
Data-sparse Approximation by Adaptive H2-Matrices

W. Hackbusch and S. Börm, Leipzig

Received April 17, 2002
Published online: July 26, 2002

� Springer-Verlag 2002

Abstract

A class of matrices (H2-matrices) has recently been introduced for storing discretisations of elliptic
problems and integral operators from the BEM. These matrices have the following properties: (i) They
are sparse in the sense that only few data are needed for their representation. (ii) The matrix-vector
multiplication is of linear complexity. (iii) In general, sums and products of these matrices are no
longer in the same set, but after truncation to the H2-matrix format these operations are again of
quasi-linear complexity.

We introduce the basic ideas of H- and H2-matrices and present an algorithm that adaptively
computes approximations of general matrices in the latter format.

AMS Subject Classifications: 65F05, 65F30, 65F50, 65N38, 68P05, 45B05, 35C20.

Keywords: Hierarchical matrices, nested bases, full matrices, fast matrix-vector multiplication, BEM,
FEM.

1. Introduction

For linear systems with a sparse n� n-matrix A, several optimal iteration methods
are known, where optimality is characterised by estimating the arithmetic oper-
ations by OðnÞ: Usually, it is a well-established rule to avoid any consideration of
A�1 for numerical purposes because of the fill-in (usually, A�1 is a full matrix).
Under this restriction, one tries to express all algorithmical steps by means of the
non-zero entries of A or by the action of the matrix A to a vector. ILU-decom-
positions or Krylov methods are typical results. A particular problem arises for
the iterative solution of Sx ¼ y; where S is a Schur complement. Since the exact
calculation of S is ‘‘forbidden’’ because it involves the inversion of a submatrix,
only the action of S can be considered. There are cases where this is not sufficient
for constructing a fast iterative method.

The techniques introduced in [5] show that, nevertheless, one can handle full
matrices like A�1 with (almost) linear cost. In particular, in [7] a class of matrices
(called H2-matrices) was introduced for discrete elliptic problems and discrete
integral operators from the boundary element method (BEM, cf. [4]). In the latter

Computing 69, 1–35 (2002)
Digital Object Identifier (DOI) 10.1007/s00607-002-1450-4

case, full matrices arise directly. It is shown in [7] that H2-matrices have the
following properties:

(1) They are data-sparse in the sense that only OðnÞ data are needed for their
representation.

(2) The matrix-vector multiplication is of linear complexity.

(3) Sums of these matrices can be computed with linear complexity.

In the case of sparse matrices A resulting from finite element discretisations of
elliptic boundary value problems, the inverse A�1 approximated by the H2-for-
mat is the interesting object. Depending on the accuracy of the approximation
B � A�1; we have (a) a new fast iteration xiþ1 :¼ xi � BðAxi � yÞ, if B is a rough
approximation to A�1; or (b) By can be considered as the discrete solution, if the
error B� A�1 is of the size of the discretisation error for y.

The notation H2 refers to two different hierarchical structures. The (first) hier-
archy of the underlying cluster tree leads to the definition of the H-matrices
introduced in detail in [5] and [6]. A second hierarchy concerns the nested bases
used in the definition of H2-matrices.

In Sect. 3, we review the definition of H2-matrices. The following Sect. 4 considers
the efficient implementation of some basic operations on this type of matrices.

The computation of an optimal H-approximation of a given general matrix can
be done in principle by using the singular value decomposition for all matrix
blocks and requires Oðn3Þ operations. This trivial but costly algorithm no longer
works if an H2-approximation is desired. In Sect. 5, we present an algorithm that
computes such an approximation with only Oðn2Þ operations. If the original
matrix is given in H-format, the algorithm can be modified to use only an almost
linear amount of operations.

2. H-Matrices

In Subsects. 2.1 and 2.2, we define the cluster tree and block cluster tree which,
together with an admissibility condition for matrix blocks described in Subsect. 2.3,
form the basis of the H-matrix format introduced in Subsect. 2.4. An introductory
example is presented in Subsect. 2.5. These preparations will lead to the nested bases
H-matrices (H2-matrices) in Sect. 3.

2.1. The Cluster Tree

We use the usual notations for trees: For a given tree T ¼ ðN ;EÞ, the elements of
N will be called nodes, the elements of E � N � N will be called edges. If
ðs; rÞ 2 E, then r will be called a son of s.

We define the mapping S : N ! PðNÞ by

SðsÞ :¼ r 2 N : r is a son of sf g for s 2 N ;

2 W. Hackbusch and S. Börm

i.e., SðsÞ is the set of sons of a given node s. Obviously, the tree is uniquely
determined if only N and S are given.

If for s 2 N the equation SðsÞ ¼ ; holds, s is called a leaf. The set of leaves is
denoted by LðTÞ.

Let I be the index set of the finitely many degrees of freedom. The elements of I
may be f1; . . . ; ng or the nodal points of the finite element discretisation, etc. The
precise definition of the cluster tree TðIÞ is given in

Definition 2.1. Let I be an index set. A tree TðIÞ is called a cluster tree (based on I)
if the following conditions hold:

(1) I is the root of TðIÞ.
(2) #SðsÞ 6¼ 1 for all s 2 N .

(3) For all s 2 N , we have

SðsÞ 6¼ ;) s ¼ �
[

s02SðsÞs
0; ð2:1Þ

i.e., if s is not a leaf, SðsÞ is a partition of s.
(4) There is a constant CL 2 N independent from I satisfying

SðsÞ ¼ ;) ns � CL ð2:2Þ
for all s 2 N with ns :¼ #s; i.e., the size of each leaf is bounded. The set of nodes
will be denoted by T ðIÞ.

For technical reasons, condition 2 is sometimes omitted, but then two different
vertices of T ðIÞ may correspond to identical subsets of I (cf. (2.1)).

Remark 2.2 (Geometrical Cluster Trees). Typical algorithms for constructing
cluster trees based on geometrical information can be found in [2, Beispiel 3.10] and
[1, Example 2.1].

We define:

level : T ðIÞ ! N0 by
levelðIÞ :¼ 0 and levelðs0Þ :¼ levelðsÞ þ 1 for s0 2 SðsÞ:

The maximal level of the cluster tree TðIÞ is ‘max :¼ max levelðT ðIÞÞ, i.e., the
depth of TðIÞ. T ðIÞ can be partitioned into

T ðIÞ ¼
[‘max

‘¼0

T‘ðIÞ;

where T‘ðIÞ :¼ fs 2 T ðIÞ : levelðsÞ ¼ ‘g for ‘ 2 f0; . . . ; ‘maxg.

2.2. The Block Cluster Tree

Since we are dealing with matrices A ¼ ðaijÞi;j2I , we have to consider the index set
I � I . A hierarchical partitioning of this set is given by the block cluster tree

Data-sparse Approximation by Adaptive H2-Matrices 3

TðI � IÞ (with nodes T ðI � IÞ) that is derived from TðIÞ by the following
inductive construction:

Construction 2.3. The root of TðI � IÞ is I � I . Given a vertex b ¼ s� r 2 T ðI � IÞ
with s; r 2 T ðIÞ, the set of sons of b is defined to be

SðbÞ :¼ fs0 � r0 : s0 2 SðsÞ;r0 2 SðrÞg: ð2:3Þ

Note that b is a leaf, i.e., SðbÞ ¼ ;, if either SðsÞ ¼ ; or SðrÞ ¼ ;; i.e., if either s or r
is a leaf.

Remark 2.4. A binary cluster tree TðIÞ leads to a quad-tree TðI � IÞ.

The mapping levelð�Þ defined on T ðIÞ is extended to T ðI � IÞ as explained in

Remark 2.5. For all b ¼ s� r 2 T ðI � IÞ, we define levelðbÞ ¼ levelðsÞ. Due to
(2.3), we also have levelðbÞ ¼ levelðrÞ. We can partition T ðI � IÞ into

T ðI � IÞ ¼
[‘max

‘¼0

T‘ðI � IÞ;

where T‘ðI � IÞ ¼ fb 2 T ðI � IÞ : levelðbÞ ¼ ‘g for all ‘ 2 f0; . . . ; ‘maxg.

2.3. Admissibility

Each index i 2 I is associated with a compact subset Xi � Rd . This may be a grid
point (i.e., Xi ¼ fxig) or the support of the i-th finite element basis function:

Xi :¼ suppðbiÞ ðbi : i-th finite element basis function). ð2:4Þ

This notation is extended to clusters s 2 T ðIÞ by

Xs :¼
[

i2s
Xi: ð2:5Þ

We introduce the diameter and the distance of s; r 2 T ðIÞ by setting

diamðsÞ :¼ max
x;y2Xs

x� yk k and distðs; rÞ :¼ min
x2Xs;y2Xr

x� yk k:

A block b ¼ s� r 2 T ðI � IÞ is called admissible, if b is a leaf or if the following
admissibility condition1 holds for a fixed parameter g < 1:

maxfdiamðsÞ; diamðrÞg � 2g distðs; rÞ: ð2:6Þ

1For general H-matrices the maximum on the left-hand side in (2.6) can be replaced by the minimum.
However, for some proofs in the context of H2-matrices we need the maximum.

4 W. Hackbusch and S. Börm

2.4. Admissible Matrix Partitionings and H-Matrices

We introduce the set-valued functions

cols : T ðIÞ �PðT ðIÞ � T ðIÞÞ ! PðT ðIÞÞ;
ðs; P Þ 7! fr 2 T ðIÞ : s� r 2 Pg;

rows : T ðIÞ �PðT ðIÞ � T ðIÞÞ ! PðT ðIÞÞ;
ðr; P Þ 7! fs 2 T ðIÞ : s� r 2 Pg;

that associate a given cluster with all blocks in which it occurs.

A set P2 2 PðT ðIÞ � T ðIÞÞ satisfying

I � I ¼ �
[

b : b 2 P2f g and P2 � T ðI � IÞ ð2:7Þ

is called a hierarchical partitioning of I � I . The subscript 2 in P2 should indicate
that P2 partitions the twofold product index set I � I . Note that the second
condition implies levelðsÞ = levelðrÞ for all s; r 2 T ðIÞ with s� r 2 P2.

For any P2 there exists exactly one subtree T2 of T ðI � IÞ with root I � I satisfying

SðbÞ ¼ ; () b 2 P2 for all b 2 T2. ð2:8Þ

A partitioning P2 is called admissible if all blocks b 2 P2 are admissible.

Definition 2.6 (H-matrix). Let I be an index set, let P2 be a block partitioning of
I � I and let k 2 NP2 . A matrix A 2 KI�I is an H-matrix with respect to P2 and the
rank distribution k, if for each b 2 P2 the condition rankðAjbÞ � kb holds.

Here, Ajb ¼ ðaijÞði;jÞ2b denotes the block matrix with respect to b 2 P2.

The set of all these matrices is denoted by MHðI � I ; P2; kÞ.

2.5. Example

To fix the ideas, we give a 1D example of what an admissible partitioning may
look like. We consider piecewise constant finite elements on the unit interval ½0; 1�
having the supports Xi ¼ ½ði� 1Þh; ih� for i ¼ 1; . . . ; n with the step size h ¼ 1=n:
Assume n ¼ 2p. Then an obvious recursive construction of the cluster tree is as
follows: I ¼ f1; . . . ; ng is the root, and whenever

s ¼ fis; is þ 1; . . . ; is þ ns � 1g ð2:9Þ

is not a leaf (i.e., ns > CL, cf. (4)), the sons of s are the two clusters
s0 ¼ fis; is þ 1; . . . ; is þ ns=2� 1g and s00 ¼ fis þ ns=2; . . . ; is þ ns � 1g of half the
size. An equivalent way would be to say that the support Xs is divided into equal
parts Xs0 and Xs00 : We have s 2 TlðIÞ if and only if ns ¼ 2p�l; where p ¼ ‘max:
Furthermore, diamðsÞ ¼ 2p�lh ¼ 2�l and distðs; rÞ ¼ maxf0; jis � irjh� 2�lg
for s; r 2 TlðIÞ; where the notation is refers to (2.9).

Data-sparse Approximation by Adaptive H2-Matrices 5

The partitioning P2 defined by the admissibility condition (2.6) for g ¼ 1=2 takes
the form outlined in Fig. 1.

3. H2-Matrices

The H2-matrices, which we are going to explain in this section, were first intro-
duced in [7]. They are a subset of the general H-matrices MHðI � I ; P2; kÞ. For
A 2MHðI � I ; P2; kÞ, we allow Ajb to be any block-matrix of rank � kb.

Now we will restrict Ajb to a certain subspace Vb of matrices with rank � kb in
order to reduce the amount of work necessary for operations on this new type of
matrix. This restriction can be seen as a three-step procedure: The first step is to
consider arbitrary; but fixed, subspaces of the set of all H-matrices
MHðI � I ; P2; kÞ. The second step is to restrict the spaces corresponding to the
blocks b ¼ s� r 2 P2 to tensor product form. The last step is to consider nested
spaces.

3.1. Restriction to a Fixed Subspace

The set MHðI � I ; P2; kÞ is, in general, not a vector space: Each block b 2 P2 is in
the set

Rb :¼ fA 2 Kb : rankðAÞ � kbg;

Fig. 1. Admissible partitioning

6 W. Hackbusch and S. Börm

and this set is not a vector space, not even convex. This is a disadvantage con-
sidering the theoretical treatment of H-matrices, since standard linear algebra
cannot be applied.

In order to remedy this, we fix a kb-dimensional subspace Vb of Rb for each
b 2 P2 and define the space

MHðI � I ; P2;VÞ :¼ fA 2 KI�I : Ajb 2Vbg;

where V ¼ ðVbÞb2P2
.

If we equip KI�I with the Frobenius inner product

hA;BiF :¼
X
i;j2I

aijbij;

we get a Hilbert space with the standard Frobenius norm of which
MHðI � I ; P2;VÞ is a subspace.

So the best approximation (with respect to the Frobenius norm) for any matrix A
in this subspace can be expressed by means of the orthogonal projection

P : KI�I !MHðI � I ; P2;VÞ with
hPA;BiF ¼ hA;BiF for all A 2 KI�I and B 2MHðI � I ; P2;VÞ:

3.2. Uniform H-Matrices

In many practical applications, a certain s 2 T ðIÞ occurs more than once in the
blocks b 2 P2 of the given partition. Therefore, it is desirable to do as much work
on the ‘‘cluster level’’ and as little as possible on the ‘‘block level’’ in order to
reduce the total amount of work.

One way of doing this is to fix spaces Vr;s (corresponding to rows of the matrix)
and Vc;s (corresponding to columns), both with dimension ks, and choosing Vb

for b ¼ s� r 2 P2 to be

Vb :¼ spanfusvHr : us 2Vr;s; vr 2Vc;rg;

i.e., the tensor product of Vr;r and Vc;s. As usual for tensor product spaces, the
dimension of Vb is kskr. The rank of matrices in this space is obviously bounded
by kb ¼ minfks; krg.

If for each b 2 P2 the space Vb is defined as above, MHðI � I ; P2;VÞ is denoted
by MHðI � I ; P2;Vc;VrÞ and called the space of uniform H-matrices with re-
spect to I , P2, Vc ¼ ðVc;sÞs2T ðIÞ, and Vr ¼ ðVr;sÞs2T ðIÞ.

In standard applications, the spaces Vr;s and Vc;r will coincide for s ¼ r, but this
is not required.

Data-sparse Approximation by Adaptive H2-Matrices 7

If we choose bases for Vr;s and Vc;s, i.e., matrices Vr;s 2 Ks�ks and Vc;s 2 Ks�ks of
full rank satisfying

Vr;s ¼ range Vr;s and Vc;s ¼ range Vc;s;

we get the characterization

Vb ¼ fVr;sSbV H
c;r : Sb 2 Kks�krg: ð3:1Þ

The tensor product structure can be used in the following way to reduce the total
amount of work per matrix-vector multiplication:

The computation of a matrix-vector product ys ¼ Mbxr with Mb 2Vb is
equivalent to the computation of ys ¼ Vr;sSbV H

c;rxr. The three matrix-vector
products occurring in this expression can be used to devise an algorithm con-
sisting of three steps for computing matrix-vector products with uniform
H-matrices:

First Step: Forward Transformation. Since x̂xr :¼ V H
c;rxr does not depend on b, but

only on r, it has to be computed only once for each cluster. The procedure of
computing all x̂xr is called forward transformation:

for r 2 T ðIÞ do x̂xr :¼ V H
c;rxjr:

Second Step: Multiplication. The multiplication with Sb has to be done for each
block b 2 P2, but it has only a complexity of OðkskrÞ, not of Oððns þ nrÞkbÞ as in
the case of original H-matrices:

for s 2 T ðIÞ do ŷys :¼ 0;

for b ¼ s� r 2 P2 do ŷys :¼ ŷys þ Sbx̂xr:

Third Step: Backward Transformation. The last step is the computation of ys by
multiplying by Vr;s. As in the first step, this operation is performed only once per
cluster:

for s 2 T ðIÞ do yjs :¼ yjs þ Vr;sŷys:

3.3. Nested Spaces

Although the amount of work per matrix-vector multiplication can be signifi-
cantly reduced by using uniform H-matrices instead of full H-matrices, it is, for

8 W. Hackbusch and S. Börm

standard applications with constant ks � k, still of order Oðnk log nÞ, i.e., not
optimal.

The logarithmic factor is caused by the forward and backward transformations,
while the multiplication step typically has a complexity of OðnkÞ. The basic idea
for reaching the same complexity for the transformations is to reuse data: For a
given level ‘, k2‘ coefficients will be computed by the forward transformation. So
there will be ‘‘more information’’ on finer levels (i.e., T‘ðIÞ with large ‘, corre-
sponding to small clusters) than on coarser levels, therefore there is a chance of
devising a scheme that allows us to use the coefficients computed on lower levels
in order to compute those on higher levels.

We make two observations:

(1) If the coarser bases cannot be expressed in terms of the finer bases, the ap-
proach given above must fail since then information is lost when switching
from finer to coarser levels.

(2) In order to get a reasonable complexity, the computation of x̂xs for a given
s 2 T ðIÞ nLðTðIÞÞ should require no more than Oðk2

s Þ operations.

A simple way to meet these criteria is to require that the sets Vr and Vc form a
nested hierarchy:

Definition 3.1. A hierarchy V ¼ ðVsÞs2T ðIÞ of spaces is consistent, if for all
s 2 T ðIÞ nLðTðIÞÞ and all s0 2 SðsÞ we have

Vr;s0 � fu0 ¼ ujs0 : u 2Vr;sg and Vc;s0 � fv0 ¼ vjs0 : v 2Vc;sg: ð3:2Þ

If, e.g., Vr is consistent, the space Vr;s for a given s 2 T ðIÞ nLðTðIÞÞ is spanned
by zero-extensions of vectors in the spaces fVr;s0 : s0 2 SðsÞg corresponding to
its sons, so the coefficients x̂xs can be computed using the coefficients x̂xs0 corre-
sponding to the sons of s, i.e., to the next-lower level.

Definition 3.2 (H2-matrix). Let a partitioning P2 and consistent families of spaces
Vr ¼ ðVr;sÞs2T ðIÞ, Vc ¼ ðVc;sÞs2T ðIÞ be given. Then the set of H2-matrices is given
by

MH2ðI � I ; P2;Vr;VcÞ :¼ fM 2 RI�I : M jb 2Vb for all b 2 P2g:

An immediate conclusion from (3.2) is

Remark 3.3. Let b ¼ s� r 2 P2. The restriction of M jb 2Vb to a subblock
b0 ¼ s0 � r0, b0 2 SðbÞ, yields a matrix M jb0 2Vb0 .

The consistency condition can be reformulated for the matrices Vr;s; Vc;r:

Lemma 3.4. The families Vr and Vc with their corresponding bases ðVr;sÞs2T ðIÞ and
ðVc;sÞs2T ðIÞ are consistent if and only if there exist matrices Br;s0;s;Bc;s0;s 2 Kks0�ks

satisfying

Data-sparse Approximation by Adaptive H2-Matrices 9

Vr;sjs0�ks
¼ Vr;s0Br;s0;s and Vc;sjs0�ks

¼ Vc;s0Bc;s0;s ð3:3Þ

for all s 2 T ðIÞ nLðTðIÞÞ, s0 2 SðsÞ.

Using the matrices Bc;r0;r from Lemma 3.4, we can express x̂xr in terms of x̂xr0 : Let
SðrÞ ¼ fr1; . . . ; rsg be the set of sons of r. We find

Vc;r ¼
Vc;r1

Bc;r1;r

..

.

Vc;rsBc;rs;r

0
B@

1
CA; ð3:4Þ

leading to

x̂xr ¼ V H
c;rxjr ¼ BH

c;r1;rV
H
c;r � � � BH

c;rs;rV
H
c;r

	
 xjr1

..

.

xjrs

0
BB@

1
CCA

¼
Xs

i¼1

BH
c;ri;rV

H
c;ri

xjri
¼
Xs

i¼1

BH
c;ri;rx̂xri ; ð3:5Þ

i.e., the coefficient vector x̂xr can be indeed computed using only the coefficient
vectors x̂xr0 corresponding to its immediate sons. This leads to an improved version
of the transformations introduced for uniform H-matrices:

Fast Forward Transformation. In order to make use of (3.5), we compute the
coefficients x̂xr proceeding from the ‘‘finer’’ towards the ‘‘coarser’’ levels:

procedure FastForwardðrÞ;
begin

if SðrÞ ¼ ; then x̂xr :¼ V H
c;rxjr

else

begin

x̂xr :¼ 0;

for r0 2 SðrÞ do
begin

FastForwardðr0Þ; x̂xr :¼ x̂xr þ BH
c;r0;rx̂xr0

end

end

end

10 W. Hackbusch and S. Börm

Fast Backward Transformation. In a similar fashion, we can represent ŷys in terms
of the coefficients ŷys0 corresponding to the sons s0 of s, so by proceeding from the
‘‘coarser’’ towards the ‘‘finer’’ levels and updating the coefficients according to
(3.4), we get the following algorithm:

procedure FastBackwardðsÞ;
begin

if SðsÞ ¼ ; then yjs :¼ Vr;sŷys

else

for s0 2 SðsÞ do
begin

ŷys0 :¼ ŷys0 þ Br;s0;sŷys; FastBackwardðs0Þ
end

end

In the case of constant ks, the ‘‘fast’’ versions of the transformations require only
Oðk2Þ operations to compute the coefficients corresponding to a certain cluster.

3.4. Choice of ks

The simplest choice of the dimension ks is a constant kconst: Since the dimension
cannot exceed the size ns of a cluster, the exact requirement is

ks ¼ minfkconst; nsg: ð3:6Þ

In the case of the example from Subsect. 2.5, ks depends only on the cluster level:

ks ¼ k‘ :¼ minfkconst; 2
p�‘g

for all s 2 T‘ðIÞ.

If an H2-matrix has to approximate a BEM matrix up to the error OðhcÞ with c
being the consistency order, the choice of kconst should be of the order log n, where
n :¼ #I .

As proved in [7], it is not necessary to use kconst ¼ log n for all blocks. This size is
only needed for large blocks. A reasonable choice is

ks :¼ ‘max � levelðsÞ þ 1

or, more generally,

ks :¼ minfns; aþ bð‘max � levelðsÞÞg for some a; b 1: ð3:7Þ

Data-sparse Approximation by Adaptive H2-Matrices 11

If ns depends only on levelðsÞ, also ks ¼ k‘ is only a function of the level number.
Note that for small-sized clusters, kðsÞ is of order 1, while large clusters (with
small levelðsÞ) lead to ks ¼ Oðlog nÞ, since ‘max ¼ Oðlog nÞ.

3.5. Choice of the Bases in the Case of Piecewise Constant Functions

We consider the one-dimensional case of piecewise constant functions on Xi, i 2 I ,
where Xi is an interval. We choose ks to be ‘‘constant’’ according to (3.6).

Given an integral operator with a kernel function jðx; yÞ, consider the expansion

jðx; yÞ ¼
X1
m;l¼0

sm;lP s
m ðxÞPr

l ðyÞ in the range of ðx; yÞ 2 Xs � Xr ð3:8Þ

with Xs;Xr (cf. (2.5)) satisfying the admissibility condition (2.6). Here,
fPr

l : l 2 N0g is the orthogonal system of Legendre polynomials; more precisely,
Pr

l is the lth Legendre polynomial transformed from ½�1; 1� onto the interval Xr

such that

hP r
m ; P

r
l iL2ðXrÞ ¼ dm;l (Kronecker symbol):

We consider a finite part of the expansion (3.8) by setting Ks :¼ f0; . . . ; ks � 1g
and

jks;krðx; yÞ :¼
X
m2Ks

X
l2Kr

sm;lP s
m ðxÞPr

l ðyÞ: ð3:9Þ

In the Galerkin setting, the entry aij of the discrete matrix A is given by the double
integral

aij ¼
Z
Xi

Z
Xj

jðx; yÞbiðxÞbjðyÞdx dy

(we recall that Xi ¼ supp bi and Xj ¼ supp bj).

We replace j by the approximation jks;kr and get

aij �
Z
Xi

Z
Xj

jks;krðx; yÞbiðxÞbjðyÞdx dy

¼
X
m2Ks

X
l2Kr

sm;l

Z
Xi

P s
m ðxÞbiðxÞdx

Z
Xj

P r
l ðyÞbjðyÞdy

¼
X
m2Ks

X
l2Kr

sm;l

Z
Xs

P s
m ðxÞbiðxÞdx

Z
Xr

P r
l ðyÞbjðyÞdy;

so by setting

12 W. Hackbusch and S. Börm

~VVr;s :¼
Z
Xs

P s
m ðxÞbiðxÞdx

�
i2s;m2K

2 Rs�ks ;

~VVc;r :¼
Z
Xr

P r
l ðyÞbjðyÞdy

�
j2r;l2K

2 Rr�kr ;

we have

aij �
Xks�1

m¼0

Xkr�1

l¼0

sm;lðVr;sÞi;mðVc;rÞj;l ¼ ð ~VVa;sS ~VV T
c;rÞij for i 2 s and j 2 r

if we set S ¼ ðsm;lÞm;l 2 Rks�kr . We let

Vr;s ¼ range ~VVr;s and Vc;r ¼ range ~VVc;r;

and find that the approximation ~VVr;sS ~VV T
c;r is in Vb (cf. (3.1)) for b ¼ s� r. The

dimension of Vr;s (or Vc;r) is kconst for ns kconst (or nr kconst) and ns (or nr)
otherwise, satisfying (3.6).

Now we consider the consistency condition (3.2) in the case of ‘‘constant’’ k
according to (3.6). Let s0 2 SðsÞ.

For each polynomial P s
m of degree < kconst, the restriction P s

m jXs0
is again a poly-

nomial of degree < kconst. Therefore, there are coefficients bs;s0

m;m0 satisfying

P s
m jXs0

¼
X
m02Ks0

bs;s0

m;m0P
s0
m0 jXs0

:

We have

~VVr;sjs0�ks
¼

Z
Xs0

P s
m ðxÞbiðxÞdx

 !
i2s0;m

¼
Z
Xs0

X
m02Ks0

bs;s0

m;m0P
s0
m0 ðxÞbiðxÞdx

 !
i;m

¼
X
m02Ks0

bs;s0

m;m0

Z
Xs0

P s0
m0 ðxÞbiðxÞdx

 !
i;m

¼ ~VVr;s0 bs;s0

m;m0

	

m;m0|fflfflfflfflffl{zfflfflfflfflffl}

¼:Ba;s;s0

;

so

Vr;sjs0 ¼ range ~VVr;sjs0�ks
¼ range ~VVr;s0Br;s;s0 �Vr;s0 ð3:10Þ

holds, therefore the condition (3.7) is fulfilled.

Remark 3.5. In the case of variable k (cf. (3.7)), this simple polynomial-based
construction is no longer possible: The rank of a polynomial on a cluster s may be
larger than that of all the polynomials on one of its sons s0 2 SðsÞ, so the restriction

Data-sparse Approximation by Adaptive H2-Matrices 13

property of the spaces cannot be derived from the restriction property of the poly-
nomials.

In [10], the polynomials are replaced by other functions that satisfy the restriction
property while still allowing a suitable approximation of certain kernel functions.

4. Complexity and Storage Requirements

4.1. Storage Requirements

Assume the cluster tree from Subsect. 2.5.

Remark 4.1. If ks is ‘‘constant’’ (cf. (3.6)), the restriction matrices Br;s0;s;Bc;s0;s

require not more than OðnkconstÞ storage.

Proof: The number of clusters on level ‘ is bounded by #T‘ðIÞ � 2‘. We have to
store the ks0 � ks-matrices Br;s0;s and Bc;s0;s for each father-son pair
s 2 T‘ðIÞ; s0 2 SðsÞ, so the total storage requirement is

Sconst :¼ 2
X‘max�1

‘¼0

X
s2T‘ðIÞ

X
s02SðsÞ

ksks0 :

Let #I ¼ n ¼ 2p and set

‘c :¼ minf‘ : 8s 2 T‘ðIÞ : ns � kconstg ¼ bp � log2ðkconstÞc: ð4:1Þ

Then we can split the sum as follows:

Sconst ¼ 2
X‘c�1

‘¼0

X
s2T‘ðIÞ

X
s02SðsÞ

ksks0 þ 2
X‘max

‘¼‘c

X
s2T‘ðIÞ

X
s02SðsÞ

ksks0

� 2
X‘c�1

‘¼0

2#T‘ðIÞk2
const þ 2

X‘max

‘¼‘c

X
s2T‘ðIÞ

X
s02SðsÞ

nsns0

� 4
X‘c�1

‘¼0

2‘k2
const þ 2

X‘max

‘¼‘c

X
s2T‘ðIÞ

ðnsÞ2 � 4k2
const2

‘c þ 2
X‘max

‘¼‘c
2‘22p�2‘

� 4k2
const

2 2p

kconst
þ 2 22p

X‘max

‘¼‘c
2�‘ � 8kconstnþ 4 22p 2�‘c

� 8kconstnþ 4 22p kconst

2p ¼ 12kconstn: (

In [7], a proof of the following estimate for the case of variable ks can be found:

Remark 4.2. If ks grows linearly (cf. (3.7)), the restriction matrices Br;ss;s;Bc;s0;s

require not more than OðnÞ storage.

14 W. Hackbusch and S. Börm

Note that the matrices Br;s0;s and Bc;s0;s describing the H2-format are to be
computed and stored only once for a subspace of H2-matrices, since they are
independent of any individual H2-matrix.

Each matrix M 2MH2ðI � I ; P2;Va;VcÞ is completely described by the matrices
ðSbÞb2P2

from (3.1) carrying the entries sm;l from (3.9).

Using a similar proof as above, the following estimate can be derived:

Remark 4.3. The storage needed for all block coefficient matrices ðSbÞb2P2
is bounded

by OðnÞ in the variable case (3.7) and by OðnkconstÞ in the constant case (3.6).

4.2. Complexity Bound for Arithmetical Operations

4.2.1. Fast Matrix-Vector Multiplication

As mentioned in Subsects. 3.2 and 3.3, the fast matrix-vector multiplication
algorithm is performed in three steps: (i) a forward transformation computes the
coefficients of a given vector in the bases corresponding to each cluster, (ii) in a
block-multiplication phase, the ‘‘scaling matrices’’ Sb are applied to these
coefficient before the (iii) backward transformation computes the result vector
from the coefficients on all clusters.

It can be easily seen that in all the steps the arithmetical work is proportional to
the number of entries in the matrices Br;s0;s;Bc;s0;s and Sb (cf. [7]). Therefore, the
previous results about the storage show a respective complexity of OðnÞ or
OðnkconstÞ.

4.2.2. Matrix Addition with Matching Bases

Different from general H-matrices, the sum of two H2-matrices (with the same
partitioning and the same nested bases) can be performed exactly. Since only the
matrices ðSbÞb2P2

are to be added, the cost is clearly the same as the storage needed
for the family ðSbÞb2P2

.

4.2.3. Matrix Addition with Arbitrary Bases

The sum of two H2-matrices A and B with different bases but identical P2 and
TðIÞ can be represented exactly by doubling the dimensions ks and simply
copying the data associated with A and B, so this operation requires OðnÞ oper-
ations in the case of variable rank and OðnkconstÞ in the case of constant rank.

Of course, the potential doubling of the ranks leads to an unattractive complexity
when computing sums of a large number of matrices. To avoid this, the algorithm
introduced in Sect. 5 can be applied after each addition to reduce the dimensions
by removing unnecessary basis functions.

Data-sparse Approximation by Adaptive H2-Matrices 15

5. Approximation of General Matrices by H2-Matrices

The a priori computation of the bases for an H2-matrix requires that the kernel j
and its expansion (3.8) are known. In many applications, this requirement is not
met, so another method of computing these bases is desirable.

In this section, we present an algorithm that computes an approximation of the
optimal nested bases from a given general matrix. Furthermore, a certain accu-
racy can be guaranteed by applying a slight modification of the algorithm that will
be discussed in Sect. 7.

We assume that a suitable partitioning P2 is given. Since we allow general matrices
with n2 entries in the first stage, the following algorithm needs at least Oðn2Þ
operations.

5.1. Optimal Approximation on One Level

We fix a s 2 T‘max�1 and want to compute an optimal Vr;s. Before we can do this,
we first have to investigate the meaning of ‘‘optimal’’ in this context. The space
Vr;s will be used in all blocks b 2 P2 that have the form b ¼ s� r for a certain
r 2 T ðIÞ, so it seems straightforward to minimizeX

b2Ps

kAjb �PVr;sAjbk
2
F ð5:1Þ

with respect to all Vr;s, where PVs;a is the orthogonal projection from Rs to Vs;a

and Ps is defined by

Ps :¼ fb 2 P2 : 9r 2 T ðIÞ : b ¼ s� rg ¼ fs� r : r 2 colsðs; P2Þg: ð5:2Þ

This minimization will not lead to a good approximation of A, since the space Vr;s

is not only used for b 2 Ps, but, due to the consistency condition (3.2), acts as a
restriction for the computation of Vr;s0 for all s0 2 T ðIÞ with s � s0.

So we aim to minimize the quantityX
b2Pþs

kAb �PVr;sAbk2
F ; ð5:3Þ

summed over all blocks from

Pþs :¼ fb : 9r 2 T ðIÞ : b ¼ s� r and 9bþ 2 P2 : b ¼ bþ \ s� Ig; ð5:4Þ

i.e., all blocks b that are subsets of a block bþ 2 P2 and that have the form
b ¼ s� r for a r 2 T ðIÞ.

Note that the sets b 2 Pþs are disjoint because P2 is a partitioning of disjoint
blocks.

16 W. Hackbusch and S. Börm

Since all elements of Pþs have the form s� r, we can introduce the sets of clusters
and indices corresponding to blocks in Pþs :

Cs :¼ fr 2 T ðIÞ : s� r 2 Pþs g and Is :¼
[

Cs:

Obviously, we have Pþs ¼ fs� r : r 2 Csg, so the expression (5.3) can be re-
written as X

b2Pþs

kAb �PVr;sAbk2
F ¼ kAs �PVr;sAsk2

F ð5:5Þ

with
As :¼ vCs

ðrÞAs�r
� �

r2T ðIÞ2 Rs�I ; ð5:6Þ

where vCs
is the characteristic function of Cs, i.e.,

vCs
ðrÞ ¼ 1 if r 2 Cs

0 else.

n
In Fig. 2, the blocks in Pþs for a given partitioning P2 corresponding to different
clusters s are marked.

It is well-known that approximation problems of this type can be handled by
using the singular value decomposition of As: We let idp�q :¼ ðdijÞp;qi;j¼1 for all
p; q 2 N. Let l 2 N ks be the rank of As. Then there are U 2 Ks�l; V 2 KIs�l and a
matrix R :¼ diagðr1; . . . ; rlÞ with

As ¼ URV H ; r1 r2 � � � rl > 0; UHU ¼ V HV ¼ idl�l :

To determine the optimal rank-k-approximation of As, we replace R by the
truncated diagonal matrix ~RR :¼ diagðr1; . . . ;rks ; 0; . . . ; 0Þ 2 Rl�l and set
~AAs ¼ U ~RRV H . We still have to show that ~AAs is of the form PVr;sAs for a ks-di-
mensional subspace Vr;s of Rs.

We let ~UU :¼ U idl;ks , i.e., ~UU contains the first ks columns of U . Since
~UUH ~UU ¼ idks�ks , the mapping P ~UU :¼ ~UU ~UUH is the orthogonal projection onto
Vr;s :¼ rangeð ~UUÞ satisfying

P ~UUAs ¼ ~UU ~UUHURV H ¼ U idl�ks idH
l�ks

UHURV H

¼ U idl�ks idH
l�ks

RV H ¼ U ~RRV H ¼ ~AAs:

Fig. 2. Blocks Pþs for different clusters

Data-sparse Approximation by Adaptive H2-Matrices 17

Since ~AAs is the optimal rank-k-approximation of As, Vr;s ¼ rangeð ~UUÞ is the op-
timal choice.

Since we are only interested in Vr;s, we can eliminate the computation of the
matrix V by characterizing U and R in terms of the Gram matrix

Gs :¼ AsAH
s ¼ URRHUH ¼ UR2UH

and thus arriving at a symmetric positive semidefinite eigenvalue problem.

Remark 5.1 (Adaptivity). The approximation error is given by

kAs �PVr;sAsk2
F ¼

Xl

m¼ksþ1

r2
m ;

so it is possible to choose ks adaptively in order to ensure that the approximation
error is below a given bound.

Applying this method to AH instead of A, we can find the optimal column-related
spaces Vc;s.

5.2. Global Approximation by a Greedy-Type Algorithm

Using the above procedure, we can compute optimal bases for all clusters, but
they do not necessarily satisfy the consistency condition (3.2). In order to compute
consistent bases, we start from the finest level ‘max.

We compute bases Vr;s0 for all clusters s0 2 T‘max
ðIÞ using the method described in

Subsect. 5.1. Let us now consider a cluster s 2 T‘ðIÞ on the next level ‘ ¼ ‘max � 1.
We want to compute a basis Vr;s of a space Vr;s minimizing

kAs �PVr;sAsk2
F : ð5:7Þ

Since hAs �PVr;sAs;PVr;sAsiF ¼ 0, we get by the Pythagoras identity

kAs �PVr;sAsk2
F ¼ kAsk2

F � kPVr;sAsk2
F :

If we require the matrix Vr;s to be orthonormal, we have PVr;s ¼ Vr;sV H
r;s and find

kPVr;sAsk2
F ¼ kVr;sV H

r;sAsk2
F ¼ kV H

r;sAsk2
F :

Therefore, the problem of minimizing the error (5.7) can be reformulated as the
problem of finding an orthonormal matrix Vr;s 2 Ks�ks maximizing

kV H
r;s Ask2

F : ð5:8Þ

18 W. Hackbusch and S. Börm

We do not only look for an optimal basis, but for a hierarchy of bases being
consistent, so we have to satisfy the condition (3.3). Therefore, we reformulate our
maximization problem in terms of Br;s0;s: We look for a family ðBr;s0;sÞs02SðsÞ of
matrices maximizing

ðBr;s1;sV
H
r;s1

. . . Br;ss;sV
H
r;ssÞ As

��� ���2

F
¼

Br;s1;s

..

.

Br;ss;s

0
B@

1
CA

H V H
r;s1

Asjs1�I

..

.

V H
r;ssAsjss�I

0
B@

1
CA

�������
�������

2

F

for SðsÞ ¼ fs1; . . . ; ssg.

Since Vr;s has to be orthonormal and

Vr;s ¼
Vr;s1

. .
.

Vr;ss

0
B@

1
CA Br;s1;s

..

.

Br;ss;s

0
B@

1
CA;

we get

I ¼ V H
r;sVr;s ¼

Br;s1;s

..

.

Br;ss;s

0
B@

1
CA

H Br;s1;s

..

.

Br;ss;s

0
B@

1
CA;

so the combined matrix

Qs :¼
Br;s1;s

..

.

Br;ss;s

0
B@

1
CA 2 Kms�ks ð5:9Þ

with ms :¼
P

s02SðsÞ ks0 must be orthonormal, too. We set

ÂAs;s0 :¼ V H
r;s0Asjs0�I ð5:10Þ

and

�AAs :¼
ÂAs;s1

..

.

ÂAs;ss

0
B@

1
CA:

So now we look for an orthonormal matrix Qs 2 Kms�ks that maximizes

kQH
s
�AAsk2

F :

Data-sparse Approximation by Adaptive H2-Matrices 19

This problem has the same structure as the original problem (5.8) and can
therefore be treated in a similar fashion, i.e., by computing the eigenvectors of

ĜGs :¼ �AAs
�AAH
s ¼

ÂAs;s1
ÂAH

s;s1
. . . ÂAs;s1

ÂA
H
s;ss

..

. . .
. ..

.

ÂAs;ss ÂA
H
s;s1

. . . ÂAs;ss ÂA
H
s;ss

0
BB@

1
CCA: ð5:11Þ

Making use of (5.10) in combination with (5.6), we have

ÂAs;si ÂA
H
s;sj ¼ V H

r;siAsjsi�IAsjHsj�IVr;sj ¼
X

r2T ðIÞ
V H
r;siAsjsi�rAsjsj�rVr;sj

¼
X

r2T ðIÞ
vCs
ðrÞV H

r;siAsjsi�rAsjsj�rVr;sj ¼
X
r2Cs

V H
r;siAjsi�rAj

H
sj�rVr;sj ;

so we can rewrite the computation of ĜGs in terms of single blocks by using

ĜGs ¼
X
r2Cs

ĜGs;r ð5:12Þ

with ĜGs;r :¼ �AAs;r
�AAH
s;r for

�AAs;r :¼
ÂAs1;r

..

.

ÂAss;r

0
B@

1
CA ð5:13Þ

with ÂAs0;r :¼ V H
r;s0Ajs0�r for all s0 2 SðsÞ.

The explicit computation of ÂAs0;r takes Oðks0ns0nrÞ operations. Once more, it is
possible to make use of the consistency condition in the form of Eq. (3.5) to get
the equation

ÂAs;r ¼ V H
r;sAjs�r ¼

Vr;s1
Br;s1;s

..

.

Vr;ssBr;ss;s

0
BBB@

1
CCCA

H

Ajs�r ¼

Vr;s1
Br;s1;s

..

.

Vr;ssBr;ss;s

0
BBB@

1
CCCA

H Ajs1�r

..

.

Ajss�r

0
BBBB@

1
CCCCA

¼

Br;s1;s

..

.

Br;ss;s

0
BBB@

1
CCCA

H V H
r;s1

Ajs1�r

..

.

V H
r;ssAjss�r

0
BBBB@

1
CCCCA ¼ QH

s

ÂAs1;r

..

.

ÂAss;r

0
BBBB@

1
CCCCA ¼ QH

s
�AAs;r;

20 W. Hackbusch and S. Börm

i.e., by using the matrices ÂAs0;r corresponding to the sons s0 of s, we can compute
ÂAs;r with only OðksmsnrÞ operations.

Combining all the basic steps mentioned above with a recursive bottom-up
strategy, we get the following algorithm:

procedure ComputeRowBasis(s);

begin

if SðsÞ ¼ ; then
begin

Gs :¼ 0;

for r 2 Cs do Gs :¼ Gs þ Ajs�rAj
H
s�r;

Compute the Schur decomposition ~QQH
s Gs

~QQs ¼ D

with D ¼ diagfr1; . . . ; rnsg; r1 � � � rns ;

Vr;s :¼ ~QQs idns�ks 2 Rs�ks ;

for r 2 Cs do ÂAs;r :¼ V H
r;sAjs�r

end

else

begin

for s0 2 SðsÞ do ComputeRowBasis(s0);

ĜGs :¼ 0;

for r 2 Cs do

begin

Build �AAs;r according to (5.13);

ĜGs :¼ ĜGs þ �AAs;r
�AAH
s;r

end;

Compute the Schur decomposition ~QQH
s ĜGs

~QQs ¼ D

with D ¼ diagfr1; . . . ; rmsg; r1 � � � rms ;

Qs :¼ ~QQs idms�ks ;

for r 2 Cs do ÂAs;r :¼ QH
s
�AAs;r;

If necessary, copy Br;s0;s from Qs according to (5.9)

end

end

Data-sparse Approximation by Adaptive H2-Matrices 21

5.3. Complexity

Now we aim to estimate the complexity of our algorithm. We recall the definition
of CL in condition 4 of Definition 2.1:

SðsÞ ¼ ;) ns � CL

for all leaves s 2LðTðIÞÞ.

We assume that there are sequences ðk‘Þ‘2N; ðm‘Þ‘2N satisfying

ks � klevelðsÞ and ms � mlevelðsÞ; ð5:14Þ

i.e., that ks and ms are bounded by constants depending only on the level of s, and
that there is a constant CK satisfying

X1
‘¼0

2‘�‘maxk‘ � CK ;
X1
‘¼0

2‘�‘maxm‘ � CK ;

X1
‘¼0

2‘�‘maxm2
‘ � CK and

X1
‘¼0

2‘�‘maxk3
‘ � CK :

ð5:15Þ

Usually, k‘ and m‘ will be polynomials in ‘ and therefore fulfil this requirement.

We let w‘ :¼ #T‘ðIÞ and assume that TðIÞ is an ‘‘almost balanced’’ binary tree,
i.e., that there is a constant CW satisfying

w‘ � CW 2‘�‘maxn:

5.3.1. Computational Complexity for ĜGs and Gs

Let us first consider the number of operations necessary for the computation of
the Gram matrix Gs for a leaf s of TðIÞ. The initialisation of Gs requires Oðn2

sÞ
operations, the computation of one of the increments Ajs�rAj

H
s�r requires Oðn2

snrÞ
operations for each r 2 Cs. Since Cs is a partitioning of a subset of I , we haveX

r2Cs

nr � n; ð5:16Þ

leading to a total complexity of Oðn2
snÞ for the computation of Gs. Since s is a leaf,

we have ns � CL, so only a complexity of OðnÞ remains.

Let now s 2 T ðIÞ be a node that is not a leaf of TðIÞ. We estimate the number of
operations necessary for the computation of ĜGs from (5.12). The initialisation of
ĜGs requires Oðm2

sÞ operations, the computation of one of the increments ÂAs;rÂA
H
s;r

takes Oðm2
snrÞ operations. Due to (5.16), we end up with a complexity of Oðm2

snÞ
for the computation of ĜGs.

22 W. Hackbusch and S. Börm

If we denote the number of operations for the computation of Gs (for leafs) or ĜGs

(for other clusters) by EG;s, we get the estimate

EG;s � CGm2
sn

for a constant CG. Summing up, we get the following estimate for the number of
operations necessary for the computation for all s 2 T ðIÞ:

EG :¼
X

s2T ðIÞ
EG;s � CGn

X
s2T ðIÞ

m2
s � CGn

X‘max

‘¼0

X
s2T‘ðIÞ

m2
s

� CGn
X‘max

‘¼0

wlm2
l � CGCW n2

X‘max

‘¼0

2‘�‘maxm2
l � CGCW CKn2: ð5:17Þ

5.3.2. Computational Complexity for ~QQs

Now, we will derive an estimate for the number of operations necessary for the
computation of ~QQs, i.e., for solving the symmetric positive definite eigenproblem.
We assume that an algorithm with cubic complexity is used, so the computation
for a leaf s 2 T ðIÞ takes Oðn3

sÞ operations, while the computation for the other
nodes s 2 T ðIÞ requires Oðm3

sÞ operations.

If we denote the number of operations for the computation of ~QQs once more by
EQ;s, we get the estimate

EQ;s � CQm3
s

for a constant CQ. We sum up and get the estimate

EQ :¼
X

s2T ðIÞ
EQ;s � CQ

X
s2T ðIÞ

m3
s � CQ

X‘max

‘¼0

X
s2T‘ðIÞ

m3
s

� CQ

X‘max

‘¼0

w‘m3
‘ � CQCW n

X‘max

‘¼0

2‘�‘maxm3
‘ � CQCW CKn: ð5:18Þ

5.3.3. Computational Complexity for ÂAs;r

To complete the complexity estimate, we consider the number of operations in-
volved in the computation of the transformed matrices ÂAs;r. The computation for
a leaf s 2 T ðIÞ and a r 2 Pþs (cf. (5.3)) takes OðksnsnrÞ operations. By using (5.16),
we get a complexity of OðksnsnÞ for all updates corresponding to s.

If s 2 T ðIÞ is not a leaf of TðIÞ, the computation requires OðksmsnrÞ operations.
By (5.16), the complexity for all updates corresponding to s is of order OðksmsnÞ.

Data-sparse Approximation by Adaptive H2-Matrices 23

We denote by EA;s the number of operations for the computation of ÂAs;r for all
r 2 Cs by Cs and get the estimate

EA;s � CAksmsn

with a constant CA. For all s 2 T ðIÞ, the complexity is therefore bounded by

EA :¼
X

s2T ðIÞ
EA;s � CAn

X
s2T ðIÞ

ksms � CAn
X‘max

‘¼0

X
s2T‘ðIÞ

ksms

� CAn
X‘max

‘¼0

w‘k‘m‘ � CACW n2
X‘max

‘¼0

2‘�‘maxk‘m‘ � CACW CKn2: ð5:19Þ

Summing up EG, EQ, and EA, we find that the complexity of the algorithm is
Oðn2Þ.

5.4. H2-Approximation Error Estimate

In Subsect. 2, we introduced an algorithm that computes consistent nested bases
Vr. The algorithm can be applied to AH in order to get the bases Vc.

This leaves us with the question if using both bases we can control the error of the
H2-approximation of the matrix A.

We define Frobenius-orthogonal projections

PVr : K
I�I ! KI�I ;

A ¼ ðAbÞb2P2
7! ðPVr;sAbÞb¼s�r2P2

;
ð5:20Þ

and

PVc : K
I�I ! KI�I ;

A ¼ ðAbÞb2P2
7! ðAbPVc;rÞb¼s�r2P2

:
ð5:21Þ

They commute, and the product

P :¼ PVrPVc ¼ PVcPVr ð5:22Þ

is the Frobenius-orthogonal projection onto MH2ðI � I ; P2;Vr;VcÞ.

Due to the orthogonality of the projections, we get the following approximation
error estimate:

24 W. Hackbusch and S. Börm

Lemma 5.2. Let A 2 KI�I . Then the inequality

kA�PAk2
F � kA�PVrAk

2
F þ kA�PVcAk

2
F

holds.

Proof: For a matrix A 2 KI�I , we have

kA�PAk2
F ¼ kA�PVrPVcAk

2
F ¼ kA�PVrAþPVrA�PVrPVcAk

2
F

¼ kðI �PVrÞAþPVrðA�PVcAÞk
2
F

¼ kðI �PVrÞAk
2
F þ kPVrðA�PVcAÞk

2
F

� kA�PVrAk
2
F þ kPVrk

2
F kA�PVcAk

2
F

� kA�PVrAk
2
F þ kA�PVcAk

2
F : (

Of course, we are interested in an optimal approximation. The following lemma
states that quasi-optimal row and column bases lead to a quasi-optimal H2-
representation:

Lemma 5.3. Let A 2 KI�I . Then the inequality

maxfkA�PVrAk
2
F ; kA�PVcAk

2
F g � kA�PAk2

F

holds.

Proof: Due to (5.22), we have

kA�PVrAk
2
F ¼ kAk

2
F � kPVrAk

2
F � kAk

2
F � kPVck

2
F kPVrAk

2
F

� kAk2
F � kPVcPVrAk

2
F ¼ kAk

2
F � kPAk2

F ¼ kA�PAk2
F :

Swapping the roles of PVc and PVr completes the proof. h

6. Approximation of H-Matrices

The complexity of the algorithm for the computation of nested row bases is
optimal for full matrices: Since we have to consider n2 matrix entries, any algo-
rithm will be Oðn2Þ.

Now we consider the computation of nested row bases for H-matrices. We
assume that the rank is ‘‘constant’’ (cf. (3.6)).

We require the partition P2 to satisfy the condition

#Ps � Csp ð6:1Þ

for a constant Csp and all s 2 T ðIÞ (cf. (5.2)).

Data-sparse Approximation by Adaptive H2-Matrices 25

Since a cluster s 2 T ðIÞ can have no more than ‘max father clusters, we conclude
that

#Pþs � Csp‘max

(cf. (5.4)).

6.1. Efficient Computation of ĜGs

We fix a matrix A 2MHðI � I ; P2; kÞ. Since Ajb is a rank-k-matrix for each block
b ¼ s� r 2 P2, there are matrices Xb 2 Ks�kH and Yb 2 Kr�kH satisfying

Ajb ¼ XbY H
b : ð6:2Þ

We will make use of this structure in order to speed up the computation of the
Gram matrices Gs and ĜGs: We have

Gs ¼
X
r2Cs

Ajs�rAj
H
s�r ¼

X
b2Pþs

ðAjbÞjs�rðAjbÞj
H
s�r

¼
X
r2Cs

Xbjs�kHY H
b YbXbjHs�kH ;

so we can compute Zb :¼ Y H
b Yb for all blocks P2 in advance. Since #T ðIÞ ¼ OðnÞ,

we can conclude from (6.1) that #P2 ¼ OðnÞ, so the computation of all the ðZbÞb2P2

can be accomplished in Oðnk2
HÞ operations.

By using

X̂X s;b :¼ V H
r;sXbjs�kH

instead of ÂAs;r (cf. (5.10)), we can rewrite (5.11) as

ĜGs ¼ ÂAsÂA
H
s ¼

As;s1
AH

s;s1
. . . As;s1

AH
s;ss

..

. . .
. ..

.

As;ssA
H
s;s1

. . . As;ssA
H
s;ss

0
BB@

1
CCA

¼
X
b2Pþ

2

X̂X s1;bZbX̂X
H
s1;b . . . X̂X s1;bZbX̂X

H
ss;b

..

. . .
. ..

.

X̂X ss;bZbX̂X
H
s1;b . . . X̂X ss;bZbX̂X

H
ss;b

0
BB@

1
CCA ð6:3Þ

for SðsÞ ¼ fs1; . . . ; ssg.

As in (5.13), we combine the matrices X̂X s0;b to get

�XXs;b :¼
X̂X s1;b

..

.

X̂X ss;b

0
B@

1
CA; ð6:4Þ

26 W. Hackbusch and S. Börm

so we can rewrite (6.3) in the form

ĜGs ¼
X
b2Pþ

2

�XXs;b

Zb

. .
.

Zb

0
B@

1
CA �XXH

s;b: ð6:5Þ

The computation of ĜGs therefore requires only OðmskHðms þ kHÞ‘maxÞ operations,
while in the case of the general matrix Oðm2

snÞ operations were necessary.

Due to the equation X̂X s;b ¼ QH
s
�XXs;b, we can use �XXs;b to compute X̂X s;b efficiently, i.e.,

in only OðksmskHÞ operations, while in the case of a general matrix OðksmsnÞ
operations are necessary.

6.2. Algorithm

The computation of the auxiliary matrices Zb is straightforward, so we only give
the recursive algorithm for the computation of a nested row bases for a given
H-matrix:

procedure ComputeRowBasisHMatrix(s);

begin

if SðsÞ ¼ ; then
begin

Gs :¼ 0;

for b 2 Pþs do Gs :¼ Gs þ Xbjs�kHZbXbjHs�kH ;

Compute the Schur decomposition ~QQH
s Gs

~QQs ¼ D

with D ¼ diagfr1; . . . ; rnsg; r1 � � � rns ;

Vr;s :¼ ~QQs idns�ks 2 Rs�ks ;

for b 2 Pþs do X̂X s;b :¼ V H
r;sXbjs�kH

end

else

begin

for s0 2 SðsÞ do ComputeRowBasis(s0);

ĜGs :¼ 0;

for b 2 Pþs do

begin

Build ~XXs;b according to (6.4);

Compute ĜGs according to (6.5)

end;

Data-sparse Approximation by Adaptive H2-Matrices 27

Compute the Schur decomposition ~QQH
s ĜGs

~QQs ¼ D

with D ¼ diagfr1; . . . ; rmsg; r1 � � � rms ;

Qs :¼ ~QQs idms�ks ;

for b 2 Pþs do X̂X s;b :¼ QH
s
~XXs;b;

If necessary, copy Br;s0;s from Qs according to (5.9)

end

end

6.3. Complexity

The computation of ~QQs in the H-matrix algorithm requires the same number of
operations as in the full matrix algorithm, i.e., OðnÞ operations.

The computation of X̂X s;b takes OðksmskHÞ operations in the H-matrix case and
OðksmsnÞ operations in the full matrix case. Proceeding as in Subsect. 5.3.3, we
find that the computation for all clusters s 2 T ðIÞ and all blocks b 2 P2 requires
OðnkHÞ operations.

As stated above, the computation of ĜGs requires OðmskHðms þ kHÞ‘maxÞ opera-
tions, i.e., there is a constant C0G satisfying

E0G;s � C0GmskHðms þ kHÞ‘max;

where E0G;s denotes the number of operations involved in the computation of ĜGs.
Summing up, we get

E0G :¼
X

s2T ðIÞ
E0G;s � C0GkH‘max

X
s2T ðIÞ

m2
s þ C0Gk

2
H‘max

X
s2T ðIÞ

ms

� C0GkH‘max

X‘max

‘¼0

X
s2T‘ðIÞ

m2
‘ þ C0Gk

2
H‘max

X‘max

‘¼0

X
s2T‘ðIÞ

m‘

� C0GkH‘max

X‘max

‘¼0

w‘m2
‘ þ C0Gk

2
H‘max

X‘max

‘¼0

w‘m2
‘

� C0GCW kH‘maxn
X‘max

‘¼0

2‘�‘maxm2
‘ þ C0GCW k2

H‘maxn
X‘max

‘¼0

2‘�‘maxm‘

� C0GCW CKkHð1þ kHÞ‘maxn;

so the complexity of the entire algorithm is in Oðn‘maxk2
HÞ.

28 W. Hackbusch and S. Börm

7. Adaptivity

As mentioned in Remark 5.1, it is possible to choose the rank ks in order to reach
a given precision �s, i.e., to satisfy the condition

kAs �PVr;sAsk2
F ¼

Xms

m¼ksþ1

r2
m ¼: e2

s � �2s : ð7:1Þ

The following Lemma combines the cluster-oriented quantities es to form the
global error:

Lemma 7.1. Let P2 be a partitioning and let Vr ¼ ðVr;sÞs2T ðIÞ be a consistent
family of spaces. Then the equation

kA�PVrAk
2
F ¼

X
s2T ðIÞ

e2
s ð7:2Þ

holds for the Frobenius-orthogonal projection PVr introduced in (5.20).

Proof: We consider auxiliary partitionings

P ‘
2 :¼ b 2 T ðI � IÞ : levelðbÞ > ‘ ^ b 2 P2ð Þ _ levelðbÞ ¼ ‘ ^ 9b0 2 P2b � b0ð Þf g;

with auxiliary Frobenius-orthogonal projections

PVr ;‘ : K
I�I ! KI�I ;

A ¼ ðAbÞb2P ‘
2
7! ðPVr;sAbÞb¼s�r2P ‘

2
:

The partitionings for a standard example can be found in Fig. 3.

We have P 0
2 ¼ P2 and P ‘max

2 ¼ T‘max
ðI � IÞ and, consequently, PVr ;0 ¼ PVr and

PVr ;‘max
¼ I . Since the family Vr is consistent, the equation

PVr ;‘1PVr ;‘2 ¼ PVr ;minf‘1;‘2g holds for all ‘1; ‘2 2 f0; . . . ; ‘maxg, therefore we get

kA�PVr ;‘k
2
F ¼ kA�PVr ;‘þ1AþPVr ;‘þ1A�PVr ;‘Ak

2
F

¼ kðI �PVr ;‘þ1ÞAþPVr ;‘þ1ðI �PVr ;‘ÞAk
2
F

¼ kA�PVr ;‘þ1k2
F þ kPVr ;‘þ1A�PVr ;‘Ak

2
F :

Fig. 3. Partitionings P 3
2 , P 2

2 , P 1
2 and P 0

2 ¼ P2 for the example from Fig. 2

Data-sparse Approximation by Adaptive H2-Matrices 29

Since the error introduced by changing from the H2-matrix approximation cor-
responding to the partitioning P ‘þ1

2 to that corresponding to P ‘
2 is given by the

equation

kPVr ;‘þ1A�PVr ;‘Ak
2
F ¼

X
s2T‘ðIÞ

e2
s ;

we get the desired equality (7.2) by summing up these terms for all
‘ 2 f0; . . . ; ‘maxg. h

A straightforward approach to computing an H2-matrix for a given matrix
A 2 KI�I would be to set

�s :¼
~��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2#T ðIÞ
p � ~��ffiffiffiffiffi

4n
p

for a fixed ~�� 2 R>0 and choose ks in order to satisfy (7.1), leading to

kA�PVrAk
2
F ¼

X
s2T ðIÞ

e2
s �

X
s2T ðIÞ

�2s ¼
~��2#T ðIÞ
2#T ðIÞ ¼

~��2=2:

Applying the algorithm for the computation of the column bases, we get

kA�PAk2
F � ~��2

by Lemma 5.2.

Obviously, feeding any other vector � ¼ ð�sÞs2T ðIÞ satisfyingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
s2T ðIÞ

�2s

s
� ~��=

ffiffiffi
2

p

into our algorithm will yield the same approximation error. Therefore, we are
looking for a vector � 2 R

T ðIÞ
 0 with k�k2 � ~��=

ffiffiffi
2

p
that minimizes a certain cost

functional.

If, for example, matrix-vector multiplications are very important for the appli-
cation in question, the functional

Cð�Þ :¼
X

s2T ðIÞ
ksð�Þ2;

where ksð�Þ is the rank required to satisfy the condition (7.1), should be mini-
mized.

30 W. Hackbusch and S. Börm

The functions ksð�Þ depend not only on �s, but also on the values of �s0 for any
descendant of s in the tree TðIÞ, so finding an optimal � usually means solving a
complicated nonlinear minimization problem on the ball with radius ~��=

ffiffiffi
2

p
.

8. Examples

In this last section, we will investigate the properties of the adaptive H2-
approximation algorithm.

8.1. Approximation of an Integral Operator

Since the basic idea of the H2-matrix concept is the panel clustering technique
for integral equations, our first example investigates the approximation of the
single layer potential corresponding to Poisson’s equation in 2D. The kernel
function

kðx; yÞ :¼ log kx� yk

is discretized on a polygonal closed curve using a Galerkin projection with
piecewise constant basis functions.

8.1.1. Constant Rank

We apply the greedy-type algorithm of Subsect. 5.2 to the matrices corresponding to
the Galerkin discretisation and, for the first test, choose a fixed rank of kconst ¼ 4. In
order to speed up the algorithm, the maximal size of leaves CL is set to 8.

The relative approximation errors

ErrorF :¼ kA�PAkF
kAkF

; Error2 :¼
kA�PAk2

kAk2

in the Frobenius and Euclidean norm are reported in the Tables 1 and 2, along
with the time2 needed for the conversion from full to H2-matrix, the time re-
quired for one matrix-vector multiplication, the amount of memory needed to
store all the data corresponding to the H2-matrix and the compression factor
achieved in comparison to full storage.

8.1.2. Adaptive Rank

As outlined in Sect. 7, our algorithm cannot only select the H2-basis functions
adaptively, but it can also be used to determine the ranks for each cluster in order
to achieve a given precision.

2All computations are performed on a SUN Enterprise server with an UltraSPARC 2 processor
running at 248 MHz

Data-sparse Approximation by Adaptive H2-Matrices 31

Table 1. H2-approximation of the Poisson single layer potential on the unit circle for constant rank
kconst ¼ 4. The ratios of consecutive columns are given in brackets

n 256 512 1024 2048 4096 8192 16384 32768

Conv/s 0.09 0.27 1.15 4.44 17.22 70.90 343.0 1415
(3.0) (4.3) (3.9) (3.9) (4.1) (4.8) (4.1)

MVM/ms 1.11 2.22 4.54 9.67 21.12 42.78 107.6 219.9
(2.0) (2.0) (2.2) (2.2) (2.0) (2.5) (2.0)

MVM/MFlops 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84
(2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0)

Mem/KB 142.7 288.9 581.4 1166 2336 4676 9356 18716
(2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0)

Comp 0.28 0.14 0.07 0.04 0.02 0.01 0.004 0.002
ErrF =10�5 2.86 3.43 3.66 3.74 3.77 3.79 3.79 3.79
Err2=10�5 1.38 1.45 1.46 1.45 1.48 1.48 1.48 1.48

Table 2. H2-approximation of the Poisson single layer potential on the boundary of the unit square
for constant rank kconst ¼ 4. The ratios of consecutive columns are given in brackets

n 256 512 1024 2048 4096 8192 16384 32768

Conv/s 0.08 0.26 1.14 4.48 17.48 74.69 331.9 1391
(3.3) (4.4) (3.9) (3.9) (4.3) (4.4) (4.2)

MVM/ms 1.06 2.23 4.53 9.59 21.05 43.24 107.1 216.4
(2.1) (2.0) (2.1) (2.2) (2.1) (2.5) (2.0)

MVM/MFlops 0.03 0.06 0.12 0.24 0.48 0.96 1.92 3.84
(2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0)

Mem/KB 142.7 288.9 581.4 1166 2336 4676 9356 18716
(2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0)

Comp 0.28 0.14 0.07 0.04 0.02 0.01 0.004 0.002
ErrF =10�5 7.85 8.01 8.01 7.98 7.96 7.95 7.94 7.93
Err2=10�5 5.10 5.12 5.10 5.08 5.07 5.06 5.06 5.06

Table 3. Adaptively chosen rank distribution across cluster levels for the Poisson single layer potential
on the unit circle. The ratios of consecutive columns are given in brackets

n 256 512 1024 2048 4096 8192 16384 32768

2 5 5 5 5 5 5 6 6
3 6 6 6 6 6 7 7 7
4 6 6 6 6 6 7 7 7
5 6 6 6 6 6 7 7
6 6 6 6 6 6 6
7 6 6 6 6 6
8 5 6 6 6
9 5 5 6
10 5 5
11 5

Conv/s 0.11 0.38 1.54 5.91 22.75 103.3 419.9 1627
(3.5) (4.1) (3.8) (3.8) (4.5) (4.1) (3.9)

MVM/ms 1.28 2.88 5.62 12.08 22.63 53.88 119.5 243.3
(2.3) (2.0) (2.1) (1.9) (2.4) (2.2) (2.0)

MVM/MFlops 0.04 0.07 0.15 0.29 0.57 1.13 2.22 4.42
(1.8) (2.1) (1.9) (2.0) (1.8) (2.0) (2.0)

Mem/KB 167.8 347.0 705.5 1391 2703 5393 10606 21167
(2.1) (2.0) (2.0) (1.9) (2.0) (2.0) (2.0)

Comp 0.33 0.17 0.09 0.04 0.02 0.01 0.005 0.002
ErrF =10�6 0.09 0.19 0.04 0.32 0.42 0.57 0.66 1.21
Err2=10�6 0.05 0.05 0.06 0.13 0.09 0.10 0.06 0.05

32 W. Hackbusch and S. Börm

If we require the approximation to be accurate up to a relative Frobenius error of
� ¼ 10�6 and apply the algorithm to the BEM matrices corresponding to an
approximation of the unit circle and to the boundary of the unit square, we get the
rank distributions listed in the Tables 3 and 4.

Table 4. Adaptively chosen rank distribution across cluster levels for the Poisson single layer potential
on the boundary of the unit square. The ratios of consecutive columns are given in brackets

n 256 512 1024 2048 4096 8192 16384 32768

2 6 7 7 7 7 7 7 7
3 7 7 7 8 8 8 8 8
4 6 7 7 7 7 7 7 7
5 6 6 7 7 7 7 7
6 6 6 6 7 7 7
7 6 6 6 6 7
8 6 6 6 6
9 6 6 6
10 5 6
11 5

Conv/s 0.11 0.38 1.59 5.94 23.04 104.5 424.1 1637
(3.5) (4.2) (3.7) (3.9) (4.5) (4.1) (3.9)

MVM/ms 1.28 2.95 5.58 12.13 22.68 53.34 122.6 249.4
(2.3) (1.9) (2.2) (1.9) (2.4) (2.3) (2.0)

MVM/MFlops 0.04 0.08 0.15 0.29 0.57 1.13 2.22 4.41
(2.0) (1.9) (1.9) (2.0) (2.0) (2.0) (2.0)

Mem/KB 173.6 356.6 716.8 1392 2734 5388 10627 21109
(2.1) (2.0) (1.9) (2.0) (2.0) (2.0) (2.0)

Comp 0.34 0.17 0.09 0.04 0.02 0.01 0.005 0.003
ErrF =10�6 0.34 0.30 0.27 0.47 0.29 0.44 0.73 0.62
Err2=10�6 0.19 0.16 0.13 0.14 0.09 0.10 0.06 0.06

Fig. 4. Basis chosen for a level 3 cluster

Data-sparse Approximation by Adaptive H2-Matrices 33

In both cases, we observe a slow monotonous growth in the rank when passing
from smaller to larger clusters. Since the large clusters on level ‘ ¼ 2 appear only
once in the partitioning P2 while all other clusters appear three times, a slightly
reduced rank is sufficient to approximate the corresponding blocks leading to the
only exception to the otherwise monotonous growth.

Apparently, the adaptive procedure compensates the reduced ‘‘smoothness’’ of
the matrix corresponding to the boundary of the unit square by slightly increasing
the rank for the larger clusters.

The seven basis functions chosen by the algorithm for a level 3 cluster can be seen
in Fig. 4: They resemble piecewise constant approximations of the first seven
Legendre polynomials.

8.2. Approximation of a Finite Elements Inverse

For the next example, we consider the H2-approximation of the inverse of a finite
element matrix corresponding to Laplace’s operator discretised using piecewise
linear functions on a regular triangulation of the unit square. The discretization
typically leads to matrices with dimensions that are much larger than those
considered in the BEM case, so we cannot store the entire matrix in a fully
populated format and apply the algorithm ComputeRowBasis.

Instead, we use the approximate inversion routines of Grasedyck [2] to compute
an H-matrix approximation A�1

H of the matrix A�1 (with blockwise rank of
kH ¼ 8) which is then converted to an H2-matrix A�1

H2 using the algorithm
ComputeRowBasisHMatrix.

The rank for the H2-matrix is not chosen by our adaptive procedure, but ac-
cording to Eq. (3.7) with a ¼ b ¼ 2. In Table 5, the time for the H-inversion, for
the conversion to H2-format, the number of flops for H- and H2-matrix-vector
multiplications, the memory requirements for both matrix representations and the
relative errors

errH :¼ kI � A�1
HAk2 and errH2 :¼ kI � A�1

H2Ak2

are reported. Obviously, the H2-matrices require less memory and allow faster
matrix-vector-multiplications compared with H-matrices.

Table 5. H2-approximation of the inverse of the discretised Laplace operator on the unit square

4096 10000 16384 40000 65536

Time for Inversion/secs 174 878.8 1360 5324 8426
Time for Conversion/secs 3.6 10.3 21.5 62.9 120

H-MVM/MFlops 10.8 25.7 59.2 133.7 293.4
H-Memory/MBytes 42.4 102.0 231.9 530.6 1151

H-Error 0.000022 0.000054 0.000115 0.000382 0.000645
H2-MVM/MFlops 8.9 16.3 41.6 70.7 179.5
H2-Memory/MBytes 33.9 62.9 159.4 274.0 689

H2-Error 0.000076 0.000602 0.000139 0.000649 0.000646

34 W. Hackbusch and S. Börm

References

[1] Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications.
Preprint 18/2002, Max Planck Institute for Mathematics in the Sciences Leipzig, Germany, 2002.

[2] Grasedyck, L.: Theorie und Anwendungen hierarchischer Matrizen. PhD thesis, University of
Kiel, Germany, 2001.

[3] Hackbusch, W.: Iterative solution of large sparse systems. New York: Springer, 1994.
[4] Hackbusch, W.: Integral equations. Theory and numerical treatment. ISNM 128. Basel:

Birkhäuser, 1995.
[5] Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to

H-matrices. Comp. 62, 89–108 (1999).
[6] Hackbusch, W., Khoromskij, B. N.: A sparse H-matrix arithmetic. Part II: Application to multi-

dimensional problems. Comp. 64, 21–47 (2000).
[7] Hackbusch, W., Khoromskij, B. N., Sauter, S.: On H2-matrices. Lectures on Applied

Mathematics (Bungartz, Hoppe, Zenger, eds.). Heidelberg: Springer 2000.
[8] Hackbusch, W., Nowak, Z. P.: On the fast matrix multiplication in the boundary element method

by panel clustering. Numer. Math. 54, 463–491 (1989).
[9] Sauter, S. A.: Über die effiziente Verwendung des Galerkin-Verfahrens zur Lösung Fredholm-

scher Integralgleichungen. Diss. Universität Kiel, 1992.
[10] Sauter, S. A.: Variable order panel clustering. Comp. 64, 223–261 (2000).

W. Hackbusch and S. Börm
Max-Planck-Institut, Mathematik in den Naturwissenschaften
Inselstrasse 22–26
D-04103 Leipzig
Germany
e-mail: fwh; sbog@mis.mpg.de
www: http://www.mis.mpg.de/scicomp/

Data-sparse Approximation by Adaptive H2-Matrices 35

