Part I: Galerkin discretization

We consider a general integral equation
Gu+A<u,->=f (1)

in a Hilbert space H, where

G is an integral Operator mapping H into its dual space H’,
f € H’ is an element of the dual space,
A € R is some parameter and
u € H is the solution we are looking for.

The variational counterpart of the equation above is
a(u,v) + Im(u,v) = f(v) (2)
for all v € H, where
a(u,v) =< Gu,v >grvg and m(u,v) =< U,V >gxp -

In typical situations, the bilinear form a(-,-) representing the in-
tegral operator can be written as

ofu.0) = [@) [gler.p)uty)dyds 3)

Q Q

for a kernel function ¢(-,) and a domain or manifold €.

The equation (2) is discretized by choosing an n-dimensional sub-
space H,, of H and considering the problem of finding a function
u, € H, s.t.

a(tp, vy) + Am(u,, v,) = f(v,)
holds Vv,, € H,,.

For any basis (;);er of H,, this is equivalent to

a(tn, i) + Am(un, @i) = f(pi)
Viel.

Since the solution wu,, is an element of H,, there is a coefficient
vector (x;);ez satisfying
=D T,

jeT
s.t. the coefficients satisfy the equation
> mjalpg @) + A wmie;,) = flei)
jeT jET
forall 2 € 7.

This is a system of linear equations and can be written in matrix
form

G+ AMx=0b
by introducing matrices G, M € R?*% and a vector b € R? with
Gij = CL(%’; %’)a (4)
Mij = m(@ja %)» (5)
bi = f(pi)- (6)

If we use standard finite element basis functions (y;);cz, the ma-
trix M will be sparse, but G will be densely populated, since typical
kernel functions have global support.

Storing GG directly doesn’t lead to efficient algorithms. Therefore
we approximate G by a matrix that can be treated efficiently, by re-
placing the kernel function &(-, -) by local degenerate approximations,
and this leads to a hierarchical matrix.

2

Recall: Degenerate approximation

Last week we’ve already talked about degenerate approximation,
but as I can imagine that a few people in here may not remember it
very vividly, I’ll quickly explain what it is about.

The idea is to approximate the kernel function g¢(-,-) by using
interpolation instead of Taylor expansion, and thus avoiding the need

of being able to evaluate the derivatives of g efficiently.
Idea:

Let

(z,)vex be a family of interpolation points in RY

(L,),ex be the Lagrange functions with

L,(x,) = vy
for v, u € K.

We define
g(.CL’, y) = Z g(xl/a y)LV('CE)

vekK
As mentioned before, we don’t need any derivative of ¢ for that
approximation.

We can now replace the matrix G with G defined by

Gy / (@) / §(z,y)o;(y)dydz = (ABT);,
Q Q
where

and

Part II: Boundary Element Method in 2D

We consider a closed curve in 2-dimensional space, given as an ar-
ray vertex of n points. We use piecewise constant basis functions and
choose the characterizing point to be the middle of the corresponding
interval. We will now solve integral equations on this curve.

We are interested in a boundary integral problem, i.e. the set)
is a submanifold. Here () is a a curve. Since we’ll be talking about
integral equations, I will recall the meaning of an integral on a curve:

1 Curve integrals

Let v : [0,1] — R? be injective in [0,1], v € C*, v € C". We write
[:= ~([0,1]). Let uw € C%T). We introduce a partition 0 = zg <
r1 < .. <z, =10f|0,1] and consider the sum

I = Z u(y(@i)llv(@:) = y(zia)|l-

Lemma (Curve integral) : Let ¢ € Ro. There is a 6 € R
s.t. V partitions 0 = xg < 1 < ... < x, = 1L with x; — x;_1 < (i €

1,...,n) we have

1

L, - / W) W)lldy] < e

0

Proof: elementar analysis
Definition: We define the curve integral : let (v;); be a tuple of
injective functions in C'*([0,1],R?). For all i € 1, ...,m, we set I'; :=

7:([0,1]). The curve integral over the piecewise differentiable curve
[':= Ul is given by

/ u(x)dxzzmj / u(() 1w) Iy

2 Single layer potential

We fix n points po, ..., pn—1 € R?, set p, := py and define the affine
parametrizations

v [0,1] = R* y—pi1(1—y)+piy,

for i € 1,...,n. As long as p; # p; holds Vi,j € 0,...,n —1 with
i # 7, this deﬁnes a polygonal curve ' := U ([0, 1]).

Example:
We consider the following points:

15 ! ! ! ! ! ! ! ! !
-1 0 1 2 3 4 5 6 7 8

We observe 7, and its evaluation in

1.5kt ! ! ! ! ! ! ! | | | =

On the curve I' we now define the single layer potential operator

Guplul(z) = / log (|l — yl))uly)dy

and the corresponding bilinear form

)= [o) [(e~ ylhuty)dyds,

The kernel log(||z — y||) is not asymptotically smooth here, since
it has a singularity in x = y.
What do we do?

We discretize ag,(-, -) using piecewise ¢ functions (p;)",; defined
through

©i 07 = 0y
9

for i,9 € Z := 1,...,n. The coeff. of the corresponding matrix are
given by

Gij = awlvie) = [(o) [1oslllo = ylei(u)dyds

I I
1 1
— p = piallllps — pial / / log([[s(z) — ;9|)dyd.
0O O

From p; # p; it follows that this matrix is full. As long as v;([0, 1])
doesn’t intersect v;([0,1])Vi,j € 1,...n, we don’t have singularities
and can replace the kernel by degenerate approximations.

3 Implementation

We’ll now focus on computing the entries of the hierarchical matrix,
in particular the low-rank blocks, so we suppose that we have a func-
tion that initializes the full matrices and now consider the treatment
of the low-rank blocks.

They correspond to admissible pairs (t,s) of clusters and require
the evaluation of a degenerate approximation of the kernel function.
Let’s assume that diam(Q")<diam(Q?*), it follows

(9)(x,y) =Y log(lla), - yl)(L); (x)

veK
and we compute

r

A = [el Wile)ds = Ip - pial [(L)

Bl = / o5(@)log(l12, — yl)dy = lp; — pyi] / log(l1z, — 7;(»)) dy.
I 0
10

. t .
7; is affine, so A.” are polynomials of degree m. We can thus use
an exact quadrature rule for its evaluation.

In order to do that, we need:

e An array vertex of dimension n containing the coordinates of
the points (p;)}~ .

e Arrays xq and wq of dim. q containing the pts and weights of a
suitable quadrature rule.

e An array 1 of dim. p containing the transformed interpolation
pts.

Recall(Gauss-quadrature):
The idea is to approximate an integral as

/ rede~ S K|S wl fal)

KeM =1

The w* are called local weights and the points /* local nodes. The
Gauss-quadrature is exact for polynomials of degree up to 2P - 1
using only P nodes.
The quadrature is numerically stable if all the weights are positive.
Example(Gauss-quadrature, 1-dimensional):
We consider the integral f_ll f(x)dxr and want to approximate it
with a Gauss-quadrature of degree P=2:

/ F(E)dE = wif(z1) + waf (1)

This approximation has to be exact for polynomials € P3, so we
choose successively f(z) = 2%, 2!, 2%, 23. We now have 4 equations to

solve:

11

/1daz = 2=w; + wy

—_

rdr = 0= wix1 + Wwoxs
1
0, _ 2 2 2
xodr = 3 = WiT + wyxs
~1
1
vdr = 0= wa® + wyrs.
~1
We replace wy = —wli—; from the second equation in the last and
get
L1
w) — w—r; =0 = 22 = 23
L2
And thus x1 = —x9, since we want x; # x».

Further 0 = wy — w9 = w1 = wo

=wtw=2w=2=w;=wy =1
1

= (wy + wp)z] = 227 = 2} = 3

wino DN

And so we have

wy = W2 =
1
r = ——=
: V3
1
Ty9 — —F=

The evaluation of B"* requires us to integrate the kernel function
for points x! on intervals given by p;_1 and p;. Here, it can be done

12

analytically. In more general cases, we can use the same quadrature
rule as for polynomials, but the result will no longer necessarily be
exact.

Example(affine v in R?): Let v : [0,1] — R? and ¢ € R? given

by
[sy +tdy e
’y(t).<8y+tdy>and c.(cy>.

We assume that ¢ ¢ ([0, 1]). We want to compute the value of

b= [1os(I() — ell (@) e

With Gauss-quadrature we obtain b=1.9755 for

e (114 o= (3)

and if we change v to

142t
Wﬂ-(1+#)
(and thus doubling its"speed”) we obtain b=>5.4231.

The supermatrix structure can be initialized by a simple recur-
sion: If the supermatrix contains an rkmatrix, we compare the
diameters of the clusters involved and use the procedure described
above to initialize the fields a and b of the rkmatrix.

If the supermatrix contains a fullmatrix, we evaluate singular
integrals and fill its field e.

Otherwise, we proceed recursively with the subblocks that are gi-
ven by the array s.

13

