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Highly-oscillatory integrals are allegedly difficult to calculate. The main assertion of this
paper is that that impression is incorrect. As long as appropriate quadrature methods are
used, their accuracincreaseswhen oscillation becomes faster and suitable choice of
quadrature points renders this welcome phenomenon more pronounced. We focus our
analysis onFilon-type quadratureand analyse its behaviour in a range of frequency
regimes for integrals of the fonﬁ;‘ f(x)ei“’xw(x)dx, whereh > 0 is snall and|w| large.

Our analysis is applied to modified Magnus methods for highly-oscillatory ordinary
differential equations.

Keywords quadrature; high oscillation; Lie-group methods.

1. Introduction

The computation of integrals of highly-oscillating functions is one of the oldest and,
arguably, most important issues in numerical analysis. Highly-oscillating integrals abound
in applications, from electromagnetics to quantum physics and chemistry, fluid mechanics,
molecular dynamics,. .. Methods have existed for a long while and, indeed, the most
fruitful idea (as we hope to persuade the reader) was published three-quarters of a century
ago (Filon, 1928) and, in a more modern guise, half a century ago (Luke, 1954). Yet, it
is difficult to identify any other area of scientific computing equally plagued by vague
assertions, false ‘folk wisdom’ and plainly misleading statements.

The subject matter of this paper is the computation of

h .
Ihfl= / f (x)e?%dx, (1.1)
0

whereh > 0 is small, whilew € R is such thaiw| > 1: typically, thecharacteristic
frequency b of (1.1) is large. Note tha need not be an integer multiple ofr2h,
therefore (1.1) is, strictly speaking, a more general construct than a Fourier transform.
Having said this, the computation of a single Fourier transform of a given function is
probably the most ubiquitous application, and this is reflected in the title of this paper.
Numerical integration is a mature, well-understood subject. There are many clear
and comprehensive monographs devoted to this area of activity, in particular Davis &
Rabinowitz (1980) and Engels (1980), and it might seem that the task is straightforward,
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FiG. 1. The error in Gauss—Legendre integration of (1.1)fox) = €*,h = 1—10 and different values ab.

more appropriate for elementary courses in numerical computation than for research
papers. The natural candidate for a good computational method, indeed the method of
choice for numerical integration, is tli@auss—Christoffel quadrature

QReLfl1=h> b f(ghe-an, (1.2)
1=1

wherecy, ¢p,...,¢, € [0, 1] are distinct nodes, whiley, by, ..., b, are interpolatory
weights (Gautschi, 1981). The order of (1.2) is determined by orthogonality conditions
and, in particular, itq, co, . .., ¢, are selected as the zeros of thie Legendre polynomial,
shifted to the intervall0, 1], then the quadrature is of order @.e. exact for allf € Pp,_3
or, in other words, bearing the error 6f (h?+1) for h — 0). No other method can
exceed the order of Gauss—Legendre quadrature, hence this is a good point of departure
for our discussion. Thus, Fig. 1 displays the absolute error in the integration of (1.1)
with f(x) = €* by Gauss—Legendre schemes witke {5, 10, 15, 20} andh = l—lo, for
characteristic frequencw € [0, 100]. While, unsurprisingly, the methods do well for
smallhw, the error in the higher range of frequencies is unacceptably large. Moreover, it
is hardly attenuated when the number of quadrature points increases.

The reason for the failure of Gauss—Legendre quadrature, indeashyoGauss—
Christoffel quadrature (1.2), is obvious. The exact integral in Fig(@3s'®"—1) /(1+iw)
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FiG. 2. The error in Filon—-Legendre integration of (1.1) fotx) = €%, h = %), v = 3 and different values of
hw. The top graph displays the absolute erfEgit-[€*], the bottom the normalized errbrEf-[e*].

and its envelope attenuates IiKk(a)’l) for o > 1. This is nothing but an illustration
of the well-known Riemann—Lebesgue lemma: for evdérye L4[0, h] it is true that
limy,— o In[f] = 0. There is, though, absolutely no reason why fihée combination
(1.2) of function values should tend to zerawas> co. Convergence of Gauss—Christoffel
makes sense only i is kept constant whilld — 0, but then the characteristic frequency
tends to zero as well and the system is not highly oscillatory any more.

As an aside, ergodic theory tells us that convergence of Gauss—Christoffel occurs also
whenw andh are kept constant while — oo. Indeed, if f is h-periodic and theg
are equidistant then convergence takes place at an exponential speed: this is precisely the
discrete Fourier transformif we desire to compute a whole range of Fourier frequencies
then, indeed, FFT techniques are optimal. Having said this, the focus for our concern
is altogether different, the computation of a single Fourier frequency, say, using modest
number of function evaluations.

Chastened by the failure of (1.2), we might jump to the opposite conclusion and deduce
that the quadrature of (1.1) for large is either impossible or prohibitively expensive. The
only way forward, according to this (widely shared) reasoning, is to render the underlying
problem into a non-oscillatory one, by dividing the interf@lh] into a sufficiently large
number of small subintervals (so-called ‘panels’) where Gauss—Christoffel quadrature can
be applied with impunity. This is absolutely the wrong impression, as confirmed by Fig. 2.
It displays the absolute error (in the top graph) in the integration of (1.1), again for
f(x) = €, with the Filon—Legendre methodith just three integration points. (Much
more about Filon-type methods is given in Section 3, where they will be formally defined
and analysed at some length.) The situation is truly remarkable: the error isasrdatl
becomes smaller as the characteristic frequency grov& bottom figure calibrates the
last statement, demonstrating that the error decayﬂi@ﬁ‘l), the exact speed of decay
of In[€*].
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FiG. 3. The error in Filon—Lobatto integration of (1.1) férx) = e*,h = 1—10, v = 3and different values dfiw.
The top graph displays the absolute erfEgj[eX], the bottom the normalized errdnw)ZErF]L[ex].

This might appear remarkable and counterintuitive, but our ‘computational surprise’ is
not yet over. In Fig. 3 we have displayed the absolute error (in the top graph) for another
guadrature scheme, tiidon—Lobatto methodagain using just three function evaluations.
The error decays even faster las grows and the method literally revels in oscillation.
Again, the bottom figure is more instructive, demonstrating that the error envelope decays
proportionally tow—2 whene > 1.

The behaviour of Filon-type methods, as demonstrated in Figs 2—3, is not a quirk: it is,
as we contend in Section 3, typical. Indeed, there are other methods, which we review in
Section 4, that share this advantageous behavioundoy> 1. As long as right methods
are used, quadrature of highly-oscillatory integrals is very accurate and afforddihiis!
is, unfortunately, not the common wisdom and we cannot resist but quote

This approach has previously been used hyol [1], LUKE [2], and FLINN

[3]. However, in the applications of the formulas developed [1, 3, 4] only those
values of the mesh intervalhave been used which obey the relatjiamh <

/2. Some reasons for this restriction have become apparent in the course of
the work described in the present paper. These reasons may be summarized
by saying that results obtained from the formulasjégh > /2 may contain

large errors, as large as the integral sought. (Clendenin, 1966).

This refers to specific Filon methods and the motivation for this misleading (yet
unexceptional throughout the literature) statement is a Taylor expansion in powers of
for largehw, aprocedure that makes no mathematical sense, followed by an examination
of the leading ‘error’ term, which has no bearing whatsoever on the actual size of the error.
Although this paper is concerned in the main with the analysis of existing methods for
the quadrature of (1.1), it is valuable and instructive to commence from an application
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that has led the author to consider this issue at the first place, the solution of highly-
oscillatory ordinary differential equations by Lie-group methods (Iserles, 2002a,b).
Practical implementation of such methods requires in every step simultaneous quadrature
of integrals of the form

h h h
/ f (x)dx, / f (X) coswxdx, / f (X) sinwxdx
0 0 0

for the same functionf, a task for which, as will transpire in the sequel, Filon-type
methods are ideally suited. Thus, we devote Section 2 to a brief description of the
modified Magnus methddom Iserles (2002a), weigh its advantages and explain why the
latter are bound to be lost unless the method is supplemented by a suitable quadrature
technique for highly-oscillatory integrals. Both this section and Section 5 can be omitted
by readers whose sole interest is in integration of (1.1), yet they provide a useful and
illustrative application, inclusive of examples of specific quadrature methods, as well
as being of an independent interest to readers keen to infer from quadrature of highly-
oscillatory integrals to discretization of highly-oscillatory differential equations. Moreover,
the computation of highly-oscillatory differential equations and highly-oscillatory integrals
shares an important structural common denominator: for high frequencies, a naive Taylor
expansion, implicit in the concept of ‘order’, provides a misleading picture of the behaviour
of the error. A considerably more effective course of action is an asymptotic expansion in
inverse powers of the characteristic frequency.

Section 3 is devoted to Filon-type methods. We commence from their definition: rather
than describing the original special framework from Filon (1928), we focus on the more
modern and general approach of Luke (1954) (cf. also Bakhvalov & 8ésil 1968).

This is followed by detailed analysis of three situations,rthe-oscillatory regimewhere
0 < he « 1, themildly-oscillatory regime b = O (1) and, finally, the most interesting
(from our perspective) regime, tighly-oscillatoryone, wherdw >> 1. Our main results
are as follows. Suppose that < ¢; < --- < ¢, are nodes irf0, 1] which correspond to
Gauss—Christoffel quadrature of ordee {v,v + 1, ..., 2v}. Then

1. If hw > 1then the quadrature error of the Filon-type metho@ihP*1);

2. Ifho = O (1) then its error i) (h”*1);

3. Inthe castiw < 1the error isO (h"*1/(hw)), except that, once we set = 0 and
¢y = 1, the error becomed (h'*+1/(hw)?).

All this is true for (1.1) and smooth functionk. As amatter of fact, we consider in
Section 3 a moregyeneral integral,

h
/ f ()€ w(x/ hydx,
0

and our results therein depend also on the values of the non-negative weight fumetion
the endpoints.

The above results fly in the face of a widespread and pernicious numerical ‘folk
wisdom’, namely that one should integrate with a fixed, moderately large number of points
per period: typically, 5-7 points. This suggestion, consistent with our quote from Clendenin
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(1966) (but, in fairness, we could have quoted many other references to similar effect),
automatically places us in the mildly-oscillatory regime = O (1) which, actually, is the
worstchoice for a Filon-type method.

Filon’s quadrature is not the only effective method for highly-oscillatory integrals and
in Section 4 we address ourselves to two other methods. The first, due to Zamfirescu (1963)
and Gautschi (1968) is based on the well-known fact that an arbitrary signed measure can
be represented as a difference of two Borel measures, hence the real (or imaginary) part of
the complex exponential in (1.1) can be written as a difference of two positive weight
functions. The latter can be integrated by two ‘proper Gauss—Christoffel quadratures
(Davis & Rabinowitz, 1980; Engels, 1980). We analyse this technique for two choices
of quadrature nodes, namely Legendre and Lobatto points, only to deduce that

1. If 0 < ho <« 1 orhw = O (1) then the quadrature error@ (h?’+1) for Legendre
andO (h?"~1) for Lobatto;

2. If hw > 1then the error i©) (h"+1/(hw)) for Legendre and® (h'*1/(hw)?) for
Lobatto.

Note thatc; = 0, ¢, = 1 for Lobatto nodes: similarity with Filon-type methods is
remarkable! Also in that section we describe a technique that has been developed by David
Levin in a sequence of papers (Levin, 1982, 1996, 1997). It rests upon collocation-based
solution of a non-oscillatory solution of a certain ordinary differential equation associated
with the highly-oscillating kernel. It has been demonstrated by Levin thatydors> 1,

the quadrature error decays Iikb(h“”/(hw)z), oncec; = Oandc, = 1 are selected as
gquadrature points. This is, as far as the current author is aware, the only instance of this
phenomenon being analysed (or even observed) in numerical literature. In a very specific
sense, théeitmotif of the present paper is to follow in Levin’s footsteps and show that the
choicec; = 0, ¢, = 1, first observed by him and best realized by selecting Lobatto points,
is optimal for the quadrature of integrals of the form (1.1), regardless of the choice of a
(good) method.

In the last section we return to the modified Magnus method of Section 2, focusing
on two goals. Firstly, we demonstrate how Filon-type methods can be implemented to
ewvaluate the leading integral in a practical manner. Secondly, high-order implementation
of a Magnus method requires the cubature of multivariate integrals (Isetrids 2000)
and this also must be done by a method that copes well with high oscillation. Although
we do not develop a general theory, along the lines of Section 3, we demonstrate through
specific examples that Filon-type methods can be extended to multivariate framework.

Throughout this paper we disregard methods, some of which can be very efficient
indeed, that restrict the values ofto integer multiples of 2/h (i.e. to the ‘genuine’
Fourier transform) and where such restriction is vital to the success of the method. It is
valuable to list in this context the inversion of the Poisson summation formula by using
Mobius numbers (Goldberg & Varga, 1956; Lyness, 1971) and a variation upon Filon's
method due to Fosdick (1968).

We mention in passing that the main ‘ideological’ conclusion of our paper, namely that,
properly handled, highly-oscillatory integrals are easy and simple to approximate, should
come as little surprise to a mathematical analyst, with an interest in exact integrals. High
oscillation is a smoothing operator, as apparent in our context from the Riemann—Lebesgue
lemma. The challenge is how to take advantage of high oscillation in a numerical setting
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and our claim is that the answer has been available, however vaguely and implicitly, since
1928.

This paper is restricted to the computation of the most common form of highly-
oscillating integral, the Fourier-transform-like (1.1) and its generalization (3.1). A future
paper will address itself to more general oscillators.

2. Lie-group methodsfor highly-oscillatory ODESs

Trading off generality for comprehension, our point of departure is the scalar linear non-
autonomuous differential equation

y'+9)y=0, t=0, y©0) =yo. Y(0) =Y, (2.1)

where lim_ o g(t) = 4o0o (similar analysis applies to large, yet boundgdwhile the
derivatives ofg are of moderate size. A considerably more general treatment can be found
in Iserles (2002a).

As is well known from WKB analysis,

expli 519001/ 2dx]
[g(®)11/

hence high oscillation. Most discretizations methods are known to accumulate global error
considerably faster, at an unacceptable rate. Thus, to specialize further, in the case of the
Airy oscillator y’ + ty = 0 the global error of any fourth-order Runge—Kutta or multistep
method, applied with a constant step dize 0, accumulates likb*t13/4y (t), wherey is a
generic highly-oscillating function ranging fr-1, 1]: this is independent of possible ‘nice’
features of the method, like A-stability, algebraic stability or symplecticity (Iserles, 2002a).
The fourth-order Magnus method (Iserlesal, 2000) does much better and the global
error accumulates like*t1/4 (t), but even better results can be obtained by modifying the
Magnus method along the lines of Iserles (2002a,b), whence the globatecaydike
h3t=1/4y (t) for t >> 1 and fixed smalh > 0 (behaving likeh’t¥* (t) for fixed t and
h — 0): note that, although the order nominally drops for error bounds which are uniform
int > 1, it is the oscillation itself, rather than powershfthat drives the global error
down. We will see in Sections 3—4 that an identical phenomenon occurs in the context of
highly-oscillatory quadrature.

The differential equation (2.1) is converted into a system of first-order ODEs,

y(t) ~ , t>1,

y =Aty, t=0, y(0) = yo, (2.2)

where

_ 0 1 _ Yo
wo=[ g o] w=[ %]

Suppose that we have already compuyRd~ y(tn) and wish to advance the numerical
solution toty 1 = ty + h. We commence by computing = Aty ), wherex € [0, 1].
(k = % is an excellent choice and it leads to the favourable global-error estimates above,
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but« = 0 ispreferable for a nonlinear version of this method.) Next, we change the frame
of reference by letting

y(t) = e NAE —ty),  ty <t <ty

We treatx as our new unknown and observe that it itself obeys another linear differential
equation,

X' =B(®)x, t©>tn, X(N) = YN, (2.3)

where

B(r) = e "A[A(tn + 7) — AR, ©3>0.

This change of variables is valid for any linear system (2.2), regardless of dimensionality
and the precise form of the matrik, and can be extended to nonlinear systems as well.
However, for linear systems inherited from the linear oscillator (2.1) the new vector field
B can be computed explicitly,

o7 lsinpr ¢ Zsir¢r

B(7) = [9(tN4«) — 9N + T)] |: — co2 e _l(p—l sin 27
2

} N )

whereg = [g(tn+.)]"2.
We apply a Magnus method to the modified equation (2.3). Mlagnus expansiois

T T X1
2(7) =/ B()dx — %/f [B(x2), B(xp)]dxadxy + - - -, (2.5)
0 0Jo

wherex(t) = e?®yy, T > 0 (Iserleset al, 2000). Thus, to approximate(h), we
need to truncate the expansion in (2.5) and replace integrals by quadrature. Once a suitable
approximation? ~ (2(h) is available, we let

YN41 = ehAeQYN-

The 2x 2 matrix exponentials can be easily written down explicitly.

The secret of the success of ‘standard’ Magnus integrators is that all underlying
multivariate integrals can be computed to high precision very economically, in a small
number of function evaluations and reasonable volume of linear algebra (Istrids
2000). However, the matrix functioB in (2.4) is highly oscillatory for ‘interesting’ values
of ¢, precisely the situation when Gauss—Christoffel quadrature, which plays a central role
in the implementation of ‘standard’ Magnus, is of little use. Sometimes it is possible to
get away with exact integration, e.g. for the Airy oscillator, but a more general approach
requires more substantive numerical remedy.

It is important to bear in mind that high oscillation in this context is not a curse: it
is indeed the secret of the remarkable success of the modified Magnus method (Iserles,
2002b). Usual numerical integrators perform so poorly for (2.1) because their local error
is expressible in terms of high derivatives and elementary differentials, whose amplitude
increases rapidly in the presence of high oscillation. Modified Magnus, on the other hand, is
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based upon the integration of a highly-oscillating vector figland, after all, integration is
the precise opposite of differentiation, a smoothing operator! Thus, the fastsrillates,
the smaller are Magnus integrals, thus the faster the convergence in (2.5), and the smaller
the error. This is precisely the compelling reason why integratimstbe replaced by
guadrature that ‘respects’ high oscillation and provides suitable precision in a small number
of function evaluations per step.

Letw = 2¢, f (1) = g(tnc) — 9(tn + 7) and

% T 0o 2 %
woe[ B2 we [0 2] e[
_1 i ~1 9 _1 i
4 20 2 2 20
Then
B(r) = f(r)[e“"W_1 4+ Wo + €T W],
therefore

h h h h
f B(x)dx = / f ()& XdxW_1 + / f (x)dxWp + f f()edxWy  (2.6)
0 0 0 0

and the task in hand reduces to a quadrature of (1.1) with different valuebufvith the

same functionf . Similar approach will be extended in Section 5 to the double integral in
(2.5). By this stage, it suffices to conclude that we wish to approximate the three integrals
in (2.6), two with highly-oscillating integrand and one that does not oscillate at all, to
sufficiently high precision, yet with a small number of evaluations of the functionhis
motivates the work of the next two sections.

3. Filon-type methods
3.1 The definition

Letw € L[O, 1] be a non-negative, sufficiently smooth non-zero function land 0 a
constant. We wish to approximate the integral

h _ 1 .
Ih[ ] =f f () €“¥w(x/h)dx = h/ f (hx) €%y (x)dx, (3.1)
0 0

wheref € L[0, 1] is itself sufficiently smooth. Note that this generalizes (1.1) by allowing
aweight function, something that can be done with little extra technical effort. We assume
thatw > 0 for ease of notation, but our results can be trivially extended to negatate
the cost of minor notational inconvenience.

To set the scene for our analysis, we chooddistinct nodes; < ¢; < -+ < ¢, in
[0, 1] and, given

y® =[Jt-c)=> ytl,
=1 i=0
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we selecs € {0, 1, ..., v} as the largest integer so that
1
/ x1 =y ow(x/hydx = 0, j=12...,s.
0

In other words,p = v + s is the order of the Gauss—Christoffel quadrature (1.2) at the
above nodes.

There are two alternative ways of introducing Filon-type methods (Bakhvalov &

Vasilkeva, 1968; Flinn, 1960; Luke, 1954). Firstly, we may interpolatey a polynomial
of degreev — 1,

fo0 ~ oo =) ex/h) f(ckh),
k=1

wherely € IP,_1 is thekth cardinal polynomial of Lagrangian interpolation,

1, j=k .
Lk (Ci) = k,j=12,...,v.
() {o, P £k J Y

Oncef is replaced byf in (3.1), we obtain th&ilon-type quadrature

QRlfl=In[f]= hli;u (ihw) f (), (3.2)
where _
by (ihw) :/01£|(x)eih‘”xw(x)dx, =12 ..., v.
By design,

ERlfl=Qi[fl1—In[f]1=0, feP, 1.

henceE{[f] = O (h”“) for every sufficiently-smooth functiori. Alternatively, we can
obtain exactly the same weighisby solving the Vandermonde system

%
Y bi(iho)e" = pmhw),  mMm=0,1,....v-1, (3.3)
=1
where theuns are themoments

1
um(y) = / xMeVXw (x)dx, meZ.,.
0

We can think of (3.2) as the Gauss—Christoffel formula with respect tadmeplex-
valued weight functio®"**w(x), but this analogy with standard theory of quadrature
will not carry us far. In particular, any attempt to increase order by choosing the nodes
consistently with complex-valued ‘orthogonality’ is likely to leadd@ outside[0, 1] and,
indeed, to complex nodes. Fortunately, as we demonstrate in the next section, such a course
of action is unnecessary and we can achieve higher order by other means.
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3.2 Theregimé < how « 1

Let us assume thatis bounded, whilén — 0. In other words, the characteristic frequency
of the system is small although, in principtejtself might be large. We let

frm=> B OC",  rmez,.
=1

PrRoPosITION 1 Foreweryr =0,1,..., p— 1litistrue that

,Bl‘,m:/Lr+m(0), m=0,1,..., Pp—r —1. (34)
Proof. Werepeatedly differentiate (3.3) with respectipwhence

%

1 .
Zbl(r)(iha))qm = f XM Xy, (x)dx, reZ,.
I=1 0

Settingw = 0 results in
,Br’m = /qu+m(O), m = 0, 1, cee, VUV — 1. (35)
This implies that b{” (0), by’ (0), ..., b (0) are interpolatory weights of Gauss—

Christoffel quadrature with the weight functiol w(x). Because of the orthogonality
conditions for the polynomigt, we have

1
/ X"ty (x)w(x)dx = 0, m=0,1,...,s—1—r
0

forr =0,1,...,s— 1. Therefore, for = 0, 1, ..., s the Gauss—Christoffel quadrature
with the weight functiorx” w(x) at the nodes;, cy, .. ., ¢, has ordemp —r. Consequently
(3.4) holdsfor =0, 1,...,s— 1and, because of (3.5), alsofoe=s,s+1,..., p—1.

O

THEOREM1 Let f be an analytic function in the dige| < hg for somehg > 0 and let
w > 0 be fixed. Then

E,ﬁ[f]:@(hp+1), 0<h«1, (3.6)

whereEf[ f] is the error of the Filon-type quadrature (3.2) gme= v + s is the order of
the Gauss—Christoffel quadrature at the nazdesy, ..., c,.

Proof. By the above assumption, the Taylor series

f y fmm
(2 = Z WZ

m=0 "
converges fofz| < ho. By design, we already know th&f,[x™] = 0form=0,1,...,v—
1, therefore we may assume without loss of generality tha= 0,m=0,1,...,v — 1.
Since

e’} ih r v . %) ih r
mtne) = 3 T s ) Zuahw)q’“:Z%ﬂr,m, me Zy.,
I=1 :

|
e r=0
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substitution into (3.1) and (3.2) respectively yields

[ f1= Y ™ umhe) = 37 % - —Eh™ 2 10) s (0)
£ m £ mir]

m—v

fm—r(iw)r m+1
;—”(m_r)!}um(mh :
mmely m_ oo fm mr+1 \r
i Zb|<hw>q =m220mh (i) Br.m
= =V =
o0 m—v
fm—r (iw)" m+1
mZ[me ) e
Because of (3.4), itis true th@f m—r = um(0) for m < p — 1, therefore

Ef[f]= Z

This proves (3.6). O

The statement of the theorem can be easily extende@18[Q, h] functions f , except
that the error expansion (3.7) is no longer available.
The leading error term follows at once from the proof,

p+l )
Ef[fl= —— Z ( ) fr ()P [Bp-r.c = np©] + O (PF2).

I I
e I0e T
B

hm+1 m—v

Z (T) fm—r (@) [Br.m—r — tm(0)]. (3.7)

Letting w = 0 recovers the familiar principal error term of Gauss—Christoffel quadrature,
but the formula is more interesting for non-zevpwhen it depends on several derivatives
of f.

The main importance of Theorem 1 from the standpoint of highly-oscillatory
integration is that, insofar as the order of approximation is concerned, Filon-type
quadrature (3.2) is just as good as the more familiar Gauss—Christoffel quadrature even
if the characteristic frequency of the integral (3.1) is small. In the next two sections
we discuss the instance of moderate and large characteristic frequency, when Gauss—
Christoffel quadrature is useless, while, as we will see, Filon-type quadrature is very
effective indeed.

3.3 Theregime b = O (1)

Suppose thaty = ho = O (1), asituation corresponding to the familiar folk remedy
of choosing the interval of integration (or time step, or size of a panel in compound
quadrature) as/w for some constant. Substitutingw = v/h in (3.7), we obtain after
some basic algebraic manipulation

o0 f o0
gii=) e 5 Wl 0 (39)

m=v =" r=(p—m4
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and

&)

fm\ m
ERifl=)" L i [Zbl(lw)q _Mm(W):|

m=v

It follows at once that
i r
Ef[f]= h”+1§ j(‘”) (Bro = e+ ()1 + 0 (0+2)

and the order of Filon-type quadrature reduces in this setting ¥et, even this is much
better than conventional Gauss—Christoffel quadrature!

3.4 Theregimeh > 1

Smallh > 0, yet large characteristic frequengy= hw: this is the make-or-break regime
for any quadrature method proposed for highly-oscillating integrals of the form (3.1). The
main idea is to keep > 0 fixed (typically, sufficiently small) and consider tlasymptotic
expansionof the error in negative powers of.

Our first result is a trivial outcome of integration by parts, yet perhaps the most
fundamental to the work of this paper.

PROPGSITION 2 For every smooth functiod andy > 1itistrue that
f (hw@)eY — f(0)w(0)
iy
1 ’ v ’ ’
n [hf' (hHw() + f(hw (1)]@'1#2 [hf(O)w(0) + f(O)w'(0)] Lo (¢_3> .

In[f]~

(3.9)

We note in passing that if w is analytic andh-periodic in a suitable Gevrey class
andv is an integer multiple of 2 then, as is well knowni[ f ] decays exponentially for
¥ — oo. This is perfectly compatible with (3.9).

An immediate consequence of the proposition is an asymptotic expansion of moments,

wle¥ —w©0) w @)Y — w(0) 3
TR 52 +0 (v,
w@DeY  [w@) 4+ w'(D)]€Y —w(0) 3
ot 2 +0(v?)
w(l)e? L mw@ + w'(1)]1eV
iy ¥2
Note that (3.10) can be alternatively derived from the asymptotic expansipn(gf),

using the differential recurrengen+1(¢) = —ium (), me Z;.
We set

no(y¥) ~

pa(fr) ~

(3.10)

mm(yr) ~

+(’)(m21/f_3), m> 2.

pm(¥) =Y b — um@¥),  MeZy.
1=1
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Thereforeoy = 0form =0, 1, ..., v—1and, assuming again thétis analytic, it is easy
to deduce from (3.8) that

o f
ERLfI =) h™ om().

m=v

Recall the collocation polynomial(t) = Y ,_, ntk y(@) =0forl =1,2,...,v.
Since

Y obydy@ =0 = > w) bliygmtk=0
=1 k=0 I=1
for everym € Z,, itis true that
Y o) = = D pkm(P),  Me Zy., (3.11)
k=0 k=0

Substituting (3.10) yields

Y 1)y ()Y — w(0)y (0

3™ ) ~ 2 )y (Y —w )V”+o(¢*2),

k=0 Iy
E 1)y (1)ev
ZVkMk+m($)”%+@(mw72>, m> 1.
k=0

Form =0, px = Ofor all k < v — 1. This, in tandem withy,, = 1, implies that

oy (P) ~

w0y (0) — w(Dy e 2

m +0(v7?).

PROPCSITION 3 There exist numberdm}mez, and{dm}mez, . not all zero, such that

pmw (0)y (0) — gmw(Dy (¥
iy

Proof. Clearly, pm = gm =0form < v —1andp, = q, = 1. (Thus, in particular, these

numbers cannot all be zero.) For> 1, (3.11) becomes

pm() ~ +0 (mw—z) . meZ,. (312

v ei;p
2 ) ~ —% +0(v?).

Up to O (v —2), this is a linear difference equation with a forcing term. Substituting (3.12)
we conclude that, as long ag0)y (0), w(1)y (1) # 0, itis true that

v %
D WPkim=0, Y nim=-1 m>1
k=0 k=0

The general solution of these recurrences is

% v
) ) 1
Pm=) B, Om=) & ———, m>0,
k=1 k=1 (D)
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where the constan{$},_; and{dk},_, can be determined from initial values by solving
a(non-singular) Vandermonde linear algebraic system.

If w(0)y(0) = O, the first equation needs to be replaced @y = 0, while if
w(1)y (1) = 0then, in place of the second equation, we hagye= 0. (This is consistent
with both being zero, since then trivialppm(y) ~ O (w*Z).)

We conclude that the constants stipulated in the statement of the proposition do exist
and the estimate (3.12) is valid. O

We deduce from (3.12) that

i hm+1
m=v
3 fmp e Py (0) — Gmw Dy (DY 4Ly -2
2 ; o (ry )
=w<0)y<0> i m+1_w(1)y(1)é¢ i ™4 0 (42

Set

3

=V

the essential parbf the functionf: note thatEf [ fl1= Ef[f] regardless of the size &f
andw. Using the values of th@y,s andgns from the proof of Proposition 3, we readily
have

h v » v » »
BRI~ o [w<0>y<0) > ek feh) —w@y @) Y fech) +w(d) f <h>]
k=1

m=1
+0 (hv+1w—2)
fv v+1
vy
4—6)(h”+2¢f4,hv+1¢‘2). (3.13)

[w(ow(O) D Brek —w(@y (D) Y dkck + w(l)]
k=1 k=1

This is true forw(0)y (0), w(1)y (1) # 0. In the remaining cases,

w()y(0) =0, ( Dh
Enl f f h 1 f cch|+0O hv+l ’

w@Dy (D) #0 Al 1~ [ (h) - y()k;qk (o >} (v 2)

IU(O)V(O)#O, E NM v . 1o

w(Dy (D) =0 Enlf] i grﬂmm+o@ ).

w(0)y(0) = i

w(y (1) = ERLTI~ O (" hy2).
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The stage is now set to formulate perhaps the most interesting result with regard to the
Filon-type quadrature (3.2).

THEOREM 2 If (@) eitherw(0) = 0 orc; = 0, and (b) eitheiw(1) = 0 orc, = 1, then
Eflf] ~ O (hvtly—2), otherwiseE[[ ] ~ O (hV*1y~1). Moreover, unlesss(1) = 0

and eitherw’(1) = 0 orc, = 1, there exists no choice of quadrature nodes that gives
ERLf]1~ O (hv+1y=3) for general, sufficiently-smooth functioh

Proof. Following our analysis, it remains just to prove the impossibility of error decay
being faster tharO (v ~2). To this end we use (3.10) to calculate thie? term in

Y ko Ykik+m(¥) for m > 2, namely

(mhw (D) +w' Dy @)+ hw @y’ g,
Y2 '

Progressing like in our treatment of thle™! term, we need to choose quadrature nodes
to annihilate the above expression. Since all quadrature nodes are simple[@nd] it

is obvious that/’(1) # 0 and this expression cannot be annihilated unless the conditions
w(1) = 0and eithew’(1) = 0 orc, = 1 hold. O

Assembling the results of this section together, we have determined the rate of decay
of quadrature error in the three regimes of characteristic frequency,

1. If 0 < hw < 1thenEf[f] = O (hP+1), wherep is the order of the underlying
Gauss—Christoffel quadrature;

2. Ifho = O (1) thenEf[f] = O (h"F1);

3. Ifho > 1thenEf[ f]= O (h"*1/y), unless botle;w(0) = 0 and(1—c,)w(l) =
0, in which caseEf[ f] = O (h"1/y2).

Consequently, for general weight functions, the optimal choice, maximizing error
decay throughout the three regimes, is that_obatto points:c; = 0, ¢, = 1 and
Co2, ..., C,—1 chosen so that the overall order of quadraturevis-2 (Davis & Rabinowitz,
1980). If the weight function vanishes at one endpoint, we can increase the order in the
non-oscillatory regime by one, choosiRgdau pointslf w(0) = w(1) = 0, though, it is
best to us&auss pointsthereby attaining ordenin the non-oscillatory regime.

4. Other methodsfor highly-oscillatory integrals

Many methods have been proposed for the quadrature of highly-oscillatory integrals. We
intend to disregard all methods that reduce the problem in hand to a (large) number of
non-oscillatory integrals, since the analysis of the last section strongly implies that this is
far from optimal. Moreover, we consider neither methods that employ higher derivatives of
f, dthough such methods can be exceedingly effective when higher derivatives are easily
awailable (Davis & Rabinowitz, 1980), nor methods that are valid only whenis an
integer multiple of Z, an issue upon which we have remarked in Section 1. It is not the
purpose of this section to provide a brief survey of methods for highly-oscillatory integrals,
but to focus on two alternative approaches which, remarkably, share the behaviour of Filon-
type methods for large characteristic frequencies.



ON THE NUMERICAL QUADRATURE OF HIGHLY-OSCILLATING INTEGRALS | 381

4.1 Zamfirescu's method

Let us focus for simplicity’s sake on the real oscillator
1
In[fl= h/ f (hx) sinwhxdx. (4.1)
0

Following Zamfirescu (1963) (cf. also Davis & Rabinowitz, 1980; Engels, 1980; Gautschi,
1968), we write it in the formp[f] = Ikﬁz)[f] — Irﬁl)[f], where

1 1
1P = h/ fhxydx, 1P[f]= h/ f (hx)(1 + sinwhx)dx.
0 0

All this is nothing but the well-known representation of an arbitrary function, in our
instance simhx, as a difference of two positive functions, and can be transparently
extended to other highly-oscillatory integrals.

The weight functions in bothlrﬁl) and Iéz) are positive, hence we may approximate
the two integrals with Gauss—Christoffel quadrature (1.2). In other words, we let

cgj),cg),...,cﬁj) and b&j), béj),...,bﬂj) be the nodes and the weights of a Gauss—
Christoffel quadrature for!)), j = 1,2, whence
v v
QiLf1=h> B2 f(c?h —h> bP fcVh). (4.2)
=1 I=1

Note that thecl(z) and bl(z) both depend upohw. For simplicity we assume that trtél)
and bl(l) are independent ofs. It makes sense to require that the two quadratures are
compatible: ¢2)(O) = c,(l), I=12...,v.

Welet y D (t) = [p_q(t — cl((j)), j = 1,2, and assume that each Gauss—Christoffel
quadrature in (4.2) is of ordgy = v + s. This requires

1 1
/ xMy D (x)dx = / xMy @ (x; hw) sinwhxdx = 0, m=0,1,...,s— 1.
0 0

As before, we write) = hw wherever this is convenient.

Itis a straightforward consequence of our construction that the er@)(lié’“) when
eitherw or hw are fixed, whileh — 0. Yet, more interesting from our point of view is the
highly-oscillatory regime) = hw > 1.

Rather than taking the most general route, we herewith restrict our attention to just two
kinds of quadrature, th@auss—Legendigcheme, whereby = v, and theLobattomethod,
with ¢ = 0,¢, = 1ands = v — 2. The purpose of this paper is to understand Filon-type
quadrature from Section 3, the present method is included here mainly for comparison, and
there is little justification in embarking presently on a more comprehensive analysis.

We commence from th&auss—Legendrguadrature, whence is a scalar multiple
of P,, the Legendre polynomial shifted to the intery@J 1]. The order conditions fop ®
read

1 1
/ xMy @ (xydx + / xMy @ (x) sinyxdx = 0, m=0,1...,v—1
0 0
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where, as beforey = hw. Integrating by parts, we easily confirm that

2 oM., (2
y'9(1) cosy — QMy (0)+O<w_2>.

1
/ xMy @ (x) siny xdx ~
0 14

Note thaty @ (0), y @ (1) # 0, since zeros of orthogonal polynomials reside indpen
support of the weight function. Therefore

1
/ XMy @ (x)dx ~ O(Wl), m=01,...,v—1
0

and we deduce from the implicit function theorem that there éxisb, ..., §,, uniformly
bounded i 0, co) and not all zero, such that

@ 3 ()
“ Ty

Moreover, since the weights are formed by solving a Vandermonde linear system, there
also existB1, B2, ..., B, € L[0, oo) such that

b@ ~ (1) B W)
! v

@

g +o(y?), 1=12...v

+(9(¢ ) l=1,2,...,v

Therefore
Qilt1=nY b2 1 —hY 5 i
=1 =1
~hY I + w1 ePh+hy i) —h Yo b Py + 0 (v?)
=1 =1

h Vv
= 5 2B e+ ) 16+ 0 (v?).
1=1

On the other hand, integrating by parts,

|h[f]~hf(h)007_ O +O<¢’2>, ¥ o> 1, (4.3)

Hence theO (w‘l) term cannot be annihilated for afl, regardless of the choice of the
¥-dependent coefficients, and we deduce that the quadrature error decdyixyrké).

The situation is somewhat different for Lobatto quadrature. We revisit our analysis
of Gauss—Legendre, replacisg= v with s = v — 2 throughout. Since now @ (0) =

y@(1) =0, we havefol xMy @ (x)dx ~ O (y~2), therefore

@~ +o(y?), I1=12...v
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Letting, as beforeb,(2> ~ bfl) +y 18 +0 (1//‘2), interpolatory conditions for the weights
thus imply that

1%

1
>0 "~ [ singe+ 0 (v77)
0

=1
1 cosy — Q™ 2
R +(9(¢ )

Therefore, up t@ (v 1),

Z”:ﬁlq(l)m N {cosw -1 m=0,

= cosyr, m=12...,v—1.

Subtracting the equation fon from that form — 1form=2,3,...,v — 1, we have
v m
Zcfl)[l—cl(l)],&c](l) ~(’)<1//_1>, m=0,1,...,v—3.
I=1

Recall, however, thal&l) =0, c,()l) = 1. Therefore we have — 2 ‘asymptotic equations’
in the variablegy, B3, ..., By—1 With a non-singular Vandermonde matrix and deduce that

ﬁl(l//)fvo(w—l), 1=2,3...,v—1.

In other words g, for this range of do not feature in th&® (W‘l) expansion term: jusg

andp, are left. Substitutingil) =0, cf,l) = 1into the equations fom = 0, v we obtain

Py ~ =140 (v7Y). A ~cosy +0 (v,

This results in

Qi f1=hY "6 1(c”m ~hY b fch)
I=1 =1
v—1
o Hb'(l) B ﬂ O+ 0" e+ [bﬁl) + —Cowsw] f(h)}
1=2

Y Bt Phy 40 (v?)
=1

_ f (h) cosy — f(0) )
—h 7 +0(¢ )

Comparison with (4.3) confirms that the error decays dﬁk@lﬁz).

Note that we have neither computed explicitly an integeg 1, say, such that the
error decay g0 (h"y 1) or O (h"y~2) for Gauss-Legendre and Lobatto, respectively,
nor considered higher-order terms in the asymptotic expansion. The work of this section




384 A. ISERLES

lays no claims to have treated the method (4.2) as comprehensively as our analysis of
Filon-type methods in Section 3. Insofar as this paper is concerned, our main conclusion
is that the choice; = 0, c, = 1, leads to the most rapid attenuation of the error for large
characteristic frequency, behaviour which is identical to that of Filon-type methods and
which we will encounter again in the next subsection.

We conclude this brief analysis of (4.2) with two remarks. Firstly, have we taken

1
Ihf]l= hf f (hx) coswhxdx
0

in place of (4.1), theD (w—z) error decay could have been obtained with a Radau scheme

(thus, fixingc'Y = ¢/ = 1 and requiring order 2— 1) in place of Lobatto. Secondly,

on the face of it, (4.2) is better than the Filon-type method (3.2), at least in the mildly-
oscillatory regiménw = O (1). This is misleading since the method of Zamfirescu requires
roughly twice the number of function evaluations for (4.1) and roughly trice for the

complex integral (3.1).

4.2 Levin’s method

In a series of papers that should have elicited more attention, David Levin addressed
himself to the quadrature of highly-oscillatory integrals, introducing a new collocation-
based algorithm and observing that omge= 0 andc, = 1 are collocation points, the
error decays likeD (y~2) (Levin, 1982, 1996, 1997; Leviet al, 1984). (Cf. Evans &
Chung, 2003 for a recent generalization.) Note that, although the method ‘follows the spirit
of Filon’s method’ (Levin, 1982), it is genuinely different from the latter.

Although Levin’s method can be generalized a great deal, we restrict ourselves to the
framework of the present paper and briefly describe the ‘plain vanilla’ method for the
integral (3.1) with the trivial weight functiomw = 1. Suppose that we know the solution of
the ordinary differential system

y +ihoy = f, (4.4)
with an arbitrary initial condition. Then
In[ 1= hly()e" — y(0)].

In other words, solving (4.4) is equivalent to integrating (3.1). Levin proposes to
approximate

YOO & Y = Y Ykgk(X),
k=1

where {¢1, 92, ..., ¢,} are suitable linearly-independent functions, and impose the
differential equation solely at thecollocation points¢ < ¢ < --- < ¢y,

¥ (Cm) + iho¥(cm) = f(ham), m=12,...,v.
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This reduces to the linear algebraic system

v
> loi(em) + ihogkCm)lyk = femh), m=1,2... v
k=1

which, once it has been solved, leads to the quadrature
Qi1 =h(y(W)E™ — §(0)]. (4.5)

Levin proves that settingg = 0 andc, = 1 results in error attenuation @ (1//_2) for
Y =ho > 1.

Although we can writeQg[ f] as a linear combination of function values withw)-
dependent weights, it is in general different from a Filon-type quadrature even if we
attempt to follow the ‘polynomial reasoning’ of the latter by choosingx) = xX~1,

k = 1,2,...,v. For Lobatto weights withv = 2 andv = 3, however, both methods
coincide (for brevity we again substitufe = hw), with the weights

i 1-—éev eV 1-—édv
b = — , b =
1) = 5+~ 2(V) = —— -+~
and
i 3+€¥V  4dia-é€v)
b = — + - b
1(¥) v 72 A
41+€Y)  8i(1—é€Y)
bo(¥) = — 72 + v
eV  1+43d¥  4i1-é&Y)
b = —— 4+ — i
3() 7 52 53

respectively. As a matter of fact, the two quadratures are identicalfo® for all weights
but, lest a conjecture starts to form by this stage in a reader’s mind, Gauss—Legendre nodes
lead to different quadratures for= 3.

5. Lie-group methodsrevisited

Our point of departure is the Magnus expansion (2.5) of the modified equation (2.3) and we
consider two options. Firstly, we truncate all but the first integral. This results in a method
of ‘classical’ order four: although there is an order reduction once we form asymptotic
estimates forp > 1, we still need to discretize the integral consistently with the order
of the method. To this end, we may use the Filon—-Lobatto quadraturevwith3 from

the last section. Note that although its implementation nominally requires three function
ewvaluations, in reality just two are needed per time step, since we can reuse a single
function evaluation ofg from the previous step: this phenomenon, known as ‘FSAL
(First Same As Last) is familiar from the practice of Runge—Kutta methods for ordinary
differential equations (Hairegt al, 1993). Moreover, letting = % means that the mid-
point calculation ofg can be used both for modification of the original equation and for
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quadrature: actually, in that casfe{%h) = 0. Recall further from (2.6) that we need to
compute three integrals: with little additional algebra we obtain

2 2

h h 0 2 h 0 2
/ B(x)dx = —/ f (X) coswxdx @ +/ f (x)dx @
0 0 0 0 -3 0

1
2
h % 0
+/ f (X) sinwxdx .
0 o -1
Letting
b® _ 3+cosy 4siny b — 1 siny _ 41 —cos))
1 = 2 3 1 = 2 3
@ 43/1 +cosy)  8siny ) 4siny  8(1— cosyr)
Y = — s by =-—3 S
b® _ siny n 1+ 3cosy  4siny h® _ cosyr . 3siny  4(1— cosy)
N Y2 ys s v Y2 v

wherey = hw, we have
h
/ f (x) coswdx ~ h[b{" f (0) + by” f (2h) + b £ (hy],
0
h
/ f (x) sinwdx ~ h{b{? f (0) + bP f (3h) + b f ()],
0

h
/ f()dx ~ h[F F(0) + 5f(3h) + 5 f(h)],
0

all fourth-order quadratures.
A possible alternative to the above is to exploit the fact thabnishes al%h. Letting
f(x) = f(x)/(x — 3h), weneed to evaluate

h 1 1 1
h / f(x){ coswx tw(x/hydx = h? f f(hx) { coswhx } w(x)dx,
0 sinwX 0 sinwhx

wherew(x) = X — % a signedweight function. In general, the analysis of Section 3 is
not valid for signed weights, since the classical theory of Gauss—Christoffel quadrature
loses its validity within this setting (Gautschi, 1981). In our particular case, however, it
is possible to derive a fourth-order Lobatto method of this kind with just two quadrature
points,c; = 0 andcy = 1. Upon close examination, however, this turns out to be precisely
the Lobatto method from the previous paragraph.

A sixth-order modified Magnus scheme reads, prior to quadratue, =
he?Myy where

h h X1
2(h) = / B(x)dx — 3 f f [B(X2), B(x1)]dxzdX1.
0 0Jo
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Both above integrals need be approximated to order six. Insofar as the first integral is
concerned, we use again a Lobatto scheme, this timewsthd, namely

1 5 1 5
¢ =0, Cz=§—1£0, ngi—i-‘l/—;, cs=1.

In the case wherf (%h) = 0, however, we can use at exactly the same price in function
evaluations an eighth-order Lobatto scheme wita 5 and

¢, =0, czz%—*{—zzl, C3 =3, c4=%+1£41, cs = 1. (5.1)
This is the course of action that we adopt in the sequel. The (straightforward) derivation of
the weights is of little interest.

The calculation of the double integral is more of a challenge, yet it can be also
addressed by our techniques. We commence by deducing from (2.6) that

/O " 1B, B = £1.006)[WL1. Wol + ¢—1.101) W1, Wi + f0.1x1) Wb, Wl
where

£_10(%) = /0 o0 f(y)le Y — ey,

£11(%) = /0 "0 F ()00 — de0dy = 2 /0 " 10 (y) sinw (x — y)dy.

20,1(X) = /0 f(x) f(y)[€X — €Y]dy.

Moreover,

[W_1, Wo] = iUz — Uy, [W_1, Wi] = —iUy, [Wo, W1] = iUz + Uy,

2 1
U=| O @ v=| O
1= 1 0 s 2= 0 1 .
2w @2

After some algebra, everything simplifies to

where

h pxq h rxq
/0/0 [B(x2), B(Xl)]dxzdxl=2/0/(; f(x0) T (x2) K1(X1, X2)dx20x1U1

h X1
+2// f(x0) f (x2) Ka(Xg, X2)dx20x1U2,  (5.2)
0 Jo

where
K1(X,y) = sinw(X — y) — sinwx + sinwy, K2(X, y) = COSwX — COSwy.

Endeavouring to approximate the two integrals in (5.2), we follow the same rules of
engagement as in Iserles al. (2000): thus, it is permitted to reuse the valuesfathat
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have been already evaluated for the quadrature of the univariate integral, and nothing else.
Assume for simplicity that = % hencef (%h) = 0 and the functionf (x) = f(x)/(x —

%h) is smooth. The quadratures in the sequel use only function values at the endpoints
and, implicitly, rely onf(%h) = 0: the information from remaining two nodes in (5.1) is
discarded. We commence from the first integral. Letting

_ _ h X1 _ _
In[f1, f2l = /0 /o (x1 — 3h)(x2 — 3h) fr(x1) fa(x2) K1 (X1, X2)dxo0Xy,
it is possible to prove, e.g. by symbolic computation, that
I f1, f2] = — 3 f (9O + 0O (hf),

therefore nominally the integral can be discarded, being consistent with order six. Note,
however, that the& (h8) term depends upod@, hence the estimate makes sense only for
fixed w andh — 0. More careful analysis, taking on board the effect of high oscillation,
demonstrates that, onge= hw becomes large, the asymptotic expansion is

4
Inl f1, f2] ~ ﬁm +0 (h5w—1, h4w‘2) :

v

The prudent course of action, thus, is to retain the integral and replace it by quadrature. To
this end, we seek coefficienss 1, 81,2, B2,1 andBz 2 so that

2 2
Qnl f1, f2] = 2h? Z Z Bk f(@h) fi (G h), (5.3)

k=11=1

whereé; = 0, & = 1, matchedn[ f1, f2] for (@) f1(x) = f2(x) = x — 3; (b) f2(X) =
X(X — 3), fa0) = x — 3 (€) 1) = x — 3, 200 = x(x — 3); and (d) f1(x) =
fo(X) = x(x — %). As before, the coefficientgy | are allowed to depend ofi = hw.
Once the weights are known, we sit = f, = f. Our construction ensures that the
quadrature error i§ (hg): this, incidentally, is consistent with our decision to use- 5
in the univariate quadrature.

We have four linear algebraic equations in four unknowns, whose solutions are

s 1 gsing 2+ 3cosy 13siny 240+ 96cosy 336 simy
Br1= EE b 1/j2 - 1/j3 + w4 + ,#5 - W6 ’
5 11 qsiny 1—30 + %1 cosyr . 35sinyr n 168(1 +cosy)  336siny
1,2 = 30, B8 - - 9
30 v 6 wZ 1//3 w4 wS 1//6
Z+tcosy ,sing 2+ Zcosy 5lsing 152+ 184cos)
Par= " 27y2 V) + e + w5
336 simyr
/AN
4 Z 4+ tcosy gsiny 3+ Fcosy  93siny
2,2 = -5 -
v 2 g2 y3 4

80+ 256 cos)y  336simy
+ 5 - e
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Substitution into (5.3) and lettingy = fo = f results in an order-eight quadrature, with
error terms

6 "
1O 10 +0 (%) ang £ OTO f((’;f ©

for h — 0, » fixed, andyy — oo respectively. Note thagy(¥) = O (¥ 1) and
U =0 (tpfl) imply that the quadrature error for the double integral indeed decays like
@) (w—z), consistently with the error for the first, univariate integral.

Next, we deal with the second integral. Note that it can be easily confirmed, e.g. with a
symbolic calculator, that its leading terms are

o) (h71ﬂ71, th*Z)

=0?h®f(0g0)  and L f (0)g’(0)h5$i%w

forh — 0, w fixed, andyr — oo respectively. Replacing 1 with K> we obtain in (5.3)
the coefficients

—3+5C0Sy  ,siny 86— 6cosy | 80siny 3201 — cosy)

ﬁl,l = wz 3 wg w4 WS 1'//6 s
I(1—cosy) ,ysiny  341—cosy) 160siny 3201 — cosy)
Pr2=~— 1'/,2 -3 w?, + 1//4 + l//5 o wG ’
.siny  3(1—cosy) ,;siny 341 —cosy) 160 siny
,32.1=g v - 1/,2 -3 wS + w4 + 1/,5
320(1 — cosy)
s
(siny  E—3cosy  siny  6—86cosy
Pa2=73 v Y2 TS + Y4
240siny 3201 — cosy)
+ 5 — A .

The quadrature error fdr — 0 and fixedw is
— 5270?hB £ (0) £7(0) + O (hg) ., h-o

and the asymptotic error

!/ 4 1+ - -
— LK1 (0)%%+O<h8w 2h'y0), v o

In tandem withUy, this yields error attenuation a® (w*“). Note that the order of this
quadrature is one less than that for the univariate integral and the first double integral. Of
course, we could have increased the order by using additionally the function evaluations at

(% + *{—Z})h from (5.1), but this is hardly necessary, given that the order of modified Magnus
with exact integrals is six, and also since the decay of the error for {argebound to be
almost instantaneous, due to the asymptotic error attenuation.

This approach should lend itself to quadrature for higher-order modified Magnus
methods, incorporating more integrals. General theory of such multivariate quadrature with
highly-oscillatory kernels is a matter for a different paper, hopefully by a different author.
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