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AN EXPANSION METHOD FOR 
IRREGULAR OSCILLATORY INTEGRALS 

G. A. EVANS 

De Montfort University, Leicester 

(Received 18 March 1996) 

Many current problems in applied mathematics require the numerical integration of irregular 
oscillatory integrals. Few methods have been specifically found for these problems. An alterna- 
tive method based on expansion is presented here and this method is compared with other 
approaches. Tests are carried out on a representative set of examples, and the algorithms are 
applied to problems with large oscillatory factors. 

Keywords: Irregular oscillatory quadrature; numerical integration 

1. INTRODUCTION 

There has been considerable recent interest in the numerical integration of 
irregular oscillatory integrals of the form 

as integrals of this type arise commonly in the analysis of water waves in a 
wide variety of situations including waves on a sloping beach (Ehrenmark 
[I]). Such integrands also arise in integrals which exhibit two of the major 
difficulties, namely both being singular and regularly oscillatory. This is 
because one of the best devices for the singular problem is to use one of the 
effective transformation methods, such as Takahasi and Mori [2] or Aihie 
and Evans [3]. Unfortunately the regular oscillations are then replaced with 
irregular terms, for example sinox becomes sin(wtanh(t")) for n = 3 or n = 5 
with the tanh transformation. Clearly for small w, conventional methods 
may be used such as Clenshaw-Curtis [4] or Patterson [5], but for large w 
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138 G. A. EVANS 

specialized methods akin to those for the regular problem, Evans [ 6 ] ,  are 
required. 

Of the methods for irregular oscillatory integrals, the most successful has 
been that of Levin [7], which handles varying oscillations such as 

by finding a solution p(x) to the ordinary differential equation 

so that the required integral (1.2) can be integrated analytically to give 

However there are no boundary conditions for (1.3), and hence Levin 
singles out the slowly oscillatory solution by the device of trying the expan- 
sion 

to yield a set of linear algebraic equations for the a's. The usual difficulty of 
stability of these linear equations arises for too large a value of n, and tests 
seem to indicate that a practical limit of around n = 16 should be adhered 
to. It is also clear that the method requires the analytic form of q(x)  so that 
q'(x) in (1.3)  can be utilized. This is a common requirement in most of the 
methods for the irregular problem. 

Other methods for irregular oscillatory integrals include that of Ehren- 
mark [8J in which both the non-oscillatory and the oscillatory parts of the 
integrand are sampled to give a low order rule which is made exact for 1, 
sin kx and cos kx .  The constant k is chosen so that kx is the average of 
w q ( x )  across the current sub-division of integration, so extending the 
method to the irregular oscillatory case. It is also feasible to approximate 
both f ( x )  and q(x)  by low degree polynomials to obtain the irregular oscilla- 
tory equivalents of the trapezoidal rule and Simpson's rule, Evans [9], for 
which q' is not required. 
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IRREGULAR OSCILLATORY QUADRATURE 139 

A further method is the overlooked but obvious device of making the 
transformation y = q(x)  to yield the conventional oscillatory integral 

f'@) f* sin 

,(a) q ' ( 4  cos 
U Y ~ Y  

with x = q- ' (y ) .  Again this method requires qf (x)  and also q- ' (x) ,  and a 
form of Newton's method is the basis for finding the inverse function, a 
linear interpolator being used to obtain the initial point. The resulting 
standard integral is then evaluated using a method such as that of Patterson 
[lo] or Alaylioglu, Evans and Hyslop [ I l l .  This method has been pre- 
sented in Evans [12], and has some similarities with the method being 
proposed here, which will be considered later. 

2. EXPANSION METHOD 

The problem with irregular oscillatory integrals is that almost any attempt 
at approximating f ( x )  or q(x)  by polynomials or Chebyshev functions re- 
sults in analytic integrations which have no easy closed form so precluding 
the generation of a quadrature rule. One possibility that will overcome this 
difficulty is to expand f ( x )  as 

with the choice of gi(q) left free for the time being. The required integral then 
reduces to 

which can then be either evaluated analytically for gi(q) = qi, or by using a 
regular oscillatory method such as Patterson [lo] or Alaylioglu, Evans and 
Hyslop [1 l] for a general gi(q). The fit can be carried out by collocating f ( x )  
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140 G. A. EVANS 

with the series in (2.1) for a set of xi's possibly equally spaced across the interval 
[a, b], yielding a set of linear algebraic equations for the d c i e n t s  ai. 

Hence the expansion in (2.1) can be compared with the inverse method in 
which the expansion 

is used. The current proposal avoids the use of q-' which would need a 
technique such as that in Evans [12], although the choice of g = q- en- 
sures the expansion in (2.1) is in powers of x. The inverse method is repro- 
duced using gi = T(q-'), but not only does this invoke the q-' complication 
but now the resulting integrals will require the Patterson recurrence in [13] 
or an equivalent routine. 

The choice of the function gig) is made to avoid q'(x) being zero in (2.1), 
which would invalidate the expansion. To illustrate this situation consider 
the case when q(x) = cosx for small x, which arises in example f 3 to be 
considered later. Then cosx behaves like 1 - O(xZ) and hence expanding in 
effectively powers of unity will not yield a collocating expansion. In this 
example, a sensible choice of gAq) would be 

which then gives an expansion in powers of sin x, or equivalently in powers 
of x at least for small x, with the expected improvement in the obtained fit. 
More examples of this sort will be given in the results section, and the error 
analysis highlights how a zero in ql(x) will give unbounded errors. Com- 
monly the choice gAq)= qi will be used, and this allows the integral in 
equation (2.2) to be found using the analytic formulae 

x'sinox dx = - 1 ' I !  ('1"-' 4 0 s  ( o x  +-la ) I 1  (2.6) ,=o 1 ol+l - 1 

As in most methods for the irregular problem, a combination of the under- 
lying method with subdivision is employed, allowing N to be kept to low 
order to avoid any stability difliculties. 
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IRREGULAR OSCILLATORY QUADRATURE 

3. ERROR ANALYSIS 

The underlying process here is basically a collocation in which the expan- 
sion 

is made exact for the set of selected points x =xi .  In all the examples used 
the form of gi(q(x)) is 

to give an expansion in terms of powers of h(x). This is a transformation of 
Lagrange interpolation based on letting y = h(x) to give 

The summation over i can be rewritten in terms of transformed Lagrange 
coefficients, and the classical error formula yields E2(y) in the form 

with 5 being an unknown point in the range of interpolation, and 

with y, = h(xi). In order to find the quadrature error, E,(x) is required and 
will have the form 

Expressing h-'(y) = H(y) which will exist for the relatively simple functions 
y = h(x) being employed, successive differentiation yields 
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142 G.  A. EVANS 

where bi is a function of H(y)  and its derivatives. Typically 

Hence if the function F becomes unbounded in any of its derivatives then 
there is a possibility of large errors arising in the fitting process. This 
encompasses the cases when zeros of ql(x)  occur in the range of interpola- 
tion, and the situation mentioned in equation (2.3) where q(x)  becomes 
almost constant. Clearly in this latter case, the integral is no longer highly 
oscillatory and resort to conventional quadrature methods may be made 
with no difficulty. 

Hence the error in the computed integral, E,, is given by 

where 

for some q(x)  in the interval of integration. But the value of I itself behaves 
like l/w. Hence integrating (3.10) by parts gives 

Then 

which implies that the relative error is independent of w. This effect is 
demonstrated in practice in the results section. 

As ever, the error formulae are of limited computational use as the higher 
derivatives of F cannot be easily found in such an environment. But never- 
theless these formulae provide a basis for the method, and emphasise the 
problem areas. 
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IRREGULAR OSCILLATORY QUADRATURE 

4. TESTS AND RESULTS 

A set of test examples has been compiled from the examples employed by 
previous authors to demonstrate their methods. In addition some further 
examples have been included here to extend the effectiveness of the test 
examples in showing up weaknesses in the proposed methods. The method 
of comparison will need to consider not only the number of function evalu- 
ations off (x), but also the number of evaluations of q(x) and ql(x). These 
test cases are shown in Table I, where /? = 0.72. 

The results are shown in Table 11, where a comparison is made between 
the inverse method, Levin's method and the proposed method. For Levin's 
method and the inverse method a triple of results gives the values of the 
counts for the functions f ,  q and q' respectively. For the inverse method, the 
inverse function qP'(y) was found numerically even though analytic inverses 
were available. The object was to not bias these results by effectively using 
analytic processes, as in general such processes would not be available. 
Where ql(x) has a zero, so introducing a singularity, the offending region is 
integrated by the application of Clenshaw-Curtis quadrature on the whole 

TABLE I 

f limits integrand o value 

fl (0,1) eXcosu x 10 - 0.1788996028768 
f2 (100,200) (1 + lnx)cos(oxlnx) 1 - 1.774298974906 
f3 (0,b) cosxcos(ocosx)/~ 40 0.05019445610620 
f4 (0,l) sinxcos(wx(1 - x)) 500 0.000459859397840 
f5 (Q1) c o s x c o s ( o ~ )  10 - 0.39615562798520 
f6 exsin(ocoshx) 10 -0,2556593290493 
n (0,l) sinzxcos(otanhx) 10 0.1341 1649903305 

TABLE I1 

f Levin Inverse Expansion 

fl (20,2,20) (17,19,51) 16 
f2 (5,2, 5) (9,31,67 2 
i-3 (80,8,80)(7) (33,130,281) + 16 4*16+ 16 
f4 (80,8, 80) (65,262,577) 8*16(10) 
f.5 fail 16 + (33,135,291) + 16 16 + (16*12) + 8 
f6 (286,38,286) (65,267,587) + 16 (4*12) + 16 
n (94,14,94) (33,129,279) 4* 12 
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144 G. A. EVANS 

integrand. This is effective as the integrand is not oscillatory in this region. 
Counts for applications of Clenshaw-Curtis appear in the table separated 
by +. 

The final column gives the counts for the expansion method. A pair such 
as 4*16 indicates 4 subdivisions and the 16 point rule. The number off,  q 
and q' function evaluations are identical and hence a single count is quoted. 
The object was to achieve 12 figures and compare the work involved for 
each method. Where this accuracy was not achieved for a reasonable effort, 
the number of figures actually found appears in round brackets after the 
count. 

A range of combinations of expansion order N ,  and numbers of subdivi- 
sions were employed. Like many of these methods, too large a choice of N 
gives numerical instability, and N  < 16 was found to be a safe limit in 
practice. It also has to be remembered that the function being expanded is 
effectively f (x) /q l (x)  from (2.1) and hence any example which exhibits zeros 
of ql(x)  in the interval of integration has to be treated as singular at this 
point. As this singular behaviour is artificially introduced as part of the 
method, it is straightforward to complete the part of the integrand contain- 
ing that point by using a general quadrature method on the whole integ- 
rand. Hence for f  3 ,  q f (x)  = - sinx and hence the integral is split into the 
range [ O , E ]  which is integrated by Clenshaw-Curtis and [&,/?I using the 
expansion method. The constant E is chosen to give about half a cycle of the 
oscillatory part which enables Clenshaw-Curtis to be effective even for large 
o. The number of points used in the Clenshaw-Curtis rule again appears 
after the + sign where appropriate. 

The method is clearly effective and competitive, especially for large o. 
The efficiency of the method can be enhanced by the surreptitious choice of 
function gi(q). Example f 2  was invented to give an analytic result for com- 
parison. The suggested method becomes exact in this case as f ( x )  is q'(x). 
On the other hand there are potential problems with f  3 beyond the zero of 
q'(x) at x = 0. The expansion involves trying to express cot x in powers of 
cos x. This is the case referred to earlier in which cos x behaves like 
1 - O(xZ)  and the g, of equation (2.3) was used. This g was also used for f 5, 
and by the same reasoning for f  6  the form 

was used to convert an expansion in cosh x to one in sinh x, in each case 
with excellent results. 
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IRREGULAR OSCILLATORY QUADRATURE 145 

As a final test the method was used on three selected examples, f 5, f 6 and 
f 7, to confirm its continuing accuracy for large o. Again Clenshaw-Curtis 
quadrature is used on the whole integrand in the singular regions for a 
half-cycle range. The results are in agreement with the error analysis and 
show independence of the method to changes of o ranging from 10.0 to 
10000.0. 

In addition, some experiments were carried out with different choices for 
the collocation points xi, including the use of cosine weighted abscissae and 
open rules. The results showed little significant difference to those presented. 

Two further examples 

and 

were considered in Levin [7]. These examples involve two simultaneous 
quadrature difficulties. In (4.2) the frequency of oscillations becomes infinite 
at x = 1. This type of problem arises when an infinite range oscillatory inte- 
gral is transformed onto a finite range, in this case the original integral being 

where the combination of infinite range and oscillatory, integrand consti- 
tutes the double problem. The transformation x = y/(l - y) has been used to 
convert the infinite range to finite range, and the conventional approach to 
(4.4) is the method of Alaylioglu, Evans and Hyslop [13] in which cycles of 
the oscillatory integrand are evaluated and the resulting sequence is acceler- 
ated by a Shanks' process. Nine cycles yields 8 figure accuracy and requires 
72 function evaluations. 

In (4.3) the combination of difficulties is that of an oscillatory integrand 
combined with a singularity. The use of transformation methods to alleviate 
the singularity as in Evans, Forbes and Hyslop [14], Squire [I51 and 
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146 G.  A. EVANS 

Takahasi and Mori [2] will result in a regular oscillatory problem becom- 
ing irregular. 

Levin generates relatively low accuracy values to these two examples. In 
the case of (4.2) the resulting ordinary differential equation can be multi- 
plied through by (1 - x) so avoiding the singularity at x = 1. A 10-point rule 
then yields 5 correct figures and a 15-point rule yields 7 figures. In the case 
of (4.3), Levin uses an expansion set which not only includes powers of x 
but also xi In x for non-negative i. Even with the In function so built-in, it 
takes 7, 10-point rules to yield 5 figure accuracy. 

By using an open version of the current method on (4.2), the four point 
rule yields 7 figures which is a considerable gain over the Levin results. In 
fact for the fitting process only a second order formula is needed as f (x) = 1 
and so the expansion using g(q) = q/(l + q) is only required to fit 
l/ql(x) = (1 - x ) ~ .  

The method was also used to compute a sequence using the initial range 
[0, yl], with x, = [25n]/n and x = y/(l - y), and then successive cycles in 
order to apply Aitken acceleration. An accuracy of 12 figures was obtained 
with just 9 sequence elements, each of which again only required a 2-point 
rule, to total just 18 function evaluations. 

On (4.3), the transformation y = xN with N = 5 was employed to remove 
the singularity as in Evans, Forbes and Hyslop [14]. A direct application of 
the above method then gave 6 figures with 64 points, 8 figures with 128 and 
10 figures with 256. 

The complication here was that gi(q) = q'IN was used to get the expansion 
in powers of x. The underlying integrals (2.2) involved fractional powers of q 
with associated singular higher derivatives which gave slow convergence to 
the Patterson integrator though this does not affect the function count. 
Hence integration by parts was employed to alleviate this problem. 

The most effective general approach to this type integral seems to be to 
split the range into [0, E ]  and [E, 2711 with the first interval ranging over say 
one half-cycle. Then the above transformation can be used on the range 
[0, E ]  which now has just one half-cycle allowing easy integration by a 
general purpose method such as Clenshaw-Curtis, which yields 14 figure 
accuracy with 32 points. The remaining range is then treated as an irregular 
oscillatory quadrature which gives 10 correct figures in 128 points. 

To give a fair comparison with the Levin expansion which involved a 
basis set xilnx, the alterative choice of gi(q) = q'lnq was employed here 
which of course gives the full accuracy at n = 2. Though such a surreptious 
choice of g cannot be used in a general manner, for particular problems in 
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IRREGULAR OSCILLATORY QUADRATURE 

TABLE I11 

which efficiency is paramount then highly rapid evaluation may be 
achieved. 

As a final test, a two dimensional example used by Levin [7] was attemp- 
ted, namely 

The expansion method was applied as a product rule, which presents no 
new problems. The method is applied to the y integral whose integrand 
definition contains a further call to the method for the x integral with a 
specific y value fixed in the outer block. The results are shown in Table I11 
for the specific values of c = 1 and o = 100. 

These results compare with Levin's method in which a 25*25 rule gives 
- 8.595(- 5), showing an impressive gain in accuracy, with the full 13 figu- 
res obtained for the 32*32 rule. 

In conclusion the presented method seems to be competitive and simple 
to implement. The choice of gi appears non-critical except when ql (x )  is 
close to zero, and in this case the integral is no longer highly oscillatory, 
and can be tackled using conventional means. 
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