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In this paper we set out to understand Filon-type quadrature of highly-oscillating integrals of the form∫ 1
0 f (x)eiωg(x)dx , where g is a real-valued function andω � 1. Employing ad hoc analysis, as

well as perturbation theory, we demonstrate that for most functionsg of interest the moments behave
asymptotically according to a specific model that allows for an optimal choice of quadrature nodes. Filon-
type methods that employ such quadrature nodes exhibit significantly faster decay of the error for high
frequenciesω. Perhaps counterintuitively, as long as optimal quadrature nodes are used, rapid oscillation
leads to significantly more precise and more affordable quadrature.
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1. Introduction

Highly-oscillating integrals occur in a wide range of practical problems, ranging from electromagnetics
and nonlinear optics to fluid dynamics, plasma transport, computerized tomography, celestial mechanics,
computation of Schr̈odinger spectra, Bose–Einstein condensates, etc. Moreover, they feature extensively
in some new methods for the discretization of highly-oscillatory differential equations (Iserles, 2003).
Their quadrature is thus a numerical challenge of abiding importance and relevance.

A received numerical ‘wisdom’ and the lore of application areas is that the computation of highly-
oscillatory integrals is an inherently difficult task and that, in general, high oscillation is inimical to
computation. In Iserles (2004), we set out to promote an opposing point of view, namely that, once the
right quadrature methods are employed, high oscillation is a most welcome phenomenon that renders
affordable and precise computation much easier. In the present paper, we extend this paradigm to
considerably more general, irregular oscillators.

To set the stage for our analysis, we need to review very briefly the main result of Iserles (2004).
That paper concerns itself with the computation of the Fourier transform

I [ f ] =
∫ 1

0
f (x)eiωx dx, (1.1)

whereω � 1 and the functionf is C∞[0, 1]. The familiarinterpolatory quadrature is

QGC[ f ] =
ν∑

l=1

bl f (cl)e
iωcl ,
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where 0� c1 < c2 < · · · < cν � 1 and the weights are selected so thatQGC[xke−iωx ] = I [xke−iωx ] for
k = 0, 1, . . . , p − 1 and someν � p � 2ν (Davis & Rabinowitz, 1984; Gautschi, 1981). Equivalently,
the integrandf (x)eiωx is replaced by an interpolating polynomial at the nodesc1, c2, . . . , cν , which is
integrated exactly. The most useful interpolatory method is the familiar Gaussian quadrature,p = 2ν,
but it isbeneficial to treat the more general case in the present setting. As demonstrated in Iserles (2004),
interpolatory quadrature is of little use in the presence of high oscillation, indeed

QGC[ f ] − I [ f ] ∼ O(1), ω → ∞.

In this narrow sense, high oscillation is indeed an enemy of computation. Yet, there are numerical
methods that deliver incomparably better results and that thrive on high oscillation! None of these
methods is particularly new, the main one dates back to 1928 but, unfortunately, with the single exception
of Levin (1997), their analysis has either received practically no attention or been performed in an
unsatisfactory manner. As a consequence, the wider computational community is broadly unaware of
their efficacy and remains wedded to a view that deems highly oscillatory problems intractable or, at
best, difficult. Iserles (2004) focuses on three algorithms: the Zamfirescu method (Zamfirescu, 1963),
the Levin method (Levin, 1982, 1996) and, in particular, the Filon method (Filon, 1928; Flinn, 1960).
They all share the same behaviour when applied to the oscillator (1.1). Specifically,

Q[ f ] − I [ f ] ∼ O(ω−1), ω → ∞
for general nodesc1 < c2 < · · · < cν , while the choicec1 = 0, cν = 1 results in an improved behaviour,

Q[ f ] − I [ f ] ∼ O(ω−2), ω → ∞.

Here, Q[ f ] corresponds to one of the three quadrature methods: Filon, Levin or Zamfirescu. In other
words, for a judicious choice of quadrature points, the error decays in inverse proportion to the square
of the frequency.

The purpose of the present paper is to delve deeper into highly-oscillatory quadrature and analyse
the behaviour of the Filon quadrature forirregular oscillators of the form

Ig[ f ] =
∫ 1

0
f (x)eiωg(x)dx, (1.2)

whereg is a real, non-zero, sufficiently smooth function. In the present context, a (generalized) Filon
method is

QF[ f ] =
ν∑

l=1

bl(ω) f (cl), (1.3)

where the weightsbl(ω) are chosen so thatQF[xk] = Ig[xk], k = 0, 1, . . . , ν − 1. The latter conditions
yield a set ofν linear algebraic equations with a non-singular Vandermonde matrix, hence suchbl(ω)s
always exist. An alternative interpretation of (1.3) is that we replace the functionf (rather than the
entire integrand,̀a la interpolatory quadrature) by an interpolating polynomial, which we subsequently
integrate to produceQF[ f ].

The key observation in Iserles (2004), fundamental to the analysis of Filon’s method, is that in the
Fourier case (1.1) (corresponding to (1.2) withg(x) = x), themoments of the functionalIx (i.e. Ig with
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g(x) = x) are asymptotically

µm(ω) = Ix [xm] ∼
{

(iω)−1(eiω − 1) + O(ω−2), m = 0,

(iω)−1eiω + O(ω−2), m � 1,

= 1meiω − 0m

iω
+ O(ω−2), ω → ∞.

(1.4)

In other words, the dependence of the leading term in the asymptotic expansion uponm is through the
powers 0m and 1m . Intuitively speaking, this is precisely the reason why choosingc1 = 0 andcν = 1 as
quadrature nodes eliminates the leading expansion term from the errorQF[ f ] − Ix [ f ].

Why are the moments ofIx of the asymptotic form (1.4)? Is this behaviour shared by other oscillators
Ig?And, if not, what is an appropriate generalization of (1.4), valid for a wider range of functionsg yet
amenable to analysis and to exploitation in enhancing the behaviour of the Filon quadrature (1.3)? These
are the issues at the centre of the present paper.

In Section 2, we replace (1.4) with a more generalgeometric model

µm(ω) ∼
r∑

j=1

v j (ω)dm
j ω−α j + O(ω−β), ω → ∞, (1.5)

wherev1, v2, . . . , vr ∈ L∞[0, ∞) are typically periodic functions and 0< α1, α2, . . . , αr < β.
We prove that, given an appropriate choice of quadrature points, leading terms are annihilated in the
asymptotic expansion of the errorQ[ f ] − Ig[ f ]. Section 3 explores the case wheng′ �= 0 in [0, 1].
Using elementary means, we prove thatIg is consistent with the geometric model (1.5) withr = 2,
d1 = 0, d2 = 1. This extends (1.4) in a straightforward manner.

Exploring the case wheng has stationary points in(0, 1) requires the combination of the analysis of
Section 2, which caters for the endpoints, with the method of stationary phase (Hinch, 1991; Olver, 1974;
Stein, 1993). This is the theme of Section 4, where we demonstrate that, as long asg′(0), g′(1) �= 0, the
functionalIg is always consistent with the geometric model (1.5).

Section 5 is devoted to a raft of additional issues arising in this paper. First, we consider functionsg
that fall outside the scope of our analysis. Often our results can be recovered, even wheng is not smooth.
However, ifg′ vanishes at an endpoint, then our analysis breaks down: in that case, (1.5) is no longer true
and the performance of the Filon method (1.3) cannot be enhanced by a judicious choice of quadrature
points. Second, returning to the framework of Sections 2–4, we debate how to exploit the freedom left
in the choice of nodes, once some of them have been used to improve the error asymptotics. Third, we
present a method whose weights are computed directly from our knowledge of the asymptotic behaviour
of the moments and discuss its relative advantagesvis-à-vis the Filon quadrature. Finally, we explore a
generalization of (1.2) to integrals with large parameters, which need not be highly oscillatory.

This is a second in a sequence of papers that address the Filon method and its generalizations.
Forthcoming papers will be devoted to methods that employ derivatives, as well as to error estimation,
multivariate quadrature and computation of singular integrands.

2. The geometric model

Let g be a real-valued, non-zero function andf a complex-valued function, both smooth. We consider
the linear functionalIg given by (1.2) and denote its moments by

µm(ω) = Ig[xm], m � 0.
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In particular, we are interested in functionsg consistent with thegeometric model (1.5), which we restate
for continuity of exposition,

µm(ω) ∼
r∑

j=1

v j (ω)dm
j ω−α j + O(ω−β), m � 0, ω → ∞. (2.1)

Herev1, v2, . . . , vr ∈ L∞[0, ∞), the pointsd1, d2, . . . , dm ∈ [0, 1] are distinct and

0 < α1, α2, . . . , αr < β,

thereforeO(ω−β) is the tail of the asymptotic expansion. Note that theO(ω−β) term depends onm,
therefore the expansion (2.1) is not uniform form � 0.

THEOREM 1 Let the functiong be consistent with (2.1),ν � r and

d1, d2, . . . , dr ∈ {c1, c2, . . . , cν}.
Then the error of the Filon method (1.3) is asymptotically

E[ f ] = QF[ f ] − Ig[ f ] = O(ω−β), ω → ∞. (2.2)

Proof. We assume that the functionf is analytic: the proof can be easily extended to a non-analytic
f ∈ C∞[0, 1] by a standard density argument. Set

ρm(ω) =
ν∑

l=1

bl(ω)cm
l − µm(ω), m � 0

and note that the construction of the Filon method implies that

ρ0, ρ1, . . . , ρν−1 ≡ 0.

Moreover, recalling thatf is analytic and expandingf into Taylor series,

f (x) =
∞∑

m=0

fm

m! xm, x ∈ [0, 1],

we observe that

E[ f ] =
∞∑

m=ν

fm

m! ρm(ω). (2.3)

Letting

γ (t) =
ν∏

l=1

(t − cl) =
ν∑

k=0

γk tk,

we multiply (2.1) (withm replaced bym + k) by γk and sum up fork = 0, 1, . . . , ν. The outcome is

ν∑
k=0

γkµm+k(ω) ∼
r∑

j=1

γ (d j )v j (ω)ω−α j dm
j + O(ω−β), m � 0. (2.4)
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Likewise, multiplyingρm+k by γk and summing up, we have

ν∑
k=0

γkµm+k(ω) =
ν∑

l=1

bl(ω)γ (cl) −
ν∑

k=0

γkρm+k(ω)

and, sinceγ (cl) = 0 andd1, . . . , dr ∈ {c1, . . . , cν}, substitution in (2.4) yields

ν∑
k=0

γkρm+k(ω) ∼ O(ω−β), ω → ∞. (2.5)

Considering (2.5) as a recurrence relation with the initial conditionsρ0, . . . , ρν−1 ≡ 0 readily affirms
thatρm(ω) ∼ O(mω−β), m � 0, ω → ∞. Substitution in (2.3) and the analyticity off , hence of f ′,
thus yieldE[ f ] ∼ O(ω−β) and complete the proof. �

The condition thateach dl is a quadrature node is essential to the theorem. For suppose that

J = { j : d j �∈ {c1, c2, . . . , cν}} �= ∅.

Then, in place of (2.5), we have

ν∑
k=0

γkρm+k(ω) ∼ −
∑
j∈J

γ (d j )v j (ω)ω−α j dm
j + O(ω−β), ω → ∞.

Note, however, that for anyd such thatγ (d) �= 0, a solution of the linear recurrence

ν∑
k=0

γk ym+k = vdm, m � 0,

is ym = vdm/γ (d), m � 0. Therefore the general solution of the asymptotic recurrence is

ρm(ω) ∼
ν∑

l=1

σl(ω)cm
l −

∑
j∈J

v j (ω)ω−α j dm
j + O(ω−β), m � 0, ω → ∞,

whereσ1, σ2, . . . , σν are the solutions of a non-singular Vandermonde system forcing compliance with
the initial conditionsρ0, . . . , ρν−1 ≡ 0. Therefore,

ρm(ω) ∼ O(ω−α̂), ω → ∞,

whereα̂ = min j∈J α j < β.
The regular oscillatorg(x) = x is an obvious example of compliance with the geometric model

(2.1), with

r = 2, d1 = 0, d2 = 1, v1(ω) ≡ i, v2(ω) = −ieiω.

A far less trivial example is the quadratic functiong(x) = 1
2(x − 1

2)2. The first few moments can be
computed by a symbolic package and the general asymptotic form ofµm follows from the recurrence
relation

µm+1(ω) − 1

2
µm(ω) + m

iω
µm−1(ω) = e

1
8 iω

iω
, m � 1,
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FIG. 1. The absolute value of the error in a Filon quadrature of
∫ 1
0 ex e

1
2 iω(x− 1

2 )2dx , multiplied by ω3/2, for ν = 3, c1 = 0,

c2 = 1
2, c3 = 1 and different values ofω.

which can be easily obtained by integration by parts from

µm+1(ω) − 1
2µm(ω) = 1

iω

∫ 1

0
xm d

dx
e

1
2 iω(x− 1

2 )2
dx .

Thus, the moments are

µ0(ω) = i erf(1
4

√−2iω)

√
−2π i

ω
,

µm(ω) ∼ 1

2m
i erf(1

4

√−2iω)

√
−2π i

ω
+ 2m−1 − 1

2m−2

e
1
8 iω

iω
+ O(ω−3/2), m � 1, ω → ∞.

On the face of it, the geometric model is satisfied withr = 1 andd1 = 1
2, therefore Filon’s quadrature

(with a node at12) produces anO(ω−1) error. This, however, is much too pessimistic, as transpires with
some extra effort. Since

erf z ∼ 1 − e−z2

√
π z

, |z| → ∞, | argz| <
3π

4

(Abramowitz & Stegun, 1964, p. 298), we can derive the next term in the asymptotic expansion and
observe that it is also consistent with the geometric model (2.1),

µm(ω) ∼ i

2m

√
−2iπ

ω
− 2ie

1
8 iω

ω
(0m + 1m) + O(ω−3/2), m � 0, ω → ∞.

Therefore,r = 3,

d1 = 0, d2 = 1
2, d3 = 1, v1(ω) = −2ie

1
8 iω

ω
, v2(ω) = i

√
−2iπ

ω
, v3(ω) = −2ie

1
8 iω

ω
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and the Filon quadrature withν � 3, with nodes including 0, 1
2, 1, has an asymptotic error ofO(ω−3/2).

This is confirmed in Fig. 1, where we have integrated

I 1
2 (x− 1

2 )2[ex ] = −
√

− π

2iω
e(ω+i)/(2ω)

[
erf

(√
2(2 + iω)

4
√−iω

)
+ erf

(√
2(−2 + iω)

4
√−iω

)]

∼
√

−2πe

iω
+ 2i

ω
(e− 1)e

1
8 iω + O(ω−3/2), ω → ∞,

using a Filon quadrature withν = 3, d1 = 0, d2 = 1
2 and d3 = 1. Note as an interesting aside

that, although the integrand oscillates rapidly, the leading asymptotic term of the exact integral is
non-oscillatory. This, of course, does not mean that classical quadrature methods, e.g. interpolatory
quadrature, are likely to be of any use, since their error is expressible as a scaled derivative of the
integrand, which is large forω � 1.

On the face of it, this is a highly non-trivial example that requires careful ‘massaging’ and ultimately
exhibits a degree of serendipity. As a matter of fact, once the general theory is worked out, as it will be
in the next two sections, the correct asymptotic behaviour of the moments follows in a fully transparent
manner.

Before we embark on our analysis, it is instructive to indicate what can we expect. A crucial insight
into the asymptotic behaviour ofIg[ f ] is provided by a classical result from harmonic analysis which
should have been perhaps more familiar to numerical analysts and whose proof can be found, for
example, in Stein (1993, p. 332).

LEMMA 1 (van der Corput) Suppose thatg is a real-valued smooth function in[0, 1] and that
|g(s)(x)| � 1 for x ∈ (0, 1) and somes � 1. Then∣∣∣∣∣

∫ 1

0
eiωg(x)dx

∣∣∣∣∣ � ξsω
−1/s, ω > 0, (2.6)

holds for

1. s = 1 and monotoneg′; or
2. s � 2.

Moreover, the optimal boundξs is independent ofg andω.

An immediate generalization of the lemma replaces the condition|g(s)(x)| � 1, x ∈ (0, 1), by
g(s)(x) �= 0, x ∈ [0, 1]: writing

g(x) = σ g̃(x), where σ = min
0�x�1

|g(s)(x)|

and rescalingω, weobtain, in place of (2.6), the bound∣∣∣∣∣
∫ 1

0
eiωg(x)dx

∣∣∣∣∣ � ξs(σω)−1/s, ω > 0. (2.7)

The inequality (2.6) can be employed to bound|Ig[ f ]| for any smooth functionf (Stein, 1993, p. 334)
and this can be recast using (2.7) in place of (2.6).
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COROLLARY 1 Let both f andg be smooth, real-valued functions in[0, 1] and assume thatg(s)(x) �= 0,
x ∈ [0, 1], for somes � 1. If s = 1, assume, in addition, thatg′ is monotone. Then

|Ig[ f ]| =
∣∣∣∣∣
∫ 1

0
f (x)eiωg(x)dx

∣∣∣∣∣ � ξs(σω)−1/s

[
f (1) +

∫ 1

0
| f ′(x)|dx

]
. (2.8)

The inequality (2.8) indicates that the rate of decay ofIg[ f ] is governed byO(ω−1/s). Although
not cast in a language of the geometric model, (2.8) can be used to derive many of the results in the
sequel. We do not follow this route, since an alternative approach leads to substantially stronger results.
Yet, the importance of the van der Corput lemma and its corollary is in indicating that, unlessg is
strictly monotone in[0, 1], the leading term in the asymptotic expansion is governed by the nature of its
stationary points. First, however, we discuss the ‘plain vanilla’ case of strictly monotoneg.

3. The case g′(x) �= 0, x ∈ [0, 1]
Our point of departure is a result which, while trivial, plays a fundamental role in our analysis.

LEMMA 2 Suppose thatg is a real-valued, smooth function in[0, 1] and thatg′(x) �= 0, x ∈ [0, 1].
Then

Ig[ f ] ∼ 1

iω

[
eiωg(1) f (1)

g′(1)
− eiωg(0) f (0)

g′(0)

]
+ O(ω−2), ω → ∞. (3.1)

Proof. Sinceg′ �= 0, we writeIg in the form

Ig[ f ] = 1

iω

∫ 1

0

f (x)

g′(x)

d

dx
eiωg(x)dx

and integrate by parts. Therefore

Ig[ f ] = 1

iω

[
eiωg(1) f (1)

g′(1)
− eiωg(0) f (0)

g′(0)

]
− 1

iω
Ig

[
d

dx

(
f (x)

g(x)

)]
.

Since it follows from our analysis thatIg[ f ] ∼ O(ω−1) and ( f/g′)′ is, like f , smooth in[0, 1], we
deduce that, likewise,I [( f/g′)′] ∼ O(ω−1). Substituting this estimate in the last displayed formula
confirms that (3.1) is true. �

Recall our aim: to explore the satisfaction of the geometric model (2.1) by the moments ofIg.
Straightforward application of (3.1) demonstrates that this is the case, provided thatg is strictly
monotone in[0, 1].
THEOREM 2 Let us suppose thatg′ is non-zero in[0, 1]. Then

µm(ω) ∼ 1

iω

[
1m eiωg(1)

g′(1)
− 0m eiωg(0)

g′(0)

]
+ O(ω−2), m � 0, ω > 0. (3.2)

(As before, theO(ω−2) term depends uponm.)
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We deduce that, as long asg′ �= 0, the moments are consistent with the geometric model (2.1) with
r = 2 and

d1 = 0, d2 = 1, v1(ω) = eiωg(0)

ig′(0)
, v2(ω) = eiωg(1)

ig′(1)
.

An example of (3.2), already familiar from (1.4), is the regular oscillatorg(x) = x , the theme of Iserles
(2004). Less trivial isg(x) = log(1 + x), whereby

µ0(ω) = 21+iω − 1

1 + iω
∼ 21+iω − 1

iω
+ O(ω−2),

µ1(ω) = iω21+iω + 1

(1 + iω)(2 + iω)
∼ 21+iω

iω
+ O(ω−2),

µ2(ω) = (2 + i − ω2)21+iω − 2

(1 + iω)(2 + iω)(3 + iω)
∼ 21+iω

iω
+ O(ω−2)

is consistent with (3.2).
Although many results of this section can be derived by the alternative route of the van der Corput

Lemma 1, our approach is more general. Thus, using Corollary 1, we could have proved (3.2) (with
O(ω−2) replaced by the weakerO(ω−1/s)) for strictly monotoneg such thatg(s) �= 0 for somes � 2.
In our setting, the latter condition is not required.

4. Stationary points in (0, 1)

In the last section, we have seen how integration by parts can be used to bring strictly monotoneg
within the realm of the geometric model (2.1). We presently turn our attention to a functiong that
possesses stationary points in the open interval(0, 1). The main additional tool that we bring to bear
on the problem isthe method of stationary phase. This method, whose progeny can be traced to Lord
Kelvin (Olver, 1974), is also sometimes known asthe method of critical points.

LEMMA 3 (The method of stationary phase) Suppose thatδ � 2 and

g(d) = g′(d) = · · · = g(δ−1)(d) = 0, g(δ)(d) �= 0 (4.1)

for somed ∈ (0, 1). In addition we stipulate thatg′(x) �= 0 for all x ∈ (0, 1) \ {d}. Then

Ig[ f ] =
∫ 1

0
f (x)eiωg(x)dx ∼ ω−1/δ

∞∑
n=0

an[ f ]ω−n/δ, ω → ∞, (4.2)

for every f with sufficiently small compact support in the neighbourhood ofd.

Rigourous proof of Lemma 3 is given in Stein (1993, p. 334). The following points highlight a
number of relevant aspects of the lemma.

1. Since

eiωg(x) = eiωg(d)eiω[g(x)−g(d)],

it trivially follows that we can drop the requirementg(d) = 0 in (4.1), while multiplying the
coefficientsan[ f ] in (4.2) by eiωg(d).
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2. The requirement that the support off is localized in a neighbourhood of the stationary point
is typically omitted in most expositions of the method of stationary phase. Sometimes this is
justified, e.g. when the integration is carried out in(−∞, ∞), rather than[0, 1] (Hinch, 1991;
Olver, 1974): the localization is the price we need to pay for imposing finite endpoints! But often
it is an unwelcome consequence of physical ‘intuition’ laced with careless hand-waving. Be as
it may, compact support and the setting in Stein (1993) provide the correct framework for our
analysis and for the eventual treatment of the case of several stationary points in(0, 1).

3. The linear operatorsan[ f ] can often be derived explicitly for some values ofn. In particular, in
the important special caseδ = 2, we have

a0[ f ] = eiωg(d)

√
− 2π

ig′′(d)
f (d), (4.3)

while the method of proof in Stein (1993) demonstrates that, foreven δ � 2, it is true thatan[ f ] ≡
0 for all oddn � 1. In that case, (4.2) reads as

Ig[ f ] ∼ ω−1/δ
∞∑

n=0

a2n[ f ]ω−2n/δ, ω → ∞.

4. Another consequence of the method of proof in Stein (1993) is that, regardless of the value of
δ, a0[ f ] = ã0(ω) f (d), whereã0 is independent off : for example, forδ = 2, (4.3) shows that
ã0(ω) = eiωg(d)

√−2π/[ig′′(d)]. This fact, which can be ‘proved’ in a hand-waving fashion by
observing thata0[ f ] is a linear operator, is fundamental in the proof of Theorem 3 in the sequel.

While Theorem 2 extracts the contribution to the moments accruing from the endpoints, the method
of stationary phase captures the contribution of stationary points in(0, 1). In greater generality, let us
extend the framework of Lemma 3 and assume the existence ofk � 1 distinct pointsd̃1, d̃2, . . . , d̃k ∈
(0, 1) such that

g′(d̃ j ) = g′′(d̃ j ) = · · · = g(δ j −1)(d̃ j ) = 0, g(δ j )(d̃ j ) �= 0, j = 1, 2, . . . , k. (4.4)

Furthermore,g′(x) �= 0 elsewhere in[0, 1].
Given f ∈ C∞[0, 1], which need not have compact support, we partition it into

f (x) =
k∑

j=0

f j (x).

Here f j (x) = f (x)θ
ε,d̃ j

(x), j = 1, 2, . . . , k and f0(x) = f (x) − ∑k
j=1 f j (x), whereθε,d ∈ C∞[0, 1]

is abump function: θε,d(x) ≡ 1 for |x − d| < 1
2ε andθε,d(x) ≡ 0, |x − d| > ε (Hirsch, 1976, p. 41).

Note thus that eachf j for j = 1, 2, . . . , k is supported by anε-neighbourhood of̃d j . We chooseε > 0
so that Lemma 3 and the asymptotic expansion (4.2) are valid at alld̃ j s,

Ig[ f j ] ∼ ω−1/δ j

∞∑
n=0

an[ f j ]ω−n/δ j , j = 1, 2, . . . , k, ω → ∞.

Moreover,Ig[ f0] can be estimated using Lemma 3. The intuitive reason is clear, sincef0 is identically
zero in a 1

2ε-neighbourhood of each stationary point. A more rigourous argument is as follows. The
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support of f0 can be partitioned intok + 1 disjoint intervals whereg is strictly monotone, thus within
the conditions of Lemma 2. Therefore the expansion

Ig[ f0] ∼ 1

iω

k+1∑
i=1

[
eiωg(βi )

g′(βi )
f0(βi ) − eiωg(αi )

g′(αi )
f0(αi )

]
+ O(ω−2)

= 1

iω

[
eiωg(1)

g′(1)
f (1) − eiωg(0)

g′(0)
f (0)

]
+ O(ω−2), ω → ∞

follows from Lemma 2, the support off0 being
⋃k+1

i=1(αi , βi ). Since Ig[ f ] = ∑k
j=0 Ig[ f j ], letting

f (x) = xm for m � 0 immediately confirms consistency with the geometric model (2.1). We have thus
proved the following result on the asymptotic behaviour of the moments ofg.

THEOREM 3 Suppose that (4.4) holds and thatg′ �= 0 elsewhere in[0, 1]. Then the geometric model
(2.1) is satisfied forr = k + 2 and

d1 = 0, d j = d̃ j−1, j = 2, 3, . . . , r − 1, dr = 1.

Specifically,α1 = αr = 1, α j = 1/δ j−1, j = 2, 3, . . . , r − 1 and

β = min

{
2, 2 min

δ j odd

1

δ j
, 3 min

δ j even

1

δ j

}
. (4.5)

The proof of the theorem follows at once from our discussion. In particular,

v1(ω) = −eiωg(0)

ig′(0)
, vr (ω) = eiωg(1)

ig′(1)

and note the different treatment of odd and evenδ j , motivated by

Ig[ f ] ∼ a0[ f ]ω−1/δ + O(ω−2/δ), ω → ∞
or

Ig[ f ] ∼ a0[ f ]ω−1/δ + O(ω−3/δ), ω → ∞
in (4.2), depending on whetherδ is odd or even, respectively. Note further that, forδ j−1 = 2, (4.3)
implies that

v j (ω) = eiωg(d)

√
− 2π

ig′′(d j )
.

COROLLARY 2 Suppose thatg is within the conditions of Theorem 3 and thatIg is approximated by
Filon’s quadrature withν � k + 2 and

0, d̃1, d̃2, . . . , d̃k, 1 ∈ {c1, c2, . . . , cν}.
Then the quadrature error is asymptoticallyO(ω−β), whereβ is given by (4.5).
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Wehave already seen in Section 2 one example ofg with a stationary point in(0, 1), namelyg(x) =
1
2(x − 1

2)2. Another example isg(x) = x(1− x), again with a single stationary point atd̃1 = 1
2. We now

have

µm(ω) ∼ − 1

2m

i
√

π ie
1
4 iωerf 1

2

√
iω

ω1/2
− 1m − 2(1

2)m + 0m

iω
+ O(ω−3/2), m � 0, ω → ∞.

On the face of things, this can not be immediately reconciled with (2.1). Further ‘massage’, replacing
the error function by its asymptotic approximation from Abramowitz & Stegun (1964, p. 298), yields

µm(ω) ∼ − 1

2m

i
√

iπe
1
4 iω

ω1/2
− 1m + 0m

iω
+ O(ω−3/2), m � 0, ω → ∞,

in conformity with (2.1).
A more challenging example isg(x) = (x − 1

2)4, wherebyδ = 4. The first few moments are

µ0(ω) = π
√

2

2Γ (3
4)(−iω)1/4

− Γ (1
4, − 1

16iω)

2(−iω)1/4
,

µ1(ω) = π
√

2

4Γ (3
4)(−iω)1/4

− Γ (1
4, − 1

16iω)

4(−iω)1/4
,

µ2(ω) = π
√

2

8Γ (3
4)(−iω)1/4

− Γ (1
4, − 1

16iω)

8(−iω)1/4
+ Γ (3

4)

2(−iω)3/4
− Γ (3

4, − 1
16iω)

2(−iω)3/4
,

µ3(ω) = π
√

2

16Γ (3
4)(−iω)1/4

− Γ (1
4, − 1

16iω)

16(−iω)1/4
+ 3Γ (3

4)

4(−iω)3/4
− 3Γ (3

4, − 1
16iω)

4(−iω)3/4

and so on. This can be streamlined by replacing the incomplete Gamma function by its asymptotic
expansion,

Γ (a, z) ∼ za−1e−z[1 + O(z−1)], |z| → ∞, | argz| � 3π
2

(Abramowitz & Stegun, 1964, p. 263). The outcome is

µ0(ω) ∼ π
√

2

2Γ (3
4)(−iω)1/4

− 4ie
1
16iω

ω
+ O(ω−5/4),

µ1(ω) ∼ 1

2

π
√

2

2Γ (3
4)(−iω)1/4

− 2ie
1
16iω

ω
+ O(ω−5/4),

µ2(ω) ∼ 1

22

π
√

2

2Γ (3
4)(−iω)1/4

+ 1

2

Γ (3
4)

(−iω)3/4
− ie

1
16iω

ω
+ O(ω−5/4),

µ3(ω) ∼ 1

23

π
√

2

2Γ (3
4)(−iω)1/4

+ 3

4

Γ (3
4)

(−iω)3/4
− ie

1
16iω

2ω
+ O(ω−5/4).
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Two observations are in order. First, sinceδ is even, theO(ω−1/2) term is nil but this is not the case with
theO(ω−1) term, which originates in the endpoints. Second, although formally (2.1) is satisfied with
r = 3, it makes little sense to use endpoints as Filon quadrature nodes because theO(ω−3/4) error term
cannot be eliminated by our approach, regardless of the choice of quadrature nodes, and it dominates
any savings that might accrue by incorporating the endpoints.

Our last example demonstrates that the presence of stationary pointsoutside [0, 1] does not interfere
with the asymptotic expansion of the moments, hence such points can be disregarded. Thus, letg(x) =
x + x2, with g′(−1

2) = 0. In this case,

µ0(ω) = −1

2

√
πe− 1

4 iω

√−iω
[erf(−3

2

√−iω) − erf(−1
2

√−iω)],

µ1(ω) = 1

4

√
πe− 1

4 iω

√−iω
[erf(−3

2

√−iω) − erf(−1
2

√−iω)] + 1

2

e2iω − 1

iω
,

µ2(ω) = −1

8

√
πe− 1

4 iω

√−iω
[erf(−3

2

√−iω) − erf(−1
2

√−iω)] + 1

4

e2iω + 1

iω

+ 1

4

√
πe− 1

4 iω

iω
√−iω

[erf(−3
2

√−iω) − erf(−1
2

√−iω)]

and so on. Seemingly, the leading term decays as(−1
2)m and, somehow, a stationary point outside the

interval leaves an enduring imprint on the moments. This is illusory since, once the error function is
replaced by an asymptotic expansion, the ‘rogue’ terms disappear and it follows that

µm(ω) ∼
1
3e2iω1m − 0m

iω
+ O(ω−2), m � 0,

consistently with (3.2).

5. Further comments

Concluding this paper, we address in this section four issues that arise naturally from our work.

5.1 More general functions g

What is the scope of Theorem 3? An assumption open to an easy challenge is the smoothness ofg.
Clearly, we need to exclude ‘flat’ functionsg, with g′ = 0 on a set of positive measure, since then
µm(ω) = O(1). Yet, some non-smooth functions are apparently consistent with the geometric model
(2.1) and even with Theorem 3. For example, thechapeau function g(x) = 1

2[1 − |2x − 1|] yields

µm(ω) ∼ 1

iω

(
−0m + 1

2m−1
e

1
2 iω − 1m

)
+ O(ω−2), m � 0, ω → ∞,

while

g(x) =
{

−x, x ∈ [0, 1
2),

1 − x, x ∈ [1
2, 1],
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which is not even continuous, results in

µm(ω) ∼ 1

iω

(
0m + 1

2m−1
i sin

ω

2
− 1m

)
+ O(ω−2), m � 0, ω → ∞.

There is, at present, no general theory to cater for non-smooth functionsg but the following argument
goes a long way towards a resolution of this issue. Any piecewise-smooth function can be approximated
arbitrarily close (in an L∞ sense) by acomonotone algebraic polynomial that shares its stationary points
(Beatson & Leviatan, 1983). In other words, there exists a sequence{g j } j�0 of polynomials with the
same stationary points asg and such thatg j → g uniformly in [0, 1]. In this case, Theorem 3 can be
extended by a standard limiting argument.

A more substantive restriction is that no stationary point may occur at an endpoint. This is an essential
requirement since, onceg′ vanishes at an endpoint, the geometric model (2.1) need not be valid. The
simplest example isg(x) = 1

2x2, whence

µ0(ω) = (1 + i)
√

π

2

erf(1
2(1 − i)ω1/2)

ω1/2
∼ − (1 + i)

√
π

2ω1/2
+ e

1
2 iω

iω
+ O(ω−3/2), ω → ∞,

µ1(ω) = e
1
2 iω − 1

iω
,

µm(ω) ∼ e
1
2 iω

iω
+ O(ω−2), m � 2, ω → ∞.

Clearly, geometric progression is valid only subject to the minimalist interpretation ofr = 1,d1 = 0 and
µm(ω) ∼ −(1+ i)

√
π0m/(2ω1/2)+O(ω−1). No choice of nodes in Filon’s quadrature (1.3) annihilates

theO(ω−1) component in the error term.

5.2 The behaviour for moderate ω > 0

Although our concern in this paper is with the computation of integrals (1.2) with large values ofω, it is
legitimate to investigate the behaviour in the entire range of frequenciesω. (Without loss of generality
we assume thatω > 0.) A natural dichotomy is ‘Filon’s quadrature for high oscillation, Gauss–
Legendre quadrature otherwise’ but it has been already demonstrated in Iserles (2004) that this course
of action is naive. Indeed, if the nodesc1, c2, . . . , cν lead to an order-p Gauss–Legendre quadrature
(a phenomenon which is closely related to the orthogonality properties of the collocation polynomial
(Davis & Rabinowitz, 1984)), it has been proved in Iserles (2004) that the order of Filon’s quadrature for
(1.1) (i.e. forg(x) = x) is also p. Order has to do with the exact reproduction of polynomial functions
f or, alternatively, with the introduction of a small parameterh and, in place of (1.1), the integration of

1

h

∫ h

0
f (x)eiωx dx =

∫ 1

0
f (hx)eihωx dx .

In this case, orderp of interpolatory and Filon quadratures means that the error ofboth methods for
fixedω andh → 0 isO(h p).

It thus makes sense to investigate in this context the case of a more general functiong. One
motivation for this course of action is that, onceν > r , we need a plausible criterion to select the
remainingν − r quadrature points that are neither endpoints nor stationary points ofg. A strategy that
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maximizes the order for smallω > 0 makes a great deal of sense in this context. Yet, the results of
Iserles (2004) do not translate intact to the realm of irregular oscillators. Our current understanding
of this matter is at best incomplete. Rather than addressing the issue in its totality, we just present an
example that, at the very least, implies that the general picture is interesting. A judicious choice of nodes
may increase ‘classical’ order in a non-oscillatory regime, while possibly falling short of the order of the
interpolatory quadrature with the same nodes.

We revisit the caseg(x) = x(1 − x), which we have already discussed in a different context in
Section 4. Sincer = 3, let us consider firstν = 3 with quadrature nodesc1 = 0, c2 = 1

2, c3 = 1
determined from the asymptotic considerations of Theorem 3. It is trivial to verify that the order of the
interpolatory quadrature with these nodes isp = 4. In other words, such a method integrates exactly all
cubic polynomials whenω = 0. For the record, the weights of the Filon quadrature are

b1(ω) = − 1

iω
+

√
πe

1
4 iωerf(1/2

√
iω)

(iω)3/2
,

b2(ω) =
√

πe
1
4 iωerf(1/2

√
iω)√

iω
+ 2

iω
− 2

√
πe

1
4 iωerf(1/2

√
iω)

(iω)3/2
,

b3(ω) = − 1

iω
+

√
πe

1
4 iωerf(1/2

√
iω)

(iω)3/2
.

By direct calculation,QF[xm] = Ix(1−x)[xm], m = 0, 1, 2, 3, andalso the Filon quadrature is of order
four.

Emboldened by this, we consider next the caseν = 5, with two extra nodes,12 ±
√

21
14 , chosen

so that the underlying interpolatory scheme is of order eight. Filon weights are quite complicated, yet
this prevents neither their calculation nor manipulation with symbolic software: the outcome is that the
order of the Filon quadrature is just six: one more thanν but two less than the order of the interpolatory
quadrature. The general answer is, thus, more complicated than forg(x) = x and by this stage we refrain
from even conjecturing what it might be.

The situation is somewhat different whenω > 0 is neither very small nor very large. In this case,
we haveω = O(1) and it has been shown in Iserles (2004) that, for the Fourier oscillatorg(x) = x ,
interpolatory quadrature is of absolutely no use: matters are unlikely to be better for more complicated
oscillators. (An alternative argument is that, like in approximation of the Fourier transform by discrete
Fourier transform, interpolatory quadrature requiresO(ω−1) points to prevent aliasing of different
frequencies.) Filon’s quadrature, however, is substantially better but not as good as for largeω: again,
this has been investigated in depth only forg(x) = x but numerical experiments confirm that this
phenomenon is of wider validity. It might come as a surprise that moderate oscillation is less tractable,
at least by existing methods, than rapid oscillation but it makes mathematical sense. For smallω > 0,
the behaviour is modelled well by a Taylor expansion, hence the efficacy of Gaussian quadrature. For
ω � 1, the Taylor theorem is of little use but we can employ an asymptotic expansion instead. It is the
intermediate regime, when neither a Taylor nor an asymptotic expansion is adequate, that represents an
enduring challenge.

5.3 An asymptotic quadrature scheme

The results of this paper suggest the following approximation toIg[ f ], an alternative to Filon’s method,
which we callthe asymptotic method. Suppose that the functiong obeys the geometric model (2.1).
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Then, given any analytic functionf (x) = ∑∞
m=0 fm xm , simple calculation affirms that

Ig[ f ] =
r∑

l=1

vl(ω) f (dl)ω
−αl + O(ω−β), ω → ∞. (5.1)

Assuming that theαls andvls are known, we can truncate the right-hand side of (5.1) to produce the
quadrature

QA[ f ] =
r∑

l=1

vl(ω) f (dl)ω
−αl . (5.2)

Note that, by design,

QA[ f ] − Ig[ f ] = O(ω−β), ω → ∞,

therefore the new method shares the advantageous asymptotic behaviour of the Filon quadrature (1.3).
It is important to bear in mind that (5.2) is different from Filon’s method. As the simplest example, we
considerg(x) = x , ν = 2, wherebyr = 2, d1 = 0, d2 = 1 and

QA[ f ] = − 1

iω
f (0) + eiω

iω
f (1),

QF[ f ] =
(

− 1

iω
− eiω − 1

ω2

)
f (0) +

(
eiω

iω
+ eiω − 1

ω2

)
f (1).

Other things being equal, Filon’s quadrature has the edge over the asymptotic method for a number of
reasons. First, it also produces a high-quality approximation for low frequenciesω > 0, a phenomenon
which is completely understood forg(x) = x and has been briefly addressed in the previous subsection:
note that, even if the exact order is unknown for generalg, it isclear from construction that it is always at
leastν. The asymptotic scheme, however, having put all its money onω � 1, is completely useless for
low frequencies and its coefficients blow up. Second, as indicated by Fig. 2, Filon’s method is likely to
have smaller error constant. A third advantage is also apparent from Fig. 2: while the asymptotic method
(5.2) is restricted to justr points, the Filon quadrature can be implemented with anyν � r , while
sharing optimal asymptotic rate of decay. Adding further points is likely to decrease the error, as well as
enhancing performance for low frequencies. Finally, the design of Filon methods is easier: we need just
to evaluate the moments and use Theorem 3 to identify thedls. Insofar as the asymptotic quadrature is
concerned, we also require thevl(ω)sand theαls. In principle, this information can be derived from the
momentsµ0, µ1, . . . , µr−1 but, in practice, as we have seen before in a number of detailed examples,
this procedure requires further asymptotic analysis.

So, what is the point in method (5.2) and why mention it at all? It has one clear advantage, simplicity.
More intriguing is that it can be often used when the moments are not available explicitly, since the
functionsvl are often known from the discussion following Theorem 3. Consider, for example, the
functiong(x) = x log x . It ispossible, representing the exponential as a Taylor series inx and employing
repeated integration by parts, to expand its moments in a Taylor series about the origin,

µm(ω) =
∞∑

k=0

(−iω)k

(m + k + 1)k+1
, m � 0,
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FIG. 2. The absolute value of the error in Filon’s quadrature of
∫ 1
0 ex eiωx dx , multiplied byω2, for three schemes:QA (the upper,

broken curve),QF with ν = 2 (the middle, dash-dot curve) andQF with ν = 3 andc = [0, 1
2 , 1] (the bottom, solid curve) and

different values ofω.
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FIG. 3. The zeroth moment corresponding tog(x) = x log x : the real part is shown as a solid curve and the imaginary part as a
broken curve.

but this does not help (at least insofar as the present author is concerned) in elucidating their asymptotic
expansion asω → ∞. The plot of the real and imaginary parts ofµ0 is displayed in Fig. 3: evidently, this
is a ‘nice’ function, possibly related to one of the standard special functions of mathematical analysis.

Wemight be ignorant of an asymptoticexpansion but wecan deduce the asymptoticbehaviour from
the theory of this paper and this suffices to construct the quadratureQA. Thus,g′(e−1) = 0, g′′(e−1) �= 0
and g′ �= 0 elsewhere in[0, 1]. Moreover, sinceg′(0) is unbounded, a limiting argument shows that
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FIG. 4. The quantitiesω−3/2|QA [xm ]−µm (ω)| for m = 1, 2, 3 (solid, broken and dotted curves, respectively), forg(x) = x log x .

v1 ≡ 0. Therefore, the quadrature

QA[ f ] = e−iωe−1

√
− 2π

ieω
f (e−1) + 1

iω
f (1)

carries an asymptotic error ofO(ω−3/2). This is confirmed by Fig. 4. Note that in this figure (and also in
Fig. 3) we have approximated the moments using Taylor series with 200 terms and 40 significant digits.
Using just the two terms inQA and standard IEEE floating-point precision is somewhat easier. . . .

Another interesting example of this kind isg(x) = sin 2πx . Although it is possible to use standard
theory to prove thatµ0(ω) = J0(ω), aBessel function, the explicit form ofµm for m � 1 is apparently
unknown. Nonetheless, we can constructQA by identifying the two stationary points at1

4 and 3
4, both

with δ = 2, and using the theory of Section 4:

QA[ f ] =
[

eiω

√
2π i

f (1
4) + e−iω

√−2π i
f (3

4)

]
ω

− 1
2 + 1

2π iω
[ f (1) − f (0)],

with an error ofO(ω−3/2).

5.4 Calculation of the moments

As long asν is small and the functiong sufficiently simple, the moments can be typically expressed
explicitly in terms of familiar transcendental functions and this can be done conveniently using a
symbolic algebra package. This is the case, for example, wheng is a cubic polynomial. However, the
implementation of Filon methods for generalg and ν requires numerical computation of moments.
For largeν, however, this computation is typically ill conditioned and it is imperative to use modified
moments instead (Gautschi, 1996). Moreover, the issue of usingapproximate moments and its impact
on the performance of Filon’s quadrature have not been investigated yet, the example of last subsection
notwithstanding, hence caution is the byword.
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5.5 Generalized Fourier oscillators

Lettingσ be a complex-valued function such thatσ(t), t−1σ(t) ∈ L1(−∞, ∞), we set

S(y) = F[σ ](y) =
∫ ∞

−∞
σ(t)eiyt dt,

theFourier transform of σ . Given a real functiong in [0, 1], we are interested in the quadrature of the
integral

Iσ,g[ f ] =
∫ 1

0
f (x)S(ωg(x))dx (5.3)

where, usually,ω � 1. Since we may exchange the order of integration,

Iσ,g[ f ] =
∫ 1

0
f (x)

∫ ∞

−∞
σ(t)eiωtg(x)dtdx =

∫ ∞

−∞
σ(t)Ig[ f ](tω)dt .

Suppose, though, that the moments ofIg are consistent with the geometric model (2.1) and that 0<

α1, α2, . . . , αr � 1: the latter condition is implicit within the framework of Theorem 3. Recalling from
the definition of the geometric model thatv j ∈ L∞[0, ∞), j = 1, 2, . . . , r , in the present context we
requirev j ∈ L∞(−∞, ∞), a very minor restriction of generality. Then

u j (ω) =
∫ ∞

−∞
σ(t)v j (ωt)t−α j dt ⇒ ‖u j‖L∞[0,∞) � ‖v j‖L∞(−∞,∞)

∫ ∞

−∞
|σ(t)|

|t | dt < ∞,

consequently

µm(ω; Iσ,g) ∼
r∑

j=1

u j (ω)dm
j ω−α j + O(ω−β), m � 0, ω → ∞,

whereµm(ω; Iσ,g) is the mth moment of the linear functional (5.3). We thus recover the geometric
model forIσ,g, as long as it is valid forIg. In other words, provided that we approximate (5.3) with the
Filon method (1.3), where the weights are chosen so thatQF[xm] = µm(ω; Iσ,g), m = 0, 1, . . . , ν − 1,
and assuming further thatν � r andd1, d2, . . . , dr are all quadrature nodes, it is true that

QF[ f ] = Iσ,g[ f ] + O(ω−β), ω → ∞
for every smooth functionf .

Interesting examples of functionsσ which lend themselves to this approach are

σ(t) = 2t

i
√

π
e−t2 ⇒ S(y) = ye− 1

4 y2
,

σ (t) = 4t√
π(1 + i)

e−(1+i)t2 ⇒ S(y) = ye− 1
8 (1+i)y2

,

σ (t) = 4t√
π

sinte−t2 ⇒ S(y) = (1 − y)e− 1
2 (y−1)2 + (1 + y)e− 1

2 (y+1)2
,

σ (t) = 4t

i
√

π
coste−t2 ⇒ S(y) = (y − 1)e− 1

2 (y−1)2 + (y + 1)e− 1
2 (y+1)2

,
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σ(t) = 1

4i
te−|t | ⇒ S(y) = y

|y2 − 1 + 2iy|2 ,

σ (t) = i

48
t (t2 − 12)e−|t | ⇒ S(y) = y3(3 + y2)

|(1 − 6y2 + y4) − 4iy(1 − y)|2 ,

σ (t) = 1

4i
e−|t | sint ⇒ S(y) = y

|y2 − 2 + 2iy|2 .

It is evident from this that, unlike the kernel eiωg(x), S(ωg(x)) need not oscillate. The common
structural denominator to the kernels considered in this paper is, indeed, the presence of a large
parameter, rather than high oscillation.

The benefits of the generalization fromIg to Iσ,g are presently unclear and the author cannot point
out any existing applications. Yet, since it can be accomplished with so little extra effort, it makes sense
to include it in this paper.
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