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THE CONSTRUCTION OF CUBATURE RULES
FOR MULTIVARIATE HIGHLY OSCILLATORY INTEGRALS

DAAN HUYBRECHS AND STEFAN VANDEWALLE

Abstract. We present an efficient approach to evaluate multivariate highly
oscillatory integrals on piecewise analytic integration domains. Cubature rules
are developed that only require the evaluation of the integrand and its deriva-
tives in a limited set of points. A general method is presented to identify these
points and to compute the weights of the corresponding rule.

The accuracy of the constructed rules increases with increasing frequency
of the integrand. For a fixed frequency, the accuracy can be improved by
incorporating more derivatives of the integrand. The results are illustrated
numerically for Fourier integrals on a circle and on the unit ball, and for more
general oscillators on a rectangular domain.

1. Introduction

Oscillatory integrals frequently arise in computational methods for oscillatory
phenomena in science and engineering, including wave scattering, wave propagation
and quantum mechanics. Their efficient evaluation is an important step in the
construction of accurate solution methods for these types of problems. In this
paper, we present the construction of a family of cubature rules for multivariate
oscillatory integrals, that require only few weights and abscissae. These rules yield
an approximation to the value of the integral with an accuracy that increases with
increasing frequency of the oscillations. The abscissae depend only on the type of
oscillator in the integral; the weights depend also on the frequency.

We consider an n-dimensional oscillatory integral with a general form given by

(1.1) In :=
∫

S

f(x)eiωg(x) dx,

where S represents an integration domain that can be described by a piecewise
analytic parameterization. The function g is called the oscillator of (1.1). Intu-
itively, it is clear that the value of In will decrease as the frequency parameter
ω increases, because the oscillations of the integrand increasingly cancel out. We
will show that the value of In is determined largely by the behaviour of f and g
near a set of so-called critical points. These points correspond to the points where
the integrand locally does not oscillate, or to certain points on the boundary. The
former set are the points where the gradient of g vanishes, the so-called stationary
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points; the latter set contains points where the gradient of g is orthogonal to the
boundary, and the corner points of the integration domain.

There exist several approaches for the evaluation of one-dimensional oscillatory
integrals I1 with a similar form. An overview of available methods can be found
in [6] and in the references therein. Here, we recall a number of approaches that
become increasingly effective with increasing frequency, and that can be extended
to a multivariate setting. They are asymptotic methods, Filon-type methods and
Levin-type methods.

For large values of ω, the value of the multivariate definite integral In can be
approximated by an asymptotic expansion of the integral [1, 14, 15]. The stationary
points are usually assumed to be nondegenerate, i.e., it is assumed that the Hessian
at the point is not singular. A disadvantage of asymptotic expansions is that, in
most cases, it is not straightforward to obtain the coefficients of the expansion. A
different asymptotic expansion was constructed for univariate oscillatory integrals
in [7, 8], with explicit expressions for the coefficients in terms of the derivatives of f
and g at the critical points. This approach was extended to multivariate integrals
without stationary points on polytope domains, and to a number of double integrals
involving nondegenerate stationary points in [9, 10]. In the same references, Filon’s
method for oscillatory integrals was generalised and extended to these cases. The
resulting Filon-type methods lead to a quadrature rule or cubature rule involving
function values and derivatives of f at a small number of points. We will revisit
Filon-type methods in §2.3.

A different approach was taken in [11], by associating the oscillatory integral
with a system of ordinary differential equations that is solved by collocation. This
method was extended to yield high order accuracy as a function of ω for univariate
integrals and multivariate integrals in [12, 13], subject to a nonresonance condition
that excludes stationary points and points where the gradient of the oscillator is
orthogonal to the boundary. These so-called Levin-type methods do not require
the computation of weights or moments.

In this paper, we present a new type of cubature rules for integrals of the
form (1.1). The method works in the presence of nondegenerate or degenerate
stationary points, and also for any shape of the integration domain. It is shown
that the weights can be evaluated efficiently. The convergence of the rules is ana-
lysed and illustrated with some examples. We start in §2 with a review of the
one-dimensional approach of [6]. We extend the approach to a number of two-
dimensional integrals by some motivating examples in §3. The general theory for
multivariate integrals is given in §4. The construction of cubature rules is discussed
in §5. Some numerical experiments illustrate the approach in §6. Finally, we end
with some concluding remarks in §7.

2. Review of the one dimensional case

In this section we recall the main results of [6]. As a model for one-dimensional
oscillatory integrals, we consider the integral

(2.1) I1 :=
∫ b

a

f(x)eiωg(x) dx,
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with i =
√
−1 the imaginary root, and with f and g smooth functions. We call

g(x) the oscillator of (2.1). We will first discuss the case without stationary points,
i.e., we assume that the equation g′(x) = 0 has no solution on [a, b].

2.1. The ideal case without stationary points. If both f and g are analytic,
then the integrand of (2.1) is also analytic. In that case, we may choose a different
integration path from a to b in the complex plane by Cauchy’s Theorem [5]. A
useful observation is that the function eiωg(x) oscillates only if the real part of g(x)
varies. The function decays exponentially fast with an increasing imaginary part,
since eiω(a+bi) = e−ωbeiωa. With this observation in mind, an integration path
can be found for (2.1) that goes from a to a region of the complex plane where
the integrand becomes arbitrarily small, and from that region back to the point b.
First, we recall an important theoretical result from [6].

Theorem 2.1 ([6], Th 3.2). Assume f and g are analytic in a bounded and open
complex neighbourhood D of [a, b], and g′(z) �= 0, z ∈ D. Then there exists a
function F (x), x ∈ [a, b], such that

(2.2)
∫ x

a

f(z)eiωg(z) dz = F (a) − F (x) + O(e−ωd0),

with d0 > 0 and where F (x) is of the form

(2.3) F (x) =
∫

Γx

u(z) dz,

with Γx a path that starts at x, and with an exponentially decaying integrand along
that path.

Assume that the path Γx in the definition of F is parameterized by hx(p), p ∈
[0, P ]. A particularly useful choice for hx(p) satisfies

(2.4) g(hx(p)) = g(x) + ip.

This path is called the path of steepest descent [1, 15]. Expression (2.3) for F (x)
can then be written as

F (x) =
∫ P

0

f(hx(p))eiωg(hx(p))h′
x(p) dp = eiωg(x)

∫ P

0

f(hx(p))h′
x(p)e−ωp dp.

The resulting integrand does not oscillate and decays exponentially fast. In the
limiting case P → ∞, approximation (2.2) becomes exact, i.e., the term O(e−ωd0)
vanishes, for all values of ω greater than a lower bound ω0 [6, Th 3.3]. The function
F (x) can then be evaluated efficiently by Gauss–Laguerre integration [2]. The
convergence increases rapidly as the frequency parameter ω increases, as shown in
the following theorem.

Theorem 2.2 ([6], Th 3.5). Let F (x) be approximated by the quadrature formula

(2.5) F (x) ≈ QF [f, g, hx] :=
eiωg(x)

ω

n∑
i=1

wif(hx(xi/ω))h′
x(xi/ω),

with wi and xi the weights and abscissae of an n-point Gauss–Laguerre quadrature
rule. Then the quadrature error behaves asymptotically as O(ω−2n−1).
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For complex functions g, the equation g(hx(p)) = g(x) + ip may not be easily
solvable. The function F (x) may still be evaluated by approximating the optimal
path hx(p) locally around x using, e.g., a Taylor series of g with only few terms. A
straightforward Newton-Raphson iteration process can additionally be applied to
yield the exact optimal path. Finally, an approximation of F (x) can be obtained
by replacing g by its truncated Taylor series in the definition of F . Convergence
estimates for this approach are derived in [6]. We note that the implementation of
this scheme is entirely numerical, whereas the method of Steepest Descent usually
leads to an asymptotic expansion based on analytic manipulations of the integrand.

2.2. Stationary points. A stationary point is any solution ξ to the equation
g′(x) = 0. The importance of stationary points lies in the fact that the inte-
grand of (2.1) locally does not oscillate near ξ; the presence of stationary points
therefore has a large effect on the value of I1.

The inverse of g is multi-valued in a neighbourhood of any stationary point.
Equation (2.4), that was used to find the optimal path, has at least two possible
solutions for hx(p). The ambiguity is resolved by restricting the integration interval
[a, b] to the subintervals [a, ξ] and [ξ, b] respectively. On each subinterval, a single-
valued analytic branch of the inverse of g exists, that can be used to solve (2.4).
The results of Theorem 2.1 are extended in the following theorem.

Theorem 2.3 ([6], Th 4.1). Assume that the functions f and g are analytic in a
bounded and open complex neighbourhood D of [a, b]. If the equation g′(x) = 0 has
only one solution ξ in D and ξ ∈ (a, b), then there exist functions Fj(x), j = 1, 2,
such that

(2.6)
∫ t

s

f(z)eiωg(z) dz = F1(s) − F1(ξ) + F2(ξ) − F2(t) + O(e−ωd0), d0 > 0,

for s ∈ [a, ξ] and t ∈ [ξ, b], where Fj(x) is of the form

(2.7) Fj(x) :=
∫

Γx,j

f(z)eiωg(z) dz

with Γx,j a path that starts at x, and with an exponentially decaying integrand along
that path.

Similarly, a decomposition can be found for the case of multiple stationary points.
Assume there are l stationary points ξi ∈ (a, b), i = 1, . . . , l. Define ξ0 := a and
ξl+1 := b. Then Theorem 2.3 can be applied repeatedly to yield a decomposition
of the form

(2.8) I1 ≈
l+1∑
i=1

Fi(ξi−1) − Fi(ξi).

Unfortunately, the parameterization hξ,j(p) for Γξ,j exhibits a numerical problem
at p = 0. Define r as the smallest integer such that g(r+1)(ξ) �= 0, i.e., all derivatives
of g vanish at ξ up to order r. We say that the stationary point has order r. Then
the derivative of the optimal path, h′

ξ,j(p), behaves as O(p−r/(r+1)), p → 0. This
singularity prevents convergence of the Gauss–Laguerre quadrature approach that
was used in §2.1. However, it can be dealt with efficiently by generalized Gauss–
Laguerre quadrature [2]. Generalized Gauss–Laguerre polynomials are orthogonal
with respect to the weight function xαe−x, α > −1. The corresponding Gaussian
quadrature rules can be applied with the choice α = −r/(r + 1).
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Theorem 2.4 ([6], Th 4.4). Assume that g(k)(ξ) = 0, k = 1, . . . , r, and g(r+1)(ξ) �=
0. Let the function Fj(ξ) be approximated by the quadrature formula

(2.9) Fj(ξ) ≈ Qα
F [f, g, hξ,j ] :=

eiωg(ξ)

ω

n∑
i=1

wi f(hξ,j(xi/ω)) h′
ξ,j(xi/ω) x−α

i ,

with wi and xi the weights and abscissae of an n-point generalized Gauss–Laguerre
quadrature rule with α = −r/(r + 1). Then the error behaves asymptotically as
O(ω−2n−1/(r+1)).

The relative error of both the approximation of F (x) in Theorem 2.2 and the
approximation of Fj(ξ) in Theorem 2.4, scales as O(ω−2n).

2.3. Quadrature rules using derivatives. For large values of the frequency pa-
rameter ω, the value of Fj(x) depends only on the behaviour of f and g around
the point x. It can be seen from the quadrature rules (2.5) and (2.9) that the path
and its derivative are only evaluated near p = 0. This is a general observation: the
value of I1 depends only on the behaviour of f and g around the boundary points
a and b, and the stationary points ξ in the integration interval. Assume that f can
be approximated well around these points by a linear combination of certain basis
functions, i.e., f =

∑N
i=1 aiφi(x). The integral of these basis functions, the so-called

moments, can then be used as the weights of a quadrature rule to evaluate (2.1),

(2.10) I1 ≈
N∑

i=1

aiwi with wi :=
∫ b

a

φi(x)eiωg(x) dx.

This is essentially a description of Filon’s method for oscillatory integrals [3].
This method was extended by Iserles and Nørsett in [7] to yield higher order accu-
racy as a function of 1/ω. These authors proposed the use of a polynomial basis
and Hermite interpolation of f . The interpolation of f and a number of derivatives
at a, b and any stationary point in between, yields an accuracy of order O(ω−s−1),
where s depends on the number of interpolated derivatives and on the order of the
stationary points. The quadrature rule requires evaluating f and its derivatives
at the interpolation points. The weights of the rule can be computed for general
oscillators g using the approach from [6].

Owing to the decomposition of I1 in a sum of terms that can be evaluated
independently from each other, it becomes possible to approximate f by different
polynomials locally around each of the critical points. This localised approach
allows the use of a much lower degree of approximation at each critical point.
Define the moments µj,k(x) as

(2.11) µj,k(x) :=
∫

Γx,j

(z − x)keiωg(z) dz,

with Γx,j the same curve as in the definition (2.7) of Fj ; then we have

(2.12) Fj(x) =
∞∑

k=0

f (k)(x)
µj,k(x)

k!
.

The convergence rate of this series depends on the size of the coefficients. It
was proven in [6] that |µj,k(x)| = O(ω−k−1) for regular points, and |µj,k(ξ)| =
O(ω(−k−1)/(r+1)) for stationary points. For a fixed g and a fixed interval [a, b],
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substituting (2.12) into the decomposition (2.8) yields a quadrature rule for the
value of I1 that uses derivatives of f ,

(2.13) I1 ≈ Q[f ] :=
l+1∑
j=0

rj∑
k=0

wj,kf (k)(ξj).

The weights are given by w0,k := µ0,k(a)
k! , wl+1,k := −µl,k(b)

k! and wj,k := µj,k(ξj)
k! −

µj−1,k(ξj)
k! , j = 1, . . . , l. The asymptotic behaviour of the error of the quadrature is

given by the behaviour of the first term of expansion (2.12) that is discarded. The
number of derivatives that are used at each special point ξj , given by the constants
rj in (2.13), can be varied such that the order of the truncation error is the same at
each point. In particular, the number of derivatives needs to be larger at stationary
points.

3. Extension to two-dimensional integrals

In this section, we extend the results of the one-dimensional approach to two-
dimensional oscillatory integrals. The problems that arise are introduced one by
one, in a series of examples that become exceedingly more general. First, we con-
sider the integration on a rectangular domain which will be handled by repeated
one-dimensional integration. Next, we generalize to smooth integration boundaries.
This generalization leads to a number of points that are similar to stationary points
in one dimension. Finally, we study an example with points internal to the domain
where the gradient function ∇g vanishes. Such points appear as stationary points
in each integration variable.

In this section, we will assume that all considered functions f and g are such
that the error in the decompositions of Theorems 2.1 and 2.3 vanishes. Sufficient
conditions for f and g that enable this limit case are given in [6]; they involve
conditions on the growth of f and of the inverse of g in the complex plane. This
assumption is made in this section purely for the sake of clarity and brevity. The
theory will be described without this assumption in Section 4.

3.1. Rectangular domains in two dimensions. The simplest extension of the
one-dimensional method to multivariate integrals is the use of repeated one-di-
mensional integration on a rectangular domain. In order to illustrate the basic
approach, we restrict the discussion to a strictly monotonically increasing function
g. Therefore consider the double integral

(3.1) I2 :=
∫ b

a

∫ d

c

f(x, y)eiω(x+y) dy dx,

with f analytic in both variables x and y. For a fixed value of x, the inner integration
in y can be written as a finite sum of contributions by applying Theorem 2.1. We
have ∫ d

c

f(x, y)eiω(x+y) dy = G(x, c) − G(x, d).

An expression for G(x, y) is given by

(3.2) G(x, y) = eiω(x+y)

∫ ∞

0

f(x, vy(x, q))
∂vy

∂q
(x, q)e−ωq dq,
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where vy(x, q) is found as the solution to g(x, vy(x, q)) = g(x, y)+qi. The particular
oscillator g(x, y) = x + y in this example leads to the path vy(x, q) := y + qi. An
important observation is that the function G(x, y) is analytic as a function of x,
because all factors in expression (3.2) are analytic in x. In addition, G(x, y) is an
oscillatory function of x with the oscillator g1(x) := x. Hence, the integration of
G(x, y) in x can also be written as a sum of contributions. The optimal path is
given by ux(p) := x + ip. We arrive at

I2 =
∫ b

a

(G(x, c) − G(x, d)) dx = [F (a, c) − F (b, c)] − [F (a, d) − F (b, d)] ,

where the function F (x, y) is given by

F (x, y) = eiω(x+y)

∫ ∞

0

∫ ∞

0

f(ux(p), vy(ux(p), q)) u′
x(p)

∂vy

∂q
(ux(p), q) e−ω(p+q) dq dp

= eiω(x+y)

∫ ∞

0

∫ ∞

0

f(x + ip, y + qi)i2e−ω(p+q) dq dp.

The value of I2 is found by summing the contributions from each of the corner points
of the rectangular domain. These contributions are given by a double integral with
a nonoscillating integrand that decays exponentially fast as a function of both
integration variables. They can be evaluated efficiently using, e.g., tensor-product
Gauss–Laguerre quadrature.

3.2. Smooth boundaries in two dimensions. The double integral (3.1) is gen-
eralized by considering integration boundaries for y that depend on x. The simplest
of those extensions is a simplex. We therefore first consider the evaluation of the
following integral:

(3.3) I2 :=
∫ b

a

∫ x

a

f(x, y)eiω(x+y) dy dx.

Applying Theorem 2.1 for the inner integration in y leads to∫ x

a

f(x, y)eiω(x+y) dy = G(x, a) − G(x, x),

with G(x, y) again given by (3.2). The term G(x, x) did not appear before; it is
given by

(3.4) G(x, x) = eiω2x

∫ ∞

0

f(x, x + qi)ie−ωq dq.

This means that the oscillators in x of G(x, a) and of G(x, x) are different: they are
respectively given by g1(x) := x and g2(x) := 2x. A decomposition can be found for
the integration in x, applying Theorem 2.1 for both terms separately. This yields

I2 =
∫ b

a

(G(x, a) − G(x, x)) dx = [F1(a, a) − F1(b, a)] − [F2(a, a) − F2(b, b)],

with F1(x, y) := F (x, y) corresponding to the integral of G(x, a), and F2 given by

F2(x, x) = eiω2x

∫ ∞

0

∫ ∞

0

f(x +
p

2
i, x +

p

2
i + qi)

i2

2
e−ω(p+q) dq dp.

This expression is obtained by following the paths vy(x, q) = y + qi and ux(p) =
x + p

2 i. Although function F2 is a function of only one variable x, the notation
F2(x, x) is used for later notational convenience. Note that all contributions in the
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total decomposition are given by the evaluation of a function F1 or F2 at a corner
point of the simplex.

A new difficulty arises when the boundaries of the integration in y are more
general. Assume analytic functions c(x) and d(x) are given and define the integral

(3.5) I2 :=
∫ b

a

∫ d(x)

c(x)

f(x, y)eiω(x+y) dy dx.

Decomposing the inner integration in y now leads to∫ d(x)

c(x)

f(x, y)eiω(x+y) dy = G(x, c(x))− G(x, d(x))

= eiω(x+c(x))

∫ ∞

0

f(x, c(x) + qi)ie−ωq dq

− eiω(x+d(x))

∫ ∞

0

f(x, d(x) + qi)ie−ωq dq.

The oscillator of G(x, c(x)) is g1(x) := g(x, c(x)) = x + c(x). Although the
partial derivatives of the original function g(x, y) = x + y do not vanish anywhere,
the function g1(x) may have stationary points:

d
dx

g(x, c(x)) =
∂g

∂x
+

∂g

∂y

dc

dx
= 0 ⇐⇒ ∇g · ∇

[
x

c(x)

]
= 0.

Function g1(x) has a stationary point in x if the gradient of g(x, y) is orthogonal
to the tangent line of the boundary, which is parameterized by [x c(x)]T . This
condition was already identified by Iserles and Nørsett in [9]. There, the case was
explicitly excluded by the so-called nonresonance condition. Clearly, this is a severe
restriction, since it occurs easily for smooth boundaries.

Assume that g1(x) has lc stationary points ξc,i ∈ (a, b), i = 1, . . . , lc, and g2(x) :=
g(x, d(x)) = x+d(x) has ld stationary points ξd,i ∈ (a, b), i = 1, . . . , ld. Set ξc,0 := a,
ξc,lc+1 := b, ξd,0 := a and ξd,ld+1 := b. Then we can use the shorthand notation
of (2.8) to write I2 as

I2 =
lc+1∑
i=1

[F1,i(ξc,i−1, c(ξc,i−1)) − F1,i(ξc,i, c(ξc,i)) ]

−
ld+1∑
i=1

[F2,i(ξd,i−1, d(ξd,i−1)) − F2,i(ξd,i, d(ξd,i)) ] .

The contributions come from the boundary points (a, c(a)), (b, c(b)), (a, d(a))
and (b, d(b)), and also from other points on the boundary, given by (ξc,i, c(ξc,i)) and
(ξd,i, d(ξd,i)). The latter are all the points where the gradient of g is orthogonal to
the boundary.

Note that for a simplex we have c(x) = a and d(x) = x. For the particular choice
of oscillator g(x, y) := x − y, we have g2(x) := g(x, d(x)) = 0. In other words, the
function G(x, d(x)) is not oscillatory at all! The gradient of g is orthogonal to the
boundary at all points (x, x). For this particular case, the integration in x cannot be
written as a sum of contributions. However, there is no need for a decomposition, as
the integral

∫ b

a
G(x, d(x))dx can be evaluated by, e.g., regular Gaussian quadrature

on the real line [a, b]. Note that this case is exceptional, while the condition that
the gradient of g is orthogonal to the boundary in only one point is common.
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3.3. Stationary points. A final complication that may arise in decomposing high-
ly oscillatory two-dimensional integrals into a sum of contributions, is the presence
of stationary points where ∇g = 0. Consider the model integral

(3.6) I2 :=
∫ b

a

∫ d

c

f(x, y)eiω(x2−xy−y2) dy dx,

with a, c < 0 and b, d > 0. We have g(x, y) = x2 − xy − y2 and ∇g(0, 0) = 0 in the
internal point (0, 0). In the following we will derive a decomposition for I2 as a sum
of contributions of the form Fjkl(x, y). Each function Fjkl is evaluated in a special
point that is to be determined. The index j denotes the path for y: vy,j(x, q). The
combination of index j and index k denotes the different oscillators in x that result:
gjk(x). Finally, index l is used to denote the path for x: ux,jkl(p). The general
form of the contribution Fjkl will be shown to be

Fjkl(x, y) = eiωgjk(x)

∫ ∞

0

∫ ∞

0

f(ux,jkl(p), vy,j(ux,jkl(p), q))

∂ux,jkl

∂p
(p)

∂vy,j

∂q
(ux,jkl(p), q)e−ω(p+q) dq dp.(3.7)

3.3.1. Stationary points in y. For any x ∈ [a, b], function g(x, y) has a stationary
point in y given by y = −x/2, since ∂g

∂y (x,−x/2) = 0. We can write the integral (3.6)
as ∫ d

c

f(x, y)eiωg(x,y)dy =
∫ −x/2

c

f(x, y)eiω(x2−xy−y2)dy(3.8)

+
∫ d

−x/2

f(x, y)eiω(x2−xy−y2)dy.

For this decomposition, we have assumed that c ≤ −b/2 and −a/2 ≤ d, as il-
lustrated in Figure 1. The problem has now become similar to the problem of a
smooth boundary treated earlier. Consider the first integral in the right hand side
of (3.8). By Theorem 2.3, there exists a decomposition∫ −x/2

c

f(x, y)eiω(x2−xy−y2)dy = G1(x, c) − G1(x,−x/2).

The path for y is found by solving g(x, vy,1(x, q)) = g(x, y) + qi, and leads to

vy,1(x, q) = −x/2 − 1/2
√

x2 + 4xy + 4y2 − 4iq.

The function G1(x, y) is given in its general form by

G1(x, y) = eiωg(x,y)

∫ ∞

0

f(x, vy,1(x, q))
∂vy,1

∂q
(x, q)e−ωq dq,

and thus G1(x, c) has an oscillator g11(x) := x2−cx−c2, with a stationary point at
x = c/2. The latter corresponds to the point (c/2, c) on the integration boundary.
The oscillator for G1(x,−x/2) is g12(x) := 5/4x2, with a stationary point at x = 0.
This corresponds to the internal point (0, 0).

Similarly, the second integral in the right hand side of (3.8) can be written as∫ d

−x/2

f(x, y)eiω(x2−xy−y2)dy = G2(x,−x/2) − G2(x, d).
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Figure 1. The points that contribute to the double integral I2 for
g(x, y) = x2 − xy − y2 on the rectangle [a, b] × [c, d].

The path for y differs from the path used to obtain the function G1. We denote
the path by vy,2(x, q), and note that it is given by

vy,2(x, q) = −x/2 + 1/2
√

x2 + 4xy + 4y2 − 4iq.

We can define oscillators g21(x) := 5/4x2 and g22(x) := x2−dx−d2, correspond-
ing to the functions G2(x,−x/2) and G2(x, d) respectively. They have a stationary
point at x = 0 and x = d/2.

3.3.2. Stationary points in x. We have already shown that I2 can be written as a
sum of four integrals of the form∫ b

a

Gj(x, sjk(x)) dx, j = 1, 2, k = 1, 2,

where each Gj(x, sjk(x)) has an oscillator in x of the form gjk(x) := g(x, sjk(x)),
with one stationary point x = ξjk. Applying Theorem 2.3 shows the existence of
two functions Fjk1(x, y) and Fjk2(x, y) such that∫ b

a

Gj(x, sjk(x)) dx =Fjk1(a, sjk(a)) − Fjk1(ξjk, sjk(ξjk))

+ Fjk2(ξjk, sjk(ξjk)) − Fjk2(b, sjk(b)).

The paths for x are found by solving gjk(ujkl(p)) = gjk(xjkl) + ip, j = 1, 2, k =
1, 2, l = 1, 2. Analytic expressions are easily derived: for the oscillator g21(x) =
g(x,−x/2) = 5/4x2, evaluated at x211 = ξ21 = 0, we find

g21(u211(p)) = g21(x211) + ip ⇒ 5
4
u2

211(p) = ip ⇒ u211(p) =

√
4
5
ip.

We have arrived at a decomposition for I2 with 16 functions of the form (3.7).
Substituting the functions s11(x) = c, s12(x) = s21(x) = −x/2 and s22(x) = d into
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the general form, the total decomposition is given by

I2 = F111(a, c) − F111(c/2, c) + F112(c/2, c) − F112(b, c)

− F121(a,−a/2) + F121(0, 0) − F122(0, 0) + F122(b,−b/2)

+ F211(a,−a/2) − F211(0, 0) + F212(0, 0) − F212(b,−b/2)

− F221(a, d) + F221(d/2, d) − F222(d/2, d) + F222(b, d).

There is one evaluation in each corner point, there are two evaluations in the
points where ∇g is orthogonal to the boundary, and there are four evaluations in
the central stationary point (0, 0) where ∇g vanishes in all integration variables. All
relevant points are shown in Figure 1. The lines connecting (a,−a/2) with (b,−b/2),
and (c/2, c) with (d/2, d) are given by y = −x/2 and x = y/2 respectively: they
correspond to curves along which the partial derivative of g(x, y) with respect to x
or y vanishes. They intersect in the stationary point.

4. A decomposition of multivariate highly oscillatory integrals

In the previous section, we have illustrated the issues that arise in identifying the
individual contributions to oscillatory integrals in two dimensions. These examples
will motivate and clarify the results for the general n-dimensional case. First, we
prove a decomposition for a one-dimensional integral of an n-dimensional function
in §4.1. Next, a decomposition of multivariate integrals is obtained by repeated
one-dimensional integration in §4.2.

4.1. A decomposition for one variable. The decomposition of a one-dimension-
al integral is given in Theorem 2.1 for the case without stationary points, and in
Theorem 2.3 in the presence of a stationary point. Here, we will refine Theorem 2.1
and obtain an expression for the error of the decomposition.

Lemma 4.1. Assume that the functions f and g are analytic in an open complex
neighbourhood D of [a, b]. If g′(x) �= 0, x ∈ (a, b), then there exists a function F (x),
x ∈ [a, b], and a constant d0 > 0 such that

(4.1)
∫ x

a

f(z)eiωg(z) dz = F (a) − F (x) + E(x),

with F (x) and E(x) of the form

F (x) = eiωg(x)

∫ d0

0

f(hx(p))e−ωp dhx

dp
(p) dp,(4.2)

E(x) = e−ωd0

∫ x

a

f(κ(z))eiωg(z) dκ

dz
(z) dz.(4.3)

Proof. We will prove the existence of decomposition (4.1) by the explicit construc-
tion of a new integration path for the integral. The construction of the path is il-
lustrated in Figure 2. The first part of the new path is parameterized by z = ha(p),
p ∈ [0, d0], such that eiωg(ha(p)) = eiωg(a)e−ωp. This means that the parameteriza-
tion ha(p) should satisfy g(ha(p)) = g(a) + ip. The second part is parameterized
by z = κ(y), y ∈ [a, x], such that g(κ(y)) = g(y) + d0i. Finally, the last part is
parameterized by z = hx(p), p ∈ [0, d0], such that g(hx(p)) = g(x) + ip.
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D0
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g(x)+d  i0

g(D )0

c

g

D ba g(a) g(b)

g(c)

Figure 2. Illustration for Lemma 4.1 for the case where g′(a) =
g′(b) = g′(c) = 0. The figure shows the connection between the
domain D0 and its image g(D0).

Assuming that these paths exist and lie in D, we have by Cauchy’s theorem∫ x

a

f(z)eiωg(z) dz =
∫ d0

0

f(ha(p))eiωg(ha(p)) dha

dp
(p) dp

+
∫ x

a

f(κ(y))eiωg(κ(y)) dκ

dy
(y) dy −

∫ d0

0

f(hx(p))eiωg(hx(p)) dhx

dp
(p) dp.

This decomposition has the form of (4.1).
It remains to show that such a path exists. Here, we will prove this is the case

for an integration over [a, b] with g′(a) = g′(b) = 0. The easier case of an interval
[a, x] with no stationary points, or with a single stationary point at a, is proven
along the same lines.

Since g′ is analytic in D, any compact singly connected subset of D will contain
at most a finite number of isolated zeros of g′. Since g′(x) �= 0 for x ∈ (a, b), one
can always construct such a subset D0 with [a, b] ⊂ intD0, containing no zeros of
g′ except a and b. Consider g(D0), with boundary ∂g(D0), and set d0 to be the
minimum vertical distance defined as

(4.4) d0 = min{�z for z ∈ ∂g(D0) ∩ iC+ satisfying �z ∈ g([a, b])} .

Since g is analytic and nonconstant, we have that the image of [a, b] is strictly in the
interior of the compact region g(D0). Hence, the minimum in (4.4) is well-defined
and d0 > 0.

The inverse of g is typically a multivalued function on g(D0) with branch points
at each point g(z) where g′(z) = 0 [5]. In the present case those branch points are
g(a) and g(b). The function g can be made uniquely invertible by selecting arbitrary
nonintersecting branch cuts connecting those points to ∂g(D0). These cuts can
always be constructed in such a way that they do not intersect the rectangle. Define
g−1 as the branch that satisfies g−1(g(x)) = x for x ∈ [a, b]. Then, the inverse of the
rectangular path lies entirely within D0, and hence, within the region of analyticity
of g and f . �

A general decomposition in the presence of multiple stationary points can be
obtained by repeatedly applying Lemma 4.1 on suitable subintervals. Note that
the value of d0 in the definition of F and E is determined by the size of D0, or,
more precisely, by the presence of stationary points z ∈ C that lie close to the
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interval [a, b], and by the region of analyticity D of f and g. In most cases, d0 may
be quite large or even infinite.

The following theorem gives a decomposition for a one-dimensional integral with
an n-dimensional integrand. A function in n variables is called analytic if it is
analytic in each variable. We denote such a function f here by f(x, y), with x ∈
Cn−1 and y ∈ C. A similar notation is used for g.

Theorem 4.2. Assume f and g are n-dimensional functions that are analytic for
x in an open complex neighourhood of a closed domain B ⊂ Rn−1, and y in an
open complex neighbourhood D(x) of [a(x), b(x)]. If ∂g

∂y (x, y) �= 0, for x ∈ B,
a(x) < y < b(x), and if

∂g

∂y
(x, a(x)) �= 0 or

∂g

∂y
(x, a(x)) ≡ 0, ∀x ∈ B, and(4.5)

∂g

∂y
(x, b(x)) �= 0 or

∂g

∂y
(x, b(x)) ≡ 0, ∀x ∈ B,(4.6)

then there exist functions F and E, such that

(4.7)
∫ b(x)

a(x)

f(x, y)eiωg(x,y) dy = F (x, a(x))− F (x, b(x)) + E(x), ∀x ∈ B,

and with F and E of the form

F (x, y) = eiωg(x,y)

∫ d0

0

f(x, h(x, p))e−ωp ∂h

∂p
(x, p) dp,(4.8)

E(x) = e−ωd0

∫ b(x)

a(x)

f(x, κ(x, y))eiωg(x,y) ∂κ

∂y
(x, y) dy,(4.9)

with d0 > 0. The functions F and E are analytic in x in an open neighbourhood of
B if a(x) and b(x) are analytic.

Proof. For a fixed value of x ∈ B, we can apply Lemma 4.1. This yields two
functions of y, F1(y;x) and E1(y;x), such that∫ b(x)

a(x)

f(x, y)eiωg(x,y) dy = F1(a(x);x)− F1(b(x);x) + E1(b(x);x).

These functions can be identified with (4.8) and (4.9) by F (x, y) := F1(y;x) and
E(x) := E1(b(x);x). However, as the constant d0(x) still depends on x, it remains
to be proven that it can be chosen independently of x.

Recall that the region D0 in the proof of Lemma 4.1 was chosen such that it
contains no zeros of g′, except possibly a and b. The size of the region D0 and,
hence, of the constant d0, is restricted only by the analyticity of f and g, and by the
presence of isolated stationary points other than a and b. In the current multivariate
application of the lemma, this means that D0(x) is chosen such that it contains
no zeros of ∂g

∂y , except possibly (x, a(x)) and (x, b(x)). Now consider a (complex)
curve c(x) of stationary points, i.e., ∂g

∂y (x, c(x)) ≡ 0, x ∈ B. The value d0(x)
could become arbitrarily small if c(x) lies arbitrarily close to [a(x, b(x)]. However,
conditions (4.5) and (4.6), together with the closedness of B, guarantee that c(x)
either coincides with a(x) or b(x), or it is an isolated stationary point for all x ∈ B
including x ∈ ∂B. Therefore, d0(x) can be bounded from below by a constant
d0 > 0.
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Finally, we note that all factors in the expressions for F and E are analytic in x,
and the integral of an analytic function is again analytic if the integration bound-
aries are given by a constant, or by an analytic function [5]. Hence, F (x, a(x)),
F (x, b(x)) and E(x) are analytic in x ∈ B if the boundary functions a(x) and b(x)
are analytic. By a similar reasoning as in the previous paragraph, d0 can be chosen
small enough, but still positive, such that F and E are analytic at least in an open
complex neighbourhood of B. �
Remark 4.3. Condition (4.5) requires that the boundary function a(x) does not
cross a curve c(x) of stationary points in y: either a(x) and c(x) are disjunct, or
they coincide. If a(x1) = c(x1) at a single point x1 ∈ B, then the constant d0 may
become arbitrarily small. The function F (x, y) can still be shown to exist, but it
may not be possible to evaluate the function using the path of steepest descent
due to the presence of stationary points in the complex plane. Aside from the
numerical singularity at such points, crossing a stationary point means that the
line integral that connects the endpoints of the paths for a and b can no longer
be discarded. Still, the function F (x, y) can be evaluated using any other path
that yields exponential decay, as long as the total decomposition is justified by
Cauchy’s Theorem, and the integration path does not cross any stationary points.
An example of this special case will be given in §6.

We can now describe the total decomposition in the presence of stationary points.
For n-dimensional functions, the equation ∂f

∂y (x, y) = 0 has (n − 1)-dimensional
solutions y = si(x), i = 1, . . . , l. As in the one-dimensional case, the integration
region will be subdivided, using these solutions as new boundaries.

Theorem 4.4. Assume f and g are n-dimensional functions that are analytic for x
in an open complex neighbourhood of a closed domain B ⊂ Rn−1, and y in an open
complex neighbourhood D(x) of [a(x), b(x)]. Assume further that ∂g

∂y (x, si(x)) = 0,
i = 1, . . . , l, and ∂g

∂y (x, y) �= 0 otherwise. If s0(x) := a(x) ≤ s1(x) ≤ . . . ≤ sl(x) ≤
sl+1(x) := b(x), and a(x) and b(x) satisfy (4.5)-(4.6), then there exist functions Fi

and Ei of the form (4.8) and (4.9) such that∫ b(x)

a(x)

f(x, y)eiωg(x,y) dy =
l+1∑
j=1

[Fj(x, sj−1(x)) − Fj(x, sj(x))](4.10)

+
l+1∑
j=1

Ej(x), ∀x ∈ B.

Proof. We can write the integral as∫ b(x)

a(x)

f(x, y)eiωg(x,y) dy =
∫ s1(x)

a(x)

· dy +
∫ s2(x)

s1(x)

· dy + . . . +
∫ b(x)

sl(x)

· dy.

The result follows from the repeated application of Theorem 4.2. �
4.2. Repeated one-dimensional integration. The results of the previous sub-
section can be used in a recursive setting in order to obtain a decomposition for an
n-dimensional integral,
(4.11)

In :=
∫ b1

a1

∫ b2(x1)

a2(x1)

∫ b3(x1,x2)

a3(x1,x2)

. . .

∫ bn(x1,...,xn)

an(x1,...,xn)

f(x)eiωg(x) dxn dxn−1 . . . dx1.
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The decomposition of the inner integral in xn can be obtained by Theorem 4.4.
Assume that the equation ∂g

∂xn
(x, xn) = 0 has l solutions xn = si(x), i = 1, . . . , l.

Then, the decomposition of the inner integral in xn has the form of (4.10). The func-
tions Fi(x, sj(x)) are analytic in x, and have an oscillator of the form g(x, sj(x)).
Define s0(x) = an(x) and sl+1(x) = bn(x); then every function Fj , for j =
1, . . . , l + 1, leads to two oscillators,

gj,1(x) := g(x, sj−1(x)),(4.12)

gj,2(x) := g(x, sj(x)).(4.13)

Obviously gj,1(x) = gj−1,2(x). These oscillators are (n − 1)-dimensional analytic
functions. The first index i denotes the subinterval of [an(x), bn(x)], the second
index denotes an endpoint of that interval.

In the following we will denote an oscillator compactly by gλ, where λ is a multi-
index. An integral corresponding to gλ can be decomposed again using Theorem 4.4.
If gλ(x, xn−1) has lλ stationary points sλ,i(x), i = 1, . . . , lλ, this yields lλ + 1
functions Fλ,i, i = 1, . . . , lλ + 1. Denote by sλ,0(x) := an−1(x) and sλ,lλ+1(x) :=
bn−1(x). Each contribution has the form Fλ,i(x, sλ,i−1(x)) or Fλ,i(x, sλ,i(x)). The
oscillators can be defined recursively by

gλ,i,1(x) := gλ(x, sλ,i−1(x)),(4.14)

gλ,i,2(x) := gλ(x, sλ,i(x)).(4.15)

These oscillators are (n − 2)-dimensional analytic functions. The definitions can
be extended recursively, applying Theorem 4.4 for each integration variable until
the integral In is fully written as a sum of integrals that are no longer oscilla-
tory. Extending our notation, each recursive step adds two layers of indices to
λ: the decomposition of an integral with oscillator gλ yields the functions Fλ,i,
i = 1, . . . , lλ + 1, and the evaluation of Fλ,i in the endpoints leads to the new os-
cillators gλ,i,1 and gλ,i,2. After the final recursive step, we have functions Fλ′ with
size(λ′) = 2n − 1, evaluated in points xλ with size(λ) = 2n of the form

(4.16) xλ = gλ(a) = (a, f1(a), f2(a, f1(a)), f3(a, f1(a), f2(a, f1(a))), . . .),

with a ∈ [a1, b1]. Examples will be given in §6. The functions fi can either be one
of the boundary functions aj or bj of In, or a curve of stationary points for one
integration variable. In the following theorem, we use Fλ′ to denote the function
that is evaluated at xλ (i.e., λ′ is λ with the last index omitted).

Theorem 4.5. Assume f and g are n-dimensional functions that are analytic
in a complex neighbourhood of the integration region of In, given by (4.11), with
all boundary functions ai and bi analytic, i = 2, . . . , n. Define the functions gλ

recursively by (4.12) - (4.13) and (4.14) - (4.15). If the following condition holds,

(4.17) ∀λ, ∃y :
∂gλ

∂y
(x, y) �= 0,

then there exist functions Fλ′ and points xλ such that

(4.18) In =
∑

size(λ)=2n

sλFλ′(xλ) + O(e−ωd0),

with sλ = ±1 and with a constant d0 > 0.
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Proof. The construction of the functions Fλ and the points xλ follows from the
recursive description given earlier in this section, based on applying Theorem 4.4
repeatedly for all integration variables. Condition (4.17) guarantees that each oscil-
lator encountered for an integration variable y is not independent of y. It remains
to show in this proof that the error of the full decomposition decays exponentially
fast as O(e−ωd0) with a constant d0 > 0.

Consider the decomposition of the integration in xn of an n-dimensional oscil-
latory integrand, as given by Theorem 4.4. The error expression Ej has the form
of (4.9),

(4.19) Ej(x) = e−ωd0,j

∫ b(x)

a(x)

f(x, κj(x, xn))eiωg(x,xn) ∂κj

∂xn
(x, xn) dxn.

Function f is analytic on a (finite) complex neighbourhood of the integration do-
main, and can therefore be bounded uniformly on that domain by a constant M > 0.
Additionally, we have |eiωg(x,xn)| ≤ 1 since g(x, xn) is real. Finally, in order to
bound the third factor ∂κj

∂xn
(x, xn), recall that κj(x, xn) := g−1

n (g(x, xn) + d0,ji),
where g−1

n (y) represents the inverse of g with respect to xn. We have

∂κj

∂xn
(x, xn) =

∂g−1
n

∂y
(g(x, xn) + d0,ji)

∂g

∂xn
(x, xn).

The derivative of g is bounded, because g is analytic on the (finite) integration
domain. The derivative of g−1

n can only be unbounded if g′(x, κ(x, xn)) = 0. This
situation occurs when there is a stationary point along the path for the error inte-
gral. By construction, this is never the case. Hence, the third factor of (4.19) can
also be bounded by a constant N > 0. Combining these observations, we have∣∣∣∣∣

∫ b1

a1

∫ b2(x1)

a2(x1)

∫ b3(x1,x2)

a3(x1,x2)

. . .

∫ bn−1(x)

an−1(x)

Ej(x) dxn−1 . . . dx1

∣∣∣∣∣ ≤ DMNe−ωd0,j ,

with D the size of the integration domain.
The decomposition for the integration in xn yields l+1 functions Fi, when there

are l stationary points si(x) in xn. From expression (4.8) for Fi, we see that each
contribution to In is of the form∫ b1

a1

∫ b2(x1)

a2(x1)

∫ b3(x1,x2)

a3(x1,x2)

. . .

∫ bn−1(x)

an−1(x)

f̃(x)eiωg̃(x) dx.

Each contribution has the form of In−1. The line of arguments can therefore be
repeated in order to bound the error for the decomposition in xn−1, and recursively
for xn−2, . . . , x1. The constant d0 in (4.18) is obtained as the smallest of the d0,j

constants. �

Remark 4.6. Condition (4.17) explicitly excludes the case where ∂gλ

∂y (x, y) ≡ 0. In
that case, gλ(x, y) = f(x) is independent of y, and hence, it is not an oscillator
for the variable y. The corresponding integral cannot be decomposed. However,
since the integral is not oscillatory, this case does not pose a problem: it can be
evaluated using standard integration techniques. If ∂gλ

∂z (x, z, y) �= 0, the recursive
procedure can be continued for the oscillatory integral in the variable z.

Remark 4.7. Throughout this section, we have assumed that equations of the form
∂g

∂xn
(x, xn) = 0 have l solutions, where l is a constant independent of x. If l
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depends on the value of x, then the integration region can always be split into a
number of regions where l is a constant. This may introduce integrals for which
conditions (4.5) and (4.6) in Theorem 4.2 cannot hold. Still, the decomposition can
be computed following Remark 4.3. A numerical example of this special case will
be given in §6.

4.3. Integration on closed volumes. The procedure to locate the special points
is simplified when the integration region is a closed and smooth n-dimensional
volume without corner points. In order to see this, note that there are many
equivalent ways of writing an integral over a closed and smooth volume in the
general form of (4.11). In particular, the integration boundary functions ai and bi

are not unique: they correspond to a certain parameterization of the volume, of
which there are infinitely many. However, a different choice of integration boundary
functions leads to a different set of critical points xλ, as identified by the recursive
procedure described in §4.2. Although the resulting decomposition will be correct,
we can expect that some of these points are merely an artifact of our arbitrary
choice of boundary functions. Indeed, one can verify that such points appear twice
in the decomposition, and that xλ = xµ, Fλ′(xλ) = Fµ′(xµ) and sλ = −sµ. Hence,
the artificial contributions cancel out. They need not be computed.

In [9], the nonresonance condition was formulated in order to avoid the presence
of stationary points in one or more integration variables. The condition requires
that ∇g(x) should not be orthogonal to the boundary of the integration region.
For a smooth and closed integration region, the nonresonance condition can never
be satisfied. In fact, the critical points are the points where ∇g = 0, and those
points where the nonresonance condition is violated, i.e., where the gradient of the
oscillator is orthogonal to the boundary. This was shown for a two-dimensional
integral in §3.2. We show the same holds for 3D. Consider a three-dimensional
surface that can be represented locally by κ(x, y) = [x y a(x, y)]T around a critical
point xλ. The point is given by

xλ = gλ(s1) = (s1, s2(s1), a(s1, s2(s1))),

following (4.16). The function s2(x) and the value s1 are found such that

∂g(x, y, a(x, y))
∂y

|y=s2(x) = 0,

∂g(x, s2(x), a(x, s2(x)))
∂x

|x=s1 = 0,

i.e., there is a stationary point in x and y. The first relation leads to

(4.20)
∂g

∂y
+

∂g

∂z

∂a

∂y
= 0.

The second relation yields

∂g

∂x
+

∂g

∂y

∂s2

∂x
+

∂g

∂z

(
∂a

∂x
+

∂a

∂y

∂s2

∂x

)
=

∂g

∂x
+

∂g

∂z

∂a

∂x
+

∂s2

∂x

(
∂g

∂y
+

∂g

∂z

∂a

∂y

)
= 0

⇒ ∂g

∂x
+

∂g

∂z

∂a

∂x
= 0.(4.21)
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Equations (4.20) and (4.21) together express the relations of orthogonality[
∂g

∂x

∂g

∂y

∂g

∂z

] [
1 0

∂a

∂x

]T

= 0,

[
∂g

∂x

∂g

∂y

∂g

∂z

] [
0 1

∂a

∂y

]T

= 0,

i.e., ∇g is orthogonal to κ(x, y) at xλ.

5. The construction of cubature rules using derivatives

The decomposition of an oscillatory integral as described in §4 can be written as

(5.1) I[f ] :=
∫

S

f(x)eiωg(x) dx =
∑

size(λ)=2n

sλFλ′ [f ](xλ) + O(e−ωd0),

with

Fλ′ [f ](xλ) := eiωg(xλ)

∫ d0

0

. . .

∫ d0

0

f(h1(p1), h2(h1(p1), p2), . . .)e−ω(
∑

pi)(5.2)

∂h1

∂p1
(p1)

∂h2

∂p2
(h1(p1), p2) . . .

∂hn

∂pn
(. . . , hn−1(. . . , pn−1), pn) dp1 . . . dpn.

The functions hi represent the optimal paths with respect to the oscillators that
are implied by the multi-index λ. This is a generalization of the two-dimensional
form given by (3.7). If the function f is easily evaluated for complex arguments,
tensor-product Gauss–Laguerre rules can be used to obtain an accurate approx-
imation to each of the Fλ′ [f ](xλ) values. This is a straightforward extension of
Theorems 2.2 and 2.4. Alternatively, the function value Fλ′ [f ](xλ) can be approxi-
mated by approximating f locally around the point xλ. That is the approach taken
in this section. The result is a cubature rule that requires only function values and
derivatives of f at xλ. The use of the tensor-product Gauss–Laguerre quadrature
rule to evaluate the weights of the cubature rule will be illustrated in §6.

5.1. A localised Filon’s method. Filon’s method for oscillatory integrals was
already recalled for one-dimensional integrals in §2.3. The multivariate extension
is straightforward: if f is approximated by a linear combination of basis functions,
f(x) =

∑N
i=1 aiφi(x), then I[f ] can be approximated by

(5.3) I[f ] ≈ Q[f ] :=
N∑

i=1

wiai, with wi := I[φi].

In [7, 9] a polynomial basis is suggested, such that the value of f and a number of
its derivatives are interpolated in the critical points xλ. Depending on the number
of critical points and the number of derivatives interpolated, the degree of the basis
functions may have to be high. Owing to our decomposition of the integral into a
sum of independent contributions however, the contributions can be approximated
separately, i.e., there is no need for a global approximation of f . This will lead to
a cubature rule with the same order of accuracy, but using a much lower degree of
polynomials.

We will now construct an approximation for Fλ′ [f ](xλ) as given in (5.2). Define
the multi-index i = i1i2 . . . in with |i| = i1 + i2 + . . . + in, and denote
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(x1 − y1)i1 . . . (xn − yn)in by (x − y)i. Then we can use the Taylor series of f
in the following way:

(5.4) Fλ′ [f ](xλ) =
∑

|i|≤∞

Fλ[(x− xλ)i](xλ)
i1!i2! . . . in!

f (i)(xλ).

The truncated Taylor series can be used in order to obtain a convergent cubature
rule for (5.3). Assume that the total order of the derivative at point xλ is limited
by dλ; then we propose the cubature rule

(5.5) Qs[f ] :=
∑

size(λ)=2n

∑
|i|≤dλ

wλ,if
(i)(xλ),

with the weights given by

(5.6) wλ,i := sλ
Fλ′ [(x− xλ)i](xλ)

i1!i2! . . . in!
.

Remark 5.1. The method of constructing the cubature rule is as follows. The
oscillator g(x) and the integration domain S determine the location of the critical
points xλ and the optimal paths, by the recursive procedure described in §4. Hence,
the abscissae xλ depend only on the oscillator and on the domain. The value of
the weights is found by evaluating (5.6) along these paths. The weights depend
in general on ω. Finally, an approximation to I[f ] is obtained by evaluating the
function f and its derivatives in the abscissae and evaluating (5.5).

5.2. Convergence properties. In order to obtain the order of accuracy as a func-
tion of ω of the cubature rule (5.5), we will first examine the error in the truncation
of (5.4). The size of the truncation error will determine the integration error.

Lemma 5.2. Consider the point xλ with size(λ) = 2n, and the oscillator gλ ob-
tained by repeated one-dimensional integration. If the oscillator for integration
variable xj has a stationary point of order rj, j = 1, . . . , n, then we have, with i
the multi-index i1 . . . in,

∣∣Fλ′ [(x− xλ)i](xλ)
∣∣ = O(ω−αλ,i), with αλ,i =

n∑
j=1

ij + 1
rj + 1

.

Proof. First consider a one-dimensional case. The general expression (5.2) for Fλ′

simplifies to

Fλ′ [(x − xλ)i](xλ) =
∫ d0

0

(h1(p1) − xλ)ieiωg(h1(p1)) dh1

dp1
(p1) dp1,

where h1(p1) is found as the solution to g(h1(p1)) = g(xλ) + p1i. Applying the
transformation q1 = ωp1, this becomes

(5.7) Fλ′ [(x− xλ)i](xλ) =
eiωg(xλ)

ω

∫ d0/ω

0

(h1(q1/ω) − xλ)ie−q1
dh1

dp1
(q1/ω) dq1.

Due to the exponential decay of the integrand, the asymptotic behaviour of the
integral for large ω is given by the behaviour of the integrand near q1 = 0.

Assume that the oscillator has a stationary point of order r. From the Taylor
series of g,

g(x) = g(xλ) + g(r+1)(xλ)
(x− xλ)r+1

(r + 1)!
+ O((x− xλ)r+2),
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we see that the parameterization of the optimal path behaves as

h1(p1) = xλ + r+1

√
(r + 1)!p1i

g(r+1)(xλ)
, p1 → 0.

Hence, we have (h1(q1/ω)−xλ)i ∼ ω−i/(r+1) and dh1
dp1

(q1/ω) ∼ ω1−1/(r+1). Adding
these orders and the factor ω−1 in (5.7), we have∣∣Fλ′ [(x− xλ)i](xλ)

∣∣ = O(ω− i+1
r+1 ).

In the multivariate case, this reasoning can be repeated for each integration vari-
able. The resulting order is the sum of the orders corresponding to each integration
variable. This leads to the result. �
Theorem 5.3. The approximation of I[f ] by the cubature rule (5.5) has an error
of the order

(5.8) I[f ] − Qs[f ] = O(ω−α), with α = min
size(λ)=2n

min
|i|=dλ+1

αλ,i.

Proof. From Lemma 5.2, we see that the error in the truncation of (5.4) is asymp-
totically equivalent to the asymptotic order of the first discarded term. The latter
is given by αλ,i with |i| = dλ + 1. Hence, the order of the truncation error is found
as the mimimum for all λ and i of αλ,i, with |i| = dλ + 1. The order of the error
I[f ] − Qs[f ] is the same. The exponentially decaying error e−ωd0 in (5.1) may be
discarded because, asymptotically, it vanishes faster than any power of ω−1. �
Remark 5.4. The convergence rate may actually be faster than the rate predicted
by Theorem 5.3. This is due to the cancellation of moments at stationary points.
In particular, it may be that xλ = xµ, and that

Fλ′ [(x− xλ)i](xλ) − Fµ′ [(x− xµ)i](xµ) = o(ω−αλ,i)

and o(ω−αµ,i), i.e., the difference of the moments at the special point xλ can have
lower order than the moments themselves.

6. Numerical results

In this section, we illustrate the convergence of the constructed cubature rules
for some arbitrary functions f . The integration domains considered are the right
half of a circle in §6.1, the unit ball in §6.2 and a rectangular domain in §6.3 and
§6.4. We consider the Fourier oscillator and a more general oscillator that leads to
an internal stationary point.

6.1. Half of a circle. We consider an integral over half a circle, written as

I2 :=
∫ 1

0

∫ √
1−x2

1

−
√

1−x2
1

(
cos(x1x2) +

1
2 + x1 + x2

)
eiω(x1+x2) dx2 dx1.

The integration domain is shown in Figure 3. The set of critical points consists
of the points (0,−1) and (0, 1), because they are boundary points of the piecewise
smooth integration domain, and the point (

√
2/2,

√
2/2), because the gradient of

the Fourier oscillator is orthogonal to the circle at that point. This also follows
from the analysis following §4: we have{

g11(x) = x −
√

1 − x2,

g12(x) = x +
√

1 − x2,
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Figure 3. The integration domain for example 1. The gradient
of the oscillator ∇g = [1 1]T is orthogonal to the tangent line at
the point (

√
2/2,

√
2/2).

with stationary points at −
√

2/2, and +
√

2/2 respectively. Since x = −
√

2/2 lies
outside the integration domain, the special points are{

x1111 = (0,−1),
x1112 = (1, 0),

and ⎧⎪⎪⎨
⎪⎪⎩

x1211 = (0, 1),
x1212 = (

√
2/2,

√
2/2),

x1221 = (
√

2/2,
√

2/2),
x1222 = (1, 0).

This corresponds to the total decomposition

[F111(x1111) − F111(x1112)]

− [F121(x1211) − F121(x1212) + F122(x1221) − F122(x1222)] .

The two contributions from the point (1, 0) cancel out, F111(x1112) = F122(x1222);
they are an artifact from the chosen parameterization of which the point appears
to be a boundary point.

The moments F121[(x− x1212)i](x1212) and F122[(x− x1221)i](x1221) have a sta-
tionary point of order r1 = 1 in the variable x1, due to the stationary point

√
2/2

of g12; the other moments are regular. Using a fixed number of derivatives d
at each point, the moments at (

√
2/2,

√
2/2) will asymptotically be the largest.

From Lemma 5.2, the moment F121[(x − x1212)i](x1212) with i = (0, d) scales as
O(ω−1−(d+1)/2). Hence, the first discarded moment with minimal order has order
ω−1−(d+2)/2. By Theorem 5.3, this is the leading order of the integration error.
This is illustrated in Table 1. The columns with d even have a higher convergence
rate than predicted due to the (partial) cancellation of moments.

The total number of weights in the cubature formula for the rightmost column
(d = 2) is 18: there are 3 critical points, and the evaluation of 6 partial derivatives
with total order less than or equal to 2 is required in each point. The value of I2

itself scales as the zero-th order moments, ω−3/2. Hence, the convergence rate of
the relative error is 1.5 times smaller than the rate shown for the absolute error.

The weights were evaluated using tensor-product rules. Following [6, Rem.4.5],
half-range Gauss-Hermite rules were used for evaluating one-dimensional integrals
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Table 1. Absolute error of the approximation of I2 by a cubature
rule using derivatives of maximal order d. The last row shows the
value of log2(e400/e800). The theoretically predicted asymptotic
lower bound is shown between parentheses. The rules in columns
1 − 3 require 3, 9 and 18 function evaluations respectively.

ω \ d 0 1 2
50 6.1e − 5 1.4e − 5 1.3e − 6
100 1.0e − 5 2.6e − 6 1.1e − 7
200 2.4e − 6 4.5e − 7 9.4e − 9
400 3.9e − 7 7.9e − 8 8.3e − 10
800 6.2e − 8 1.4e − 8 7.3e − 11
rate 2.7 (2.0) 2.5 (2.5) 3.5 (3.0)

Table 2. Absolute error of the approximation of the zero-th order
moment F121[(x − x1212)0](x1212) by a tensor-product of Gauss–
Laguerre and half-range Gauss-Hermite rules with n points in each
dimension. The last row shows the value of log2(e100/e50). The
theoretically predicted asymptotic lower bound is shown between
parentheses.

ω \ n 1 2 3
25 2.3e − 05 4.6e − 08 2.3e − 10
50 4.1e − 06 4.1e − 09 1.0e − 11
100 7.2e − 07 3.6e − 10 4.5e − 13
rate 2.5 (2.5) 3.5 (3.5) 4.5 (4.5)

with a singularity due to a stationary point [4]. Hence, we expect a convergence rate
of the relative error of O(ω−n), where n is the number of quadrature rules used in
each dimension. The absolute error scales as O(ω−n−3/2). This is confirmed by the
results in Table 2. Note that this approach is possible for more general f , and that
the results require much less operations than the construction of the appropriate
cubature rule. If applicable, and if high accuracy and efficiency is required, this
approach is preferrable over the use of a cubature rule. For ω = 100 and n = 3, 9
function evaluations were required by the 2D tensor-product rule for an absolute
error of 4.5e − 13 and a relative error of 5.8e − 10.

6.2. The unit ball. We consider an integral over the unit ball, written as

I3 :=
∫ 1

−1

∫ √
1−x2

1

−
√

1−x2
1

∫ √
1−x2

1−x2
2

−
√

1−x2
1−x2

2

ex1+x2
2x3(3x3 + cos(x2))eiω(x1+x2+x3) dx3 dx2 dx1.

There are no corners in this example, since the integration domain is smooth ev-
erywhere. The critical points are those where the gradient of the Fourier oscillator
is orthogonal to the boundary: (−

√
3/3,−

√
3/3,−

√
3/3) and (

√
3/3,

√
3/3,

√
3/3).

The decomposition for the integration variable x3 yields the oscillators

g11(x1, x2) = x1 +x2−
√

1 − x2
1 − x2

2 and g12(x1, x2) = x1 +x2 +
√

1 − x2
1 − x2

2.
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Table 3. Absolute error of the approximation of I3 on the unit
ball by a cubature rule using derivatives of maximal order d. The
last row shows the value of log2(e400/e800). The theoretically pre-
dicted asymptotic lower bound is shown between parentheses. The
rules in columns 1 − 3 require 2, 8 and 20 function evaluations re-
spectively.

ω \ d 0 1 2
100 2.6e − 5 2.4e − 6 1.2e − 7
200 3.2e − 6 3.6e − 7 8.0e − 9
400 3.9e − 7 5.2e − 8 5.5e − 10
800 5.0e − 8 3.8e − 9 2.7e − 11
1600 6.3e − 9 5.2e − 10 1.7e − 12
rate 3.0 (2.5) 2.9 (3.0) 4.0 (3.5)

These oscillators have a curve of stationary points in x2, given by x2 = ±
√

2 − 2x2
1.

The relevant oscillators after the second decomposition are

g1112(x1) = g1121(x1) = x1 −
√

2 − 2x2
1,

g1212(x1) = g1221(x1) = x1 +
√

2 − 2x2
1,

with the stationary points x1 = ±
√

3/3.
At the point (

√
3/3,

√
3/3,

√
3/3), there is a stationary point of order 1 in x1 and

x2. The size of the moments hence scales as ω−(i1+1)/2−(i2+1)/2−(i3−1). With the
restriction |i| = i1 + i2 + i3 = d+1 from Theorem 5.3, the leading order of the error
is given by ω−(d+3)/2−1. The rate is higher in the columns with d even. The size of
I2 scales as the zero-th order moments, ω−1/2−1/2−1 = ω−2. The convergence rate
of the relative error is therefore 2 less than that shown for the absolute error.

Note that for ω = 1600 and d = 0, only two function evaluations are required
for an absolute error of 6.3e − 9 and a relative error of 1.4e − 3. The computation
of the two weights in this case took less than a second of computation time. For
comparison, a general purpose integration package was used on the same computer
for the case ω = 10, using polar coordinates: it took 100, 000 function evaluations
to obtain an absolute error of 1e − 7. Assuming that the number of function
evaluations scales at a cubic rate with respect to the frequency, due to the presence
of oscillations in three dimensions, a comparable error for the case ω = 1600 would
require roughly 400 billion function evaluations.

6.3. A rectangular domain with critical points. We consider a two-dimension-
al integral with the more general oscillator that was used in §3.3,

I2 :=
∫ 0.5

0

∫ 1

0

1
1 + x + y

eiω(x2−xy−y2) dy dx.

The stationary points in x are given by x = y/2, and the stationary points in y are
given by y = −x/2. There is a critical point (0, 0) where ∇g = 0. The integration
domain is illustrated in Figure 4. The contributions for this example integral come
from the four corner points of the integration region: (0, 0), (0.5, 0), (0.5, 1) and
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(0,0)

x=y/2

(0.5,1)(0,1)

(0.5,0)

(0.5,ε)

Figure 4. The points that contribute to the double integral I2 for
g(x, y) = x2 − xy − y2 on the rectangle [0, 0.5] × [0, 1], indicated
by the •-s; the points that contribute to the integral over [0, 0.5]×
[ε, 1 − ε] are indicated by x-symbols.

(0, 1). The example was constructed however such that in the origin (0, 0) the
conditions of Theorem 4.2 are not satisfied.

In order to find the decomposition, first consider the integral Iε with the same
integrand on [0, 0.5]× [ε, 1− ε]. The decomposition of Iε consists of 8 contributions
associated with the six points indicated by x-symbols in Figure 4,

Iε ∼F111(0, ε) − F111(ε/2, ε) + F112(ε/2, ε)

− F112(0.5, ε) − F121(0, 1 − ε) + F121(0.5 − ε/2, 1 − ε)

− F122(0.5 − ε/2, 1 − ε) + F122(0.5, 1 − ε).

The first index a in Fabc is the same for all contributions since it denotes the inverse
of g with respect to y, which is unique on the integration domain. The second index
b denotes y = ε when b = 1, and y = 1− ε when b = 2. The third index denotes the
two inverses of g with respect to x, corresponding to the regions on the left and on
the right of the line x = y/2 respectively. In the limiting case ε → 0, we find that

I2 ∼ F112(0, 0) − F112(0.5, 0) − F121(0, 1) + F121(0.5, 1).

The example was constructed such that the decomposition of the inner integral in y
does not satisfy the conditions of Theorem 4.2. Indeed, the boundary function y = 0
coincides with the curve of stationary points y = −x/2 in exactly one point x = 0.
Following Remark 4.3, we cannot evaluate the contribution F112(0, 0) using the path
of steepest descent for y due to the presence of complex stationary points. However,
an alternative integration path can be constructed. There are two disjunct regions
where the integrand becomes arbitrarily small, corresponding to the two inverses
of g with respect to y. These regions can be characterized by g−1

1 (x, y + ip) for
p > 0, y ≤ −x/2 and g−1

2 (x, y + ip) for p > 0, y ≥ −x/2. The integration path for
y at the point (0.5, 0) leads to the latter region. The integration path for y at the
point (0, 0) should therefore lead to the same region: the line integral that connects
the paths can then be discarded. An equivalent condition is that the imaginary
part of g(x, y) should be positive along the total integration path for y, including
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Table 4. Absolute error of the approximation of I2 by a cubature
rule using derivatives of maximal order d. The last row shows the
value of log2(e400/e800). The theoretically predicted asymptotic
lower bound is shown between parentheses. The rules in columns
1, 2 and 3 require 4, 12 and 24 function evaluations respectively.

ω \ d 0 1 2
50 1.4e − 03 1.6e − 04 1.5e − 05
100 5.2e − 04 4.0e − 05 2.7e − 06
200 1.9e − 04 1.0e − 05 4.8e − 07
400 6.7e − 05 2.6e − 06 8.6e − 08
800 2.4e − 05 6.5e − 07 1.5e − 08
rate 1.48 (1.5) 1.99 (2.0) 2.49 (2.5)

the discarded connecting part. For this particular example, we arbitrarily chose a
linear path for y from y0 = 0 to the point y1 = 1 − 1i.

The results are shown in Table 4. Since (0, 0) is a stationary point for both
integration variables, the absolute error is the largest for the contribution of the
origin. The size of the first discarded term scales as O(ω(−d−3)/2) by Theorem 5.3
and hence this is also the size of the absolute error. The convergence rate of the
relative error is 1 less than the rate shown for the absolute error.

6.4. A degenerate critical point. Consider the integral

Ideg :=
∫ 1

−1

∫ 1

−1

1
3 + x + y

eiω(x3+y3) dy dx,

that has a degenerate stationary point of order 2 in both integration variables at the
origin (0, 0). There are contributions from the four corner points (−1,−1), (−1, 1),
(1,−1) and (1, 1), and from the boundary points (−1, 0), (1, 0), (0,−1) and (0, 1).
The corresponding cubature rule uses function evaluations at these 9 critical points.

The leading order of the size of Ideg as a function of ω is determined by the
contribution of the degenerate critical point (0, 0). Since r = 2 for x and for y, we
expect that the value of |Ideg| behaves as O(ω−1/3ω−1/3) = O(ω−2/3). The leading
order of the error of the cubature rule behaves as O(ω−(2+d)/3). The theoretically
predicted convergence rate is confirmed by the results in Table 5.

7. Concluding remarks

A cubature rule was developed for the evaluation of oscillatory integrals of the
form (1.1). The weights of the rules can be obtained efficiently by evaluating inte-
grals with an integr and that decays exponentially fast in each integration variable;
the higher the frequency, the faster the decay. The accuracy of the cubature likewise
increases with the frequency.

The method is limited to analytic functions g and a piecewise analytic integration
domain. This is due to the application of Cauchy’s Theorem from complex analysis.
In the one-dimensional case, a similar restriction was lifted by approximating g by
its (analytic) truncated Taylor series. It was shown that this approximation leads
to a convergent approach. Though it is reasonable to assume that this approach is
extensible to the multivariate case, this is still the subject of further research.
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Table 5. Absolute error of the approximation of Ideg by a cu-
bature rule using derivatives of maximal order d. The last row
shows the value of log2(e400/e800). The theoretically predicted as-
ymptotic lower bound is shown between parentheses. The rules in
columns 1, 2 and 3 require 9, 27 and 54 function evaluations.

ω \ d 0 1 2
50 5.3e − 03 2.5e − 04 2.9e − 05
100 2.7e − 03 9.9e − 05 9.0e − 06
200 1.3e − 03 3.9e − 05 2.8e − 06
400 6.7e − 04 1.6e − 05 8.9e − 07
800 3.4e − 04 6.1e − 06 2.9e − 07
rate 0.98 (1.0) 1.34 (1.33) 1.63 (1.66)
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