last section, we will investigate the properties of the adaptive #7-
approximation algorithm.

8.1. Approximation of an Integral Operator

Since the basic idea of the #?-matrix concept is the panel clustering technique
for integral equations, our first example investigates the approximation of the
single layer potential corresponding to Poisson’s equation in 2D. The kernel
function

k(x,y) := log|lx — y||

is discretized on a polygonal closed curve using a Galerkin projection with
piecewise constant basis functions.

8.1.1. Constant Rank

We apply the greedy-type algorithm of Subsect. 5.2 to the matrices corresponding to
the Galerkin discretisation and, for the first test, choose a fixed rank of k.onst = 4. In
order to speed up the algorithm, the maximal size of leaves Cy is set to 8.

The relative approximation errors

|4 — T14]|
4l

14 — T14]}

Error, :=]
2

Errorg :=

in the Frobenius and Euclidean norm are reported in the Tables 1 and 2, along
with the time? needed for the conversion from full to #>-matrix, the time re-
quired for one matrix-vector multiplication, the amount of memory needed to
store all the data corresponding to the #*-matrix and the compression factor
achieved in comparison to full storage.

8.1.2. Adaptive Rank

As outlined in Sect. 7, our algorithm cannot only select the #>-basis functions
adaptively, but it can also be used to determine the ranks for each cluster in order
to achieve a given precision.

2All computations are performed on a SUN Enterprise server with an UltraSPARC 2 processor
running at 248 MHz

32 W. Hackbusch and S. B6rm

Table 1. #*-approximation of the Poisson single layer potential on the unit circle for constant rank
keonst = 4. The ratios of consecutive columns are given in brackets

n 256 512 1024 2048 4096 8192 16384 32768
Conv/s 0.09 0.27 1.15 4.44 1722 7090 343.0 1415
(3.0) 4.3) (3.9) 3.9) @1 (4.8) @1
MVM/ms 111 2.22 4.54 9.67 2112 4278 107.6 219.9
(2.0) (2.0) 2.2) 2.2) (2.0) 2.5) (2.0)
MVM/MFlops 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84
(2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0)
Mem/KB 1427 2889 5814 1166 2336 4676 9356 18716
(2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0)
Comp 0.28 0.14 0.07 0.04 0.02 0.01 0.004 0.002
Erry /1075 2.86 3.43 3.66 3.74 3.77 3.79 3.79 3.79
Erry /1075 1.38 1.45 1.46 1.45 1.48 1.48 1.48 1.48

Table 2. #?-approximation of the Poisson single layer potential on the boundary of the unit square
for constant rank kconsy = 4. The ratios of consecutive columns are given in brackets

n 256 512 1024 2048 4096 8192 16384 32768
Conv/s 0.08 0.26 1.14 4.48 17.48 7469 3319 1391
(3.3) (4.4) (3.9) (3.9) 43) (4.4) 4.2)

MVM/ms 1.06 2.23 4.53 9.59 21.05 43.24 107.1 216.4
@D (2.0) @D (22) @1 (2.5 (2.0)

MVM/MFlops 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84

(2.0) (2.0) (2.0) (2.0) (2.0) 2.0) (2.0)
Mem/KB 1427 2889 5814 1166 2336 4676 9356 18716
(2.0) (2.0) (2.0) (2.0) (2.0) 2.0) (2.0)

Comp 0.28 0.14 0.07 0.04 0.02 0.01 0.004 0.002
Errg/1073 7.85 8.01 8.01 7.98 7.96 7.95 7.94 7.93
Erry /1073 5.10 5.12 5.10 5.08 5.07 5.06 5.06 5.06

Table 3. Adaptively chosen rank distribution across cluster levels for the Poisson single layer potential
on the unit circle. The ratios of consecutive columns are given in brackets

256 512 1024 2048 4096 8192 16384 32768

5 5 5
6 6 6
6 6 6
6 6

6

AN W

[V e e e e e V)
NI W

[V NV, e e Mo NN IS I KeN
[V NV, e e e e N N R

(35 @) (38 (38 @5 @) (39

1.28 2.88 562 1208 22.63 5388 1195 2433

(2.3) (2.0) 2.1 (1.9) 24 (2.2) (2.0)

MVM/MFlops 0.04 0.07 0.15 0.29 0.57 1.13 222 4.42
18 @h (19 @0 (18 @20 (20

n
2
3
4
5
6
7
8
9
10
11
Conv/s 0.11 0.38 1.54 591 22.75 103.3 419.9 1627
MVM/ms

Mem/KB 1678 3470 7055 1391 2703 5393 10606 21167
@.1) (2.0) (2.0) (1.9) (2.0) (2.0) (2.0)

Comp 0.33 0.17 0.09 0.04 0.02 0.01 0.005 0.002
Erry /10~ 0.09 0.19 0.04 0.32 0.42 0.57 0.66 1.21

Err,/107° 0.05 0.05 0.06 0.13 0.09 0.10 0.06 0.05

Data-sparse Approximation by Adaptive #>-Matrices 33

Table 4. Adaptively chosen rank distribution across cluster levels for the Poisson single layer potential
on the boundary of the unit square. The ratios of consecutive columns are given in brackets

n 256 512 1024 2048 4096 8192 16384 32768
2 6 7 7 7 7 7 7 7
3 7 7 7 8 8 8 8 8
4 6 7 7 7 7 7 7 7
5 6 6 7 7 7 7 7
6 6 6 6 7 7 7
7 6 6 6 6 7
8 6 6 6 6
9 6 6 6
10 5 6
11 5
Conv/s 0.11 0.38 1.59 5.94 23.04 1045 4241 1637
(3.5) @.2) 3.7) (3.9) @.5) @.1) (3.9)
MVM/ms 1.28 2.95 5.58 1213 2268 5334 1226 2494
(2.3) (1.9) 2.2) (1.9) (2.4) 2.3) (2.0)
MVM/MFlops 0.04 0.08 0.15 0.29 0.57 1.13 2.22 4.41

(2.0) (1.9) (1.9) (2.0) (2.0) (2.0) (2.0)
Mem/KB 173.6 3566 71638 1392 2734 5388 10627 21109
2.1 (2.0) (1.9) (2.0) (2.0) (2.0) (2.0)

Comp 0.34 0.17 0.09 0.04 0.02 0.01 0.005 0.003
Errr /1076 0.34 0.30 0.27 0.47 0.29 0.44 0.73 0.62
Erry/107° 0.19 0.16 0.13 0.14 0.09 0.10 0.06 0.06

Fig. 4. Basis chosen for a level 3 cluster

If we require the approximation to be accurate up to a relative Frobenius error of
e =10"% and apply the algorithm to the BEM matrices corresponding to an
approximation of the unit circle and to the boundary of the unit square, we get the
rank distributions listed in the Tables 3 and 4.

34 W. Hackbusch and S. B6rm

In both cases, we observe a slow monotonous growth in the rank when passing
from smaller to larger clusters. Since the large clusters on level £ = 2 appear only
once in the partitioning P, while all other clusters appear three times, a slightly
reduced rank is sufficient to approximate the corresponding blocks leading to the
only exception to the otherwise monotonous growth.

Apparently, the adaptive procedure compensates the reduced ‘“‘smoothness” of
the matrix corresponding to the boundary of the unit square by slightly increasing
the rank for the larger clusters.

The seven basis functions chosen by the algorithm for a level 3 cluster can be seen
in Fig. 4: They resemble piecewise constant approximations of the first seven
Legendre polynomials.

8.2. Approximation of a Finite Elements Inverse

For the next example, we consider the #2-approximation of the inverse of a finite
element matrix corresponding to Laplace’s operator discretised using piecewise
linear functions on a regular triangulation of the unit square. The discretization
typically leads to matrices with dimensions that are much larger than those
considered in the BEM case, so we cannot store the entire matrix in a fully
populated format and apply the algorithm ComputeRowBasis.

Instead, we use the approximate inversion routines of Grasedyck [2] to compute
an J/-matrix approximation 4! of the matrix 4~' (with blockwise rank of
ks = 8) which is then converted to an #>-matrix A;/}z using the algorithm
ComputeRowBasisHMatrix.

The rank for the #*-matrix is not chosen by our adaptive procedure, but ac-
cording to Eq. (3.7) with « = f§ = 2. In Table 5, the time for the J#-inversion, for
the conversion to #*-format, the number of flops for #- and #-matrix-vector
multiplications, the memory requirements for both matrix representations and the
relative errors

erty = ||l —4,/4|, and err,. = |I —A;«/IZAH2

are reported. Obviously, the #°-matrices require less memory and allow faster
matrix-vector-multiplications compared with #-matrices.

Table 5. #*-approximation of the inverse of the discretised Laplace operator on the unit square

4096 10000 16384 40000 65536

Time for Inversion/secs 174 878.8 1360 5324 8426
Time for Conversion/secs 3.6 10.3 21.5 62.9 120
A -MVM/MFlops 10.8 25.7 59.2 133.7 293.4

A’ -Memory/MBytes 424 102.0 231.9 530.6 1151

A -Error 0.000022 0.000054 0.000115 0.000382 0.000645

A*-MVM/MFlops 8.9 16.3 41.6 70.7 179.5
#*-Memory/MBytes 33.9 62.9 159.4 274.0 639

A#*-Error 0.000076 0.000602 0.000139 0.000649 0.000646

(1]
2l

B3]
4

B3]
(6]
(71
(8]
0
(10]

Data-sparse Approximation by Adaptive #>-Matrices 35

References

Borm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications.
Preprint 18/2002, Max Planck Institute for Mathematics in the Sciences Leipzig, Germany, 2002.
Grasedyck, L.: Theorie und Anwendungen hierarchischer Matrizen. PhD thesis, University of
Kiel, Germany, 2001.

Hackbusch, W.: Iterative solution of large sparse systems. New York: Springer, 1994.
Hackbusch, W.: Integral equations. Theory and numerical treatment. ISNM 128. Basel:
Birkhéuser, 1995.

Hackbusch, W.: A sparse matrix arithmetic based on #-matrices. Part I: Introduction to
A -matrices. Comp. 62, 89—108 (1999).

Hackbusch, W., Khoromskij, B. N.: A sparse s -matrix arithmetic. Part II: Application to multi-
dimensional problems. Comp. 64, 21-47 (2000).

Hackbusch, W., Khoromskij, B. N., Sauter, S.: On #*-matrices. Lectures on Applied
Mathematics (Bungartz, Hoppe, Zenger, eds.). Heidelberg: Springer 2000.

Hackbusch, W., Nowak, Z. P.: On the fast matrix multiplication in the boundary element method
by panel clustering. Numer. Math. 54, 463-491 (1989).

Sauter, S. A.: Uber die effiziente Verwendung des Galerkin-Verfahrens zur Lésung Fredholm-
scher Integralgleichungen. Diss. Universitdt Kiel, 1992.

Sauter, S. A.: Variable order panel clustering. Comp. 64, 223-261 (2000).

W. Hackbusch and S. B6rm

Max-Planck-Institut, Mathematik in den Naturwissenschaften
Inselstrasse 22-26

D-04103 Leipzig

Germany

e-mail: {wh, sbo}@mis.mpg.de

www: http://www.mis.mpg.de/scicomp/

