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Procedures for Computing 
One- and Two-Dimensional Integrals of Functions 

With Rapid Irregular Oscillations 

By David Levin 

Abstract. A collocation procedure for efficient integration of rapidly oscillatory functions is 
presented. The integration problem is transformed into a certain O.D.E. problem, and this is 
solved by a collocation technique. The method is also extended to two-dimensional integra- 
tion, and some numerical results are appended showing the efficiency of the method in 
handling difficult cases of rapid irregular oscillations. 

1. The Procedure for One-Dimensional Integrals. We consider integrals of the 
form 

a (1.1)~~~~~~~~ 1 f (x)e iq(x) dx, 

where f is smooth and "nonoscillatory" and Iq'(x) I? (b - a)-1. Two practical 
methods for evaluating rapidly oscillatory integrals are described in [1], the use of 
approximation as in Filon's method [3], [4] and the speedup method of Longman [5]. 
Formally both methods are applicable to any integral of the form (1.1), but their 
best performance is for the case of a constant frequency q' = W. In this note we 
present an efficient method which is applicable for cases of varying frequency q' 
using only a small number of values of f and q' in [a, b] and the values q(a) and 
q(b). 

The proposed method follows the spirit of Filon's method. It is based upon the 
fact that if f were of the form 

(1.2) f(x) = iq'(x)p(x) + p'(x) =_ L(l1p(x), a < x < b, 
then the integral could be evaluated directly as 

(1.3 J b (iq'(x)p(x) + pt(x))eiq(x) dx f | d (p(x)eiq(x)) dx 

= (b)e qb- p(a)eiqa 

Equation (1.2) can be considered as a differential equation for p(x), and any 
solution of this equation can be used in (1.3) for evaluating I. The general solution 
of this equation is 

(1.4) p(x) e-iq(x)[ f(t)eiq(t) dt + cj 
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so that in general p is as oscillatory as the integrand in (1.1). Therefore, the problem 
of computing p is no less difficult than the original problem of computing I. 
However, if the functions f and q' are slowly oscillatory, then there also exists a 
slowly oscillatory solution po of (1.2) (see Appendix). By looking for this po we avoid 
all the difficulties caused by the rapid oscillations. Writing the general solution of 
(1.2) as 

(1.5) p(x) =-po(x) + ce-iq(x) 

and using this form in (1.3), we get 

(1.6) I = pO(b)e - po(a)ei(a) 

Therefore, po(a) and po(b) are actually all we need. A problem arises since we do 
not have any initial condition for po. Furthermore, even if po(a) were known, any 
forward integration scheme for (1.2) will develop high oscillations due to round-off 
errors. However, the rapidly oscillatory homogeneous solution ce-iq(x) can be 
excluded automatically by solving (1.2) by collocation using slowly oscillatory basis 
functions. By this method po is singled out without specifying any boundary 
conditions. An n-point collocation approximation to the solution of (1.2) is defined 
as 

n 

(1.7) Pn(X) = akUk(X), 
k=1 

where {Uk%. 1 are some linearly independent basis functions, and the coefficients 
{a )}n.1 are determined by the n collocation conditions 

(1.8) L(')Pn (x X= A Xj) j= 1,2,. .. .,n, 

where {x)Jn=>, are distinct points in [a, b]. As is shown in Section 3, it is preferable in 
this case to choose the endpoints a and b as collocation points. The procedure 
suggested for an n-point approximation In to I = Jab f(t)eiq(t) dt is as follows: 

(a) Choose a set of linearly independent functions {Uk}kn= l (these functions should 
be suitable for approximating functions with an oscillatory nature similar to that of 

f). 
(b) Solve, for {ak)7a ), the system of collocation equations 

n n 
(1.9) a aku'(xj) + iq'(xj) 2 akuk(xJ) f(x) j= 1,2,... ,n, 

k=1 k=1 

where {xJ}Jn= l are regularly distributed in [a, b], a = xl < X2 < ... < = b. 
(c) Compute the approximation In to I as 

n n 
(1.10) In E akUk(b)e () akUk(a)e 

k=1 k=l 

The above procedure can also be viewed as the expansion method [1, p. 122] using 
the functions 

(1.I1) kk(X) = UJ(X) + iq'(x)Uk(X), k= 1,2,... 

as basis functions for interpolatingf at xl, x2,... , xn". The "moments" of 4k required 
for the application of the expansion method are simply 

(1.12) 'Pk = | k(x)e dx uk(b)el(b) k(a)e 
a 
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The above differential equation approach provides us with a better recognized tool 
for investigating this procedure. By analyzing the differential equation one may be 
able to find a set {Uk})k=1 suitable for the collocation approximation (see Example 
4). One may also be able to use some results on the choice of collocation points [2] 
(with the restrictions xl = a and xn = b). 

We remark that a similar idea can be used to evaluate rapidly oscillatory sums of 
the type 

N 

z (meq(m). 
m=0 

We proceed by presenting the method for the two-dimensional case. The generaliza- 
tion to higher dimensions is evident. 

2. The Procedure for Two-Dimensional Integrals Over Rectangular Regions. Here 
we consider integrals of the form 

(2.1) Ifbdf(x, y)eiq(XY)dxdy, 

where f is nonoscillatory, qx(x, y) > (b - a)-', and qy(x, y) > (d - c)-'. The 
method of Section 1 is easily adaptable to this case, only here we require knowledge 
of f, qx, qy and qxy over the rectangle [a, b] X [c, d] and the values of q at its 
corners. 

In analogy to the differential equation (1.2) we introduce here the differential 
equation 

(2.2) L(2)p =pxy + iqypx + iqxpy + (iqxy - qxqy)p = f 

If we could find a solution p of this equation, then the integral I is readily obtained 
as 

(2.3) I = p(b, d)e -(b d)-p(a, d)ei(a d)-p(b, c)elq(bc) + p(a, c)eiq(ac) 

This can be shown by using the equality 

(2.4) a [pe [pxy + iqypx + iqxpy + (iqxy - qxqy)P]e 

Here also we are going to use the collocation technique with "nonoscillatory" basis 
functions to find an approximation to the nonoscillatory solution po of Eq. (2.2), i.e., 

(a) we choose a set of suitable "nonoscillatory" linearly independent functions 
{Uk}k=1- 

(b) We solve, for {ak}7k k, the system of collocation conditions 

(2.5) L ( 2 akuk (xi, yY) = f(xj, y), j = 1, 2,... , 

where {(xj, yj)}>Jn= are regularly distributed in [a, b] X [c, d]. Here also it is 
advisable to include the corners as collocation points. 

(c) Form the approximation In to I by using the approximation Pn = Ek = IlkUk 

instead of p in (2.3). 

3. Practical Application of the Method and Numerical Experiments. The method 
described above reduces the problem of integrating rapidly oscillatory functions to 
solving linear systems ((1.9) or (2.5)). To avoid the difficulties of large linear systems, 
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we must keep a low order n of the approximations and improve the accuracy by 
subdividing the given domain of integration. Another possibility is to use finite 
support basis functions, e.g., B-splines, in the collocation approximation to obtain 
linear systems with banded (or block banded) matrices. In many cases a clever 
choice of the basis functions {Uk) can yield a very good approximation to the 
integral over a large or even infinite interval. For example, in the one-dimensional 
case, if q(x) is a polynomial in x and if f(x) is of the form 

(3.1) f(x) = r(x)es(x), 
where r and s are also polynomials in x, then by inspection of Eq. (1.2) it is clear 
that {Uk) should be of the form 

(3.2) Uk(X) vk(x)e 

where Vk are polynomial (or spline) basis functions. 
In the first two examples we consider integrals of the form 

(3.3) ff(x)eiw(n x+cx x) dx, 

where W is a large parameter and f is of the type (3.1). D is a finite interval in the 
one-dimensional case x = x and a rectangle in the two-dimensional case x = (x, y). 

Example 1. 

(3.4) I = sin x eiW(x+cx2) dx. 

We chose to approximate po of (1.5) by a polynomial using the monomial basis 
functions 

(3.5) uk(x) = xk-, k = 1,2,...,n, 

and the coefficients ( ak) in (1.10) where computed by solving (1.9) with equidistant 
collocation points x (j - l)/(n - 1), j 1,... ,n. An IMSL routine (LEQ2C) 
was used to solve this complex linear system, and the results were compared to those 
obtained by Romberg integration (using the routine DCADRE of IMSL). 

For the case W = 500 and c = 1 it takes about 3 cpu seconds to evaluate Re I to 5 
correct significant figures, Re I = 4.59859... X l0-4, by DCADRE. The computa- 
tion of In takes less than 0.1 cpu seconds for n ? 10 giving good approximations 
to I 

Re I5 = 4.60098 X l0-4, Re Io 0 4.59863 X l0-4. 

For larger values of W it becomes of course harder for DCADRE to compute I. 

Surprisingly, however, it was found that the approximation In I improves as W 
increases, i.e., more significant figures are obtained by In with fixed n. To explain 
this phenomenon, we use an asymptotic property of oscillatory integrals: If q' does 
not vanish on [a, b], then 

(3.6) JF=x)e iwq(x) dx O(7/W) as W-F- boo, 
1~~x1e ~~0(l/W2) if F(a) F(b) 0. 
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Using (3.6), it is clear that the integral (3.4) is of the order 1/W as W -o o. On the 
other hand, the error in In, can be written as 

(3.7) I - 

In= b(f(x) - L(lpn (X))ei Wq(x) dx. 
a 

Using the endpoints a and b as collocation points in (1.9), the integrand in (3.6) 
vanishes at a and b and, by (3.6), 

(3.8) I 
-In 

- 
O(1/ W2) as W x-- o. 

Thus, if f does not vanish at the endpoints, the relative error reduces as W increases 

(3.9) I 
- 

n 0 
1W as W >oo. 

Example 2. 

(3.10) I(W, c) f | cos(x + y)eiW[X+Y+c(x2+Y2)] d dy. 

Here also we used monomials as basis functions 

(3.11) {Uk}k1 = {xIyI 0 < i, <n- 1}, 

and a square grid of n2 collocation points 

(3.12) i ('l 0'n-i, ]j <n- ). 

We denote the resulting approximation by In2(W, c); its computation involves 
solving a complex linear system of order n2. 

For W 100 and c = 1 we got 

I9(100, 1) = -8.572 X 10- -3.305 X 10-5i 

and 

125(100,1) = -8.595 X 10-5 -3.231 X 10-5i, 

where the exact value is 

I(100, 1) = -8.597 X 10- -3.212 X 10-5i. 

Here it can be shown that 

I(W, c) - 0(17W2) as W - 

and 

I(W, c) -In2(W, c) 0(1/W3) as W- oo. 

Therefore, as in the one-dimensional case, the results improve as W increases: For 
W = 104 and c = 1 we got 

125(104, 1) = -6.92088 X 10-9 + 2.53659 X 10-9i 

while 

I(104, 1) = -6.92072 X 10-9 + 2.53674 X 10-9i. 

Example 3. 

(3.13) 'xp( x dx. 
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In this case the integrand oscillates slowly near x = 0 and infinitely rapidly as x 
tends to 1. It is an example of integrals obtained by transforming integrals 
oscillating over an infinite range to a finite interval. This particular integral originates 
from the integral 

00 eix 
(3.14) I= 2dx 0.3785504 + 0.3433779i. 

Applying the technique of Section 1 to the integral (3.13), we obtained the 
differential equation 

(3.15) p, + ( 2 x) = 1. 
(I1_X)2 

To avoid computational problems at x = 1, we applied the collocation method (with 
the monomial basis functions) to the equation 

(1-x)2p' + ip = (1-X)2. 

The results show that the method can compete with any other method for evaluating 
the infinite integral (3.14): 

I5 = 0.3809 + 0.3442i, 

i1O = 0.378566 + 0.343380i, 

I15 = 0.3785503 + 0.3433777i. 

Example 4. 

(3.16) I(W) =f2T logxsinWxdx. 

This is an example of an oscillatory integral with a singularity, also considered in [1, 
p. 126]. Writing I(W) as 

(3.17) I(W) = Im log xeiwx dx, 

we can apply the method of Section 1, i.e., we look for an approximation to the 
nonoscillatory solution po(x) of the differential equation 

(3.18) L()p(x) p'(x) + iWp(x) = logx. 

It can easily be verified that near x = 0 the solution of (3.18) can be expanded as 
00 00 

(3.19) p (x) = I aixi + log x Y, bix'. 
i=0 i=o 

Therefore, we look for an approximation Pn = 2k=l Ikuk to po using the basis 

functions 

? (k-1)/2 k odd, 

(3.20) Uk(X)= k 1. 
? k/2log X, k even, 
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To enable collocation of (3.18) at x = 0, we must take a2 = 1. Then, since L(')u2(x) 
- L(')(x log x) = log x + 1 + iWx log x, the singular term log x can be subtracted 
from both sides of the collocation equations (1.8). 

To get satisfactory approximations we subdivided the integral as 

(3.21) f2?f 02?f 
+ ?fI+ 2?f 3?f 4?f 5?f 21. 

0 0 0.2 1 2 3 4 5 

The special basis functions in (3.20) were being used only in the interval [0,0.2], 
while the simple monomial basis functions in (3.5) were being used in the other six 
subintervals [0.2,1],...,[5,2'n]. Denoting by In(W) the sum of the seven nth order 
approximations to the seven integrals on the right-hand side of (3.21), the following 
approximations to I(30) = -0.1938773 were obtained: 

I6(30) = -0.1938870, I10(30) = -0.1938763. 

These approximations are significantly better than those given in [1] using the Filon 
method. 

Appendix. We would like to show that if f and q are slowly oscillatory and 
I q'(x) I > 1, then the differential equation ((1.2)) 

(A.1) L(1)p = p' + iq'p = f 

has a particular solution po which is slowly oscillatory in comparison with the 
rapidly oscillatory homogeneous solution e"'. 

Instead of counting zeros we shall use a spectral characterization for the oscilla- 
tory behavior of functions. Let us write q as q(x) = Wu(x), where 0 < I u'(x) I < 1, 
and let x(D) be the inverse of u(x), u(a) < ( < u(b). Actually, we should assume 
that f(x(())/q'(x(()) is slowly oscillatory, i.e., that its spectrum is bounded 

(A.2) JG)) fWOG(w)eiw? dw, O < WO < W. 
q'(x(~) -wo 

Then the slowly oscillatory particular solution of (A. 1) is 

(A.3) pA(x) = W fwo G(w W) dw. 

This can be verified by computing L(')po: 

L(l)po(x) = p'(x) + iq'(x)po(x) 

= wo G(w) [iwu'(x) eiwu(x) + iwul(x)eiwu(x)] dw 

J-w0 i(w ? W) 

= q'(X) J WG(w)eiwu(x) dw = q'(x) f(x(u(x))) = f(x) 
wo ~~~~~q'(x(u(x))) 

The particular solution (A.3) is slowly oscillatory in comparison with eiq(x) since its 
spectrum is bounded in [-W0, W0] and W0 < W. 

School of Mathematical Sciences 
Tel-Aviv University 
Ramat-Aviv, Israel 
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