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Highly-oscillatory integrals are allegedly difficult to calculate. The main assertion of this
paper is that that impression is incorrect. As long as appropriate quadrature methods are
used, their accuracyincreaseswhen oscillation becomes faster and suitable choice of
quadrature points renders this welcome phenomenon more pronounced. We focus our
analysis onFilon-type quadratureand analyse its behaviour in a range of frequency
regimes for integrals of the form

∫ h
0 f (x)eiωxw(x)dx, whereh > 0 is small and|ω| large.

Our analysis is applied to modified Magnus methods for highly-oscillatory ordinary
differential equations.

Keywords: quadrature; high oscillation; Lie-group methods.

1. Introduction

The computation of integrals of highly-oscillating functions is one of the oldest and,
arguably, most important issues in numerical analysis. Highly-oscillating integrals abound
in applications, from electromagnetics to quantum physics and chemistry, fluid mechanics,
molecular dynamics,. . . . Methods have existed for a long while and, indeed, the most
fruitful idea (as we hope to persuade the reader) was published three-quarters of a century
ago (Filon, 1928) and, in a more modern guise, half a century ago (Luke, 1954). Yet, it
is difficult to identify any other area of scientific computing equally plagued by vague
assertions, false ‘folk wisdom’ and plainly misleading statements.

The subject matter of this paper is the computation of

Ih[ f ] =
∫ h

0
f (x)eiωxdx, (1.1)

whereh > 0 is small, whileω ∈ R is such that|ω| � 1: typically, thecharacteristic
frequency hω of (1.1) is large. Note thatω need not be an integer multiple of 2π/h,
therefore (1.1) is, strictly speaking, a more general construct than a Fourier transform.
Having said this, the computation of a single Fourier transform of a given function is
probably the most ubiquitous application, and this is reflected in the title of this paper.

Numerical integration is a mature, well-understood subject. There are many clear
and comprehensive monographs devoted to this area of activity, in particular Davis &
Rabinowitz (1980) and Engels (1980), and it might seem that the task is straightforward,

†Email: ai@damtp.cam.ac.uk

IMA Journal of Numerical Analysis Vol. 24 No. 3c© Institute of Mathematics and its Applications 2004; all rights reserved.



366 A. ISERLES

0 10 20 30 40 50 60 70 80 90 100
0

0·05

0·1

ν=
5

0 10 20 30 40 50 60 70 80 90 100
0

0·05

0·1

ν=
10

0 10 20 30 40 50 60 70 80 90 100
0

0·02

0·04

0·06

0·08

ν=
15

0 10 20 30 40 50 60 70 80 90 100
0

0·02

0·04

0·06

ν=
20

   h ω

FIG. 1. The error in Gauss–Legendre integration of (1.1) forf (x) = ex , h = 1
10 and different values ofω.

more appropriate for elementary courses in numerical computation than for research
papers. The natural candidate for a good computational method, indeed the method of
choice for numerical integration, is theGauss–Christoffel quadrature

QGC
h [ f ] = h

ν∑
l=1

bl f (cl h)eiωcl h, (1.2)

wherec1, c2, . . . , cν ∈ [0, 1] are distinct nodes, whileb1, b2, . . . , bν are interpolatory
weights (Gautschi, 1981). The order of (1.2) is determined by orthogonality conditions
and, in particular, ifc1, c2, . . . , cν are selected as the zeros of theνth Legendre polynomial,
shifted to the interval[0, 1], then the quadrature is of order 2ν (i.e. exact for allf ∈ P2ν−1
or, in other words, bearing the error ofO

(
h2ν+1

)
for h → 0). No other method can

exceed the order of Gauss–Legendre quadrature, hence this is a good point of departure
for our discussion. Thus, Fig. 1 displays the absolute error in the integration of (1.1)
with f (x) = ex by Gauss–Legendre schemes withν ∈ {5, 10, 15, 20} andh = 1

10, for
characteristic frequencyhω ∈ [0, 100]. While, unsurprisingly, the methods do well for
smallhω, the error in the higher range of frequencies is unacceptably large. Moreover, it
is hardly attenuated when the number of quadrature points increases.

The reason for the failure of Gauss–Legendre quadrature, indeed ofany Gauss–
Christoffel quadrature (1.2), is obvious. The exact integral in Fig. 1 is(e(1+iω)h−1)/(1+iω)
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FIG. 2. The error in Filon–Legendre integration of (1.1) forf (x) = ex , h = 1
10, ν = 3 and different values of

hω. The top graph displays the absolute errorEFL
h [ex], the bottom the normalized errorhωEFL

h [ex].

and its envelope attenuates likeO
(
ω−1

)
for ω � 1. This is nothing but an illustration

of the well-known Riemann–Lebesgue lemma: for everyf ∈ L1[0, h] it is true that
limω→∞ Ih[ f ] = 0. There is, though, absolutely no reason why thefinite combination
(1.2) of function values should tend to zero asω → ∞. Convergence of Gauss–Christoffel
makes sense only ifω is kept constant whileh → 0, but then the characteristic frequency
tends to zero as well and the system is not highly oscillatory any more.

As an aside, ergodic theory tells us that convergence of Gauss–Christoffel occurs also
when ω and h are kept constant whileν → ∞. Indeed, if f is h-periodic and thecl

are equidistant then convergence takes place at an exponential speed: this is precisely the
discrete Fourier transform.If we desire to compute a whole range of Fourier frequencies
then, indeed, FFT techniques are optimal. Having said this, the focus for our concern
is altogether different, the computation of a single Fourier frequency, say, using modest
number of function evaluations.

Chastened by the failure of (1.2), we might jump to the opposite conclusion and deduce
that the quadrature of (1.1) for largehω is either impossible or prohibitively expensive. The
only way forward, according to this (widely shared) reasoning, is to render the underlying
problem into a non-oscillatory one, by dividing the interval[0, h] into a sufficiently large
number of small subintervals (so-called ‘panels’) where Gauss–Christoffel quadrature can
be applied with impunity. This is absolutely the wrong impression, as confirmed by Fig. 2.
It displays the absolute error (in the top graph) in the integration of (1.1), again for
f (x) = ex, with the Filon–Legendre methodwith just three integration points. (Much
more about Filon-type methods is given in Section 3, where they will be formally defined
and analysed at some length.) The situation is truly remarkable: the error is smalland it
becomes smaller as the characteristic frequency grows!The bottom figure calibrates the
last statement, demonstrating that the error decays likeO

(
ω−1

)
, the exact speed of decay

of Ih[ex].
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FIG. 3. The error in Filon–Lobatto integration of (1.1) forf (x) = ex , h = 1
10, ν = 3 and different values ofhω.

The top graph displays the absolute errorEFL
h [ex], the bottom the normalized error(hω)2EFL

h [ex].

This might appear remarkable and counterintuitive, but our ‘computational surprise’ is
not yet over. In Fig. 3 we have displayed the absolute error (in the top graph) for another
quadrature scheme, theFilon–Lobatto method,again using just three function evaluations.
The error decays even faster ashω grows and the method literally revels in oscillation.
Again, the bottom figure is more instructive, demonstrating that the error envelope decays
proportionally toω−2 whenω � 1.

The behaviour of Filon-type methods, as demonstrated in Figs 2–3, is not a quirk: it is,
as we contend in Section 3, typical. Indeed, there are other methods, which we review in
Section 4, that share this advantageous behaviour forhω � 1. As long as right methods
are used, quadrature of highly-oscillatory integrals is very accurate and affordable!This
is, unfortunately, not the common wisdom and we cannot resist but quote

This approach has previously been used by FILON [1], L UKE [2], and FLINN

[3]. However, in the applications of the formulas developed [1, 3, 4] only those
values of the mesh intervalh have been used which obey the relation|ω|h �
π/2. Some reasons for this restriction have become apparent in the course of
the work described in the present paper. These reasons may be summarized
by saying that results obtained from the formulas for|ω|h > π/2 may contain
large errors, as large as the integral sought. (Clendenin, 1966).

This refers to specific Filon methods and the motivation for this misleading (yet
unexceptional throughout the literature) statement is a Taylor expansion in powers ofh
for largehω, a procedure that makes no mathematical sense, followed by an examination
of the leading ‘error’ term, which has no bearing whatsoever on the actual size of the error.

Although this paper is concerned in the main with the analysis of existing methods for
the quadrature of (1.1), it is valuable and instructive to commence from an application
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that has led the author to consider this issue at the first place, the solution of highly-
oscillatory ordinary differential equations by Lie-group methods (Iserles, 2002a,b).
Practical implementation of such methods requires in every step simultaneous quadrature
of integrals of the form

∫ h

0
f (x)dx,

∫ h

0
f (x) cosωxdx,

∫ h

0
f (x) sinωxdx

for the same functionf , a task for which, as will transpire in the sequel, Filon-type
methods are ideally suited. Thus, we devote Section 2 to a brief description of the
modified Magnus methodfrom Iserles (2002a), weigh its advantages and explain why the
latter are bound to be lost unless the method is supplemented by a suitable quadrature
technique for highly-oscillatory integrals. Both this section and Section 5 can be omitted
by readers whose sole interest is in integration of (1.1), yet they provide a useful and
illustrative application, inclusive of examples of specific quadrature methods, as well
as being of an independent interest to readers keen to infer from quadrature of highly-
oscillatory integrals to discretization of highly-oscillatory differential equations. Moreover,
the computation of highly-oscillatory differential equations and highly-oscillatory integrals
shares an important structural common denominator: for high frequencies, a naive Taylor
expansion, implicit in the concept of ‘order’, provides a misleading picture of the behaviour
of the error. A considerably more effective course of action is an asymptotic expansion in
inverse powers of the characteristic frequency.

Section 3 is devoted to Filon-type methods. We commence from their definition: rather
than describing the original special framework from Filon (1928), we focus on the more
modern and general approach of Luke (1954) (cf. also Bakhvalov & Vasilčeva, 1968).
This is followed by detailed analysis of three situations, thenon-oscillatory regime,where
0 < hω � 1, themildly-oscillatory regime hω = O (1) and, finally, the most interesting
(from our perspective) regime, thehighly-oscillatoryone, wherehω � 1. Our main results
are as follows. Suppose thatc1 < c2 < · · · < cν are nodes in[0, 1] which correspond to
Gauss–Christoffel quadrature of orderp ∈ {ν, ν + 1, . . . , 2ν}. Then

1. If hω � 1 then the quadrature error of the Filon-type method isO
(
hp+1

)
;

2. If hω = O (1) then its error isO
(
hν+1

)
;

3. In the casehω � 1 the error isO
(
hν+1/(hω)

)
, except that, once we setc1 = 0 and

cν = 1, the error becomesO
(
hν+1/(hω)2

)
.

All this is true for (1.1) and smooth functionsf . As a matter of fact, we consider in
Section 3 a moregeneral integral,

∫ h

0
f (x)eiωxw(x/h)dx,

and our results therein depend also on the values of the non-negative weight functionw at
the endpoints.

The above results fly in the face of a widespread and pernicious numerical ‘folk
wisdom’, namely that one should integrate with a fixed, moderately large number of points
per period: typically, 5–7 points. This suggestion, consistent with our quote from Clendenin
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(1966) (but, in fairness, we could have quoted many other references to similar effect),
automatically places us in the mildly-oscillatory regimehω = O (1) which, actually, is the
worstchoice for a Filon-type method.

Filon’s quadrature is not the only effective method for highly-oscillatory integrals and
in Section 4 we address ourselves to two other methods. The first, due to Zamfirescu (1963)
and Gautschi (1968) is based on the well-known fact that an arbitrary signed measure can
be represented as a difference of two Borel measures, hence the real (or imaginary) part of
the complex exponential in (1.1) can be written as a difference of two positive weight
functions. The latter can be integrated by two ‘proper’ Gauss–Christoffel quadratures
(Davis & Rabinowitz, 1980; Engels, 1980). We analyse this technique for two choices
of quadrature nodes, namely Legendre and Lobatto points, only to deduce that

1. If 0 < hω � 1 or hω = O (1) then the quadrature error isO
(
h2ν+1

)
for Legendre

andO
(
h2ν−1

)
for Lobatto;

2. If hω � 1 then the error isO
(
hν+1/(hω)

)
for Legendre andO

(
hν+1/(hω)2

)
for

Lobatto.

Note thatc1 = 0, cν = 1 for Lobatto nodes: similarity with Filon-type methods is
remarkable! Also in that section we describe a technique that has been developed by David
Levin in a sequence of papers (Levin, 1982, 1996, 1997). It rests upon collocation-based
solution of a non-oscillatory solution of a certain ordinary differential equation associated
with the highly-oscillating kernel. It has been demonstrated by Levin that, forhω � 1,
the quadrature error decays likeO

(
hν+1/(hω)2

)
, oncec1 = 0 andcν = 1 are selected as

quadrature points. This is, as far as the current author is aware, the only instance of this
phenomenon being analysed (or even observed) in numerical literature. In a very specific
sense, theleitmotif of the present paper is to follow in Levin’s footsteps and show that the
choicec1 = 0, cν = 1, first observed by him and best realized by selecting Lobatto points,
is optimal for the quadrature of integrals of the form (1.1), regardless of the choice of a
(good) method.

In the last section we return to the modified Magnus method of Section 2, focusing
on two goals. Firstly, we demonstrate how Filon-type methods can be implemented to
evaluate the leading integral in a practical manner. Secondly, high-order implementation
of a Magnus method requires the cubature of multivariate integrals (Iserleset al., 2000)
and this also must be done by a method that copes well with high oscillation. Although
we do not develop a general theory, along the lines of Section 3, we demonstrate through
specific examples that Filon-type methods can be extended to multivariate framework.

Throughout this paper we disregard methods, some of which can be very efficient
indeed, that restrict the values ofω to integer multiples of 2π/h (i.e. to the ‘genuine’
Fourier transform) and where such restriction is vital to the success of the method. It is
valuable to list in this context the inversion of the Poisson summation formula by using
Möbius numbers (Goldberg & Varga, 1956; Lyness, 1971) and a variation upon Filon’s
method due to Fosdick (1968).

Wemention in passing that the main ‘ideological’ conclusion of our paper, namely that,
properly handled, highly-oscillatory integrals are easy and simple to approximate, should
come as little surprise to a mathematical analyst, with an interest in exact integrals. High
oscillation is a smoothing operator, as apparent in our context from the Riemann–Lebesgue
lemma. The challenge is how to take advantage of high oscillation in a numerical setting
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and our claim is that the answer has been available, however vaguely and implicitly, since
1928.

This paper is restricted to the computation of the most common form of highly-
oscillating integral, the Fourier-transform-like (1.1) and its generalization (3.1). A future
paper will address itself to more general oscillators.

2. Lie-group methods for highly-oscillatory ODEs

Trading off generality for comprehension, our point of departure is the scalar linear non-
autonomuous differential equation

y′′ + g(t)y = 0, t � 0, y(0) = y0, y′(0) = y′
0, (2.1)

where limt→∞ g(t) = +∞ (similar analysis applies to large, yet boundedg), while the
derivatives ofg are of moderate size. A considerably more general treatment can be found
in Iserles (2002a).

As is well known from WKB analysis,

y(t) ∼
exp

{
i
∫ t

0 [g(x)]1/2dx
}

[g(t)]1/4
, t � 1,

hence high oscillation. Most discretizations methods are known to accumulate global error
considerably faster, at an unacceptable rate. Thus, to specialize further, in the case of the
Airy oscillator y′′ + ty = 0 the global error of any fourth-order Runge–Kutta or multistep
method, applied with a constant step sizeh > 0, accumulates likeh4t13/4χ(t), whereχ is a
generic highly-oscillating function ranging in[−1, 1]: this is independent of possible ‘nice’
features of the method, like A-stability, algebraic stability or symplecticity (Iserles, 2002a).
The fourth-order Magnus method (Iserleset al., 2000) does much better and the global
error accumulates likeh4t1/4χ(t), but even better results can be obtained by modifying the
Magnus method along the lines of Iserles (2002a,b), whence the global errordecayslike
h3t−1/4χ(t) for t � 1 and fixed smallh > 0 (behaving likeh7t1/4χ(t) for fixed t and
h → 0): note that, although the order nominally drops for error bounds which are uniform
in t � 1, it is the oscillation itself, rather than powers ofh, that drives the global error
down. We will see in Sections 3–4 that an identical phenomenon occurs in the context of
highly-oscillatory quadrature.

The differential equation (2.1) is converted into a system of first-order ODEs,

y′ = A(t)y, t � 0, y(0) = y0, (2.2)

where

A(t) =
[

0 1
−g(t) 0

]
, y0 =

[
y0
y′

0

]
.

Suppose that we have already computedyN ≈ y(tN) and wish to advance the numerical
solution totN+1 = tN + h. We commence by computing̃A = A(tN+κ), whereκ ∈ [0, 1].
(κ = 1

2 is an excellent choice and it leads to the favourable global-error estimates above,
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butκ = 0 ispreferable for a nonlinear version of this method.) Next, we change the frame
of reference by letting

y(t) = e(t−tN )Ãx(t − tN), tN � t � tN+1.

We treatx as our new unknown and observe that it itself obeys another linear differential
equation,

x′ = B(τ )x, τ � tN, x(tN) = yN, (2.3)

where

B(τ ) = e−τ Ã[A(tN + τ) − Ã]eτ Ã, τ � 0.

This change of variables is valid for any linear system (2.2), regardless of dimensionality
and the precise form of the matrixA, and can be extended to nonlinear systems as well.
However, for linear systems inherited from the linear oscillator (2.1) the new vector field
B can be computed explicitly,

B(τ ) = [g(tN+κ) − g(tN + τ)]
[ 1

2φ−1 sin 2φτ φ−2 sin2 φτ

− cos2 φτ −1
2φ−1 sin 2φτ

]
, (2.4)

whereφ = [g(tN+κ)]1/2.
Weapply a Magnus method to the modified equation (2.3). TheMagnus expansionis

Ω(τ ) =
∫ τ

0
B(x)dx − 1

2

∫ τ

0

∫ x1

0
[B(x2), B(x1)]dx2dx1 + · · · , (2.5)

wherex(τ ) = eΩ(τ )yN , τ � 0 (Iserleset al., 2000). Thus, to approximateΩ(h), we
need to truncate the expansion in (2.5) and replace integrals by quadrature. Once a suitable
approximationΩ̂ ≈ Ω(h) is available, we let

yN+1 = ehÃeΩ̂ yN .

The 2× 2 matrix exponentials can be easily written down explicitly.
The secret of the success of ‘standard’ Magnus integrators is that all underlying

multivariate integrals can be computed to high precision very economically, in a small
number of function evaluations and reasonable volume of linear algebra (Iserleset al.,
2000). However, the matrix functionB in (2.4) is highly oscillatory for ‘interesting’ values
of φ, precisely the situation when Gauss–Christoffel quadrature, which plays a central role
in the implementation of ‘standard’ Magnus, is of little use. Sometimes it is possible to
get away with exact integration, e.g. for the Airy oscillator, but a more general approach
requires more substantive numerical remedy.

It is important to bear in mind that high oscillation in this context is not a curse: it
is indeed the secret of the remarkable success of the modified Magnus method (Iserles,
2002b). Usual numerical integrators perform so poorly for (2.1) because their local error
is expressible in terms of high derivatives and elementary differentials, whose amplitude
increases rapidly in the presence of high oscillation. Modified Magnus, on the other hand, is
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based upon the integration of a highly-oscillating vector fieldB and, after all, integration is
the precise opposite of differentiation, a smoothing operator! Thus, the fasterB oscillates,
the smaller are Magnus integrals, thus the faster the convergence in (2.5), and the smaller
the error. This is precisely the compelling reason why integrationmustbe replaced by
quadrature that ‘respects’ high oscillation and provides suitable precision in a small number
of function evaluations per step.

Let ω = 2φ, f (τ ) = g(tN+κ) − g(tN + τ) and

W−1 =
[ i

2ω
− 1

ω2

−1
4 − i

2ω

]
, W0 =

[
0 2

ω2

−1
2 0

]
, W1 =


 − i

2ω
− 1

ω2

−1
4

i
2ω


 .

Then

B(τ ) = f (τ )[e−iωτ W−1 + W0 + eiωτ W1],
therefore∫ h

0
B(x)dx =

∫ h

0
f (x)e−iωxdxW−1 +

∫ h

0
f (x)dxW0 +

∫ h

0
f (x)eiωxdxW1 (2.6)

and the task in hand reduces to a quadrature of (1.1) with different values ofω but with the
same functionf . Similar approach will be extended in Section 5 to the double integral in
(2.5). By this stage, it suffices to conclude that we wish to approximate the three integrals
in (2.6), two with highly-oscillating integrand and one that does not oscillate at all, to
sufficiently high precision, yet with a small number of evaluations of the functionf . This
motivates the work of the next two sections.

3. Filon-type methods

3.1 The definition

Let w ∈ L[0, 1] be a non-negative, sufficiently smooth non-zero function andh > 0 a
constant. We wish to approximate the integral

Ih[ f ] =
∫ h

0
f (x)eiωxw(x/h)dx = h

∫ 1

0
f (hx)eihωxw(x)dx, (3.1)

where f ∈ L[0, 1] is itself sufficiently smooth. Note that this generalizes (1.1) by allowing
aweight function, something that can be done with little extra technical effort. We assume
thatω > 0 for ease of notation, but our results can be trivially extended to negativeω at
the cost of minor notational inconvenience.

To set the scene for our analysis, we chooseν distinct nodesc1 < c2 < · · · < cν in
[0, 1] and, given

γ (t) =
ν∏

l=1

(t − cl ) =
ν∑

j =0

γ j t
j ,
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we selects ∈ {0, 1, . . . , ν} as the largest integer so that∫ 1

0
x j −1γ (x)w(x/h)dx = 0, j = 1, 2, . . . , s.

In other words,p = ν + s is the order of the Gauss–Christoffel quadrature (1.2) at the
above nodes.

There are two alternative ways of introducing Filon-type methods (Bakhvalov &
Vasiľceva, 1968; Flinn, 1960; Luke, 1954). Firstly, we may interpolatef by a polynomial
of degreeν − 1,

f (x) ≈ f̃ (x) =
ν∑

k=1

	k(x/h) f (ckh),

where	k ∈ Pν−1 is thekth cardinal polynomial of Lagrangian interpolation,

	k(cj ) =
{

1, j = k,

0, j 
= k,
k, j = 1, 2, . . . , ν.

Once f is replaced byf̃ in (3.1), we obtain theFilon-type quadrature

QF
h[ f ] = Ih[ f̃ ] = h

ν∑
l=1

bl (ihω) f (cl h), (3.2)

where

bl (ihω) =
∫ 1

0
	l (x)eihωxw(x)dx, l = 1, 2, . . . , ν.

By design,

EF
h[ f ] = QF

h[ f ] − Ih[ f ] = 0, f ∈ Pν−1,

henceEF
h[ f ] = O

(
hν+1

)
for every sufficiently-smooth functionf . Alternatively, we can

obtain exactly the same weightsbl by solving the Vandermonde system

ν∑
l=1

bl (ihω)cm
l = µm(hω), m = 0, 1, . . . , ν − 1, (3.3)

where theµms are themoments

µm(ψ) =
∫ 1

0
xmeiψxw(x)dx, m ∈ Z+.

We can think of (3.2) as the Gauss–Christoffel formula with respect to thecomplex-
valued weight functioneihωxw(x), but this analogy with standard theory of quadrature
will not carry us far. In particular, any attempt to increase order by choosing the nodes
consistently with complex-valued ‘orthogonality’ is likely to lead tocksoutside[0, 1] and,
indeed, to complex nodes. Fortunately, as we demonstrate in the next section, such a course
of action is unnecessary and we can achieve higher order by other means.
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3.2 The regime0 < hω � 1

Let us assume thatω is bounded, whileh → 0. In other words, the characteristic frequency
of the system is small although, in principle,ω itself might be large. We let

βr,m =
ν∑

l=1

b(r )
l (0)cm

l , r, m ∈ Z+.

PROPOSITION 1 Forevery r = 0, 1, . . . , p − 1 it is true that

βr,m = µr +m(0), m = 0, 1, . . . , p − r − 1. (3.4)

Proof. Werepeatedly differentiate (3.3) with respect toω, whence

ν∑
l=1

b(r )
l (ihω)cm

l =
∫ 1

0
xm+r eihωxw(x)dx, r ∈ Z+.

Settingω = 0 results in

βr,m = µr +m(0), m = 0, 1, . . . , ν − 1. (3.5)

This implies that b(r )
1 (0), b(r )

2 (0), . . . , b(r )
ν (0) are interpolatory weights of Gauss–

Christoffel quadrature with the weight functionxr w(x). Because of the orthogonality
conditions for the polynomialγ , we have∫ 1

0
xr +mγ (x)w(x)dx = 0, m = 0, 1, . . . , s − 1 − r

for r = 0, 1, . . . , s − 1. Therefore, forr = 0, 1, . . . , s the Gauss–Christoffel quadrature
with the weight functionxr w(x) at the nodesc1, c2, . . . , cν has orderp− r . Consequently
(3.4) holds forr = 0, 1, . . . , s− 1 and, because of (3.5), also forr = s, s+ 1, . . . , p − 1.
�
THEOREM 1 Let f be an analytic function in the disc|z| < h0 for someh0 > 0 and let
ω > 0 be fixed. Then

EF
h[ f ] = O

(
hp+1

)
, 0 < h � 1, (3.6)

whereEF
h[ f ] is the error of the Filon-type quadrature (3.2) andp = ν + s is the order of

the Gauss–Christoffel quadrature at the nodesc1, c2, . . . , cν .

Proof. By the above assumption, the Taylor series

f (z) =
∞∑

m=0

fm
m! zm

converges for|z| < h0. By design, we already know thatEF
h[xm] = 0 for m = 0, 1, . . . , ν−

1, therefore we may assume without loss of generality thatfm = 0, m = 0, 1, . . . , ν − 1.
Since

µm(hω) =
∞∑

r =0

(ihω)r

r ! µm+r (0),

ν∑
l=1

bl (ihω)cm
l =

∞∑
r =0

(ihω)r

r ! βr,m, m ∈ Z+,
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substitution into (3.1) and (3.2) respectively yields

Ih[ f ] =
∞∑

m=ν

fm
m! hm+1µm(hω) =

∞∑
m=ν

∞∑
r =0

fm
m!r !h

m+r +1(iω)r µm+r (0)

=
∞∑

m=0

[
m−ν∑
r =0

fm−r (iω)r

r !(m − r )!

]
µm(0)hm+1,

QF
h[ f ] =

∞∑
m=ν

fm
m! hm+1

ν∑
l=1

bl (hω)cm
l =

∞∑
m=ν

∞∑
r =0

fm
m!r !h

m+r +1(iω)r βr,m

=
∞∑

m=0

[
m−ν∑
r =0

fm−r (iω)r

r !(m − r )!βr,m−r

]
hm+1.

Because of (3.4), it is true thatβr,m−r = µm(0) for m � p − 1, therefore

EF
h[ f ] =

∞∑
m=p

hm+1

m!
m−ν∑
r =0

(
m

r

)
fm−r (iω)r [βr,m−r − µm(0)]. (3.7)

This proves (3.6). �
The statement of the theorem can be easily extended to Cp+1[0, h] functions f , except

that the error expansion (3.7) is no longer available.
The leading error term follows at once from the proof,

EF
h[ f ] = hp+1

p!
p∑

r =ν

(
p

r

)
fr (iω)p−r [βp−r,r − µp(0)] + O

(
hp+2

)
.

Letting ω = 0 recovers the familiar principal error term of Gauss–Christoffel quadrature,
but the formula is more interesting for non-zeroω, when it depends on several derivatives
of f .

The main importance of Theorem 1 from the standpoint of highly-oscillatory
integration is that, insofar as the order of approximation is concerned, Filon-type
quadrature (3.2) is just as good as the more familiar Gauss–Christoffel quadrature even
if the characteristic frequency of the integral (3.1) is small. In the next two sections
we discuss the instance of moderate and large characteristic frequency, when Gauss–
Christoffel quadrature is useless, while, as we will see, Filon-type quadrature is very
effective indeed.

3.3 The regime hω = O (1)

Suppose thatψ = hω = O (1), a situation corresponding to the familiar folk remedy
of choosing the interval of integration (or time step, or size of a panel in compound
quadrature) asc/ω for some constantc. Substitutingω = ψ/h in (3.7), we obtain after
some basic algebraic manipulation

EF
h[ f ] =

∞∑
m=ν

fm
m! hm+1

∞∑
r =(p−m)+

(iψ)r

r ! [βr,m − µm+r (0)] (3.8)
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and

EF
h[ f ] =

∞∑
m=ν

fm
m! hm+1

[
ν∑

l=1

bl (iψ)cm
l − µm(ψ)

]
.

It follows at once that

EF
h[ f ] = fν

ν! hν+1
∞∑

r =p

(iψ)r

r ! [βr,ν − µr +ν(0)] + O
(
hν+2

)

and the order of Filon-type quadrature reduces in this setting toν. Yet, even this is much
better than conventional Gauss–Christoffel quadrature!

3.4 The regime hω � 1

Smallh > 0, yet large characteristic frequencyψ = hω: this is the make-or-break regime
for any quadrature method proposed for highly-oscillating integrals of the form (3.1). The
main idea is to keeph > 0 fixed (typically, sufficiently small) and consider theasymptotic
expansionof the error in negative powers ofψ .

Our first result is a trivial outcome of integration by parts, yet perhaps the most
fundamental to the work of this paper.

PROPOSITION 2 For every smooth functionf andψ � 1 it is true that

Ih[ f ] ∼ f (h)w(1)eiψ − f (0)w(0)

iψ

+ [h f ′(h)w(1) + f (h)w′(1)]eiψ − [h f ′(0)w(0) + f (0)w′(0)]
ψ2

+ O
(
ψ−3

)
.

(3.9)

We note in passing that iff w is analytic andh-periodic in a suitable Gevrey class
andψ is an integer multiple of 2π then, as is well known,Ih[ f ] decays exponentially for
ψ → ∞. This is perfectly compatible with (3.9).

An immediate consequence of the proposition is an asymptotic expansion of moments,

µ0(ψ) ∼ w(1)eiψ − w(0)

iψ
+ w′(1)eiψ − w′(0)

ψ2
+ O

(
ψ−3

)
,

µ1(ψ) ∼ w(1)eiψ

iψ
+ [w(1) + w′(1)]eiψ − w(0)

ψ2
+ O

(
ψ−3

)
(3.10)

µm(ψ) ∼ w(1)eiψ

iψ
+ [mw(1) + w′(1)]eiψ

ψ2
+ O

(
m2ψ−3

)
, m � 2.

Note that (3.10) can be alternatively derived from the asymptotic expansion ofµ0(ψ),
using the differential recurrenceµm+1(ψ) = −iµ′

m(ψ), m ∈ Z+.
Weset

ρm(ψ) =
ν∑

l=1

bl (iψ)cm
l − µm(ψ), m ∈ Z+.
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Thereforeρm ≡ 0 for m = 0, 1, . . . , ν −1 and, assuming again thatf is analytic, it is easy
to deduce from (3.8) that

EF
h[ f ] =

∞∑
m=ν

fm
m! hm+1ρm(ψ).

Recall the collocation polynomialγ (t) = ∑ν
k=0 γktk, γ (cl ) = 0 for l = 1, 2, . . . , ν.

Since
ν∑

l=1

bl (iψ)cm
l γ (cl ) ≡ 0 ⇒

ν∑
k=0

γk

ν∑
l=1

bl (iψ)cm+k
l ≡ 0

for everym ∈ Z+, it is true that
ν∑

k=0

γkρk+m(ψ) = −
ν∑

k=0

γkµk+m(ψ), m ∈ Z+. (3.11)

Substituting (3.10) yields

ν∑
k=0

γkµk(ψ) ∼ w(1)γ (1)eiψ − w(0)γ (0)

iψ
+ O

(
ψ−2

)
,

ν∑
k=0

γkµk+m(ψ) ∼ w(1)γ (1)eiψ

iψ
+ O

(
mψ−2

)
, m � 1.

For m = 0, ρk ≡ 0 for all k � ν − 1. This, in tandem withγν = 1, implies that

ρν(ψ) ∼ w(0)γ (0) − w(1)γ (1)eiψ

iψ
+ O

(
ψ−2

)
.

PROPOSITION 3 There exist numbers{pm}m∈Z+ and{qm}m∈Z+ , not all zero, such that

ρm(ψ) ∼ pmw(0)γ (0) − qmw(1)γ (1)eiψ

iψ
+ O

(
mψ−2

)
, m ∈ Z+. (3.12)

Proof. Clearly, pm = qm = 0 for m � ν − 1 and pν = qν = 1. (Thus, in particular, these
numbers cannot all be zero.) Form � 1, (3.11) becomes

ν∑
k=0

γkρk+m(ψ) ∼ −w(1)γ (1)eiψ

iψ
+ O

(
ψ−2

)
.

Up toO
(
ψ−2

)
, this is a linear difference equation with a forcing term. Substituting (3.12)

we conclude that, as long asw(0)γ (0), w(1)γ (1) 
= 0, it is true that

ν∑
k=0

γk pk+m = 0,

ν∑
k=0

γkqk+m = −1, m � 1.

The general solution of these recurrences is

pm =
ν∑

k=1

p̃kcm
k , qm =

ν∑
k=1

q̃kcm
k − 1

γ (1)
, m � 0,
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where the constants{ p̃k}νk=1 and{q̃k}νk=1 can be determined from initial values by solving
a (non-singular) Vandermonde linear algebraic system.

If w(0)γ (0) = 0, the first equation needs to be replaced bypm ≡ 0, while if
w(1)γ (1) = 0 then, in place of the second equation, we haveqm ≡ 0. (This is consistent
with both being zero, since then triviallyρm(ψ) ∼ O

(
ψ−2

)
.)

We conclude that the constants stipulated in the statement of the proposition do exist
and the estimate (3.12) is valid. �

Wededuce from (3.12) that

EF
h[ f ] =

∞∑
m=ν

fm
m! hm+1ρm(ψ)

∼
∞∑

m=ν

fm
m! hm+1 pmw(0)γ (0) − qmw(1)γ (1)eiψ

iψ
+ O

(
hν+1ψ−2

)

= w(0)γ (0)

iψ

∞∑
m=ν

fm
m! pmhm+1 − w(1)γ (1)eiψ

iψ

∞∑
m=ν

fm
m! qmhm+1 + O

(
hν+1ψ−2

)
.

Set

f̃ (x) =
∞∑

m=ν

fm
m! xm,

theessential partof the function f : note thatEF
h[ f̃ ] = EF

h[ f ] regardless of the size ofh
andω. Using the values of thepms andqms from the proof of Proposition 3, we readily
have

EF
h[ f ] ∼ h

iψ

[
w(0)γ (0)

ν∑
k=1

p̃k f̃ (ckh) − w(1)γ (1)

ν∑
m=1

q̃k f̃ (ckh) + w(1) f̃ (h)

]

+ O
(
hν+1ψ−2

)

= fνhν+1

ν!iψ

[
w(0)γ (0)

ν∑
k=1

p̃kcν
k − w(1)γ (1)

ν∑
k=1

q̃kcν
k + w(1)

]

+ O
(
hν+2ψ−1, hν+1ψ−2

)
. (3.13)

This is true forw(0)γ (0), w(1)γ (1) 
= 0. In the remaining cases,

w(0)γ (0) = 0,

w(1)γ (1) 
= 0

}
EF

h[ f ] ∼ w(1)h

iψ

[
f̃ (h) − γ (1)

ν∑
k=1

q̃k f̃ (ckh)

]
+ O

(
hν+1ψ−2

)
,

w(0)γ (0) 
= 0,

w(1)γ (1) = 0

}
EF

h[ f ] ∼ w(0)γ (0)h

iψ

ν∑
k=1

p̃k f̃ (ckh) + O
(
hν+1ψ−2

)
,

w(0)γ (0) = 0,

w(1)γ (1) = 0

}
EF

h[ f ] ∼ O
(
hν+1ψ−2

)
.
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The stage is now set to formulate perhaps the most interesting result with regard to the
Filon-type quadrature (3.2).

THEOREM 2 If (a) eitherw(0) = 0 or c1 = 0, and (b) eitherw(1) = 0 or cν = 1, then
EF

h[ f ] ∼ O
(
hν+1ψ−2

)
, otherwiseEF

h[ f ] ∼ O
(
hν+1ψ−1

)
. Moreover, unlessw(1) = 0

and eitherw′(1) = 0 or cν = 1, there exists no choice of quadrature nodes that gives
EF

h[ f ] ∼ O
(
hν+1ψ−3

)
for general, sufficiently-smooth functionf .

Proof. Following our analysis, it remains just to prove the impossibility of error decay
being faster thanO

(
ψ−2

)
. To this end we use (3.10) to calculate theψ−2 term in∑ν

k=0 γkµk+m(ψ) for m � 2, namely

[mhw(1) + w′(1)]γ (1) + hw(1)γ ′(1)

ψ2
eiψ .

Progressing like in our treatment of theψ−1 term, we need to choose quadrature nodes
to annihilate the above expression. Since all quadrature nodes are simple and in[0, 1], it
is obvious thatγ ′(1) 
= 0 and this expression cannot be annihilated unless the conditions
w(1) = 0 and eitherw′(1) = 0 orcν = 1 hold. �

Assembling the results of this section together, we have determined the rate of decay
of quadrature error in the three regimes of characteristic frequency,

1. If 0 < hω � 1 then EF
h[ f ] = O

(
hp+1

)
, where p is the order of the underlying

Gauss–Christoffel quadrature;
2. If hω = O (1) thenEF

h[ f ] = O
(
hν+1

)
;

3. If hω � 1 thenEF
h[ f ] = O

(
hν+1/ψ

)
, unless bothc1w(0) = 0 and(1−cν)w(1) =

0, in which caseEF
h[ f ] = O

(
hν+1/ψ2

)
.

Consequently, for general weight functions, the optimal choice, maximizing error
decay throughout the three regimes, is that ofLobatto points: c1 = 0, cν = 1 and
c2, . . . , cν−1 chosen so that the overall order of quadrature is 2ν − 2 (Davis & Rabinowitz,
1980). If the weight function vanishes at one endpoint, we can increase the order in the
non-oscillatory regime by one, choosingRadau points.If w(0) = w(1) = 0, though, it is
best to useGauss points,thereby attaining order 2ν in the non-oscillatory regime.

4. Other methods for highly-oscillatory integrals

Many methods have been proposed for the quadrature of highly-oscillatory integrals. We
intend to disregard all methods that reduce the problem in hand to a (large) number of
non-oscillatory integrals, since the analysis of the last section strongly implies that this is
far from optimal. Moreover, we consider neither methods that employ higher derivatives of
f , although such methods can be exceedingly effective when higher derivatives are easily
available (Davis & Rabinowitz, 1980), nor methods that are valid only whenhω is an
integer multiple of 2π , an issue upon which we have remarked in Section 1. It is not the
purpose of this section to provide a brief survey of methods for highly-oscillatory integrals,
but to focus on two alternative approaches which, remarkably, share the behaviour of Filon-
type methods for large characteristic frequencies.
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4.1 Zamfirescu’s method

Let us focus for simplicity’s sake on the real oscillator

Ih[ f ] = h
∫ 1

0
f (hx) sinωhxdx. (4.1)

Following Zamfirescu (1963) (cf. also Davis & Rabinowitz, 1980; Engels, 1980; Gautschi,
1968), we write it in the formIh[ f ] = I (2)

h [ f ] − I (1)
h [ f ], where

I (1)
h [ f ] = h

∫ 1

0
f (hx)dx, I (2)

h [ f ] = h
∫ 1

0
f (hx)(1 + sinωhx)dx.

All this is nothing but the well-known representation of an arbitrary function, in our
instance sinωhx, as a difference of two positive functions, and can be transparently
extended to other highly-oscillatory integrals.

The weight functions in bothI (1)
h and I (2)

h are positive, hence we may approximate
the two integrals with Gauss–Christoffel quadrature (1.2). In other words, we let
c( j )

1 , c( j )
2 , . . . , c( j )

ν and b( j )
1 , b( j )

2 , . . . , b( j )
ν be the nodes and the weights of a Gauss–

Christoffel quadrature forI ( j )
h , j = 1, 2, whence

QZ
h[ f ] = h

ν∑
l=1

b(2)
l f (c(2)

l h) − h
ν∑

l=1

b(1)
l f (c(1)

l h). (4.2)

Note that thec(2)
l andb(2)

l both depend uponhω. For simplicity we assume that thec(1)
l

and b(1)
l are independent ofψ . It makes sense to require that the two quadratures are

compatible: c(2)
l (0) = c(1)

l , l = 1, 2, . . . , ν.

We let γ ( j )(t) = ∏ν
k=1(t − c( j )

k ), j = 1, 2, and assume that each Gauss–Christoffel
quadrature in (4.2) is of orderp = ν + s. This requires∫ 1

0
xmγ (1)(x)dx =

∫ 1

0
xmγ (2)(x; hω) sinωhxdx = 0, m = 0, 1, . . . , s − 1.

As before, we writeψ = hω wherever this is convenient.
It is a straightforward consequence of our construction that the error isO

(
hp+1

)
when

eitherω or hω are fixed, whileh → 0. Yet, more interesting from our point of view is the
highly-oscillatory regimeψ = hω � 1.

Rather than taking the most general route, we herewith restrict our attention to just two
kinds of quadrature, theGauss–Legendrescheme, wherebys = ν, and theLobattomethod,
with c1 = 0, cν = 1 ands = ν − 2. The purpose of this paper is to understand Filon-type
quadrature from Section 3, the present method is included here mainly for comparison, and
there is little justification in embarking presently on a more comprehensive analysis.

We commence from theGauss–Legendrequadrature, whenceγ (1) is a scalar multiple
of Pν , the Legendre polynomial shifted to the interval[0, 1]. The order conditions forγ (2)

read ∫ 1

0
xmγ (2)(x)dx +

∫ 1

0
xmγ (2)(x) sinψxdx = 0, m = 0, 1, . . . , ν − 1,
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where, as before,ψ = hω. Integrating by parts, we easily confirm that

∫ 1

0
xmγ (2)(x) sinψxdx ∼ γ (2)(1) cosψ − 0mγ (2)(0)

ψ
+ O

(
ψ−2

)
.

Note thatγ (2)(0), γ (2)(1) 
= 0, since zeros of orthogonal polynomials reside in theopen
support of the weight function. Therefore

∫ 1

0
xmγ (2)(x)dx ∼ O

(
ψ−1

)
, m = 0, 1, . . . , ν − 1,

and we deduce from the implicit function theorem that there existδ1, δ2, . . . , δν , uniformly
bounded in[0, ∞) and not all zero, such that

c(2)
l ∼ c(1)

l + δl (ψ)

ψ
+ O

(
ψ−2

)
, l = 1, 2, . . . , ν.

Moreover, since the weights are formed by solving a Vandermonde linear system, there
also existβ1, β2, . . . , βν ∈ L[0, ∞) such that

b(2)
l ∼ b(1)

l + βl (ψ)

ψ
+ O

(
ψ−2

)
, l = 1, 2, . . . , ν.

Therefore

QZ
h[ f ] = h

ν∑
l=1

b(2)
l f (c(2)

l h) − h
ν∑

l=1

b(1)
l f (c(1)

l h)

∼ h
ν∑

l=1

[b(1)
l + ψ−1βl ] f (c(1)

l h + hψ−1δl ) − h
ν∑

l=1

b(1)
l f (c(1)

l h) + O
(
ψ−2

)

= h

ψ

ν∑
l=1

[βl (ψ) f (c(1)
l h) + hb(1)

l δl (ψ) f ′(c(1)
l h)] + O

(
ψ−2

)
.

On the other hand, integrating by parts,

Ih[ f ] ∼ h
f (h) cosψ − f (0)

ψ
+ O

(
ψ−2

)
, ψ � 1, (4.3)

Hence theO
(
ψ−1

)
term cannot be annihilated for allf , regardless of the choice of the

ψ-dependent coefficients, and we deduce that the quadrature error decays likeO
(
ψ−1

)
.

The situation is somewhat different for Lobatto quadrature. We revisit our analysis
of Gauss–Legendre, replacings = ν with s = ν − 2 throughout. Since nowγ (2)(0) =
γ (2)(1) = 0, we have

∫ 1
0 xmγ (2)(x)dx ∼ O

(
ψ−2

)
, therefore

c(2)
l ∼ c(1)

l + O
(
ψ−2

)
, l = 1, 2, . . . , ν.
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Letting, as before,b(2)
l ∼ b(1)

l +ψ−1βl +O
(
ψ−2

)
, interpolatory conditions for the weights

thus imply that

ν∑
l=1

[b(1)
l + ψ−1βl ]c(1)

l

m ∼
∫ 1

0
xm(1 + sinψx)dx + O

(
ψ−2

)

∼ 1

m + 1
+ cosψ − 0m

ψ
+ O

(
ψ−2

)
.

Therefore, up toO
(
ψ−1

)
,

ν∑
l=1

βl c
(1)
l

m ∼
{

cosψ − 1, m = 0,

cosψ, m = 1, 2, . . . , ν − 1.

Subtracting the equation form from that form − 1 for m = 2, 3, . . . , ν − 1, we have

ν∑
l=1

c(1)
l [1 − c(1)

l ]βl c
(1)
l

m ∼ O
(
ψ−1

)
, m = 0, 1, . . . , ν − 3.

Recall, however, thatc(1)
1 = 0, c(1)

ν = 1. Therefore we haveν − 2 ‘asymptotic equations’
in the variablesβ2, β3, . . . , βν−1 with a non-singular Vandermonde matrix and deduce that

βl (ψ) ∼ O
(
ψ−1

)
, l = 2, 3, . . . , ν − 1.

In other words,βl for this range ofl do not feature in theO
(
ψ−1

)
expansion term: justβ1

andβν are left. Substitutingc(1)
1 = 0, c(1)

ν = 1 into the equations form = 0, ν we obtain

β1(ψ) ∼ −1 + O
(
ψ−1

)
, βν(ψ) ∼ cosψ + O

(
ψ−1

)
.

This results in

QZ
h[ f ] = h

ν∑
l=1

b(2)
l f (c(2)

l h) − h
ν∑

l=1

b(1)
l f (c(1)

l h)

∼ h

{[
b(1)

l − 1

ψ

]
f (0) +

ν−1∑
l=2

b(1)
l f (c(1)

l h) +
[
b(1)
ν + cosψ

ψ

]
f (h)

}

− h
ν∑

l=1

b(1)
l f (c(1)

l h) + O
(
ψ−2

)

= h
f (h) cosψ − f (0)

ψ
+ O

(
ψ−2

)
.

Comparison with (4.3) confirms that the error decays likeO
(
ψ−2

)
.

Note that we have neither computed explicitly an integerr � 1, say, such that the
error decay isO

(
hr ψ−1

)
or O

(
hr ψ−2

)
for Gauss–Legendre and Lobatto, respectively,

nor considered higher-order terms in the asymptotic expansion. The work of this section
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lays no claims to have treated the method (4.2) as comprehensively as our analysis of
Filon-type methods in Section 3. Insofar as this paper is concerned, our main conclusion
is that the choicec1 = 0, cν = 1, leads to the most rapid attenuation of the error for large
characteristic frequency, behaviour which is identical to that of Filon-type methods and
which we will encounter again in the next subsection.

Weconclude this brief analysis of (4.2) with two remarks. Firstly, have we taken

Ih[ f ] = h
∫ 1

0
f (hx) cosωhxdx

in place of (4.1), theO
(
ψ−2

)
error decay could have been obtained with a Radau scheme

(thus, fixingc(1)
ν = c(2)

ν = 1 and requiring order 2ν − 1) in place of Lobatto. Secondly,
on the face of it, (4.2) is better than the Filon-type method (3.2), at least in the mildly-
oscillatory regimehω = O (1). This is misleading since the method of Zamfirescu requires
roughly twice the number of function evaluations for (4.1) and roughly trice for the
complex integral (3.1).

4.2 Levin’s method

In a series of papers that should have elicited more attention, David Levin addressed
himself to the quadrature of highly-oscillatory integrals, introducing a new collocation-
based algorithm and observing that oncec1 = 0 andcν = 1 are collocation points, the
error decays likeO

(
ψ−2

)
(Levin, 1982, 1996, 1997; Levinet al., 1984). (Cf. Evans &

Chung, 2003 for a recent generalization.) Note that, although the method ‘follows the spirit
of Filon’s method’ (Levin, 1982), it is genuinely different from the latter.

Although Levin’s method can be generalized a great deal, we restrict ourselves to the
framework of the present paper and briefly describe the ‘plain vanilla’ method for the
integral (3.1) with the trivial weight functionw ≡ 1. Suppose that we know the solution of
the ordinary differential system

y′ + ihωy = f, (4.4)

with an arbitrary initial condition. Then

Ih[ f ] = h[y(1)eihω − y(0)].
In other words, solving (4.4) is equivalent to integrating (3.1). Levin proposes to
approximate

y(x) ≈ ỹ(x) =
ν∑

k=1

ykϕk(x),

where {ϕ1, ϕ2, . . . , ϕν} are suitable linearly-independent functions, and impose the
differential equation solely at theν collocation points c1 < c2 < · · · < cν ,

ỹ′(cm) + ihω ỹ(cm) = f (hcm), m = 1, 2, . . . , ν.
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This reduces to the linear algebraic system

ν∑
k=1

[ϕ′
k(cm) + ihωϕk(cm)]yk = f (cmh), m = 1, 2, . . . , ν

which, once it has been solved, leads to the quadrature

QL
h[ f ] = h[ỹ(1)eihω − ỹ(0)]. (4.5)

Levin proves that settingc1 = 0 andcν = 1 results in error attenuation ofO
(
ψ−2

)
for

ψ = hω � 1.
Although we can writeQL

h[ f ] as a linear combination of function values with(hω)-
dependent weights, it is in general different from a Filon-type quadrature even if we
attempt to follow the ‘polynomial reasoning’ of the latter by choosingϕk(x) = xk−1,
k = 1, 2, . . . , ν. For Lobatto weights withν = 2 and ν = 3, however, both methods
coincide (for brevity we again substituteψ = hω), with the weights

b1(ψ) = i

ψ
+ 1 − eiψ

ψ2
, b2(ψ) = − ieiψ

ψ
+ 1 − eiψ

ψ2
,

and

b1(ψ) = i

ψ
+ 3 + eiψ

ψ2
− 4i(1 − eiψ)

ψ3
,

b2(ψ) = −4(1 + eiψ)

ψ2
+ 8i(1 − eiψ)

ψ3
,

b3(ψ) = − ieiψ

ψ
+ 1 + 3eiψ

ψ2
− 4i(1 − eiψ)

ψ3
.

respectively. As a matter of fact, the two quadratures are identical forν = 2 for all weights
but, lest a conjecture starts to form by this stage in a reader’s mind, Gauss–Legendre nodes
lead to different quadratures forν = 3.

5. Lie-group methods revisited

Our point of departure is the Magnus expansion (2.5) of the modified equation (2.3) and we
consider two options. Firstly, we truncate all but the first integral. This results in a method
of ‘classical’ order four: although there is an order reduction once we form asymptotic
estimates forφ � 1, we still need to discretize the integral consistently with the order
of the method. To this end, we may use the Filon–Lobatto quadrature withν = 3 from
the last section. Note that although its implementation nominally requires three function
evaluations, in reality just two are needed per time step, since we can reuse a single
function evaluation ofg from the previous step: this phenomenon, known as ‘FSAL’
(First Same As Last) is familiar from the practice of Runge–Kutta methods for ordinary
differential equations (Haireret al., 1993). Moreover, lettingκ = 1

2 means that the mid-
point calculation ofg can be used both for modification of the original equation and for
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quadrature: actually, in that casef (1
2h) = 0. Recall further from (2.6) that we need to

compute three integrals: with little additional algebra we obtain

∫ h

0
B(x)dx = −

∫ h

0
f (x) cosωxdx

[
0 2

ω2

1
2 0

]
+

∫ h

0
f (x)dx

[
0 2

ω2

−1
2 0

]

+
∫ h

0
f (x) sinωxdx

[ 1
ω

0

0 − 1
ω

]
.

Letting

b(1)
1 = 3 + cosψ

ψ2
− 4 sinψ

ψ3
, b(2)

1 = 1

ψ
+ sinψ

ψ2
− 4(1 − cosψ)

ψ3

b(1)
2 = −4(1 + cosψ)

ψ2
+ 8 sinψ

ψ3
, b(2)

2 = −4sinψ

ψ2
+ 8(1 − cosψ)

ψ3

b(1)
3 = sinψ

ψ
+ 1 + 3cosψ

ψ2
− 4sinψ

ψ3
, b(2)

3 = −cosψ

ψ
+ 3sinψ

ψ2
− 4(1 − cosψ)

ψ3
,

whereψ = hω, we have

∫ h

0
f (x) cosωdx ≈ h[b(1)

1 f (0) + b(1)
2 f (1

2h) + b(1)
3 f (h)],

∫ h

0
f (x) sinωdx ≈ h[b(2)

1 f (0) + b(2)
2 f (1

2h) + b(2)
3 f (h)],

∫ h

0
f (x)dx ≈ h[1

6 f (0) + 2
3 f (1

2h) + 1
6 f (h)],

all fourth-order quadratures.
A possible alternative to the above is to exploit the fact thatf vanishes at12h. Letting

f̄ (x) = f (x)/(x − 1
2h), weneed to evaluate

h
∫ h

0
f̄ (x)




1
cosωx
sinωx


 w(x/h)dx = h2

∫ 1

0
f̄ (hx)




1
cosωhx
sinωhx


 w(x)dx,

wherew(x) = x − 1
2, a signedweight function. In general, the analysis of Section 3 is

not valid for signed weights, since the classical theory of Gauss–Christoffel quadrature
loses its validity within this setting (Gautschi, 1981). In our particular case, however, it
is possible to derive a fourth-order Lobatto method of this kind with just two quadrature
points,c1 = 0 andc2 = 1. Upon close examination, however, this turns out to be precisely
the Lobatto method from the previous paragraph.

A sixth-order modified Magnus scheme reads, prior to quadrature,yN+1 =
ehÃeΩ(h)yN , where

Ω(h) =
∫ h

0
B(x)dx − 1

2

∫ h

0

∫ x1

0
[B(x2), B(x1)]dx2dx1.
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Both above integrals need be approximated to order six. Insofar as the first integral is
concerned, we use again a Lobatto scheme, this time withν = 4, namely

c1 = 0, c2 = 1
2 −

√
5

10 , c3 = 1
2 +

√
5

10 , c4 = 1.

In the case whenf (1
2h) = 0, however, we can use at exactly the same price in function

evaluations an eighth-order Lobatto scheme withν = 5 and

c1 = 0, c2 = 1
2 −

√
21

14 , c3 = 1
2, c4 = 1

2 +
√

21
14 , c5 = 1. (5.1)

This is the course of action that we adopt in the sequel. The (straightforward) derivation of
the weights is of little interest.

The calculation of the double integral is more of a challenge, yet it can be also
addressed by our techniques. We commence by deducing from (2.6) that∫ x1

0
[B(x2), B(x1)]dx2 = ζ−1,0(x1)[W−1, W0] + ζ−1,1(x1)[W−1, W1] + ζ0,1(x1)[W0, W1],

where

ζ−1,0(x) =
∫ x

0
f (x) f (y)[e−iωy − e−iωx]dy,

ζ−1,1(x) =
∫ x

0
f (x) f (y)[eiω(x−y) − eiω(y−x)]dy = 2i

∫ x

0
f (x) f (y) sinω(x − y)dy,

ζ0,1(x) =
∫ x

0
f (x) f (y)[eiωx − eiωy]dy.

Moreover,

[W−1, W0] = iU1 − U2, [W−1, W1] = −iU1, [W0, W1] = iU1 + U2,

where

U1 =
[

0 2
ω3

1
2ω

0

]
, U2 =

[ − 1
ω2 0

0 1
ω2

]
.

After some algebra, everything simplifies to∫ h

0

∫ x1

0
[B(x2), B(x1)]dx2dx1 = 2

∫ h

0

∫ x1

0
f (x1) f (x2)K1(x1, x2)dx2dx1U1

+ 2
∫ h

0

∫ x1

0
f (x1) f (x2)K2(x1, x2)dx2dx1U2, (5.2)

where

K1(x, y) = sinω(x − y) − sinωx + sinωy, K2(x, y) = cosωx − cosωy.

Endeavouring to approximate the two integrals in (5.2), we follow the same rules of
engagement as in Iserleset al. (2000): thus, it is permitted to reuse the values off that
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have been already evaluated for the quadrature of the univariate integral, and nothing else.
Assume for simplicity thatκ = 1

2, hence f (1
2h) = 0 and the functionf̄ (x) = f (x)/(x −

1
2h) is smooth. The quadratures in the sequel use only function values at the endpoints
and, implicitly, rely on f (1

2h) = 0: the information from remaining two nodes in (5.1) is
discarded. We commence from the first integral. Letting

Ih[ f̄1, f̄2] =
∫ h

0

∫ x1

0
(x1 − 1

2h)(x2 − 1
2h) f̄1(x1) f̄2(x2)K1(x1, x2)dx2dx1,

it is possible to prove, e.g. by symbolic computation, that

Ih[ f̄1, f̄2] = − 1
3360 f (0)g(0)ω3h7 + O

(
h8

)
,

therefore nominally the integral can be discarded, being consistent with order six. Note,
however, that theO

(
h8

)
term depends uponω, hence the estimate makes sense only for

fixed ω andh → 0. More careful analysis, taking on board the effect of high oscillation,
demonstrates that, onceψ = hω becomes large, the asymptotic expansion is

Ih[ f̄1, f̄2] ∼ 1
12

f (0)g(0)h4

ψ
+ O

(
h5ψ−1, h4ψ−2

)
.

The prudent course of action, thus, is to retain the integral and replace it by quadrature. To
this end, we seek coefficientsβ1,1, β1,2, β2,1 andβ2,2 so that

Qh[ f̄1, f̄2] = 2h2
2∑

k=1

2∑
l=1

βk,l fk(c̃kh) fl (c̃l h), (5.3)

wherec̃1 = 0, c̃2 = 1, matchesIh[ f̄1, f̄2] for (a) f1(x) = f2(x) = x − 1
2; (b) f1(x) =

x(x − 1
2), f2(x) = x − 1

2; (c) f1(x) = x − 1
2, f2(x) = x(x − 1

2); and (d) f1(x) =
f2(x) = x(x − 1

2). As before, the coefficientsβk,l are allowed to depend onψ = hω.
Once the weights are known, we setf1 = f2 = f . Our construction ensures that the
quadrature error isO

(
h9

)
: this, incidentally, is consistent with our decision to useν = 5

in the univariate quadrature.
Wehave four linear algebraic equations in four unknowns, whose solutions are

β1,1 = 3
10

1

ψ
− 1

6
sinψ

ψ2
−

58
3 + 5

3 cosψ

ψ3
+ 13 sinψ

ψ4
+ 240+ 96 cosψ

ψ5
− 336 sinψ

ψ6
,

β1,2 = − 1
30

1

ψ
− 1

6
sinψ

ψ2
−

10
3 + 11

3 cosψ

ψ3
+ 35 sinψ

ψ4
+ 168(1 + cosψ)

ψ5
− 336 sinψ

ψ6
,

β2,1 =
2
15 + 1

6 cosψ

ψ
− 3

2
sinψ

ψ2
−

16
3 + 29

3 cosψ

ψ3
+ 51 sinψ

ψ4
+ 152+ 184 cosψ

ψ5

− 336 sinψ

ψ6
,

β2,2 =
2
15 + 1

6 cosψ

ψ
− 5

2
sinψ

ψ2
−

4
3 + 59

3 cosψ

ψ3
+ 93 sinψ

ψ4

+80+ 256 cosψ

ψ5
− 336 sinψ

ψ6
.
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Substitution into (5.3) and lettingf1 = f2 = f results in an order-eight quadrature, with
error terms

1
24192ω

3h9 f (0) f ′′(0) + O
(
h10

)
and 1

120
h6 f (0) f ′′(0)

ψ
+ O

(
h7ψ−1, h6ψ−2

)
for h → 0, ω fixed, andψ → ∞ respectively. Note thatβk,l (ψ) = O

(
ψ−1

)
and

U1 = O
(
ψ−1

)
imply that the quadrature error for the double integral indeed decays like

O
(
ψ−2

)
, consistently with the error for the first, univariate integral.

Next, we deal with the second integral. Note that it can be easily confirmed, e.g. with a
symbolic calculator, that its leading terms are

1
240ω

2h6 f (0)g(0) and 1
24 f (0)g′(0)h5 sinψ

ψ

for h → 0, ω fixed, andψ → ∞ respectively. ReplacingK1 with K2 we obtain in (5.3)
the coefficients

β1,1 = −5
2 + 1

6 cosψ

ψ2
− 2

3
sinψ

ψ3
+ 86− 6cosψ

ψ4
+ 80 sinψ

ψ5
− 320(1 − cosψ)

ψ6
,

β1,2 = −
1
6(1 − cosψ)

ψ2
− 11

3
sinψ

ψ3
+ 34(1 − cosψ)

ψ4
+ 160 sinψ

ψ5
− 320(1 − cosψ)

ψ6
,

β2·1 = 1
6

sinψ

ψ
−

1
2(1 − cosψ)

ψ2
− 11

3
sinψ

ψ3
+ 34(1 − cosψ)

ψ4
+ 160 sinψ

ψ5

− 320(1 − cosψ)

ψ6
,

β2,2 = 1
6

sinψ

ψ
−

1
6 − 5

2 cosψ

ψ2
− 56

3
sinψ

ψ3
+ 6 − 86 cosψ

ψ4

+240 sinψ

ψ5
− 320(1 − cosψ)

ψ6
.

The quadrature error forh → 0 and fixedω is

− 1
2240ω

2h8 f (0) f ′′(0) + O
(
h9

)
, h → 0,

and the asymptotic error

− 1
24h7 f ′(0) f ′′(0)

1 + cosψ

ψ2
+ O

(
h8ψ−2, h7ψ−3

)
, ψ → ∞.

In tandem withU2, this yields error attenuation ofO
(
ψ−4

)
. Note that the order of this

quadrature is one less than that for the univariate integral and the first double integral. Of
course, we could have increased the order by using additionally the function evaluations at

(1
2±

√
21

14 )h from (5.1), but this is hardly necessary, given that the order of modified Magnus
with exact integrals is six, and also since the decay of the error for largeψ is bound to be
almost instantaneous, due to the asymptotic error attenuation.

This approach should lend itself to quadrature for higher-order modified Magnus
methods, incorporating more integrals. General theory of such multivariate quadrature with
highly-oscillatory kernels is a matter for a different paper, hopefully by a different author.
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