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Abstract 

Two quadrature methods are developed for irregular oscillatory integrands. They are the equivalents of the 
well-known trapezoidal and Simpson’s rules for regular quadrature, and involve linear and quadratic fitting of the 
defining functions respectively. The quadratic form is the equivalent of Filon’s method for regular oscillatory 
quadrature. The resulting errors are analysed and a comparison is made with other methods which do not involve 
the derivative of the oscillatory function. 
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1. Introduction 

A number of practical problems such as the analysis of water waves on sloping beaches (see 
[6]) have encouraged the study of irregular oscillatory integrands and there are now some 
alternative approaches to this problem. The conventional methods for the integration of regular 
oscillatory integrands deal with integrals of the form 

I = /‘f(n) $‘&ILX dx. 
a 

Methods for the numerical solution of this integral are thoroughly summarised in [9]. The 
earliest methods involve approximating f(x) as a polynomial in x and then completing the 
resulting integrals analytically to generate quadrature rules as in [2]. However the most 
effective group of methods uses a Chebyshev polynomial fit to the non-oscillatory part of the 
integral, f(x), on the transformed interval [ - 1, 11. The problem then reduces to finding an 
algorithm for 

T, x $&ox dx ( ) (2) 
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and the various ways of achieving this differentiate the three methods of Patterson [16], 
Alaylioglu, Evans and Hyslop [3] and Littlewood and Zakian [14]. Clearly with integrals of the 
form 

/ 0 'f x gswq(x) dx 
a 

(3) 

even simple forms for the irregular contribution q(x) will render the auxiliary integral 
equivalent to equation (2) quite intractable. 

As a result, some specialized methods have been proposed, and the object here is to 
introduce two robust methods, and compare their performance with existing approaches. To 
this end a set of test examples will be used, taken partly from the test sets of other authors, and 
partly constructed to illustrate specific points. 

2. Survey of existing methods 

The simplest method for irregular oscillations is that of Ehrenmark [7] in which the 
somewhat unconventional formula with the form 

/ (1 ‘g x dx= ~ ~g(~i) +E 
a i=l 

(4) 

is used with g(x) representing both the non-oscillatory and the oscillatory parts of the 
integrand being defined in the first instance by 

(5) 

This method is unusual for oscillatory problems because the complete integrand is sampled for 
the evaluation of the integral. Indeed Ehrenmark forces the error E to be zero when g(x) = 1, 
sin kx or cos kx to yield three equations for the three unknown weights w in equation (41, 
taking only the simple case of N = 3. The constant k is chosen so that kx is the average of 
oq(x) across the current subinterval of integration, subdivision being used to give sufficient 
abscissae for convergence. The outcome is demonstrated to be fairly insensitive to the choice of 
k, and the use of the maximum frequency in the subinterval can be employed as another 
strategy. 

This method lends itself to extension to higher point numbers N, and a choice of which g(x) 
should be used to make the formula exact then arises. A number of tests have been made in 
extending the basis set of exact functions beyond the three original functions, 1, sin ku and 
cos kx, to yield formulae of the form of (4). 

A number of such sets {C,(x)} were considered, but the most productive sets were the three 
extensions: 

(i) sin kx, cos kx, 1, x, x2, . . . , 
(ii) 1, sin kx, cos I&, sin 2kx, cos 2kx, sin 3kx, . . . , and 

(iii) 1, sin kx/M, cos kx/M, sin 2kx/M, cos 2kx/M, sin 3kx/M,. . . , 
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where M = [@I. Furthermore two choices of abscissae were also used, namely equally-spaced 
to yield Newton-Cotes-like formulae, and cosine-weighted points to yield formulae in the spirit 
of Clenshaw and Curtis [5]. The best of these choices based on some preliminary tests was 
employed in the results section. Choice (ii) proved the best of the extensions of the original 
algorithm with cosine-weighted abscissae in the form 

Xi = ;(b - u) COS(iT/N) + i(b - Lz) (6) 

for i = 0,. . . , N. In all cases the implementation was very simple. As the abscissae are fixed, 
equation (4) reduces to a set of linear algebraic equations 

lb ) 
Cj(x dx=cj= &$C,(xJ, j=l,...,~t (7) 

a i=l 
for the weights Ai which can then be applied trivially to the test examples. There is a large 
economy to be gained by ensuring that the set of exact functions includes both sin nkx and 
cos nkx, so that the Same weights Ai remain valid for all subintervals after subdivision, 
requiring only one set of linear algebraic equations to be solved. This is valid because the linear 
change of variable required to convert any of the subintervals to [0, h], say, requires the 
integration of terms like sin nk(cyx + /3> for suitable (Y and p. Hence expanding the sin term it 
is clear that the formula is still exact under the transformation as long as both sin nka and 
cos nka are exact. Because of this feature formulae with odd 12 are considered exclusively. 

Two stability problems arise in the setting up and use of these formulae. The linear 
equations for the weights Ai may exhibit ill-conditioning and yield inaccurate values as occurs 
in the derivation of Gaussian formulae, and the resulting integration formula may itself be 
unstable. The former problem is easily monitored in one of two ways. The condition factor 
K(A) of the matrix of coefficients A may be computed using an eigenvalue routine, or the 
computations can be repeated at double precision to compare the numbers of digits in error. 
The second problem is more straightforward to resolve, in that the integration formula will be 
stable if all the weights Ai are positive. Even if some of the weights vary in sign, the formula is 
not necessarily unstable, as long as the alternations are not large, and therefore the cause of 
cancellation in the summation of equation (4). 

A very different approach is that of Levin [13], which again handles varying oscillations of the 
form 

I = lbf(x)eiq@) dx. 
a 

(8) 
The basis of the method is that if f(x) were of the form 

f(x) = iq’(x)+) +P’(x>, (9) 
then the integral in (8) could be evaluated directly to give 

~=p(b)ei~(b) -p(a)eMa). (10) 
Eq. (9) is considered as a differential equation for the function p(x) which is solved for p(x) 
and used in (10). The general solution is 

p(x) = ,-b(x) Xf(t)eiq(f) dt + c , 
I 

(11) 
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which means that in general the solution for p(x) is as oscillatory as the original integrand, but 
as f and 4’ are slowly oscillatory there exists a slowly oscillatory solution pO. Hence writing 

p(x) = pO( X) + ce-iq(X) (12) 

and using this form in (9) gives 

I =po( b)eiqcb) -po( u)eiqca), (13) 
and so P,,(U) and p,(b) are all that are needed. To single out p&x) from other highly 
oscillatory solutions, a representation is tried in which n-point collocation to the basis set 
{uk(x)} for k = 1,. . . , n is set up to give 

k=l 

This form is substituted into (9) and a set of linear algebraic equations is generated by taking a 
set of x-values {xi} for j = 1,. , . , n. This set of equations is solved for the (Y’s. Hence I can be 
easily evaluated from (13). Once again stability difficulties with large linear systems seem to 
arise for too great a value of II and the suggestion is to once again subdivide. It is also noted 
that the method requires the evaluation of the derivative q’ at the points {xi}. Hence the 
method requires more stringent conditions for its implementation than the more robust 
methods being considered here, and indeed care is needed to avoid any of the set {xj} 
corresponding to a singular point of q’. 

There are other possible approaches to the irregular problem which require the availability 
of q’(x), the most obvious being the use of the transformation y = q(x) to yield an integral of 
the form 

/ 

q(b)f(q-l(Y));;oy 
dy. 

s(a) 4’(4-l(Y)) 
(15) 

This method is straightforward if q(x) is simple enough to allow q-l(x) to be found 
analytically, otherwise some robust numerical device is required for this inverse. The method 
also injects a possible new difficulty if q’(x) has a zero in the interval of integration, the 
resulting problem being now both singular and oscillatory. Both these difficulties are addressed 
in [lo]. 

3. Two new methods 

The first of these methods is very easy to derive. The method is equivalent to that of 
Clendenin [4] for regular oscillatory quadrature, or the trapezoidal rule for general-purpose 
quadrature. Both f(x) and q(x) are approximated by linear forms and the resulting approxima- 
tion can be integrated analytically to yield a quadrature rule. Hence 

I = /“f(x) $$w(x) dx, 
a 

(16) 
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and subdivision gives 

387 

Then it is easy to establish 

I~=/‘+” (m+c)~~w(crx+~) dx 
a+(i- 1M 

(17) 

(18) 

with the constants m, c, cr and /3 taking the values 

m = (f(u + ih) -f(a + (i - l)h))/h, (19) 

c =f(a + i/z) - m(a + ih), (20) 

cr = (fJ(a + i/z) - CJ(a + (i - l)h))/h, (21) 

p = q(a + 22) - a(u + ih). (22) 

Expanding the sine and cosine in (18) gives the following form for the quadrature rule 

(m+c) 
sin WQX cos op + cos O(YX sin wp 
cos O(YX cos wp + sin W(YX sin wp 

dx 

cos wp(ml,, + cI,,> + sin op(ml,, + cI,,) a+rh 

= cos 4(4, + c&J - sin wP(4, +c4J n+Ci_ljh 

and the quantities Ii, and Ii, are standard integrals 

(23) 

4s = 1 xi sin hx dx, (24) 

lit= / xi cos kx dx. (25) 

The second method is the equivalent of Filon’s rule [ll] for the regular oscillatory problem 
and of Simpson’s rule for general quadrature. Now a quadratic is approximated to both f(x) 
and q(x). The resulting integrals are less straightforward to compute analytically and use 
Fresnel integrals. In particular one specific representation is required to achieve a fast 
algorithm for these integrals. 

Instead of (18), Ii is now given by 

(ux2+bx+c) $+(ax2 + px + y) dx, 

which reduces to 

(26) 

(27) 
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under the substitution y =x + @/2a =x +A where A = P/2a and D = r/a - P2/4a2. Hence 
Zi becomes 

zi = / a;;:y;+A(9y2 + Qy + R> 
sin ocuy2 cos OCXD + cos way2 sin oaD 

cos @cry2 cos wcuD -sin way2 sin oaD 
dy (28) 

with 

P=a, Q= -2aA+b, R=aA2-bA+c. (29) 

If (Y = 0, then the formulae above are not valid and the quadrature rule then follows the lines 
for the trapezoidal case of (23) but now with I,, and I,, terms giving the formula 

(ax2+bx+c) 
sin opx cos wy + cos opx sin oy 

cos oJ?x cos oy + sin wpx sin oy 
dx 

i 

cos oy(aZ,, + bl,, + cl,,) + sin wy( al,, + bl,, + cZoC) atih 

= cos oy(aZ2,, + bl,, + cl,,) - sin wy(aZ,, + bl,, + cl,,) a+Ci_ljh 

The general rule of equation (28) requires the evaluation of integrals of the form 

d 2~sin 
Y coswx2 dx 

and successive integration by parts gives the series 

1 2N-1 
-- x2N-3 sin ox2 + 

(2N - 1)(2N - 3, X2N-5 cos Ox2 

2w 
X2N-1 cos @X2 + 

(2@j2 (26Jj3 

- 
PN- 1)(2N - 3)(2N - 5, X2,,-7 sin ux2 

- . . . 

Gw4 
in the sine case and 

1 
x2N-1 sin wx2 + 

2N-1 
-- pX2N-3 cos WX2 - 

20 (2wJ2 

(2N - 1)(2N- 3) X2N-5 sin & 

(2wJ3 

- 
(2N - 1)(2N - 3)(2N - 5, X2N-7 cos Ox2 

- . . . 

(30) 

(31) 

(32) 

(33) 

in the cosine case, each taken between the limits c and d. The final integral in these series will 
be either 

J 
d 

c 
sin wx2 dx= E[S[dg) -S[cg)] 

for the sine case with N even and for the cosine case with N odd, or 

/ 

d 

c 
cos wx2 dx= E[C[cic) -C[cg)] 

(34) 

(35) 
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for the sine case with N odd and the cosine case with N even. The functions S and C are the 
usual Fresnel integrals as defined by Abramowitch and Stegun [13], and the following formulae 
are used for their evaluation in this algorithm. 

For x > 5.5 the definitions 

C(X) = + +f(x) sin($ax2) -g(x) Cos(f7rn2), 

S(X) = 3 +f(x) COS(~TX~) -g(x) sin($rx2) 

are used with the asymptotic forms 

W&X) Iv 1+ i (-l)m 
l-3 * * ’ (4m - 1) 

m=l (TrX2)2m ’ 

Txg(x) N 1 + E (-1)” 
l-3 * * * (4m + 1) 

m=O 
+2)2m+l ’ 

For x < 2.5 series representations give rapid and stable convergence and the formulae 

( - l)?r2n 
C(x) = cos(W)nco 1 .3 . . . (4n + 1) X4n+1 

(_ l+2”+1 

+ sinW)n~o 1.3 . . . (4n + 3)X4”+3’ 

S(x) = - cos( +TrX2) 5 
(_ l)Yrr2n+l 

n=O 1.3 * * * (4n + 3)n4”+3 

(- l)? 
+ sin(fX2)nco 1.3 . . . (4n + 1)X4n+1 

(40) 

(41) 

are employed. The more awkward case occurs between these extremes and for this region the 
expansions 

G(x) =J1,2(4 +4,2(x) +4,2(x) + * * * 3 (42) 

S,(x) =J3,2(4 +4,2(x) +41,2(4 + . . . (43) 

are employed with 

C(x) = c,(+x2), S(x) = S2($Tx2). (44) 

The spherical Bessel functions are evaluated by the usual reverse recurrence [8,15], which 
automatically fixes the number of terms required in (42) and (43). As the terms are then 
generated from some asymptotically determined JN,2 for N sufficiently large, the sums 
required in (42) and (43) can be accumulated as the reverse recurrence generates the spherical 
Bessel functions in turn. The terms are alternately accumulated into the sums for C, and S,. 



390 G.A. Evans /Applied Numerical Mathematics 14 (1994) 383-395 

4. Error analysis and stability considerations 

The Ehrenmark algorithm is exact for a given set of functions, and therefore has error terms 
which follow from the analysis of Ghizzetti and Ossicini [12]. The new rules involve two 
approximate functions and this general approach breaks down. The errors involved in approxi- 
mating both f(x) and q(x) can be expressed for both the trapezoidal and the Simpson 
equivalent rules by considering the general case that 

f(x) =p(x) + E(X), (45) 

where p(x) is either a linear or quadratic approximation. Similarly let 

4(x)=b(x)+W, (46) 

where f(x) and q(x) are assumed differentiable to orders two and three respectively. Then the 
error in the integral, E(x), satisfies 

E(x) = /“[f(x) 
a 

to;w(x) -P(x)$~;~~(x)] dx, 

that is 

E(x) = /“(f(x) g 
a 

w(x) - Lw - 441 g b(&) - WN} dx* 

Hence collecting terms for the sine case gives 

E(x) = lb[f(x) sin oq(x)(l- cos OS(X)) +f(x) cos oq(x) sin OS(X) 

+E(x) sin wq(x) cos OS(X) -E(X) cos oq(x) sin OS(X)] dx 

and in the cosine case 

(47) 

(48) 

(49) 

E(x) = /“[fcx) cos oq(x)(l - cos US(X)) -f(x) sin wq(x) sin OS(X) 
a 

+E(x) cos wq(x) cos OS(X) +E(x) sin oq(x) sin OS(X)] dx. PO) 

In order to express the terms of (49) and (50) in terms of small quantities it is necessary for 
wS(x) to satisfy the condition 

08(x) < +, say, for x E [a, b], (51) 

so allowing expansions of cos @S(x) and sin C&(X) to be made. This type of condition arises 
also in Ehrenmark’s work and arises whenever the oscillatory function q(x) is approximated. 
Effectively, if o is large then to get sufficient accuracy to evaluate either sin or cos requires 
ever-increasing accuracy in q(x). This effect can be seen in the results, and will be shown to be 
less restricting in the quadratic case than the trapezoidal case or indeed Ehrenmark’s algo- 
rithm. 
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Hence in the sine case 

EC I=/[ sin oq(x) 
x b o”S’(x)f(x) 2 () + 6JS( x)f( x) cos wq( x) 

a 

+E(x) sin oq(x) - oS(x)~(x) cos oq(x) 
I 

dx, (52) 

and in the cosine case 

E(x) = /b[~z~2(x)f(x) cos wq(x) - ad(x)f(x) sin oq(x) 

le(x) cos oq(x) + wS(x)s(x) sin wq(x)] dx. 

However in the trapezoidal case both E(X) and S(x) have the forms 

(53) 

E(X)= ++x-u-ih)(x-u-ih+h), 
6(x)= F(x-a-ih)(x-a-ih+h), 

(54) 

(55) 

for the usual Lagrange error on the interval (a + (i - 1)/z, a + i/z), with 6, and 5, both lying in 
this interval and both dependent on x. 

In the quadratic case the equivalent formulae are 

&(X) = 
f’%f) 
31(X-a-ih)(x-a-ih+$)(x--a-ih+h), 

6(x) = 
4’77,) 
7(x--a-ih)(x-a-ih+$h)(x-a-ih+h), (57) 

and because of the usual problem of not knowing vf or q+, and possibly not having higher 
derivatives available, the importance of these formulae lies in the order of the error. Hence in 
the linear case ( E(X) ) G $h2 * f”(tf)/2! and a similar expression for 6. In the quadratic case 
Is( 4h3/12mf"'b$/3! and again a similar term for 6. Here upper bounds have been 
taken for the factors (x - a - ih)(x - a - ih + h) and (x - a - ih)(x - a - ih + $)(x - a - ih 
+ h). Hence the dominant terms in the linear case are 

I E(x) I - /‘[oa(x)f(x) + e(x)] dx 
a 

$h2q$F’)f(x) + $z2f”(5Ji)) dx 

(58) < 0 . +h2qW + +h2fM = h2. $K,. 
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The quantities 6:) and #) are now dependent on i, and qM and fM are upper bounds 
satisfying 

By a similar argument 

h3 K, 

(60) 

(61) 

in the quadratic case. 
Like the Ehrenmark algorithm there is some dependence on w as given by (51), but for the 

Simpson equivalent case as h depends on the cube root of o this is unlikely to be a serious 
limitation. This effect can be seen in the results which follow. 

Stability problems can arise for a very large number of subdivisions when h is so small that 
m and (Y in (19) and (21) involve the difference of very close values of f and 4 respectively. 
Unlike the non-oscillatory trapezoidal rule, m and (Y are required explicitly. If this extreme 
situation arises Taylor expansions of f and 4 could be used, but then derivatives are required. 

In the quadratic formula, care is needed if q(x) approaches a straight line, when (Y in (26) 
will be very small with the effect that D and A will be very large. Hence errors will arise in 
computing sin wcrD and the equivalent cosine term in (28) as well as in evaluating the integral 
at two large but very close limits. The suggestion is that if (Y becomes smaller than some 
threshold such as lop3 that a linear fit is used for q(x), namely equation (30). 

5. Tests and results 

A set of test examples has been compiled from those employed by previous authors to 
demonstrate their methods. In addition some further examples have been included here to 
extend the effectiveness of the test examples in showing up weaknesses in the proposed 
methods. The method of comparison is based on the number of function evaluations of f(x) 
and q(x) required for a given accuracy. The Ehrenmark method combines the evaluation of 
f(x) with q(x) into g(x) and so one evaluation of g is roughly equivalent to one of f and one 
of q. The test set is shown in Table 1 together with the accurate values which have been 
computed in an expensive manner using high-order Gauss formulae with subdivision, where 
analytic values are not available. 

Two approaches were used to gain insight into the relative performances of the methods. 
The first was to see what accuracy results for a given number of function evaluations, in this 
case 256. In the Ehrenmark case, a count of the number of evaluations of the complete 
integrand g(x) is made. In the trapezoidal and Simpson equivalents, the number of evaluations 
of pairs of f(x) and q(x) is used. The second approach was to see how many function 
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Table 1 
Test set 

f Limits Integrand 0 

(0, 1) 
(100,200) 

(0, P1 
(0, 1) 

CO,0 
CO,11 
CO,11 
(0, 1) 

ex cos ox 

(1+1n x) cosfx In x) 
cos x cos(0 cos x)/P 
sin x cos(wx(l+ x)) 

cos x cos(w~> 
cos x cos(w sin x) 
ex sin(o cash x> 
sin’ x cos(w tanh x) 

10 
1.0 

40 
500 

10.0 
10.0 
10.0 
10.0 

Value 

- 0.1788996028768 
- 1.774298974906 

0.05019445610620 
4.59859397840( - 4) 

- 3.9615562798520( 1) - 
8.468680691183( - 2) 

- 2.556593290493( 1) - 
0.13411649903305 

Table 2 
Number of correct figures for 256 function evaluations 

f 3-point 5-point 
Ehrenmark Ehrenmark 

;:. 8 0 11 0 

;: 3 0 4 0 

:; 6 8 10 
6 
8 12 

Trapezoidal Simpson 

6 6 12 8 

4 2 10 9 

3 5 5 8 
5 11 
6 9 

Table 3 

Number of function evaluations for 8 correct figures 

f 3-point 5-point 
Ehrenmark Ehrenmark 

;: 9600 300 120 

A 38400 12144 2560 8000 

:; 1200 480 960 200 
1440 

180 150 

Trapezoidal Simpson 

4096 512 1024 32 

32768 16384 256 128 

32768 8192 1024 256 
2048 64 
1024 32 

evaluations were needed to gain a given accuracy, in this case to get 8 correct figures. The first 
of these tests is shown in Table 2 and the second in Table 3. 

The gaps in the tables under the 5-point Ehrenmark rule indicate instabilities arising in 
defining linear equations for these particular test functions. It is clear that even with enhance- 
ments the method of Ehrenmark is in general only as effective as the trapezoidal or linear rule, 
and very much less effective than the quadratic or Simpson method. This is despite having a 
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Table 4 
Number of correct figures for 250 function evaluations (T: linear or trapezoidal case; S: quadratic or Simpson case) 

f 0 = 10.0 0 = 100.0 6J = 250.0 0 = 500.0 w = 1000.0 

T S T S T S T S T S 

3 6 2 3 3 3 3 3 3 4 
5 8 4 7 3 5 3 5 3 5 
5 11 4 9 4 8 4 8 4 8 
6 9 5 8 4 7 4 6 4 6 

very small test value for o which would favour the Ehrenmark rule. It is the sampling of the 
whole integrand which reduces the power of the method and causes an increase in required 
point number with increasing frequency of oscillation. It is of note that on f2, f3 and f4 which 
have high oscillatory factors (due to the limits in f21, such a sampling approach is highly 
expensive. As expected the piecewise fitting is particularly suited to examples fl and f4, which 
therefore perform well. The error analysis demonstrates that whenever q(x) is approximated 
there will be an w-dependence for h, but it is clear from the tables, particularly for f2 and f4, 
how the dependence of h on the cube root of o (Eq. (51)) in the quadratic case relaxes any 
restrictions so that the required h are not too small as to be impractical except for very large o 
indeed. In the Ehrenmark case the number of required function evaluations rises linearly with 
o, and in the linear or trapezoidal case as 6. These effects are illustrated in Table 4 where 
increasing w-values are employed on a selection of test functions. 

For o as large as 1000.0 the Ehrenmark algorithm becomes quite untenable, but the new 
rules, even though slightly degraded, lose their accuracy very slowly. It is of note that f5 seems 
to be a particularly difficult integral. The error analysis shows that the estimate will be 
unbounded as the singularity in the higher derivatives of q(x) will cause the problems. 

If q’(x) is also available, then an improvement in accuracy can be obtained by using the 
method of Levin [13]. This method also has reduced accuracy for an example such as f5, and of 
course suffers from the first derivative being singular, as this is now used directly. The Levin 
method involves solving linear equations for the fit to the function pO(x) of (141, and these 
equations show signs of instability for the larger n-values. Hence like the rules proposed here 
relatively low-order methods need to be employed with subdivision being used to achieve high 
accuracy. It is well known that subdivision is far less effective a method to increase accuracy 
than the use of a high-order rule directly, [9]. 

Levin [13] also attempts a two-dimensional integral, namely 

I=~1~1cos(x+y)cos[w(x+y+c(x2+y2))] dx dy, (62) 
and uses -a 25 x 25 rule to obtain -8.595(10-?. By employing the irregular Simpson rule 
recursively to this integral the value -8.59783(10-5, was obtained with a 32 X 32 rule, which is 
correct to one place in the sixth digit, and does not employ any derivatives of q(x). Even the 
16 X 16 point rule gives five correct figures. 

It appears that the new rules provide competitive methods for irregular oscillatory integrals, 
especially if q’(x) is not available. For low accuracy but with a simple algorithm, the linear rule 
is effective, and for higher accuracy the quadratic rule may be gainfully employed. 
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