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Highly oscillatory quadrature

Daan Huybrechs and Sheehan Olver

Abstract

Oscillatory integrals are present in many applications, and their numer-

ical approximation is the subject of this paper. Contrary to popular

belief, their computation can be achieved efficiently, and in fact, the

more oscillatory the integral, the more accurate the approximation. We

review several existing methods, including the asymptotic expansion,

Filon method, Levin collocation method and numerical steepest descent.

We also present recent developments for each method.

1.1 Introduction

The aim of this paper is to review recent methods for the evaluation of

the oscillatory integral

I[f ] =

∫

Ω

f(x)eiωg(x) dx,

where f and g are nonoscillatory functions, the frequency of oscillations

ω is large and Ω is some piecewise smooth domain. By taking the real

and imaginary parts of this integral, we obtain integrals with trigono-

metric kernels:

ℜI[f ] =

∫

Ω

f(x) cosωg(x) dV and ℑI[f ] =

∫

Ω

f(x) sinωg(x) dV.

Highly oscillatory integrals of this form play a valuable role in appli-

cations. Using the modified Magnus expansion [17], highly oscillatory

differential equations of the form y′′ + g(t)y = 0, where g(t) → ∞ while

the derivatives of g are moderate, can be expressed in terms of an infinite

sum of highly oscillatory integrals. Differential equations of this form
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appear in many areas, including special functions, e.g., the Airy func-

tion. Oscillatory integrals also typically appear in scientific disciplines

that involve the modelling of wave phenomena. For example in acous-

tics, the boundary element method requires the evaluation of highly

oscillatory integrals, in order to solve integral equations with oscillatory

kernels [16]. Modified Fourier series use highly oscillatory integrals to

obtain a function approximation scheme that converges faster than the

standard Fourier series ([20], reviewed in [13]). There are many other

applications, including fluid dynamics, image analysis and more.

To understand why we need special methods for oscillatory integrals,

it is important to study where traditional quadrature methods fail.

Most nonoscillatory quadrature methods approximate an integral by a

weighted sum sampling the integrand at n discrete points {x1, . . . , xn},
and averaging the samples with suitable weights {w1, . . . , wn}:

∫ b

a

w(x)f(x) dx ≈
n

∑

k=1

wkf(xk), (1.1)

where w is some nonnegative weight function. Regardless of the partic-

ular method used, (1.1) fails as a quadrature scheme for high frequency

oscillation when w(x) ≡ 1, unless n grows with ω. To see this, consider

the integral
∫ b

a

f(x)eiωx dx ≈
n

∑

k=1

wkf(xk)eiωxk ,

where n, wk and xk are all fixed for increasing ω. Assuming that this

sum is not identically zero, it cannot decay as ω increases. This can be

seen in Figure 1.1, for the integral
∫ 1

0

x2eiωx dx.

A simple application of integration by parts—which will be investigated

further in the next section—reveals that the integral itself decays like

O
(

ω−1
)

. Thus the error of any weighted sum is O(1), which compares

to an error of order O
(

ω−1
)

when approximating the integral by zero!

It is safe to assume that a numerical method which is less accurate than

equating the integral to zero is of little practical use. On the other hand,

letting n be proportional to the frequency can result in considerable

computational costs. This is magnified significantly when we attempt to

integrate over multivariate domains. Even nonoscillatory quadrature is

computationally difficult for multivariate integrals, and high oscillations
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Fig. 1.1. The absolute error in approximating
R 1

0
x2eiωx dx as a function of

ω by an n-point Gauss–Legendre quadrature scheme, for n = 1, 10 and 25.

would only serve to further exasperate the situation. Thus we must look

for alternative methods to approximate such integrals.

In this paper, we focus on four methods of approximation: the asymp-

totic expansion, Filon method, Levin collocation method and numeri-

cal steepest descent. An enormous amount of research has been con-

ducted on the asymptotics of oscillatory integrals, hence we investigate

the derivation of an asymptotic expansion in Section 1.2. Here there is a

distinction between integrals with stationary points—points where g′(x)

vanishes—and those without. We can also derive asymptotic results for

multivariate integrals.

With the asymptotic groundwork in place, we consider in depth meth-

ods based on the Filon method in Section 1.3. These include Filon-

type methods which achieve higher asymptotic orders and Moment-free

Filon-type methods for irregular oscillators with stationary points. We

can also derive a multivariate Filon-type method, though only for linear

oscillators over a simplex.

Like Moment-free Filon-type methods, Levin collocation methods of

Section 1.4 can be constructed for irregular oscillators, though only for

oscillators without stationary points. We also develop Levin-type meth-

ods which obtain higher asymptotic orders. Alternatively, we can use

a Chung, Evans and Webster construction which frames the method in

a more traditional quadrature context. Levin-type methods’ generality

lends itself to multivariate integration, which can be accomplished over

more general domains than Filon-type methods, as long as a nonreso-

nance condition is satisfied.

Steepest descent is a classical method for determining the asymptotic

expansion of oscillatory integrals with stationary points. Recently, it

has been used as a numerical quadrature scheme, which is reviewed

in Section 1.5. These methods achieve twice the asymptotic decay for

the same amount of function evaluations as Filon-type and Levin-type
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methods. They are also applicable to multivariate integrals, even to

those which do not satisfy the nonresonance condition.

Finally, we give a brief overview of other existing methods in Sec-

tion 1.6, for both Fourier oscillators and irregular oscillators. The meth-

ods for Fourier oscillators are generally based on standard quadrature

methods, so the asymptotic order achievable is limited to either O
(

ω−1
)

or, with the use of endpoint data, O
(

ω−2
)

.

1.2 Asymptotics

Whereas standard quadrature schemes are inefficient, a straightforward

alternative exists in the form of asymptotic expansions. Asymptotic

expansions actually improve with accuracy as the frequency increases,

and—assuming sufficient differentiability of f and g—to arbitrarily high

order. Furthermore the number of operations required to produce such

an expansion is independent of the frequency, and extraordinarily small.

Even more surprising is that this is all obtained by only requiring knowl-

edge of the function at very few critical points within the interval—the

endpoints and stationary points—as well as its derivatives at these points

if higher asymptotic orders are required. There is, however, one critical

flaw which impedes their use as quadrature formulæ: asymptotic expan-

sions do not in general converge when the frequency is fixed, hence their

accuracy is limited.

1.2.1 Asymptotic expansion for integrals without stationary

points

Whenever g is free of stationary points—i.e., g′(x) 6= 0 within the inter-

val of integration—we can derive an asymptotic expansion in a very

straightforward manner by repeatedly applying integration by parts.

The first term of the expansion is determined as follows:

I[f ] =

∫ b

a

f(x)eiωg(x) dx =
1

iω

∫ b

a

f(x)

g′(x)

d

dx
eiωg(x) dx

=
1

iω

[

f(b)

g′(b)
eiωg(b) − f(a)

g′(a)
eiωg(a)

]

− 1

iω

∫ b

a

d

dx

[

f(x)

g′(x)

]

eiωg(x) dx.

The term

1

iω

[

f(b)

g′(b)
eiωg(b) − f(a)

g′(a)
eiωg(a)

]

(1.2)



Highly oscillatory quadrature 5

50 100 150 200 250

Ω

-15

-10

-5

5

10

4 6 8 10

s

-3.4

-3.2

-2.8

-2.6

-2.4

Fig. 1.2. The base-10 logarithm of the error in approximating
R 1

0
cos x eiω(x2+x) dx. The left graph compares the one-term (solid line),

three-term (dotted line) and ten-term (dashed line) asymptotic expansions.
The right graph shows the error in the s-term asymptotic expansion for
ω = 20.

approximates the integral I[f ] with an error

− 1

iω
I

[

d

dx

[

f(x)

g′(x)

]]

= O
(

ω−2
)

,

using the fact that the integral decays like O
(

ω−1
)

[35]. Thus the more

oscillatory the integrand, the more accurately (1.2) can approximate

the integral, with a relative accuracy O
(

ω−1
)

. Moreover the error term

is itself an oscillatory integral, thus we can integrate by parts again to

obtain an approximation with an error O
(

ω−2
)

. Iterating this procedure

results in an asymptotic expansion:

Theorem 1 Suppose that g′ 6= 0 in [a, b]. Then

I[f ] ∼ −
∞
∑

k=1

1

(−iω)k

{

σk(b)eiωg(b) − σk(a)eiωg(a)
}

,

where

σ1 =
f

g′
, σk+1 =

σ′
k

g′
, k ≥ 1.

We can find the error term for approximating I[f ] by the first s terms

of this expansion:

I[f ] = −
s

∑

k=1

1

(−iω)k

{

σk(b)eiωg(b) − σk(a)eiωg(a)
}

+
1

(−iω)s
I[σ′

s] .
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In Figure 1.2 we use the partial sums of the asymptotic expansion to

approximate the integral
∫ 1

0

cosx eiω(x2+x) dx.

We compare three partial sums of the asymptotic expansion in the left

graph: s equal to one, three and ten. This graph demonstrates that in-

creasing the number of terms used in the expansion does indeed increase

the rate that the error in approximation goes to zero for increasing ω.

However, for any given frequency the expansion reaches an optimal er-

ror, after which adding terms to the expansion actually increases the

error. This is shown in the right graph for ω fixed to be 20, in which

case the optimal expansion consists of five terms.

1.2.2 Asymptotic expansions in the presence of stationary

points

Consider the following integral with a single stationary point:
∫ b

a

f(x)eiωg(x) dx,

where, for ξ ∈ (a, b), 0 = g(ξ) = g′(ξ) = · · · = g(r−1)(ξ), g(r)(ξ) > 0 and

g′(x) 6= 0 for x ∈ [a, b]\ξ. If g(ξ) 6= 0, the integral can easily by written

in this form by replacing g by g − g(ξ) and multiplying the resulting

integral by eiωg(ξ). If the integral has multiple stationary points, we can

write it as multiple integrals of this form.

The method used in the previous section does not work as the station-

ary point becomes a singularity when we attempt to integrate by parts.

Fortunately, it is possible to remove the singularity (for simplicity we

assume that r = 2):

I[f ] = I[f − f(ξ)] + f(ξ)I[1]

=
1

iω

∫ b

a

f(x) − f(ξ)

g′(x)

d

dx
eiωg(x) dx+ f(ξ)I[1]

=
1

iω

[

f(b) − f(ξ)

g′(b)
eiωg(b) − f(a) − f(ξ)

g′(a)
eiωg(a)

]

− 1

iω
I

[

d

dx

[

f(x) − f(ξ)

g′(x)

]]

+ f(ξ)I[1] .

Again the error term I
[

d
dx

[

f(x)−f(ξ)
g′(x)

]]

is an oscillatory integral, and
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hence we can use induction to obtain a full asymptotic expansion. If

there are higher order stationary points, we can subtract out a polyno-

mial to ensure both the function value and necessary derivatives of the

integrand vanish in order to make the singularity removable. We thus

obtain the following theorem. To simplify subsequent developments, we

introduce the Levin differential operator L[v] = v′+iωg′v, which has the

property I[L[v]] = v(b)eiωg(b) − v(a)eiωg(a), as explained in Section 1.4:

Theorem 2 [19] Define µ[f ] =
∑r−2

k=0
fk(ξ)

k! µk(x), where L[µk] (x) = xk

for L[v] = v′ + iωg′v. Furthermore, let

σ0(x) = f(x), σk+1(x) =
d

dx

σk(x) − L[µ[σk]] (x)

g′(x)
.

Then

I[f ] ∼
∞
∑

k=0

1

(−iω)k

{

µ[σk](b)eiωg(b) − µ[σk](a)eiωg(a)
}

−
∞
∑

k=0

1

(−iω)k+1

{

σk(b) − L[µ[σk]] (b)

g′(b)
eiωg(b)

− σk(a) − L[µ[σk]] (a)

g′(a)
eiωg(a)

}

.

This asymptotic expansion depends on knowledge of the moments

I
[

xk
]

= I[L[µk]] = µk(b)eiωg(b) − µk(a)eiωg(a),

which is less than ideal. The required functions µk are known in closed

form only when g(x) = xr. But we need not use the polynomials xk

in the preceding construction: any basis that can interpolate f and its

derivatives at the stationary point will do. Thus we can construct a

basis so that the moments are known in closed form for any g. A good

choice was presented in [30]. Define

φr,k(x) = Dr,k(sgn (x− ξ))
ω− k+1

r

r
e−iωg(x)+ 1+k

2r
iπ

×
[

Γ

(

1 + k

r
,−iωg(x)

)

− Γ

(

1 + k

r
, 0

)]

,

where

Dr,k(s) =















(−1)k s < 0 and r even,

(−1)ke−
1+k

r
iπ s < 0 and r odd,

−1 otherwise.
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Then

L[φr,k] (x) = sgn (x)r+k+1 |g(x)|
k+1

r
−1
g′(x)

r
,

which is a C∞ Chebyshev set, hence can interpolate any function at a

sequence of nodes and multiplicities. Furthermore, we can compute the

moments with respect to this basis:

I[L[φr,k]] = φr,k(b)eiωg(b) − φr,k(a)eiωg(a).

We obtain an equivalent theorem to Theorem 2 using this basis:

Theorem 3 [30] Define µ[f ] =
∑r−2

k=0 ckφr,k so that

L[µ[f ]](ξ) = f(ξ), . . . ,L[µ[f ]]
(r−2)

(ξ) = f (r−2)(ξ).

Furthermore, let

σ0(x) = f(x), σk+1(x) =
d

dx

σk(x) − L[µ[σk]] (x)

g′(x)
.

Then

I[f ] ∼
∞
∑

k=0

1

(−iω)k

{

µ[σk](b)eiωg(b) − µ[σk](a)eiωg(a)
}

−
∞
∑

k=0

1

(−iω)k+1

{

σk(b) − L[µ[σk]] (b)

g′(b)
eiωg(b)

− σk(a) − L[µ[σk]] (a)

g′(a)
eiωg(a)

}

.

The first term in this expansion is equivalent to the method of stationary

phase [29], though derived in a different manner.

1.2.3 Multivariate asymptotic expansion

A multivariate asymptotic expansion can be derived in a very similar

manner to the univariate asymptotic expansion, where a partial inte-

gration formula based on generalized Stokes’ theorem is used. The ex-

pansion no longer has a simple explicit form, but the key point of the

theorem is that the asymptotics depends on the vertices of the domain.

There is an additional criteria known as the nonresonance condition,

which is satisfied whenever ∇g does not vanish and is not orthogonal

to the boundary. This is similar to requiring the absence of stationary

points in one dimension.
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Theorem 4 [21] Suppose that the nonresonance condition is satisfied.

Then, for ω → ∞,

Ig[f,Ω] ∼
∞
∑

k=0

1

(−iω)k+d
Θk [f ] ,

where Θk [f ] depends on f (m) for |m| ≤ k, where |m| is the sum of the

components of m, evaluated at the vertices of Ω.

1.3 Filon method

Though the importance of asymptotic methods cannot be overstated, the

lack of convergence forces us to look for alternative numerical schemes.

In practice the frequency of oscillations is fixed, and the fact that an ap-

proximation method is more accurate for higher frequency is irrelevant;

all that matters is that the error for the given integral is small. Thus,

though asymptotic expansions lie at the heart of oscillatory quadrature,

they are not useful in and of themselves unless the frequency is extremely

large. In a nutshell, the basic goal of oscillatory quadrature, then, is to

find and investigate methods which preserve the asymptotic properties

of an asymptotic expansion, whilst allowing for arbitrarily high accuracy

for a fixed frequency. Having been spoilt by the pleasures of asymptotic

expansions, we also want methods such that the order of operations is

independent of ω, and comparable in cost to the evaluation of the expan-

sion. Fortunately, methods have been developed with these properties,

in particular the Filon method and Levin collocation method.

The first known numerical quadrature scheme for oscillatory integrals

was developed in 1928 by Louis Napoleon George Filon [11]. Filon pre-

sented a method for efficiently computing the Fourier integral

∫ b

a

f(x) sinωxdx.

As originally constructed, the method consists of dividing the interval

into 2n panels of size h, and applying a modified Simpson’s rule on each

panel. In other words, f is interpolated at the endpoints and midpoint

of each panel by a quadratic. In each panel the integral becomes a

polynomial multiplied by the oscillatory kernel sinωx, which can be

integrated in closed form. This method was generalized in [27] by using

higher degree polynomials in each panel, again with evenly spaced nodes.

We refer to any method where f is approximated by a polynomial v =
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∑

ckx
k which is integrated exactly as a Filon-type method. Thus we

define

QF [f ] = I[v] =
∑

ckI
[

xk
]

.

We also can obtain a bound via the Cauchy-Shwarz inequality which

shows that a Filon-type method converges whenever the polynomial ap-

proximation converges in the L2 norm:
∣

∣I[f ] −QF [f ]
∣

∣ = |I[f − v]| ≤
√
b− a ‖f − v‖2 .

1.3.1 Univariate Filon-type methods

Theorem 1 has an interesting consequence for oscillatory integrals with-

out stationary points: if f and its first s − 1 derivatives vanish at the

endpoints of the interval, then the oscillatory integral itself decays like

O
(

ω−s−1
)

. The error of a Filon-type method is itself a highly oscilla-

tory integral. Thus if v interpolates the first s−1 derivatives of f at the

endpoints we know immediately from the asymptotic expansion that the

error decays like

I[f ] −QF [f ] = I[f − v] ∼ O
(

ω−s−1
)

.

Thus we can use Hermite interpolation to achieve higher asymptotic

orders. Choose a sequence of nodes {x1, . . . , xν}, where x1 = a and

xν = b, and associate a sequence of multiplicitiesmk. We then determine

v =
∑

ckx
k by solving the following system:

v(xk) = f(xk), . . . , v(mk−1)(xk) = f (mk−1)(xk), k = 1, 2, . . . , ν.

In this case, s = min {m1,mν} . This method was proposed in [19].

Without delving into details, we note that evaluation of derivatives can

be replaced by function evaluation at points that coalesce at the vertices

as ω increases [18].

If the integral has stationary points, interpolation at the endpoints

is not sufficient to accelerate the asymptotic decay. This follows since

the asymptotic expansion now depends on f at the stationary point as

well. In order to achieve a decay rate of O
(

ω−s−1/r
)

we thus need to

interpolate f and its first rs− 2 derivatives at the stationary point [30],

which follows from Theorem 2, L’Hôpital’s rule, and the fact that the

integral itself decays like O
(

ω−1/r
)

[35].

As a simple example, consider the integral

I[f ] =

∫ 1

0

x+ 3

x+ 1
eiωx dx.
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Fig. 1.3. The error in approximating
R 1

0
x+3
x+1

eiωx dx. In the left graph, we scale

the error by ω2 and compare the one-term asymptotic expansion (top) and
Filon-type methods with nodes {0, 1} and multiplicities both one (middle)
and nodes

˘

0, 1
2
, 1

¯

and multiplicities all one (bottom). In the right graph,

we scale the error by ω3 and we compare the two-term asymptotic expansion
(top) and Filon-type methods with nodes {0, 1} and multiplicities both two
(middle) and nodes

˘

0, 1
2
, 1

¯

and multiplicities {2, 1, 2} (bottom).

In Figure 1.3, we compare the asymptotic expansion to four Filon-type

methods: two of order O
(

ω−2
)

and two of order O
(

ω−3
)

. As can be

seen, Filon-type methods allow us to considerably decrease the error

compared to the asymptotic expansion, even when only a few nodes are

used.

1.3.2 Moment-free Filon-type methods

The computation of the Filon approximation rests on the ability to com-

pute the moments
∫ b

a

xkeiωx dx.

For this particular oscillator the moments are computable in closed form,

either through integration by parts or by the identity
∫ b

a

xkeiωx dx =
1

(−iω)k+1
[Γ(1 + k,−iωa) − Γ(1 + k,−iωb)] ,

where Γ is the incomplete Gamma function [1]. But often in applications

we have irregular oscillators, giving us integrals of the form
∫ b

a

f(x)eiωg(x) dx.

In this case knowledge of moments depends on the oscillator g. If we

are fortunate, the moments are still known, and Filon-type methods are



12 D. Huybrechs and S. Olver

applicable. This is true if g is a polynomial of degree at most two or if

g(x) = xr. But we need not step too far outside the realm of these simple

examples before explicit moment calculation falls apart: moments are

not even known for g(x) = x3−x nor g(x) = cosx. Even when moments

are known, they are typically known in terms of special functions, such as

the incomplete Gamma function or more generally the hypergeometric

function [1]. The former of these is efficiently computable [36]. The

latter, on the other hand, are significantly harder to compute for the

invariably large parameters needed, though some computational schemes

exist [12, 28, 26]. Thus it is necessary that we find an alternative to the

Filon method.

We are not required to use polynomial interpolation, however, and

results from Subsection 1.2.2 present an intriguing alternative proposed

in [30]: use the basis

L[φr,k] = sgn (x)r+k+1 |g(x)|
k+1

r
−1
g′(x)

r

in place of the polynomial basis xk. We know this basis has two im-

portant properties: its moments are computable and it forms a Cheby-

shev set. Thus given a sequence of nodes {x1, . . . , xν} and multiplicities

{m1, . . . ,mν} we can successfully solve the system

L[v] (xk) = f(xk), . . . ,L[v](mk−1) (xk) = f (mk−1)(xk), k = 1, . . . , ν,

for the unknowns ck, where v =
∑

ckφr,k. As in the standard Filon-

type method, the asymptotic order depends on the number of derivatives

interpolated at the endpoints and stationary point.

We now approximate the integral

I[f ] =

∫ 1

0

x+ 3

x+ 2
eiω(1−cos x) dx.

In Figure 1.4, we compare the moment-free asymptotic expansion to

four Moment-free Filon-type methods: two of order O
(

ω−3/2
)

and two

of order O
(

ω−5/2
)

. Again, we can reduce the error of Filon-type methods

by adding interior interpolation points.

1.3.3 Multivariate Filon-type methods

We can readily derive a Filon-type method for multivariate oscillatory

integrals as well [21]. As before, we interpolate a multivariate function f
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Fig. 1.4. The error in approximating
R 1

−1
x+3
x+2

eiω(1−cos x) dx. In the left graph,

we scale the error by ω3/2 and compare the one-term moment-free asymptotic
expansion (top) and Moment-free Filon-type methods with nodes {−1, 0, 1}
and multiplicities all one (middle) and nodes

˘

−1,− 1
2
, 0, 1

2
, 1

¯

and multiplic-

ities all one (bottom). In the right graph, we scale the error by ω5/2 and we
compare the two-term moment-free asymptotic expansion (top) and Moment-
free Filon-type methods with nodes {−1, 0, 1} and multiplicities {2, 3, 2} (mid-
dle) and nodes

˘

−1,− 1
2
, 0, 1

2
, 1

¯

and multiplicities {2, 1, 3, 1, 2} (bottom).

by a polynomial v at a sequence of points {x1, . . . ,xν}, again with mul-

tiplicities {m1, . . . ,mν}. Assuming such an interpolation is possible—

which, unlike univariate polynomial interpolation, is not ensured—we

obtain the approximation:

QF [f ] = I[v] =

∫

Ω

v(x)eiωg(x) dV.

Again, this requires knowledge of the moments I
[

xi1
1 . . . xi2

d

]

, whose eval-

uation depends not only on the oscillator g but also the domain Ω. There

are few cases where these moments are known, but they can be found

in closed form if Ω is a simplex and g(x) = κ · x is linear. If g is linear,

a composite Filon-type rule can be constructed by triangulating Ω, and

applying a Filon-type method to each triangle in the mesh.

The asymptotic order of a multivariate Filon-type method follows im-

mediately from Theorem 4, as long as ∇g = κ is not orthogonal to any

of the faces of the boundary. Thus if we interpolate at the vertices with

multiplicities at least s, we achieve an order

QF [f ] − I[f ] ∼ O
(

ω−s−d
)

.

Let S = {(x, y) : x ≥ 0, y ≥ 0 and x+ y ≤ 1} be the two-dimensional

simplex. We now approximate the integral
∫∫

S

eiω(x−y)

2x+ y + 1
dV =

∫ 1

0

∫ 1−x

0

eiω(x−y)

2x+ y + 1
dy dx.
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Fig. 1.5. The error of two Filon-type methods in approximating
RR

S
eiω(x−y)

2x+y+1
dV . In the left graph, we scale the error by ω3 where we in-

terpolate at the vertices with multiplicities all one. In the right graph, we
scale by ω4 for interpolating at

˘

(0, 0), (1, 0), (0, 1),
`

1
3
, 1

3

´¯

with multiplicities
{2, 2, 2, 1}.

Simply by interpolating at the vertices of the domain, we obtain an

asymptotic order O
(

ω−3
)

, as seen in the left graph of Figure 1.5. The

right graph demonstrates that increasing multiplicities at the vertices

does indeed increase the asymptotic order to O
(

ω−4
)

.

1.4 Levin collocation method

In 1982, David Levin developed the Levin collocation method [24], which

approximates oscillatory integrals free of stationary points without using

moments. A function F such that d
dx

[

F eiωg
]

= feiωg satisfies

I[f ] =

∫ b

a

feiωg dx =

∫ b

a

d

dx

[

F eiωg
]

dx = F (b)eiωg(b) − F (a)eiωg(a).

By expanding out the derivatives, we can rewrite this condition as

L[F ] = f for the operator

L[F ] = F ′ + iωg′F.

If we can approximate the function F , then we can approximate I[f ]

easily. In order to do so, we use collocation with the operator L. Let

v =
∑ν

k=1 ckψk for some basis {ψ1, . . . , ψν}. Given a sequence of col-

location nodes {x1, . . . , xν}, we determine the coefficents ck by solving

the collocation system

L[v] (x1) = f(x1), . . . ,L[v] (xν) = f(xν).
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We can then define the approximation QL[f ] to be

QL[f ] =

∫ b

a

L[v] eiωg dx =

∫ b

a

d

dx

[

veiωg
]

dx = v(b)eiωg(b) − v(a)eiωg(a).

Levin was the first to note the asymptotic properties of oscillatory

quadrature schemes, as well as the importance of endpoints in the collo-

cation system. This method has an error I[f ] −QL[f ] = O
(

ω−1
)

when

the endpoints of the interval are not included in the collocation nodes.

When the endpoints are included, on the other hand, the asymptotic

order increases to I[f ] −QL[f ] = O
(

ω−2
)

.

A Levin collocation method was also constructed for oscillatory in-

tegrals over a square. In this case a Levin differential operator was

constructed by iterating the method for each dimension. Though we do

investigate multivariate Levin-type methods in Subsection 1.4.3, we will

not use this construction as it is limited to hypercubes.

1.4.1 Univariate Levin-type methods

Motivated by the asymptotic expansion and the results for Filon-type

methods, we can now develop Levin-type methods, as proposed in [31].

In addition to collocating function values, we also collocate derivatives at

the collocation points {x1, . . . , xν}, up to given multiplicities {m1, . . . ,mν}.
In other words, for v =

∑

ckψk, we determine the unknown coefficients

by solving the system

L[v] (xk) = f(xk), . . . ,L[v]
(mk−1)

(xk) = f (mk−1)(xk), k = 1, . . . , ν.

(1.3)

If the basis {ψ1, ψ2, . . .} itself can interpolate at the points and multi-

plicities, then large ω ensures a solution to this system exists, and each

of the coefficients is O
(

ω−1
)

. This can be seen via the following logic:

we can write (1.3) as (P +iωG)c = f , where G is the Vandermonde-like

matrix obtained from evaluating g′ψk at the nodes and multiplicities.

Thus G is nonsingular, and

(P + iωG)−1 = G−1(iω)−1(I + o(1))−1.

It is clear that (I + o(1))−1 → I, thus this expression is O
(

ω−1
)

, and

hence c = (P + iωG)−1f = O
(

ω−1
)

. It follows that L[v] and its deriva-

tives are all bounded as ω → ∞, thus again we can utilize the asymptotic

expansion to show that

I[f ] −QL[f ] = I[f − L[v]] ∼ O
(

ω−s−1
)

,
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Fig. 1.6. The error in approximating
R 1

0
sinh x eiω(x3+x2+x) dx. In the left

graph, we scale the error by ω2 and compare the one-term asymptotic expan-
sion (top) and Levin-type methods with nodes {0, 1} and multiplicities both
one (middle) and nodes

˘

0, 1
2
, 1

¯

and multiplicities all one (bottom). In the

right graph, we scale the error by ω3 and we compare the two-term asymptotic
expansion (top) and Levin-type methods with nodes {0, 1} and multiplicities
both two (middle) and nodes

˘

0, 1
2
, 1

¯

and multiplicities {2, 1, 2} (bottom).

for s = min {m1,mν} .
An example of an integral which cannot be computed via Filon-type

methods is

I[f ] =

∫ 1

0

sinhx eiω(x3+x2+x) dx.

We compare the asymptotic expansion to two Levin-type methods in

Figure 1.6. We use the same nodes and multiplicities as in the Filon-

type methods of Figure 1.3, and see the same increase of asymptotic

order with the use of multiplicities.

1.4.2 Chung, Evans & Webster methods

Often methods represented as weighted sums are preferred. Though

Filon and Levin collocation methods are extremely powerful, they do

not fall into this framework. In [9], Evans and Webster construct such

a method for irregular exponential oscillators, based on the Levin col-

location method. We want to choose weights wk and nodes xk such

that
∫ 1

−1

φk(x)eiωg(x) dx =

n
∑

k=0

wkφk(xk)

for some suitable basis φk. Unlike Gaussian quadrature, we do not

choose φk to be polynomials. Instead, we choose them based on the
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Levin differential equation:

φk = L[Tk] = T ′
k + iωg′Tk,

where Tk are the Chebyshev polynomials. The moments with respect to

φk are computable in closed form:
∫ 1

−1

φk(x)eiωg(x) dx = Tk(1)eiωg(1) − Tk(−1)eiωg(−1).

We can thus determine suitable weights and nodes. Numerical results

suggest that this preserves the asymptotic niceties of the original Levin

collocation method.

1.4.3 Multivariate Levin-type methods

We can generalize Levin-type methods to multivariate domains [32]. The

construction of the collocation operator L followed from the fundamental

theorem of calculus, which allowed us to express the value of the integral

in terms of a function evaluated at the endpoints of the interval. The

construction of a multivariate version will proceed in the same manner,

where we use generalized Stokes’ theorem to express the value of the

integral as an integral over the boundary of the domain.

Define

L[v] = ∇ · v + iω∇g · v.

Generalized Stokes’ theorem informs us that
∫

∂Ω

eiωgv · ds =

∫

Ω

∇ · (eiωgv) dV =

∫

Ω

L[v] eiωg dV = I[L[v]] ,

where ds = (dy,− dx)
⊤

. Thus we use collocation at {x1, . . . ,xν} with

multiplicities {m1, . . . ,mν} to determine the coefficients of v =
∑

ckψk,

i.e., we solve the system

L[v]
(m)

(xk) = f (m)(xk), for |m| < mk, k = 1, . . . , ν,

where |m| expresses the sum of the individual components. Similar to

the univariate case, this system is guaranteed to have a solution for

large ω whenever the basis ∇g · ψk can interpolate at the nodes and

multiplicities. Hence we obtain

I[f ] ≈ I[L[v]] =

∫

∂Ω

eiωgv · ds.

We have approximated the oscillatory integral by another oscillatory
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Fig. 1.7. The error of two Levin-type methods in approximating
RR

H
(exy+x2+

1)eiω(cos( x
2
+1)+y2+y) dV . In the left graph, we scale the error by ω3 where we

interpolate at the vertices with multiplicities all one. In the right graph, we
scale by ω4 for interpolating at

˘

(0, 0), (1, 0), (0, 1),
`

1
4
, 1

4

´¯

with multiplicities
{2, 2, 2, 1}.

integral of one dimension less. We can thus iterate the procedure on

each dimension, eventually arriving at univariate integrals, which we

know how to approximate. It is possible to prove that like multivariate

Filon-type methods, an error of order O
(

ω−s−d
)

is achieved when the

function value and derivatives of order s− 1 of f are collocated at each

vertex. This does require that s− 1 derivatives are used for each of the

vertices of the boundary integrals as well.

In our example, we define ψk as a constant vector (1,−1)
⊤

times

the standard multivariate polynomial basis. Thus each ψk is of the

form (1,−1)
⊤
xiyj . Letting H =

{

(x, y) : x ≥ 0, y ≥ 0 and x2 + y2 ≤ 1
}

denote a quarter-disc, in Figure 1.7 we approximate the integral
∫∫

H

(exy + x2 + 1)eiω(cos(x
2 +1)+y2+y) dV

=

∫ 1

0

∫

√
1−x2

0

(exy + x2 + 1)eiω(cos( x
2 +1)+y2+y) dy dx.

Once we push the integral to the boundary we employ three univariate

Levin-type methods. In the left graph of this figure we use the endpoints

with multiplicities one for each of the univariate methods, in the right

graph we use the endpoints with multiplicities two.

1.5 Steepest descent methods

An entirely different approach becomes applicable once we assume that

both f and g are analytic functions. Then, by deforming the path of



Highly oscillatory quadrature 19

���� ���� ��

−1 0 1

0 100 200 300 400
0

0.005

0.01

0.015

0.02

0.025

Fig. 1.8. The absolute error in approximating
R 1

−1
1

(x+3)2
eiωx2

dx as a function

of ω by a numerical steepest descent scheme using 4 quadrature points, 1 near
each endpoint and 2 near the stationary point. The error is scaled by ω5/2.

integration into the complex plane, efficient numerical schemes can again

be devised for the evaluation of I[f ] with low computational cost and

high asymptotic accuracy. The methods require no moments, but they

require computations in the complex plane.

1.5.1 The path of steepest descent

For complex valued functions g(x), we observe that the complex expo-

nential function eiωg(x) is oscillatory only as a function of the real part of

g. The so-called path of steepest descent originating at the point x = a

is such that the real part of g is kept fixed along the path. Assuming a

parameterization ha(p) of the path, p ∈ [0, P ], this is achieved by solving

g(ha(p)) = g(a) + ip, (1.4)

subject to the condition ha(0) = a. Along such a path, the integrand is

nonoscillatory and exponentially decaying, taking the form

eiωg(a)

∫ P

0

f(ha(p))h′a(p)e−ωp dp. (1.5)

At a stationary point x = ξ, equation (1.4) has several solutions since

the inverse of g is a multivalued function. Two solutions can easily be

identified such that deformation onto a collection of steepest descent

contours is justified by Cauchy’s integral theorem. This is shown in the

left panel of Figure 1.8 for the case g(x) = x2.
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1.5.2 Univarate method of steepest descent

The method of steepest descent is traditionally used to obtain the asymp-

totic expansion of I[f ] [37]. However, the typical divergence of asymp-

totic expansions is avoided by evaluating integrals of the form (1.5) nu-

merically. An interesting choice is the use of a Gaussian quadrature rule

that incorporates the exponential decay into its weight function [14].

For the endpoints x = a or x = b, integral (1.5) is approximated by

eiωg(x)

ω

n
∑

k=1

wkf
(

hx

(xk

ω

))

h′x

(xk

ω

)

,

where xk and wk are the quadrature points and weights of a classical

Gauss–Laguerre rule. It was shown in [14] that, using n evaluations of f

near a and near b, the error in the approximation behaves as O
(

ω−2n−1
)

.

The asymptotic order thus obtained is roughly twice that of Filon-type

methods or Levin-type methods using n derivatives at each endpoint.

This comes at a cost of having to compute hx(p).

At a simple stationary point, it is beneficial to use a Gauss–Hermite

rule, with the weight function e−q2

. For more degenerate stationary

points, the optimal Gaussian quadrature rules are no longer classical [6].

In all cases however, the asymptotic order is approximately twice that

of Filon-type methods and Levin-type methods, when using the same

number of function evaluations of f or its derivatives.

An example is shown in the right panel of Figure 1.8. Using four

function evaluations, the method achieves ω−5/2 asymptotic error for

the integral
∫ 1

−1
1

(x+3)2 eiωx2

dx. A Filon-type method would require at

least seven function values to achieve the same order.

1.5.3 Multivariate method of steepest descent

The univariate method of steepest descent can be extended to multivari-

ate oscillatory integrals by recursion. For example, when f and g depend

on two variables x1 and x2, integration with respect to the variable x1

may lead to a steepest descent integral of the form

eiωg(a,x2)

∫ P

0

f(h1(p, x2), x2)
∂h1

∂p
(p, x2)e

−ωp dp,

which compares to (1.5). The steepest descent path h1 now is such that

g(h1(p, x2), x2) = g(a, x2) + ip.
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The path depends on the starting point x1 = a, but also on the second

variable x2. The recursive process is started by noting that the line

integral above is an oscillatory function in x2, with the known oscillator

g(a, x2). Thus, the integral of this function with respect to x2 may again

be evaluated by deforming onto a path of steepest descent h2(q). One

ends up integrating along a manifold of steepest descent, which yields a

doubly-infinite, non-oscillatory and exponentially decaying integral

eiωg(a,b)

∫ Q

0

∫ P

0

f(h1(p, h2(q)), h2(q))h
′
2(q)

∂h1

∂p
(p, h2(q))e

−ω(p+q)dpdq.

This manifold of steepest descent is not unique, as the lack of symmetry

in the expression above indicates. The integrals, as in the univariate

case, can be evaluated numerically to high asymptotic order [15].

Much like the result of using generalized Stokes’ formula, one can

see that each recursive step pushes the integral onto the boundary. The

new oscillators that appear in the process may in general have stationary

points, which we call resonance points. Such resonance points appear on

the boundary of the domain as points where ∇g ⊥ ∂Ω. Other contribu-

tions come from vertices of ∂Ω and from critical points where ∇g = 0.

The method of steepest descent continues to hold for oscillators g with

critical points and resonance points. Integrals with very degenerate os-

cillators however, for example with a vanishing Hessian, are computable

in this manner only subject to certain additional conditions [15].

1.6 Other methods

There are assorted other numerical methods developed for approximat-

ing oscillatory integrals, typically specializing on particular oscillators.

We will not investigate these methods in detail, but they are mentioned

here for completeness.

1.6.1 Fourier oscillator methods

Many methods exist for the Fourier oscillator, which were reviewed in

[10]. They all are based on the fact that moments are computable, and

hence are Filon-type methods. The Bakhvalov and Vasil’eva method [4]

interpolates f by Legendre polynomials Pk, and uses the fact that the

moments of such polynomials are known explicitly:

∫ 1

−1

Pk(x)eiωx dx = ik
(

2π

ω

)
1
2

Jk+ 1
2
(ω), (1.6)
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where Jk is a Bessel function [1].

A method based on Clenshaw–Curtis quadrature was also devised,

where f is interpolated by Chebyshev polynomials Tk. We do not have

simple formulæ for the resulting moments, so the polynomials Tk are

then expanded into Legendre polynomials and (1.6) is applied [33, 25].

An alternative from [2] is to express the moments in terms of the hy-

pergeometric function 0F1 [1]. Special functions can be avoided in both

these methods by expanding the Legendre or Chebyshev polynomials

into the standard polynomial basis xk, whose moments can be found via

partial integration [3]. This is not effective for large k due to significant

cancellation in the expansions [10].

Though it was not observed in any of these papers, all of these Filon-

type methods—methods based on interpolating f—have the same asymp-

totic behaviour as the Filon-type methods developed in Section 1.3. If

the endpoints of the interval are included in the interpolation nodes,

then error decays like O
(

ω−2
)

; otherwise the error decays at the same

rate as the integral O
(

ω−1
)

. It means that the number of interpolation

points required should actually decrease as the frequency of oscillations

increases. Thus at high frequencies we never need to utilize large order

polynomials in order to obtain accurate results.

Piessens developed a Gaussian quadrature formula with respect to the

weight function sinx over the interval [−π, π] [34]. It however relies on

considering each period separately, thus still requires a large number

of function evaluations to obtain accurate approximations. A similar

method based on Gaussian quadrature was developed by Zamfirescu

[38], and described in [17] (the original paper is in Romanian). We can

rewrite the sine Fourier integral as

∫ 1

0

f(x) sinωxdx =

∫ 1

0

f(x)(1 + sinωx) dx−
∫ 1

0

f(x) dx.

The second of these integrals is nonoscillatory, so standard quadrature

methods can be used to approximate its value. The first integral now

has a nonnegative weight function, hence we can approximate it by a

weighted sum. Since the moments with respect to the weight function

are known, we can successfully compute the quadrature weights needed.

A very effective quadrature scheme is developed in [22] for the stan-

dard Fourier oscillator. The paper uses a weighted sum of the value of

the functon f and its first derivative at evenly spaced nodes, determin-

ing the weights so as to maximize the degree of polynomials integrated

exactly. It is noted that, for a method of N points, the error behaves
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like O
(

ω−N
)

. This is generalized to use higher order derivatives of f in

[23], resulting in a significant decrease in error.

1.6.2 Irregular oscillator methods

There is also a comparison of methods for irregular oscillators in [10].

In addition to the Levin collocation method and the Chung, Evans and

Webster method already discussed, there is method developed by Evans

in [7] where the transformation y = g(x) is used to convert the irregular

oscillator to a standard Fourier oscillator:

I[f ] =

∫ g(b)

g(a)

f(g−1(y))

g′(g−1(y))
eiωy dy. (1.7)

Once the integral is in this form, a Filon-type method can be employed,

in particular the method based on Clenshaw–Curtis quadrature. This

technique is successful whenever the interval does not contain stationary

points. Unfortunately it requires the computation of the inverse of g,

albeit only at the interpolation points.

Another method for irregular oscillators is proposed by Evans in [8].

Instead of interpolating f by polynomials, we can interpolate f(x)
g′(x) using

a basis of the form
∑

ckψk(g(x)).

Then making the transformation y = g(x), as in (1.7), does not require

the computation of inverses of g. We must, however, be careful in the

choice of the basis ψk.

In [5], the problem of solving the acoustic equation was tackled. This

method required the computation of oscillatory integrals, for which a

new quadrature scheme was derived. At high frequencies, univariate os-

cillatory integrals are dominated by the contribution from the stationary

points and endpoints (multivariate integrals are dominated by contribu-

tions from stationary points, resonance points and vertices). Thus we

can obtain a high accuracy approximation by numerically integrating

near these important points, and throwing away the contributions from

the more oscillatory regions. This is accomplished by utilizing smooth

windowing functions that focus on ǫ neighbourhoods of these important

points. The part of the integral which we throw away decays exponen-

tially fast as the frequency increases; though the error in the approxi-

mation only decays at the same rate as the integral due to quadrature

error in each ǫ neighbourhood.
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