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Summary. The last few years have witnessed substantive developments in the com-
putation of highly oscillatory integrals in one or more dimensions. The availability
of new asymptotic expansions and a Stokes-type theorem allow for a comprehensive
analysis of a number of old (although enhanced) and new quadrature techniques:
the asymptotic, Filon-type and Levin-type methods. All these methods share the
surprising property that their accuracy increases with growing oscillation. These
developments are described in a unified fashion, taking the multivariate integral
∫

Ω
f(x)eiωg(x)dV as our point of departure.

1 The challenge of high oscillation

Rapid oscillation is ubiquitous in applications and is, by common consent,
considered a ‘difficult’ problem. Indeed, the standard technique of dealing
with high oscillation is to make it disappear by sampling the signal sufficiently
frequently, and this typically leads to prohibitive cost.

The subject of this article is a review of recent work on the computation
of integrals of the form

I[f,Ω] =

∫

Ω

f(x)eiωg(x)dV, (1)

where Ω ⊂ R
n is a bounded open domain with piecewise-smooth boundary,

while f and the oscillator g are smooth. We assume in (1) that ω ∈ R is large
in modulus, hence I[f,Ω] oscillates rapidly as a function of ω.

A natural technique to compute (1) in a univariate setting is Gaussian

quadrature. Yet, a moment’s reflection clarifies that it is likely to be absolutely
useless unless |ω| is small. Classical quadrature (with a trivial weight function)
is just an exact integration of a polynomial interpolation of the integrand.
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However, if the integrand oscillates rapidly, and unless we use an astronomical
number of function evaluations, polynomial interpolation is useless! This is
vividly demonstrated in Fig. 1. We have computed
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by Gaussian quadrature with different number of points. The figure displays
the absolute value of the error as a function of ω ∈ [0, 100]. Note that, as
long as ω is small, everything is fine, but as soon as ω is large in comparison
with the number of quadrature points and high oscillation sets in, the error

becomes O(1). As a matter of fact, given that I[f ] ∼ O
(

ω− 1

2

)

, the trivial

approximation I[f ] ≈ 0 is far superior to Gaussian quadrature with 30 points!
Yet, efficient and cheap quadrature of (1) is perfectly possible. Indeed, once

we understand the mathematical mechanism underlying (1), we can compute
it to high precision with minimal effort and, perhaps paradoxically, the quality

of approximation increases with ω.
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Fig. 1. Error in Gaussian quadrature with Ω = (−1, 1), f(x) = cos x, g(x) and ν

points. Here ν increases by increments of five, from 5 to 30.

This article collates a sequence of papers by the authors into unified narra-
tive. In particular, we revisit here the work of (Iserles & Nørsett 2005a, Iserles
& Nørsett 2006, Olver 2005a) and (Olver 2005b), to which the reader is re-
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ferred for technical details, more comprehensive exposition and a wealth of
further numerical examples.

The conventional organising principle of quadrature is a Taylor expansion.
Once the integrand oscillates rapidly, a Taylor expansion converges very slowly
indeed and is, to all intents and purposes, useless. Instead, we need to exploit
an asymptotic expansion in negative powers of ω. In Section 2 we present an
asymptotic expansion of (1) in the case when the oscillator g has no critical

points: ∇g(x) 6= 0 for all x ∈ clΩ and subject to the nonresonance condition:

∇g(x) is not allowed to be normal to the boundary ∂Ω for any x ∈ ∂Ω.
The availability of an asymptotic expansion allows us to design and analyse

effective quadrature methods, and this is the subject of Section 3. We single
out for consideration three general techniques: asymptotic methods, consisting
of a truncation of the asymptotic expansion of Section 2, Filon-type methods,

which interpolate just f(x), rather than the entire integral (Filon 1928), and
Levin-type methods, which collocate the integrand (Levin 1982).

In Section 4 we consider the case when critical points are allowed. A com-
prehensive theory exists, as things stand, only in one dimension, hence we
focus on g : [a, b] → R and study the case of g′(ξ) = 0 for some ξ ∈ [a, b],
g′ 6= 0 for [a, b] \ {ξ}. (Obviously, we are allowed, without loss of generality,
to assume the existence of just one critical point: otherwise we integrate in a
finite number of subintervals.) An asymptotic expansion in the presence of a
critical point presents us with new challenges. In principle, we could have used
here the standard technique of stationary phase (Olver 1974, Stein 1993), ex-
cept that it is not equal to our task. We present an alternative that leads to an
explicit and workable expansion. It is subsequently used to design asymptotic
and Filon-type methods: unfortunately, Levin-type methods are not available
in this setting.

The purpose of the final section is the sketch gaps in the theory and com-
ment on ongoing challenges and developments. Moreover, we describe there
briefly the recent method of Huybrechs & Vandewalle (2005), as well as the
work in progress in Cambridge and Trondheim.

Quadrature of (1) represents but one problem in the wide range of issues
originating in high oscillation. Quite clearly, a more significant challenge is to
solve highly oscillatory differential equations. It is thus of interest to mention
that the availability of efficient highly oscillatory quadrature is critical to a
number of contemporary methods for ordinary differential equations that ex-
hibit rapid oscillation (Degani & Schiff 2003, Iserles 2002, Iserles 2004, Lorenz,
Jahnke & Lubich 2005).

2 Asymptotic expansion in the absence of critical points

We restrict our analysis to R
2, directing the reader to (Iserles & Nørsett 2006)

for the general case. Let first Ω = S2, the triangle with vertices at (0, 0), (1, 0)
and (0, 1). The nonresonance condition is thus
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gy(x, 0) 6= 0, x ∈ [0, 1], gx(0, y) 6= 0, y ∈ [0, 1],

gx(x, y) − gy(x, y) 6= 0, x, y ≥ 0, x+ y ∈ [0, 1].

Integrating by parts in the inner integral,

I[g2
xf,S2] =

∫ 1

0

∫ 1−y

0

g2
x(x, y)f(x, y)eiωg(x,y)dxdy

=
1

iω

∫ 1

0

gx(1 − y, y)f(1 − y, y)eiωg(1−y,y)dy

− 1

iω

∫ 1

0

gx(0, y)f(0, y)eiωg(0,y)dy − 1

iω
I

[

∂

∂x
(gxf),S2

]

=
1

iω

∫ 1

0

gx(x, 1 − x)f(x, 1 − x)eiωg(x,1−x)dx

− 1

iω

∫ 1

0

gx(0, y)f(0, y)eiωg(0,y)dy − 1

iω
I

[

∂

∂x
(gxf),S2

]

.

By the same token,

I[g2
yf,S2] =

1

iω

∫ 1

0

gy(x, 1 − x)f(x, 1 − x)eiωg(x,1−x)dx

− 1

iω

∫ 1

0

gy(x, 0)f(x, 0)eiωg(x,0)dy − 1

iω
I

[

∂

∂y
(gyf),S2

]

.

Adding up, we have

I[‖∇g‖2f,S2] =
1

iω
(M1 +M2 +M3) −

1

iω
I[∇⊤(f∇g),S2],

where

M1 =

∫ 1

0

f(x, 0)[n⊤
1 ∇g(x, 0)]eiωg(x,0)dx,

M2 =
√

2

∫ 1

0

f(x, 1 − x)[n⊤
2 ∇g(x, 1 − x)]eiωg(x,1−x)dx,

M3 =

∫ 1

0

f(0, y)[n⊤
3 g(0, y)]eiωg(0,y)dy.

Here

n1 =

[

0
−1

]

, n2 =

[ √
2

2√
2

2

]

, n3 =

[

−1
0

]

are outward unit normals at the edges of S2.
Since ∇g(x, y) 6= 0 in clS2, we may replace above f by f/‖∇g‖2 without

any danger of dividing by zero. The outcome is
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I[f,S2] =
1

iω

∫

∂S2

n⊤(x)∇g(x)
f(x)

‖∇g(x)‖2
eiωg(x)dS (2)

− 1

iω
I

[

∇
⊤

(

f

‖∇g‖2
∇g

)

,S2

]

.

Extending this technique to R
n, it is possible to prove that (2) remains

true once we replace S2 by Sn ⊂ R
n, the regular simplex with vertices at 0

and e1, . . . ,en.
Let

f0(x) = f(x), fm = ∇
⊤

[

fm−1(x)

‖∇g(x)‖2
∇g(x)

]

, m ∈ N.

We deduce from (2) (extended to R
n) that

I[fm,Sn] =
1

iω

∫

∂Sn

n⊤
∇g(x)

fm(x)

‖∇g(x)‖2
eiωg(x)dS− 1

iω
I[fm+1,Sn], m ∈ Z+.

Finally, we iterate the above expression to obtain a Stokes-type formula, ex-
pressing I[f,Sn] as an asymptotic expansion on the boundary of the simplex,

I[f,Sn] ∼ −
∞
∑

m=0

1

(−iω)m+1

∫

∂Sn

n⊤
∇g(x)

fm(x)

‖∇g(x)‖2
eiωg(x)dS. (3)

We wish to highlight four important issues. Firstly, a trivial inductive
proof confirms that each fm can be expressed as a linear combination of f
and the first m directional derivatives (altogether,

(

n+m+1
m

)

quantities), with
coefficients that depend on the oscillator g and its derivatives.

Secondly, the simplest (and most useful) special case is n = 1, whence (3)
reduces to

I[f, (0, 1)] ∼ −
∞
∑

m=0

1

(−iω)m+1

[

eiωg(1)

g′(1)
fm(1) − eiωg(0)

g′(0)
fm(0)

]

. (4)

Thirdly, using an affine transformation, we can map Sn to an arbitrary
simplex in R

n. Applying an identical transformation to (3), we deduce that it
is valid for I[f,S], where S ⊂ R

n is any simplex.
Fourthly, the boundary of S is itself composed of n+ 1 simplices in R

n−1.
Because of the nonresonance condition, the gradient of the oscillator does not
vanish in any of these simplices and we can apply (3) therein: this expresses
I[f,S] as an asymptotic expansion over (n − 2)-dimensional simplices. We
continue with this procedure until we reach 0-dimensional simplices: the n+1
vertices of the original simplex. Bearing in mind our first observation, we thus
deduce that

I[f,S] ∼
∞
∑

m=0

1

(−iω)m+n
Θm[f ], (5)
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where each Θm is a linear functional which depends on ∂|i|f/∂xi, |i| ≤ m, at
the n+ 1 vertices of S. Note that I[f,S] = O(ω−n).

In general, the functionals Θm are fairly complicated, the univariate case
(4) being an exception. However, it is the existence of (5), rather than its
exact form, which render possible the design of efficient quadrature methods
in the next section.

Let Ω ⊂ R
n be a polytope, a bounded (open) domain with piecewise-linear

boundary. (Note that Ω need be neither convex nor even simply connected.)
We may then tessellate Ω with simplices Ω1, Ω2, . . . , Ωr ∈ R

n, therefore

I[f,Ω] =
r

∑

k=1

I[f,Ωr]. (6)

A simplicial complex is a collection C of simplices in R
n such that every

face of Φ ∈ C is also in C and if Φ1 ∩ Φ2 6= ∅ for Φ1, Φ2 ∈ C then Φ1 ∩
Φ2 is a face of both Φ1 and Φ2 (Munkres 1991). We may always choose a
tessellation composed of all n-dimensional simplices in a simplicial complex. In
finite-element terminology, this corresponds to a tessellation without ‘hanging
nodes’.

Assume that the nonresonance condition condition holds for the oscilla-
tor g. We may always choose a simplicial complex so that the nonresonance
condition is valid in each Ωk, otherwise we vary the internal nodes. Clearly,
once we can expand asymptotically each I[f,Ωk], we may use (6) to expand
I[f,Ω]. Bearing in mind (5), this means that the entire information needed
to construct such an expansion is the values of f and its derivatives at the
vertices of the Ωks. However, a moment’s reflection clarifies that only the
original vertices of Ω may influence the expansion: the internal vertices are
arbitrary, since there is an infinity of simplicial complexes consistent with
the nonresonance condition. In other words, because of our construction of
the tessellation via a simplicial complex, the contributions from neighbour-
ing simplices cancel at internal vertices and each Θm depends on f and its
derivatives at the original vertices of Ω.

3 Asymptotic, Filon and Levin methods

3.1 Asymptotic methods

The simplest and most natural means of approximating (1) consists of a trun-
cation of the asymptotic expansion (5) (replacing S by a polytope Ω). This
results in the asymptotic method

QA

s [f,Ω] =

s−1
∑

m=0

1

(−iω)m+n
Θm[f ], (7)

bearing an asymptotic error of
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QA

s [f,Ω] − I[f,Ω] ∼ O
(

ω−n−s
)

, |ω| ≫ 1.

We say that QA

s is of an asymptotic order s+ n.
Asymptotic quadrature is particularly straightforward in a single dimen-

sion, since then its coefficients are readily provided explicitly by an affine
mapping of (4) from (0, 1) to an arbitrary bounded real interval.

In Fig. 2 we have plotted the absolute value of the error once

∫ 1

−1

x sinxeiω(x+ 1

4
x2)dx

is approximated by QA

s with s = 1 and s = 2. The error (here and in the
sequel) is scaled by ωp, where p is the asymptotic order, otherwise the rate of
decay at the plot would have been so rapid as to prevent much useful insight.
It is clear that, exactly as predicted by our theory, the error indeed decays as
ψ(ω)/ωp, where ψ is a bounded function.
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Fig. 2. Error, scaled by ωp, in asymptotic quadrature of asymptotic order p with
Ω = (−1, 1), f(x) = x sin x, g(x) = x+ 1

4
x2 and s = 1, p = 2 (on the left) and s = 2,

p = 3 (on the right).

The coefficients of an asymptotic method are becoming fairly elaborate
in n ≥ 2 dimensions. Thus, for example, for the linear oscillator g(x, y) =
κ1x+ κ2y we have

QA

2 [f,S2] =
1

(−iω)2

[

1

κ1κ2
f(0, 0) +

eiκ1ω

κ1(κ1 − κ2)
f(1, 0) − eiκ2ω

κ2(κ1 − κ2)
f(0, 1)

]

+
1

(−iω)3

{[

1

κ2
1κ2

fx(0, 0) +
1

κ1κ2
2

fy(0, 0)

]

+ eiκ1ω

[

2κ1 − κ2

κ2
1(κ1 − κ2)2

fx(1, 0) − 1

κ1(κ1 − κ2)2
fy(1, 0)

]
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+ eiκ2ω

[

− 1

κ2(κ1 − κ2)2
fx(0, 1) +

−κ1 + 2κ2

κ2
2(κ1 − κ2)2

fy(0, 1)

]}

.

Note that all the coefficients are well defined, because of the nonresonance
condition.

Fig. 3 exhibits the scaled error of two asymptotic methods, of asymptotic
orders 3 and 4, respectively, in S2. Yet, it is fair to comment that the sheer
complexity of the coefficients for general oscillators and polytopes limits the
application of (7) mainly to the univariate case. Another important shortcom-
ing of an asymptotic method is that, given ω and the number of derivatives
that we may use, its accuracy, although high, is predetermined. Often we may
increase accuracy by using higher derivatives, but even this is not assured,
since asymptotic expansions do not converge in the usual sense. Once ω is
fixed, it is entirely possible that QA

s for some s ≥ 1 is superior to QA

r for all
r > s.
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Fig. 3. Scaled error for QA
1 (on the left) and QA

2 (on the right) for Ω = S2, f(x, y) =
ex−2y and g(x, y) = x + 2y.

3.2 Filon-type methods

Although an asymptotic method (7) is the most obvious consequence of the
asymptotic expansion (5), it is by no means the most effective. A more sophis-
ticated use of the asymptotic expansion rapidly leads to far superior, accurate
and versatile quadrature schemes.

Let ϕ be an arbitrary smooth function in the closure of the polytope
Ω ⊂ R

n and suppose that at every vertex v ∈ R
n of Ω it is true that

∂|i|

∂xi
ϕ(v) =

∂|i|

∂xi
f(v), 0 ≤ |i| ≤ s− 1.
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It then follows at once from (5) (where, again, we have replaced S with Ω)
that

I[ϕ,Ω] − I[f,Ω] = I[ϕ− f,Ω] ∼ O
(

ω−s−n
)

, |ω| ≫ 1.

This motivates the Filon-type method

QF

s [f,Ω] = I[ϕ,Ω] =

∫

Ω

ϕ(x)eiωg(x)dS. (8)

Needless to say, the above is a ‘method’ only if I[ϕ,Ω] can be evaluated
exactly. In the most obvious case when ϕ is a polynomial, this is equivalent
to the explicit computability of relevant moments of the oscillator g,

µi(ω) =

∫

Ω

xieiωg(x)dS, xi = xi1
1 · · ·xin

n , i ∈ Z
n
+.

We will return to this restriction upon the applicability of (8) in the sequel.
It is important to observe that in the ‘minimalist’ case, when ϕ interpo-

lates only at the vertices of Ω, (7) and (8) use exactly the same information.

The difference in their performance, which is often substantive, is due solely
to the different way this information is processed. While the error in (7) is
determined by the asymptotic expansion (5) of f , the error of (8) follows from
an asymptotic expansion of the interpolation error ϕ− f . The latter is likely
to be smaller.

Historically, Louis Napoleon George Filon (1928) was the first to contem-
plate this approach in a single dimension, replacing f by a quadratic approx-
imation at the endpoints and the midpoint. This was generalized by Luke
(1954) and Flinn (1960), who have considered general univariate interpola-
tory quadrature in which eiωg(x) plays the role of a complex-valued weight
function. Yet, a thorough qualitative understanding of such methods and an
analysis of their asymptotic order (indeed, the very observation that this con-
cept is germane to their understanding) has been presented only recently: in
the univariate case in (Iserles & Nørsett 2005a) and in a multivariate setting
in (Iserles & Nørsett 2006).

In one dimension we construct Filon-type methods similarly to the familiar
interpolatory quadrature rules. Thus, we choose nodes c1 < c2 < · · · < cν ,
where c1 and cν are the endpoints of Ω, as well as multiplicities m ∈ N

ν . The
function ϕ is the unique Hermite interpolating polynomial of degree 1⊤m − 1
such that

ϕ(i)(ck) = f (i)(ck), i = 0, . . . ,mk, k = 1, 2, . . . , ν.

This is consistent with (8) with s = min{m1,mν}.
Note that, although asymptotic order is assured by interpolation at the

endpoints, it is often useful to interpolate also at internal points, since this
usually decreases the error. This is demonstrated in Fig. 4, where we revisit
the calculation of Fig. 2 using three Filon-type methods.
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Unlike (7), it is fairly straightforward to implement Filon-type methods in
a multivariate setting, using standard multivariate approximation theory. The
most natural approach is to take a leaf off finite-element theory, tessellate a
polytope with simplices (taking care to respect nonresonance) and interpolate
in each simplex with suitable polynomials. Note that there is no need to force
continuity across edges. In general, the computation of the moments might be
problematic, but it is trivial for linear oscillators g(x) = κ⊤x.

Fig. 5 displays a bivariate Filon-type quadrature of the integral of Fig. 3.
On the left we have used a standard linear interpolation at the vertices. On
the right the ten degrees of freedom of a bivariate cubic were quenched by
imposing function and first-derivative interpolation at the vertices and simple
interpolation at the centroid (1

3 ,
1
3 ).
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ex−2y and g(x, y) = x + 2y.
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We mention that it is possible to implement Filon-type methods without
the computation of derivatives, using instead finite differences with spacing of
O

(

ω−1
)

(Iserles & Nørsett 2005b).
Filon-type methods are highly accurate, affordable and very simple to

construct. Yet, there is no escaping their main shortcoming: we must be able
to evaluate the moments µi of the underlying oscillator. In the next subsection
we describe another kind of quadrature methods that use identical information
and attain identical asymptotic order without any need to calculate moments.

3.3 Levin-type methods

Levin-type methods are quadrature techniques which do not require the com-
putation of moments. Indeed, if Ω satisfies the nonresonance condition, a
Levin-type method can be used to approximate I[f,Ω] even if Ω is not a poly-
tope. We begin with an overview of the method described in (Levin 1982). If
we have a function F such that

d

dx

[

F (x)eiωg(x)
]

= [F ′(x) + iωg′(x)F (x)]eiωg(x) = f(x)eiωg(x),

then we can compute I[f, (a, b)] trivially. Defining the differential operator
L[F ] = F ′ + iωg′F and rewriting the above equation as L[F ] = f , we can
now approximate F by a function v that is a linear combination of ν basis
functions ψ1, ψ2, . . . , ψν , using collocation with the operator L. In other words,
we choose nodes c1 < c2 < · · · < cν , where c1 and cν are the endpoints of the
interval Ω, and solve for v using the system

L[v](ck) = f(ck), k = 1, 2, . . . , ν.

Olver (2005a) generalized this method in a manner similar to a Filon-type
method, equipping collocation points with multiplicities m ∈ N

ν . Now v is a
linear combination of τ = 1⊤m − 1 functions. This results in a new system,

di

dxi
L[v](ck) =

di

dxi
f(ck), i = 1, 2, . . . ,mk, k = 1, 2, . . . , ν.

We then define

QL

s[f, (a, b)] = v(b)eiωg(b) − v(a)eiωg(a),

which is equivalent to I[L[v]].
One huge benefit of Levin-type methods is that they work easily on com-

plicated domains and complicated oscillators for which Filon-type methods
utterly fail. We demonstrate the method on the quarter-circle H = {(x, y) :
x2 + y2 < 1, x, y > 0}, however it works equally well on other domains that
satisfy the nonresonance condition, including those in higher dimensions. In
the univariate version we approximated F , where L[F ] = f , which enabled us
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to ‘push’ the integral to the boundary of the interval, namely its endpoints.
We use this idea as an inspiration for the multivariate case: we begin by deter-
mining an operator L that will allow us to ‘push’ the integral to the boundary.
To do so, we use differential forms along with the Stokes theorem. Suppose
we have a function F such that

∫

∂H

F (x, y)eiωg(x,y)(dx+ dy) =

∫

H

f(x, y)eiωg(x,y)dV.

Stokes’ theorem tells us that

I[f ] =

∫

∂H

F eiωg(dx+ dy) =

∫

H

d
[

F eiωg(dx+ dy)
]

=

∫

H

(Fy + iωgyF )eiωgdy ∧ dx+ (Fx + iωgxF )eiωgdx ∧ dy

= I[Fx + iωgxF − Fy − iωgyF ]

Hence we use the collocation operator L[F ] = Fx + iωgxF − Fy − iωgyF . For
simplicity, we write both the univariate and multivariate operator as L[F ] =
J [F ]+iωJ [g]F , where in two dimensions J [F ] = Fx−Fy, and in one dimension
J [F ] = F ′. Thus we determine a linear combination of basis functions v by
solving the system

∂|i|

∂xi
L[v](ck) =

∂|i|

∂xi
f(ck), 0 ≤ |i| ≤ mk − 1, k = 1, 2, . . . , ν, (9)

where c1, . . . , cν is a sequence of nodes. Consequently,

I[f,H] ≈ I[L[v],H] =

∫

∂H

veiωg(dx+ dy)

=

∫ π
2

0

(cos t− sin t)v(cos t, sin t)eiωg(cos t,sin t)dt (10)

−
∫ 1

0

v(0, 1 − t)eiωg(0,1−t)dt+

∫ 1

0

v(t, 0)eiωg(t,0)dt.

We thus define QL[f,H] by approximating each of these univariate integrals
using univariate Levin-type methods. For the proof of the asymptotic order we
assume that the endpoints of each of these integrals have the same multiplicity
as the associated vertex. For example, the multiplicity at t = 0 of the first
integral is the same as the multiplicity at (cos 0, sin 0) = (1, 0).

We will show that, as in a Filon-type method, I[f,H] − QL[f,H] =
O(ω−s−n) = O

(

ω−s−2
)

, where s is again the smallest vertex multiplicity.
We begin by showing that I[f,Ω] − I[L[v], Ω] = O(ω−s−n), where Ω = H or
a univariate interval. One might be tempted to prove this by considering it
as a Filon-type method with φ = L[v]. Indeed, it satisfies all the conditions
of a Filon-type method, except for the fact that L[v] depends on ω. Hence, in
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order to prove the error, we also need to show that f−L[v] and its derivatives
are bounded for increasing ω. To do so, we impose the regularity condition,

which requires that the vectors g1, g2, . . . , gτ , where τ = 1⊤m−1, are linearly
independent. Here

gj =







ρj,1
...

ρj,ν






,

where

ρj,k =















∂|pk,1|

∂xpk,1
(J [g]ψj)(ck)

...

∂|pk,nk
|

∂x
pk,nk

(J [g]ψj)(ck)















,

while pk,1, . . . ,pk,nk
∈ N

n, nk = 1
2mk(mk + 1), are all the vectors such that

|pk,i| ≤ mk − 1, lexicographically ordered.
Note that we can rewrite the system (9) in the form (P + iωG)d = f ,

where G is the matrix whose jth column is gj , P is a matrix independent of
ω, d is the vector of unknown coefficients in v, and f is defined as

f =







σ1

...
στ






, σk =















∂|pk,1|

∂xpk,1
f(ck)

...

∂|pk,nk
|

∂x
pk,nk

f(ck)















, k = 1, . . . , ν.

From Cramer’s rule we know that dk = detDk/det(P + iωG), where Dk is
the matrix P +iωG with the kth column replaced by f . Due to the regularity
condition, G is nonsingular, hence [det(P + iωG)]−1 = O(ω−τ ), where τ is
equal to the number of rows inG. Moreover, it is clear that detDk = O

(

ωτ−1
)

.

Hence dk = O
(

ω−1
)

, and L[v] = O(1) for increasing ω. Thus, as in a Filon-
type method, I[f,Ω] − I[L[v], Ω] = O(ω−s−n).

If Ω is a univariate interval then we have just demonstrated that I[f,Ω]−
QL[f,Ω] = O

(

ω−s−1
)

. In the multivariate case (and sticking to our example of
a quarter-circle: the general case is similar) we need to prove that I[L[v],H]−
QL[f,H] = O(ω−s−n). Each of the integrands in (10) is of order O

(

ω−1
)

. It

follows that the approximations by QL are of order O
(

ω−s−2
)

. Hence we have

demonstrated that I[f,H] −QL[f,H] = O
(

ω−s−2
)

. It is clear that this proof
can be generalized to other domains, with an asymptotic order n+ s.

It should be emphasized that a Levin-type method attains exactly the same
asymptotic order as a Filon-type method, using the same information about
f . In fact, if Ω is a simplex and g is a linear oscillator then the two methods
are equivalent, assuming that the subintegrals in a Levin-type method have
a sufficient number of data points (Olver 2005b). However, the latter requires
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significantly more operations, assuming that the computation of moments is
efficient, since a system must be solved for each dimension. Moreover, (Olver
2005a) presents experimental evidence that suggests that Levin-type meth-
ods are typically less accurate than Filon-type methods, though this depends
on the choice of oscillator g, on interpolation nodes, the closeness of f to a
polynomial and the choice of interpolation basis for the Levin-type method.

In Fig. 6, we approximate the same univariate integral as in Fig. 4, now
with Levin-type methods in place of Filon-type methods. As can be seen, in
conformity with the theory, the two methods share the same asymptotic order,
while the Levin-type method exhibits somewhat lesser accuracy.

6

60

4

2

40
0

200

ω
100

8

80 60

0.5

0.4

0.3

0.1

40200

0.6

0.2

100

ω
0

80 604020

8

0

6

0

ω
80

12

4

100

10

2

Fig. 6. Scaled error for QL
1 with c = [−1, 1], m = [1, 1] (on the left), QL

1 with
c = [−1,− 3

4
, 3

4
, 1], m = [1, 1, 1, 1] (at the centre) and QL

2 with c = [−1, 1], m = [2, 2]
(on the right) for Ω = (−1, 1), f(x) = x sin x and g(x) = x + 1

4
x2.

In Fig. 7 we see how well can a Levin-type method handle two-dimensional
domains with nonlinear g. Specifically, we consider the quarter-circle H =
{(x, y) : x2 + y2 < 1, x, y > 0}. In the first figure we collate at each vertex
with multiplicity one for the bivariate system, and at the endpoints with mul-
tiplicity one for each univariate integral in (10). The second figure collocates
with multiplicity two at each vertices and with multiplicity one at

(

1
3 ,

1
3

)

, for
the bivariate system, and collocates with just the endpoints with multiplicities
two for each univariate system. Note that H, not being a polytope, represents
a domain for which no viable theory exists for Filon-type methods.

In the univariate case it is possible to identify basis functions ψk which lead
to the highest-possible asymptotic order. Specifically, ψk = fk+1/g

′, where the
functions fk have already featured in the asymptotic expansion (4). We dwell
no further on this issue, referring the reader to (Olver 2005a).

4 Critical points

Once ∇g is allowed to vanish in clΩ, the asymptotic formula (5) is no
longer valid. Worse, in a multivariate setting surprisingly little is known about
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Fig. 7. Scaled error for QL
1 (on the left) and QL

2 (on the right) for Ω = H, f(x, y) =
ex−2y and g(x, y) = x3 + x − y.

asymptotic expansions in the presence of high oscillation and critical points
(Stein 1993). The situation is much clearer and better understood in a single
dimension.4 This is due to the van der Corput theorem, which allows us to de-
termine the asymptotic order of magnitude of (1) (Stein 1993). Moreover, the
classical method of stationary phase provides an avenue of sorts, once we have
taken care of the behaviour at the endpoints, toward an asymptotic expansion
(Olver 1974, Stein 1993). Unfortunately, this technique falls short of providing
the entire information required to construct an asymptotic expansion, while
being complicated and cumbersome.

In this section we describe an alternative to the method of stationary phase
which has been introduced in (Iserles & Nørsett 2005a). We revisit the method
of proof of Section 2, taking full advantage of the considerable simplification
due to univariate setting. Let us suppose for simplicity that Ω = (a, b) and
there exists a unique ξ ∈ (a, b) such that g′(ξ) = 0, g′′(ξ) 6= 0 and g′(x) 6= 0
for x ∈ [a, b] \ {ξ}. Clearly, the assumption that there is just one critical
point hardly represents loss of generality, since we can always partition (a, b)
into such subintervals. We will comment later on the case when also higher
derivatives of g vanish at ξ. Finally, the case of ξ = a or ξ = b can be obtained
by fairly straightforward generalization of our technique and is left to the
reader.

A single step of our expansion technique in the absence of critical points

in a single dimension is

I[f, (a, b)] =
1

iω

∫ b

a

f(x)

g′(x)

d

dx
eiωg(x)dx

4 In the univariate case critical points are often termed “stationary points”, but for
consistency’s sake we employ ‘multivariate’ terminology.
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=
1

iω

[

eiωg(b)

g′(b)
f(b) − eiωg(a)

g′(a)
f(a)

]

− 1

iω
I

[

(

f

g′

)′
, (a, b)

]

and it does not generalize to our setting since division by g′ introduces polar
singularity at ξ. Instead, we add and subtract f(ξ) in the integrand,

I[f, (a, b)] = f(ξ)

∫ b

a

eiωg(x)dx+
1

iω

∫ b

a

f(x) − f(ξ)

g′(x)

d

dx
eiωg(x)dx (11)

= f(ξ)µ0(ω) +
1

iω

{

eiωg(b)

g′(b)
[f(b) − f(ξ)] − eiωg(a)

g′(a)
[f(a) − f(ξ)]

}

− 1

iω
I

[

(

f − f(ξ)

g′

)′
, (a, b)

]

.

Note that [f(x) − f(ξ)]/g′(x) is a smooth function, since the singularity at ξ
is removable.

Iterating the last identity leads to an asymptotic expansion in the presence
of a simple critical point. Thus, we define

f0(x) = f(x), fm(x) =
d

dx

fm−1(x) − fm−1(y)

g′(x)
, m ∈ N,

whence

I[f, (a, b)] ∼ µ0(ω)

∞
∑

m=0

1

(−iω)m
fm(y) (12)

−
∞
∑

m=0

1

(−iω)m+1

{

eiωg(b)

g′(b)
[fm(b) − fm(y)] − eiωg(a)

g′(a)
[fm(a) − fm(y)]

}

.

For x 6= ξ each fm is a linear combination of f, f ′, . . . , f (m), but at x = ξ
we have

f0(ξ) = f(ξ),

f1(ξ) = 1
2

1

g′′(ξ)
f ′′(ξ) − 1

2

g′′′(ξ)

g′′2(ξ)
f ′(ξ),

f2(ξ) = 1
8

1

g′′2(ξ)
f (iv)(ξ) − 5

12

g′′′(ξ)

g′′3(ξ)
f ′′′(ξ) +

[

5
8

g′′′2(ξ)

g′′4(ξ)
− 1

4

g(iv)(ξ)

g′′3(ξ)

]

f ′′(ξ)

+

[

−5

8

g′′′2(ξ)

g′′5(ξ)
+ 2

3

g(iv)(ξ)

g′′4(ξ)
− 1

8

g(v)(ξ)

g′′3(ξ)

]

f ′(ξ)

and so on: in general, each fm(ξ) is a linear combination of f (i)(ξ), i =
0, 1, . . . , 2m. The price tag of quadrature in the presence of critical point is
the imperative to evaluate more derivatives there.
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Note that (12) is not a ‘proper’ asymptotic expansion, because of the
presence of the function µ0(ω). In principle, it might have been possible to
replace µ0 by its asymptotic expansion, e.g. using the method of stationary
phase. This, however, is neither necessary nor, indeed, advisable. Assuming
that µ0 can be computed – and we need this anyway for Filon-type methods!
– it is best to leave it in place. According to the van der Corput theorem,

µ0(ω) ∼ O
(

ω− 1

2

)

.

It is straightforward to generalize our method of analysis to higher-order
critical points. Thus, if g(i)(ξ) = 0, i = 1, 2, . . . , r, g(r+1)(ξ) 6= 0, in place of
(11) we integrate by parts on the right in

I[f, (a, b)] =

r−1
∑

k=0

1
k!f

(k)(ξ)

∫ b

a

(x− ξ)keiωg(x)dx

+
1

iω

∫ b

a

f(x) − ∑r−1
k=0

1
k!f

(k)(ξ)(x− ξ)k

g′(x)

d

dx
eiωg(x)dx.

Again, we obtain removable singularity inside the integral. Note that by the
van der Corput theorem I[f, (a, b)] = O

(

ω−1/(r+1)
)

.
Truncation of (12) results in an asymptotic method, a generalization of

(7). Specifically,

QA

s [f, (a, b)] = µ0(ω)

s−1
∑

m=0

1

(−iω)m
fm(y)

−
s−1
∑

m=0

1

(−iω)m+1

{

eiωg(b)

g′(b)
[fm(b) − fm(y)] − eiωg(a)

g′(a)
[fm(a) − fm(y)]

}

bears asymptotic error of s+ 1
2 .

Fig. 8 revisits the calculation from Section 1 that persuaded us in the
inadequacy of Gaussian quadrature in the present setting: the calculation of
∫ 1

−1
cosx eiωx2

dx. Note that QA

1 requires just the values of f at −1, 0, 1, while

QA

2 needs f and f ′ at the endpoints and f, f, f ′′ at the critical point.
It is easy to generalize Filon-type methods to this setting. Nothing of

essence changes. Thus, we choose nodes a = c1 < c2 < · · · < cν = b, taking
care to include ξ: thus, cr = ξ for some r ∈ {2, . . . , ν − 1}. We interpolate to
f and its first mk − 1 derivatives at ck, k = 1, 2, . . . , ν, with a polynomial ϕ
of degree m⊤1 − 1 and set

QF

s [f, (a, b)] = I[ϕ, (a, b)]. (13)

Here s = min{m1, ⌊(mr − 1)/2⌋,mµ}. It follows at once from the asymptotic
expansion that

QF

s [f, (a, b)] = I[f, (a, b)] + O
(

ω−s− 1

2

)

, |ω| ≫ 1,



18 A. Iserles, S.P. Nørsett, and S. Olver

0.4

60

0.3

0.2

40200

ω

0.5

10080 600 4020

0.07

100

0.05

80

0.03

ω

0.06

0.02

0.04

Fig. 8. The error for QA
1 (on the left) and QA

2 (on the right), scaled by ω
3

2 and ω
5

2

respectively, for Ω = (−1, 1), f(x) = cos x and g(x) = x2, with a stationary point
at the origin.

and the method is of asymptotic order s+ 1
2 . As a matter of fact, a general-

ization of Filon in the presence of critical points is much more flexible than
that of the asymptotic method. We can easily cater for any number of critical
points, possibly of different degrees, once we include them among the nodes
and choose sufficiently large multiplicities.

Fig. 9 shows the scaled error for three different Filon-type methods for the
same problem as in Figs 1 and 8. Note how the accuracy greatly improves upon
the addition of extra internal nodes. It is at present unclear why the addition
of extra internal nodes has a much more dramatic effect in the presence of
critical points.
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5 Conclusions and pointers for further research

The first and foremost lesson to be drawn from our analysis is that, once we
can understand the mathematics of high oscillation, we gain access to a wide
variety of effective and affordable algorithms. This, of course, is a truism that
we might apply to just about every issue in mathematical computation, yet it
is of particular importance in the current framework. The overwhelming wis-
dom in much of classical treatment of rapidly oscillating phenomena is to find
means to make high oscillation go away. Thus, the ‘rule of a thumb’, ubiqui-
tous in signal processing, that a function should be sampled sufficiently often
within each period: in the current setting this translates to an approximation
of I[f, (a, b)], say, by partitioning (a, b) into a very large number of subin-
tervals of length O

(

ω−1
)

and using Gaussian quadrature within each ‘panel’.
However, the conclusion of this paper, and also of much contemporary work in
the discretization of highly oscillatory ordinary differential equations, is that
high oscillation renders solution easier!

Another reason why it is important to emphasize the role of mathematical
understanding in our endeavour is that so little is known about the asymp-
totics of I[f,Ω] in general domains Ω. A fairly complete theory exists for
Ω = R

n and for Ω = S
n−1 (the (n − 1)-sphere), at least as long as there are

no critical points (Stein 1993). Yet, once we concern ourselves with bounded
domains with boundary and allow for the presence of critical points, a great
deal remains to be done. It is a sobering thought that the asymptotic be-
haviour of I[f,Ω], where Ω ⊂ R

2 is bounded and with piecewise-smooth
boundary, is unknown in general even if there are no critical points! Clearly,
it depends on the geometry of ∂Ω, an issue to which we will return, but it is
presently unclear how.

A thread running through our entire analysis is the centrality of an asymp-
totic expansion of I[f,Ω]. Once (5) is available, its truncation presents us
with an immediate means to compute the integral. Moreover, even if the ex-
plicit form of (5) is unavailable, the very existence and known structure of an
asymptotic formula allow us to analyse better and more flexible quadrature
methods.

The assumption that Ω is a polytope is very restrictive. A naive means
of a generalization to arbitrary bounded domains Ω with piecewise-smooth
boundary is to approximate it from within by a convergent sequence of poly-
topes and use the dominating convergence theorem. This, however, might fall
foul of the nonresonance condition. Consider, for example, the linear oscillator
g(x) = κ⊤x, x ∈ R

2 and a circular wedge Ω with angle α,

Ω =

{

x ∈ R
2 : x2

1 + x2
2 < 1, arctan

x2

x1
< α

}

.

As long as

± 1
√

κ2
1 + κ2

2

[

−κ2

κ1

]

6∈ ∂Ω,
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we can approximate Ω with narrow wedges, pass to a limit and obtain an
asymptotic expansion, expressing I[f,Ω] in terms of f and its derivatives at
(0, 0) and (cosα,± sinα). Yet, if the above condition fails, the nonresonance
condition must be breached upon passage to the limit. It is important to
make it clear that the fault is definitely not in our method of proof. Once the
resonance condition fails, an (5)-like expansion is no longer true! For simplicity,
consider the bivariate unit disc Ω = S

1 and, again, a linear oscillator. We have

I[f,S1] =

∫ 1

−1

∫ (1−x2)
1

2

−(1−x2)
1

2

f(x, y)eiω(κ1x+κ2y)dydx.

Expanding asymptotically in the inner interval similarly to (4), we thus have
(assuming for simplicity that κ2 6= 0)

I[f,S1] ∼ − 1

κ2

∫ 1

−1

∞
∑

m=0

1

(−iω)m+1

[

eiωκ2(1−x2)
1

2
dm

dym
f(x, (1 − x2)

1

2 )

− e−iωκ2(1−x2)
1

2
dm

dym
f(x,−(1 − x2)

1

2 )

]

eiωκ1xdx

= − 1

κ2

∞
∑

m=0

1

(−iω)m+1

∫ 1

−1

dm

dym
f(x, (1 − x2)

1

2 )eiω[κ1x+κ2(1−x2)
1

2 ]dx

+
1

κ2

∞
∑

m=0

1

(−iω)m+1

∫ 1

−1

dm

dym
f(x,−(1 − x2)

1

2 )eiω[κ1x−κ2(1−x2)
1

2 ]dx,

an infinite sum of univariate integrals. However, before we rush to expand
them asymptotically, we observe that the new oscillators have critical points

at ±κ1/(κ
2
1 + κ2

2)
1

2 . Our immediate conclusion is that I[f,S1] ∼ O
(

ω− 3

2

)

,

rather than the O
(

ω−2
)

which we might have expected. Worse, all our three

approaches fail. The moments of g(x) = κ1x±κ2(1−x2)
1

2 are unknown, hence
we have neither an asymptotic expansion á la (12) nor a Filon-type method.
Moreover, a Levin-type method fails because of the presence of critical points.

As long as the nonresonance condition is maintained throughout the ap-
proximation of Ω by polytopes, our methods can be extended to this setting.
This has been already done for Levin-type methods in (Olver 2005b): cf. the
discussion leading to Fig. 7 in Section 3.

Our narrative underlies the importance of further research into quadra-
ture methods for highly oscillatory integrals, in particular in the presence
of critical points and when exact moments are unavailable. There are a few
natural ways forward, in particular Filon-type methods with suitable approxi-
mate moments and Levin-type methods with special treatment of small neigh-
bourhoods surrounding critical points (where the integral does not oscillate
rapidly). Both approaches are under active consideration. Another option is
quadrature methods based on altogether new principles, e.g. the recent tech-
nique of Huybrechs & Vandewalle (2005), who approximate (1) in a single



Highly oscillatory quadrature: The story so far 21

dimension using a complex-valued path along which eiωg(x) does not oscillate.
The underlying idea there, assuming that both f and g can be analytically ex-
tended to the complex plane, is to find a path from each endpoint of Ω = (a, b)
to infinity alongside which g(z) − g(a) and g(z) − g(b), respectively, are real
and negative. In place of (1) it is then possible to integrate from b to z = ∞
and then from ∞ to a. Because of exponential decay of the integrand, each
integration can be accomplished by familiar Gauss–Laguerre quadrature and
the outcome matches Filon-type and Levin-type methods in its asymptotic be-
haviour. We further note that in the presence of critical points there is a need
to integrate also along paths joining them with z = ∞ in a fairly nontrivial
manner.

Other challenges in highly oscillatory quadrature abound. One obvious
generalization of (1) is

∫

Ω

f(x)K(ω,x)dV,

where K oscillates rapidly for |ω| ≫ 1. Filon-type methods have been gen-
eralized to this setting in the important special case of the Bessel oscillator,

when Ω = (a, b) and K(ω, x) = Jν(ωx) (Xiang 2005) but, by and large, this
is an uncharted territory. Another terra incognita is (1) where Ω is a general
bounded manifold with boundary, immersed in R

n.
We have already touched upon applications of highly oscillatory quadra-

ture to numerical methods for rapidly oscillating differential equations. Even
more ambitious goal is the analysis of highly oscillatory Fredholm equations

of the second kind

∫ b

a

f(x, ω)K(x, y, ω)dx = λ(ω)f(y, ω) − g(y), y ∈ [a, b], (14)

where λ(ω) ∈ C is not an eigenvalue of the underlying operator, and of the
corresponding spectral problem

∫ 1

−1

ϕ(x, ω)K(x, y, ω) = λ(ω)ϕ(y, ω), y ∈ [a, b]. (15)

Both (14) and (15) are highly interesting because of their applications in
electromagnetics and in laser theory, but their treatment by ‘our’ methods is
hampered by the fact that the function f in (14) and the eigenfunction ϕ in
(15) themselves oscillate. This renders integration by parts, along the lines of
Section 2, fairly useless.

The spectral problem (15) has been solved for the kernel K(x, y, ω) =
eiωxy, by demonstrating that ϕ obeys a specific Sturm–Liouville problem
(Cochran & Hinds 1974). The asymptotic behaviour of the spectrum for
K(x, y, ω) = eiω|x−y| has been investigated by Ursell (1969). A detailed inves-
tigation of this kernel, inclusive of an asymptotic expansion of both eigenvalues
and the solution of (14) in negative powers of ω will feature in a forthcom-
ing paper by Brunner, Iserles and Nørsett. Yet, in their full generality, highly
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oscillatory integral equations of this kind represent an enduring and difficult
challenge.
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