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Abstract.
The main theme of this paper is the construction of efficient, reliable and affordable

error bounds for two families of quadrature methods for highly oscillatory integrals. We
demonstrate, using asymptotic expansions, that the error can be bounded very precisely
indeed at the cost of few extra derivative evaluations. Moreover, in place of derivatives
it is possible to use finite difference approximations, with spacing inversely proportional
to frequency. This renders the computation of error bounds even cheaper and, more
importantly, leads to a new family of quadrature methods for highly oscillatory integrals
that can attain arbitrarily high asymptotic order without computation of derivatives.
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1 Asymptotic and Filon-type methods.

The theme of this paper is the efficient quadrature of highly oscillatory inte-
grals of the form

I[f ] =
∫ b

a

f(x)eiωg(x)dx,(1.1)

where −∞ < a < b < ∞, both f and g are sufficiently smooth functions
and |ω| is large. Such integrals feature in a very wide range of applications,
underscoring the importance of efficient and reliable means of their computation.
Yet, a pervasive point of view among both numerical analysts and workers in
application areas is that the computation of (1.1) is exceedingly difficult and
that the cost steeply increases with |ω|.

In [6] we set out to challenge this point of view. Although Gauss–Christoffel
quadrature, the classical means to compute integrals, completely fails when 1/|ω|
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is significantly smaller than the number of quadrature points, this represents
a shortcoming of the method, rather than an intrinsic ‘difficulty’ in computing
I[f ]. In place of Gauss–Christoffel, we have advocated two new, altogether differ-
ent methods: the asymptotic method and the Filon-type method. Both methods
match leading terms in the asymptotic expansion of I[f ] in inverse powers of
ω. Therefore – and this might come as a surprise to all those conditioned by
the urban legend that highly oscillatory problems are difficult to compute –
the quality of these methods increases in tandem with oscillation. Indeed, we
can make this improvement in precision arbitrarily large by using derivative
information at designated points.

The purpose of the current paper is threefold. Firstly, we present a method
of error control of highly oscillatory quadrature which is both affordable and
exceedingly precise. Secondly, we use our error estimates to clarify why, as
observed in [6], in an overwhelming majority of cases Filon-type quadrature
is substantially more precise than asymptotic quadrature. Finally, guided by the
logic of our error estimates, we present a new method for the quadrature of highly
oscillatory integrals which, while producing an error commensurate in quality
with asymptotic and Filon-type methods, does not require the computation of
derivatives.

We commence by reviewing briefly relevant material from [6]. As will be
familiar to experts in asymptotic analysis, an important distinction which we
need to make at the outset is between oscillators g such that g′ �= 0 in [a, b]
and oscillators with stationary points d1, d2, . . . , ds ∈ (0, 1), s ≥ 1, where the
derivative vanishes [9, 11].

If g′ �= 0 in [a, b] then it follows from the van der Corput lemma that I[f ] =
O(ω−1), |ω| → ∞ [11]. More specifically, an explicit asymptotic expansion of
I[f ] can be derived relatively easily by repeated integration by parts. Thus, we
let

f0(x) = f(x),

fm+1(x) =
d
dx

fm(x)
g′(x)

, m ∈ Z+,

whence

I[f ] ∼ −
∞∑

m=0

1
(−iω)m+1

[
eiωg(b)

g′(b)
fm(b) − eiωg(a)

g′(a)
fm(a)

]
, |ω| � 1.(1.2)

Given p ∈ N, we thus define the asymptotic method

QA
p [f ] = −

p−1∑
m=0

1
(−iω)m+1

[
eiωg(b)

g′(b)
fm(b) − eiωg(a)

g′(a)
fm(a)

]
.(1.3)

We note at once that

QA[f ] − I[f ] ∼ O(ω−p−1), |ω| � 1,
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therefore (1.3) is of asymptotic order p. This underscores our assertion that
good methods for highly oscillatory quadrature improve their performance once
frequency |ω| becomes larger, as well as providing a clear-cut explanation of
this phenomenon: unlike Gauss–Christoffel methods which, in common with
most discretization methods, are based on reproduction of polynomials, i.e. on
the ansatz that the solution is well approximated by a Taylor expansion, the
assumption underlying (1.3) is that I[f ] has been approximated well by the
asymptotic expansion (1.2). It is important to note that, since each fm is a linear
combination of f, f ′, . . . , f (m), the formation of QA[f ] requires the computation
of f (k)(a) and f (k)(b), k = 0, 1, . . . , p − 1.

An alternative to (1.3) is to use a Filon-type method, which considerably
extends an idea originally due to Louis Napoleon George Filon [3]. Let

a = c1 < c2 < · · · < cν−1 < cν = b

be ν ≥ 2 prescribed nodes in the interval [a, b]. Having chosen multiplicities
m1, m2, . . . , mν ∈ N, we let f̃ be the mth degree polynomial, where m =∑ν

k=1 mk − 1, such that

f̃ (l)(ck) = f (l)(ck), l = 0, 1, . . . ,mk − 1, k = 1, 2, . . . , ν.(1.4)

Note that the Hermite interpolation polynomial f̃ is unique. Assuming that the
moments

µk(ω) =
∫ b

a

xkeiωg(x) dx, k = 0, 1, . . . , m,

can be calculated explicitly, we let p = min{m1, mν} and define

QF
p [f ] =

∫ b

a

f̃(x)eiωg(x) dx.(1.5)

The above Filon-type method, like (1.3), is of asymptotic order p. The proof is
exceedingly easy and is fundamental to the work of the present paper. Thus,
using (1.2) on h = f̃ − f ,

QF
p [f ] − I[f ] = I[f̃ ] − I[f ] = I[h]

∼
∞∑

m=0

1
(−iω)m+1

[
eiωg(b)

g′(b)
hm(b) − eiωg(a)

g′(a)
hm(a)

]
, |ω| � 1.

However, since each hm is a linear combination of h, h′, . . . , h(m), it follows from
interpolation conditions at a and b that h(k)(a) = h(k)(b) = 0, k = 0, 1, . . . , p−1.
This proves that QF[f ] − I[f ] = O(ω−p−1), hence asymptotic order p.

The situation is different once g is allowed stationary points in (a, b). We may
assume without loss of generality that g′ vanishes at a single point in (a, b): given
any finite number of stationary points, we may divide (a, b) into subintervals with
a single stationary point in each. Thus, we assume that

g′(d) = g′′(d) = · · · = g(s−1)(d) = 0, g(s)(d) �= 0,
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where d ∈ (a, b) and s ≥ 2. It is known from the classical method of sta-
tionary phase that for every smooth function f with compact support in the
neighbourhood of d there exists an asymptotic expansion

I[f ] ∼ ω1/s
∞∑

m=0

Am[f ](ω)ω−m/s, |ω| � 1,(1.6)

where each functional Am[f ] is a periodic function of ω. The first functional,
A0[f ], is known explicitly but, unfortunately, explicit expressions are not avail-
able for all Am[f ], m ≥ 1. This renders a truncation of (1.6), following the
logic of the asymptotic method (1.3), unusable from the numerical standpoint.
(Another obstacle, the need for f to have sufficiently small support near d, can
be avoided by using a technique described in [5].)

An alternative to the method of stationary phase has been introduced in [6].
For simplicity we present it just for the case s = 2, noting that it easily scales
up to all s ≥ 2, albeit at the cost of more complicated expressions. Thus, let

f0(x) = f(x),

fm+1(x) =
d
dx

fm(x) − fm(d)
g′(x)

, m ∈ Z+.

Note that the singularity on the right is removable, thus each fm is smooth,
provided that f is so. Moreover, in (a, b) \ {d} each fm is a linear combination
of f (k), k = 0, 1, . . . ,m, while fm(d) is a linear combination of f (k)(d), k =
0, 1, . . . , 2m.

It is possible to prove that

I[f ] ∼ −
∞∑

m=0

1
(−iω)m+1

{
eiωg(b)

g′(b)
[fm(b) − fm(d)] −(1.7)

− eiωg(a)

g′(a)
[fm(a) − fm(d)]

}
+

+ µ0(ω)
∞∑

m=0

1
(−iω)m

fm(d), |ω| � 1,

where µ0 is the zeroth moment, µ0(ω) =
∫ b

a
eiωg(x) dx. We note that (1.8) is

a generalization of the asymptotic expansion (1.2) and that its terms can be
generated recursively in an explicit form. However, unlike (1.6), this is not an
asymptotic expansion in the usual sense, since the function µ0, which we assume
to be explicitly known, is retained. This also explains why no fractional powers
of ω feature explicitly in (1.8): they are “hidden” inside µ0.

Once (1.8) is truncated, we obtain the asymptotic method
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Figure 1.1: The error for QA
1 (top) and four different Filon-type methods QF

1 (from the second
plot down), scaled by ω2, for f(x) = 1/(1 + x), g(x) = x, [a, b] = [0, 1] and 10 < ω < 100.

QA
p [f ] = −

p−1∑
m=0

1
(−iω)m+1

{
eiωg(b)

g′(b)
[fm(b) − fm(d)] −(1.8)

− eiωg(a)

g′(a)
[fm(a) − fm(d)]

}
+

+ µ0(ω)
p−1∑
m=0

1
(−iω)m

fm(d)

and it follows at once that the asymptotic order is p−1/2. (Alternatively, we can
sum up to p in the second sum, whence the asymptotic order becomes p.) Note
that the computation of (1.8) requires p − 1 derivatives of f at the endpoints
and 2p − 2 derivatives at the stationary point d.

A generalization of a Filon-type method is fairly straightforward. Thus, we
choose ν ≥ 3 distinct nodes in [a, b] and require that both the endpoints and
the stationary point are among them. Thus, c1 = a, cν = b and there exists r ∈
{2, 3, . . . , ν−1} such that cr = d. Again, mk ≥ 1, k = 1, 2, . . . , ν, and we stipulate
that mr ≥ 2p − 1, where p = min{m1, mν}. Let an mth degree polynomial f̃ ,
where m =

∑ν
k=1 mk−1, satisfy the Hermite interpolation conditions (1.4). The

Filon-type method QF
p [f ] is then given by (1.5) and it follows at once from our

method of proof that its asymptotic order is also p − 1/2.
Whether stationary points are present or not, we have a dichotomy between an

asymptotic method and a Filon-type method. They require the same information
(at least for the “minimalist” variant of QF

p , using data only at the endpoints and
stationary points) and deliver the same asymptotic order. Since the asymptotic
method has typically simpler coefficients, it is natural to ask why should we
bother at all with Filon-type methods. A hint into the answer is provided in
Figure 1.1. We display there the error of five methods, all of which have an
asymptotic order 1, as applied to the computation of
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∫ 1

0

eiωx

1 + x
dx.

All the errors are in absolute value, scaled by ω2, hence according to our theory
they should be asymptotically periodic: this is certainly confirmed. However,
it is apparent that the size of the error – or, for that matter, the size of the
periodic function e(ω) such that the error is asymptotically e(ω)/ω2 – differs for
different methods. Starting from the top (i.e., the worst) method, we have QA

1 ,
followed by four Filon-like methods: firstly with c = [0, 1], then c = [0, 1/2, 1],
c = [0, 1/3, 2/3, 1] and, finally, at the bottom, c = [0, 1/4, 1/2, 3/4, 1]. Clearly,
the more nodes we add, the better the method: the improvement in the “bottom”
method, in comparison with QA

1 , is roughly by a factor of 40. (We did not attempt
to place the nodes at “good” points, as will be apparent in the sequel.) Moreover,
interestingly, the troughs of one method seem to coincide with the peaks of the
next. Figure 1.1 is indicative of a large body of computational experience that we
have assembled and which seems to imply that Filon-type methods are typically
more accurate than asymptotic methods and that they can be made even more
precise by an appropriate choice of extra quadrature nodes.

In Section 2 we explore practical means of monitoring the error in our methods
for highly oscillatory quadrature. As is well known, the assessment of the error
in Gaussian quadrature is fairly expensive, at least as much as the quadrature
itself [2]. This is not the case with our methods, since they are based on asymp-
totic, rather than Taylor expansions. As turns out, their error can be monitored
very precisely with very modest extra computational cost. This will go a long
way towards explaining the behaviour observed in Figure 1.1 and, in general,
the superiority of Filon over the asymptotic method, as well as providing highly
effective means toward error control.

The design of asymptotic and Filon-like methods of high asymptotic order
requires the computation of derivatives of f at the endpoints and stationary
points. Although this can be often accomplished with great ease, there are
obvious advantages in developing derivative-free methods. Motivated by the
technique of Section 2, in Section 3 we introduce a new family of Filon-type
methods that do not require the computation of derivatives, while allowing us
to attain arbitrarily high asymptotic order.

The Filon method and, in the presence of stationary points, the asymptotic
method require explicit computation of the moments. While this can be accom-
plished for many highly oscillatory kernels, in particular for a quadratic g, this
represents a clear limitation of proposed methods. A brief discussion of this state
of affairs, illustrated by the function g(x) = x log x, features in [5]. It is presently
unclear whether it is possible to obtain accurate Filon-type methods replacing
g by a suitable approximation that lends itself to explicit computation of the
moments. All this is subject to ongoing research.

Many alternative algorithms have been proposed for the quadrature of highly
oscillatory integrals [2]. Most such algorithms are either specialised to specific
highly oscillatory kernels or are evidently non-competitive with either Filon’s
or the asymptotic method. Possible exceptions to the last statement are the
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methods of Levin [7] and Zamfirescu [12]. In both cases, considering just the
elementary case g(x) = x, it is possible to prove that the inclusion of endpoints
in the quadrature leads to an O(ω−2) error decay [4, 8]. However, neither hard
analysis nor comprehensive evidence are available at this juncture of time to as-
certain whether Levin’s and Zamfirescu’s algorithms measure up to the methods
of this paper.

2 Error control of highly oscillatory quadrature.

We commence from the case g′ �= 0, when the expansion (1.2) is valid. It
follows at once from (1.3) that

QA
p [f ] − I[f ] ∼

eA
p [f ]

ωp+1
+ O(ω−p−2), |ω| � 1,

where

eA
p [f ] =

eiωg(a)

g′(a)
fp(a) − eiωg(b)

g′(b)
fp(b).(2.1)

Therefore

ΛA
−[f ] ≤ |eA

p [f ]| ≤ ΛA
+[f ],

where

ΛA
−[f ] =

∣∣∣∣ |fp(a)|
|g′(a)| −

|fp(b)|
|g′(b)|

∣∣∣∣ , ΛA
+[f ] =

|fp(a)|
|g′(a)| +

|fp(b)|
|g′(b)| .

In particular, in the important case of the Fourier oscillator g(x) = x we have

ΛA
−[f ] = ||f (p)(a)| − |f (p)(b)||, ΛA

+[f ] = |f (p)(a)| + |f (p)(b)|.

Insofar as the Filon-type method (1.5) is concerned, we use our method of
proof of the asymptotic order to argue that

QF
p [f ] − I[f ] = I[f̃ − f ] ∼

eF
p

ωp+1
+ O(ω−p−2), |ω| � 1,

where

eF
p [f ] =

eiωg(a)

g′(a)
[f̃p(a) − fp(a)] − eiωg(b)

g′(b)
[f̃p(b) − fp(b)].

It is easy to verify from the definition of fm, though, that

fm =
f (m)

(g′)m
+ a linear combination of f (k) for k = 0, 1, . . . ,m − 1.

Therefore, because of the Hermite interpolation conditions at the endpoints,

eF[f ] =
eiωg(a)

[g′(a)]p+1
[f̃ (p)(a) − f (p)(a)] − eiωg(b)

[g′(b)]p+1
[f̃ (p)(b) − f (p)(b)].(2.2)
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We can again bracket the asymptotic error constant,

ΛF
−[f ] ≤ |eA

p [f ]| ≤ ΛF
+[f ],

except that now

ΛF
−[f ] =

∣∣∣∣ |f̃
(p)(a) − f (p)(a)|
|g′(a)|p+1

− |f̃ (p)(b) − f (p)(b)|
|g′(b)|p+1

∣∣∣∣,

ΛF
+[f ] =

|f̃ (p)(a) − f (p)(a)|
|g′(a)|p+1

+
|f̃ (p)(b) − f (p)(b)|

|g′(b)|p+1
.

We again single out the case g(x) = x, when

ΛF
−[f ] = ||f̃ (p)(a) − f (p)(a)| − |f̃ (p)(b) − f (p)(b)||,

ΛF
+[f ] = |f̃ (p)(a) − f (p)(a)| + |f̃ (p)(b) − f (p)(b)|.

To illustrate the power of these exceedingly simple error estimates, we refer
again to Figure 1.1. Now f(x) = 1/(1 + x), g(x) = x and a = 0, b = 1. It follows
at once that

ΛA
−[f ] = 3

4 , ΛA
+[f ] = 5

4 ,

faithfully confirming the behaviour of the top curve in Figure 1.1. Moreover, we
have the following error brackets for the four different Filon-type methods:

c = [0, 1]: f̃(x) = 1 − 1
2x, [ΛF

−, ΛF
+] = [14 , 3

4 ];

c = [0, 1
2 , 1]: f̃(x) = 1 − 5

6x + 1
3x2, [ΛF

−, ΛF
+] = [ 1

12 , 1
4 ];

c = [0, 1
3 , 2

3 , 1]: f̃(x) = 1 − 19
20x + 27

40x2 − 9
40x3, [ΛF

−, ΛF
+] = [ 1

40 , 3
40 ];

c = [0, 1
4 , 1

2 , 3
4 , 1]: f̃(x) = 1 − 69

70x + 13
15x2 − 8

15x3 + 16
105x4, [ΛF

−, ΛF
+] = [ 1

140 , 3
140 ].

Note thus that the troughs for the asymptotic method coincide with the peaks
for the first Filon-type method and a similar phenomenon is valid for the first
and the second Filon-type methods. This, however, is not true for the remaining
methods and does not represent any general rule.

In general, while the error of an asymptotic method scales with the derivative
of f at the endpoints, for a Filon-type method f need be replaced by the
approximation error f̃ − f . For most functions f it is likely that the error of
the interpolating polynomial is smaller than the function itself and that the
interpolation error decreases once we are adding more points. This explains why
so often a Filon-type method is superior to an asymptotic method. However,
this statement is far from universal. Thus, consider Figure 2.1, where we have
plotted the error for f(x) = cos 10x, g(x) = x, a = 0, b = 1. Now the pecking
order is reversed: the asymptotic method wins and the quality of a Filon-type
method deteriorates once we are adding more interpolation points!

The relative breakdown in a Filon-type method (“relative”, since the method
remains very precise) is closely related to the classical Runge phenomenon from
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Figure 2.1: The error for QA
1 (bottom) and three different Filon-type methods QF

1 (from the
second plot up), scaled by ω2, for f(x) = cos 10x, g(x) = x, [a, b] = [0, 1] and 400 < ω < 500.

interpolation theory [10], the failure of interpolation once derivatives increase
too fast. In general, we can express the Hermite interpolation error for a smooth
f explicitly in the form

f̃(x) − f(x) =
1

(m + 1)!
f (m+1)(ξ(x))

ν∏
l=1

(x − cl)ml+1,

where m =
∑ν

l=1 ml − 1 is the degree of f̃ , while ξ is a smooth function of [a, b]
to itself. Letting m1 = mν = p and mindful of

ΛF
+[f ] = |f̃ (p)(a) − f (p)(a)| + |f̃ (p)(b) − f (p)(b)|,

we note that

f̃ (p)(a) − f (p)(a) =
p!

(m + 1)!
(−1)pf (m+1)(ξ(a))

ν−1∏
l=2

(−cl)ml+1,

f̃ (p)(b) − f (p)(b) =
p!

(m + 1)!
f (m+1)(ξ(b))

ν−1∏
l=2

(1 − cl)ml+1.

Therefore, a major determinant of the size of the error is the magnitude of the
(m+1)st derivative of f near the endpoints. For functions f such that ‖f (m+1)‖∞
grows rapidly with m we can expect the asymptotic method to do better than
Filon-type methods. However, such functions are an exception, rather than a
rule, in applications and Filon-type methods are a good candidate, at least in
the present setting, for methods of choice.

Of course, this discussion does not indicate that either of these methods is
ineffective, in the presence of the Runge phenomenon, only that their pecking
order is different. This is clear from Table 2.1.
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Table 2.1: The magnitude of the errors in the four methods of Figure 2.1 for different values
of ω.

ω QA
1 1st QF

1 2nd QF
1 3rd QF

1

100 5.2717−4 5.2957−4 6.8647−4 8.7122−4

1000 5.5252−6 6.5426−6 7.6610−6 2.0914−5

10000 5.4372−8 9.0449−8 9.0717−8 4.2646−7

Figure 2.2: The error for QF
2 [f ], c = [0, 1/4, 1/2, 3/4, 1], scaled by ω3, and its estimate Λ+[f ]

(bottom oscillating curve and bottom line, respectively) and the same information for QaF
2 [f ].

Here f(x) = 1/(1 + x2), g(x) = x, a = 0 and b = 1.

To recap, we estimate the upper bound of |Qp[f ] − I[f ]|, itself a rapidly
oscillating function, by Λ+[f ]/ωp+1. Figure 2.2 demonstrates how precise this
estimate is, for two different ranges of ω. The bottom oscillating curve there
corresponds to the error of QF

2 [f ] with c = [0, 1/4, 1/2, 3/4, 1], m = [2, 1, 1, 1, 2],
as applied to I[f ] =

∫ 1

0
eiωx/(1+x2) dx, and scaled by ω3. The bottom horizontal

line is Λ+[f ] and it is striking how well it estimates the peaks of the error. (We
defer the introduction and discussion of the other method in this plot, QaF

2 , to the
next section.) Similar behaviour has been observed in all computer experiments
that we have attempted and the Runge phenomenon does not degrade the error
estimate.

The principle of estimating the error does not change in the presence of sta-
tionary points. We assume again, for the sake of simplicity, a single stationary
point d ∈ (a, b), such that g′(d) = 0, g′′(d) �= 0, and employ the asymptotic
expansion (1.8). It thus follows from (1.8) that

QA
p [f ] − I[f ] ∼ µ0(ω)

(−iω)p
fp(d) + O(ω−p−1),
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Figure 2.3: The error and its estimate for QA
2 [f ], both scaled by ω5/2 (on the left) and similar

information (with two error estimates) for QF
2 [f ] with c = [0, 1/2, 1], m = [2, 3, 2]. Here

f(x) = (1 + x)ex, a = 0, b = 1 and the oscillator g(x) = x(1 − x) has a critical point at
d = 1/2.

therefore we bound the error by

ΛA
+[f ]

ωp+ 1
2

, where ΛA
+[f ] = ω1/2|µ0(ω)fp(d)|.

Note that |µ0(ω)| = O(ω−1/2) and that the “error constant” ΛA
+[f ] is not a

constant anymore but a function of ω. The lower error bound ΛA
−[f ] can be

derived by similar means, but is of lesser practical importance.
Similarly, we let

ΛF
+[f ] = ω1/2|µ0(ω)[f̃p(d) − fp(d)]|

to estimate the error in Filon-type methods. Figure 2.3 displays the errors and
the error bounds, both scaled by ω5/2, for both QA

2 and QF
2 . The error estimate

for the asymptotic method is virtually indistinguishable from the true error. The
situation is somewhat different for the Filon-type method on the right. The error
estimate is the “interior” curve, with the smaller amplitude. It is possible to show
that the distance between the two curves attenuates like O(ω−1/2), consistently
with our theory, and for practical purposes this is an absolutely satisfactory error
estimate. However, interestingly, a much superior error estimate can be obtained
by adding the contribution of the O(ω−p−1) term, originating on the boundary,
i.e. letting

ΛF
+[f ] = ω1/2|µ0(ω)[f̃p(d)−fp(d)]|+ ω−1/2

|g′(a)|p |f̃p(a)−fp(a)|+ ω−1/2

|g′(b)|p |f̃p(b)−fp(b)|.

This results in an error estimate which in Figure 2.3 is virtually identical to the
true error.
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Figure 2.4: The “exact” error estimate in approximating
∫ 1

0
eiωx/(1 + x) dx by QF

1 , c = [0, 1],

its estimate using an interpolating polynomial f̂ (the increasing curve) and an adaptive

polynomial f̂ω (virtually indistinguishable from the true error), all scaled by ω3.

Although tangential to our present argument, it is important to emphasize an-
other observation from Figure 2.3, namely the dramatic increase in the precision
of the Filon-type method, as compared with the asymptotic method.

In this section we have demonstrated that a very effective error control of our
methods for highly oscillatory quadrature is available at the cost of the evaluation
of a derivative of the integrand at a small number of points. It is natural to
ask, however, whether the computation of derivatives, which often is expensive,
can be avoided altogether. An obvious idea is to form another interpolating
polynomial, f̂ , say, of higher degree and, hopefully, better quality than f̃ . In
particular, we can add more interpolation nodes or increase the multiplicity of
Hermite interpolation at existing points, thereby reusing function evaluations.
This approach and its shortcoming is illustrated in Figure 2.4. We compute there
the integral

I[f ] =
∫ 1

0

eiωx

1 + x
dx,

thus neither stationary points nor the Runge phenomenon interfere with our
calculations. We have estimated the error using derivatives at the endpoints and
the (asymptotically) periodic curve stands for

ω3

∣∣∣∣QF
1 [f ] − I[f ] − 1

ω2
{eiω[f̃ ′(1) − f ′(1)] − [f̃ ′(0) − f ′(0)]}

∣∣∣∣ .

As the theory predicts, the error estimate recovers the ω−2 term exactly. Sec-
ondly, we have interpolated f at four points by the cubic polynomial f̂ : at the
“old” points 0 and 1, which have been already used to form the linear function
f̃ , as well as at 1/20 and 19/20: the concentration of points near the boundary is
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motivated by the fact that, in absence of stationary points, it is the derivatives
at the endpoints that make all the difference. The accuracy of this error estimate
is reflected in the function

ω3

∣∣∣∣QF
1 [f ] − I[f ] − 1

ω2
{eiω[f̃ ′(1) − f̂ ′(1)] − [f̃ ′(0) − f̂ ′(0)]}

∣∣∣∣ ,

which corresponds to the curve of growing amplitude in Figure 2.4. For low(ish)
values of ω we have a fairly good error estimate but it degrades as soon as
ω−1 becomes large in comparison with the spacing 1/20. This observation is
very important and it is a key not just to a superior error estimate but to the
derivative-free methods of the next section: allow the new interpolation points
depend on ω. Specifically, let us interpolate f at the points {0, 1/ω, 1 − 1/ω, 1}.
Replacing f̂ with the new interpolating cubic f̂ω produces a curve in Figure 2.4
which is virtually indistinguishable from the error in the “exact” error estimate,
using derivatives. The generalization of this “adaptive interpolation” to higher-
order Filon methods and to stationary points is straightforward.

3 Derivative-free quadrature methods.

Filon-type methods present an exceedingly efficient means of the computation
of a highly oscillatory integral (1.1). However, once we wish to obtain asymptotic
order p > 1 (or p > 1/s in the presence of stationary points of degree s ≥ 2, i.e.
such that g′(d) = · · · = g(s−1)(d) = 0, g(s)(d) �= 0) we must compute derivatives
at the endpoints and stationary points. Moreover, the number of derivatives
required at a stationary point scales with its degree: to attain asymptotic order
p−1+1/s, p ≥ 1 we need to compute just p−1 derivatives at the endpoints but
(2p − 1) derivatives at d. Sometimes this does not present a significant problem
since either derivatives are available or can be computed exactly, e.g. with an
automatic differentiation package. This, however, does not extend to the totality
of all problems of interest. Often derivatives are not available (for example,
when f itself originates in a different numerical calculation) or are expensive
or awkward to compute. Fortunately, it is possible to attain arbitrarily high
asymptotic order without any derivatives whatsoever.

The first, somewhat naive, idea is to approximate derivatives by finite dif-
ferences. This is equivalent to the placement of interpolation points very near
to endpoints and stationary points. Indeed, it follows from the discussion in
Section 2 that a good upper bound for ΛF

+[f ] in the absence of stationary points
is

p!
(m + 1)!

‖f (m+1)‖∞

[
ν−1∏
l=2

(cl − a)ml+1 +
ν−1∏
l=2

(b − cl)ml+1

]
.

Thus, if c2, say, is near to a and cν−1 to b, we can render the leading error term
very small. (Of course, the “best” course of action is to let c2 = a, cν−1 = b, but
all this means is that we compute – exactly – extra derivatives at the endpoints,
something that we are trying to avoid.)

An alternative is to form finite-difference approximations to derivatives at
points that themselves depend upon ω. Thus, instead of interpolating to f (k)(cl),
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k = 0, 1, . . . , ml − 1, say, we interpolate just to f at the points cl − γl,j/ω,
j = 0, 1, . . . ,ml − 1. The simplest course of action, which we pursue in this
paper, is to choose a sufficiently small γ > 0 (“smallness” depends on the size
of ω, since we need to fit all the nodes in [a, b]: for large ω letting γ = 1 will do)
and use the following interpolation points:

c1 = a : a +
γ

ω
k, k = 0, 1, . . . , m1 − 1,

cl ∈ (a, b) : cl +
γ

ω
k, k = −
ml−1

2 �, . . . , 
ml

2 �,

cν = b : b − γ

ω
k, k = 0, 1, . . . , mν − 1.

The values of f therein are interpolated by the mth degree polynomial f̃ω, where,
as before, m =

∑ν
l=1 ml − 1, and we set

QaF
p [f ] =

∫ 1

0

f̃ω(x)eiωg(x) dx,(3.1)

where p = min{m1, mν}. We call (3.1) an adaptive Filon-type method.
It is elementary to observe that

f̃ (k)
ω (cl) = f (k)(cl) + O(ω−ml+k)

for all k = 0, 1, . . . , ml and l = 1, 2, . . . , ν. Thus, suppose again that the interpo-
lation points in the vicinity of cl are cl + γl,j/ω, j = 0, 1, . . . , ml − 1, where the
γl,js are distinct. Then

f̃ω(x) − f(x) = vl(x)
ml−1∏
j=0

(
x − cl +

γl,j

ω

)
,

where

vl(x) =
1

(m + 1)!
f (m+1)(η(x))

ν∏
r=1
r �=l

mr−1∏
j=0

(
x − cr +

γr,k

ω

)
.

We first note that

f̃ω(cl) − f(cl) = ω−mlvl(cl)
ml−1∏
j=0

γl,j = O(ω−ml).

Next,

f̃ ′
ω(x) − f ′(x) = vl(x)

ml−1∑
s=0

∏
j �=s

(
x − cj +

γl,j

ω

)
+ v′l(x)

ml−1∏
j=0

(
x − cl +

γl,j

ω

)

⇒ f̃ ′
ω(cl) − f ′(cl) = ω−ml+1vl(cl)

ml−1∑
s=0

∏
j �=s

γl,j + O(ω−ml)
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Figure 3.1: The error, scaled by ω3, committed by two methods: Filon-type with the nodes
c = [0, 1/1000, 999/1000, 1] and multiplicities m = [1, 1, 1, 1] (the fainter line style) and adap-
tive Filon-type with the nodes [0, 1], multiplicities [2, 2] and γ = 1 (the bolder line), as well as
the error bound for the latter (the almost-horizontal line).

and, by the same token,

f̃ ′′
ω(cl) − f ′′(cl) = ω−ml+2vl(cl)

ml−1∑
s1=0

ml−1∑
s2=0
s2 �=s1

∏
j �=s1,s2

γl,j + O(ω−ml+1),

f̃ ′′′
ω (cl) − f ′′′(cl) = ω−ml+3vl(cl)

ml−1∑
s1=0

ml−1∑
s2=0
s2 �=s1

ml−1∑
s3=0

s3 �=s1,s2

∏
j �=s1,s2,s3

γl,j + O(ω−ml+2)

and so on: the general proof is clear, although exceedingly tedious.
Since each fn is a linear combination of f, f ′, . . . , f (n), we thus deduce that

f̃ωn(cl) − fn(cl) = O(ω−ml+n), n = 0, 1, . . . , ml.

Consequently, for every n in this range

1
(−iω)n

[f̃ωn(cl) − f(cl)] = O(ω−ml).

It now follows from (1.2) and (1.8) that the adaptive Filon-type method (3.1)
has always the same asymptotic order as the corresponding Filon-type method.
Hence, we can dispense altogether with the computation of derivatives.

A striking comparison between a non-adaptive approximation of derivative by
finite differences and an adaptive Filon-type method is provided by Figure 3.1.
We have used there two derivative-free methods to approximate

∫ 1

0

2 − x

2 + x
eiωx dx =

1 − eiω

ω
+ 4e−2iω[Ei(1,−2iω) − Ei(1,−3iω)],
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where Ei is the exponential integral [1]. The first is a Filon-type method with the
interpolation points c = [0, 1/1000, 999/1000, 1]. This might appear to be a fine
enough spacing to approximate well first derivatives at the endpoints and, indeed,
as the figure on the left demonstrates, for moderate values of ω the error behaves
like O(ω−3). Yet, for larger ω, as can be seen in the figure on the right, the error
is just O(ω−2), consistently with asymptotic order 1. The second method in
Figure 3.1 is the adaptive Filon-type method with c = [0, 1], multiplicities [2, 2]
and γ = 1: in other words, we interpolate f at 0, 1/ω, 1−1/ω and 1. The outcome,
represented by the bolder line style, is an error which, regardless of the size of ω,
is of an asymptotic order 2. We note in passing that for small ω > 0 the error of
the first method is actually smaller than that of the adaptive method. This makes
a perfect sense. The error in both methods consists of two components: firstly,
how well are derivatives at the endpoints approximated by finite differences
and, secondly, how large is the quadrature error with exact derivatives (i.e., the
error of the Filon-type method with c = [1, 1] and multiplicities m = [2, 2]).
For small ω > 0 the finite-difference approximation of derivatives by the first
method is clearly superior, but it deteriorates fast when ω−1 is no longer large
in comparison with 1/1000. On the other hand, the adaptive method adjusts
the finite-difference approximation to the size of ω, rendering it uniformly small
regardless of the frequency.

Estimating the error of an adaptive Filon-type method, we clearly wish to
avoid the calculation of derivatives of f . This prevents us from using the main
approach of Section 2, namely to form error bounds using derivatives of the
interpolation error at the endpoints and at critical points. Instead, we adopt
the alternative approach of replacing f with an interpolating polynomial f̂ω.
We form f̂ω by adding extra interpolation points, as necessary, about endpoints
and stationary points. Thus, referring back to Figure 3.1, we take c = [0, 1] and
m = [3, 3]. In other words, we interpolate f at 0, 1/ω, 2/ω, 1 − 2/ω, 1 − 1/ω, 1
by a quintic.

For a method of an asymptotic order p we estimate

max
ω�1

|QaF
p [f ] − I[f ]| ≈

ΛaF
+ [f ]
ωp

,

with obvious adjustments once, in the presence of stationary points, the asymp-
totic order is noninteger. Forming ΛaF

+ , which itself depends weakly upon ω, we
must take into account both the quadrature error, as given by the asymptotic
expansions, and interpolation error in replacing derivatives of f by finite dif-
ferences, but we disregard the error in replacing f with f̂ω in an asymptotic
expansion. Reverting to the method from Figure 3.1, we thus have

QaF
2 [f ] − I[f̂ω] = I[f̃ω − f̂ω]

= − 1
(−iω)2

{eiω[f̃ ′
ω(1) − f̂ ′

ω(1)] − [f̃ ′
ω(0) − f̂ ′

ω(0)]} −

− 1
(−iω)3

{eiω[f̃ ′′
ω(1) − f̂ ′′

ω(1)] − [f̃ ′′
ω(0) − f̂ ′′

ω(0)]} + O(ω−4),

motivating the choice
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ΛaF
+ [f ] = |[f̃ ′′

ω(1) − f̂ ′′
ω(1)] − iω[f̃ ′

ω(1) − f̂ ′
ω(1)]| +

+ |[f̃ ′′
ω(0) − f̂ ′′

ω(0)] − iω[f̃ ′
ω(0) − f̂ ′

ω(0)]|.

The curve ΛfA
+ [f ] is depicted in Figure 3.1: this is the virtually-horizontal line

which on the left lies a whisker above the scaled error of the adaptive method
and on the right is almost exactly on top of the error curve. The tightness of the
approximation is evident.

Another example of an adaptive Filon-type method is presented in Figure 2.2.
There we compare a “classical” Filon-type method with c = [0, 1/4, 1/2, 3/4, 1],
m = [2, 1, 1, 1, 2] and the adaptive Filon-type method with the same parameters.
The error of the adaptive method is about 13% larger: this is the price we are
paying for replacing derivatives with adaptive finite differences. Yet, the feature
to observe is the error bound ΛaF

+ [f ], the upper nonoscillatory curve. For lower
frequencies, on the left, it somewhat overshoots the true error bound. Moreover,
the curve is not horizontal, a tell-tale sign that it is not yet in its asymptotic
stage. However, on the right, in a high-frequency regime, the upper error bound
is estimated virtually perfectly.

4 Conclusions.

Practical implementation of quadrature methods for highly oscillatory inte-
grals requires good upper bounds on the error. They are instrumental in ensuring
that the error falls below a user-provided tolerance and that this desirable state
of affairs is attained with the least investment of computational resources.

In this paper we have presented an error-control technique for two methods
that have been introduced in [6] and which probably represent the state of the
art in the integration of highly oscillatory integrals (1.1).

Motivated by our error-control mechanism, we have introduced a variant of
the Filon-type technique which, by allowing quadrature points to depend on
the frequency ω, produces the same asymptotic order (and roughly the same
quality of computation) without using derivatives altogether. The error in the
new methods can be bounded effectively, again without using derivatives.
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