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Moment-free numerical integration of highly oscillatory functions
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The aim of this paper is to derive new methods for numerically approximating the integral of a highly
oscillatory function. We begin with a review of the asymptotic and Filon-type methods developed by
Iserles and Nørsett. Using a method developed by Levin as a point of departure, we construct a new
method that utilizes the same information as a Filon-type method, and obtains the same asymptotic order,
while not requiring the computation of moments. We also show that a special case of this method has
the property that the asymptotic order increases with the addition of sample points within the interval of
integration, unlike all the preceding methods whose orders depend only on the endpoints.
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1. Introduction

A highly oscillatory integral is defined as

I [ f ] =
∫ b

a
f (x) eiωg(x) dx,

for f, g ∈ C∞ and frequency ω � 1. In this paper, we consider only the case of g′(x) �= 0 for a �
x � b, in other words, when g has no stationary points. The most immediate candidate for numerically
approximating this integral might be Gaussian quadrature. Unfortunately, if we subdivide [a, b] into
panels of length h > 0, we can choose ω large enough such that the approximation is completely
meaningless, as the node points are essentially random samples in the range of oscillation. The error
of this approximation is O(1) as ω → ∞, which compares to an error of O(ω−1) when approximating
I [ f ] by zero (see Iserles & Nørsett, 2005). It is safe to say that any approximation that is less accurate
than equating the integral to zero is fairly useless. Letting h depend on ω, on the other hand, results in
an enormous amount of computation for large ω. Fortunately, there is another way.

We begin with a review of two methods described in Iserles & Nørsett (2005), the asymptotic method
and the Filon-type method, both of which have an error of order O(ω−s−1) for any fixed positive integer
s and increasing frequency ω. The implication is that, in stark contrast to Gaussian quadrature, the larger
the frequency, the more accurate the approximation. Using these two methods as an inspiration and
extending the work of David Levin, we derive another method that also has an error of order O(ω−s−1).
Like the Filon-type method, this new method uses interior points as well as the endpoints for deriving
the approximation, while unlike the Filon-type method it does not require moments. We also show that
a special case of this method has the property that using interior points, in addition to endpoints, further
increases the order of the error.
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2. The asymptotic method

The foundation of the proofs in this paper lies in the observation, as described in Iserles & Nørsett
(2005), that

I [ f ] =
∫ b

a
f (x) eiωg(x) dx = 1

iω

∫ b

a

f (x)

g′(x)

d

dx
eiωg(x) dx

= 1

iω

[
f (x)

g′(x)
eiωg(x)

]b

a
− 1

iω

∫ b

a

d

dx

[
f (x)

g′(x)

]
eiωg(x) dx = Q A[ f ] − 1

iω
I

[
d

dx

f

g′

]
,

where Q A[ f ] is defined as 1
iω [ f(x)

g′(x) eiωg(x)]b
a . Since we assume that g′(x) �= 0 for all x ∈ [a, b], there is

no issue in dividing by g′. This equation states that if we approximate I [ f ] by Q A[ f ], then we have an
order of error of O(ω−2), again using the fact that I [ f ] = O(ω−1) for bounded f (see Iserles & Nørsett,
2005). But the error term of this approximation can likewise be approximated, now by 1

iω Q A[ d
dx

f
g′ ].

Hence, we have derived a new approximation of I [ f ], namely, Q A[ f ] − 1
iω Q A[ d

dx
f
g′ ], which has an

order of error of O(ω−3). Clearly, if we continue this process of approximating the error terms using
Q A, after s steps we obtain error O(ω−s−1). Thus, we have derived an asymptotic expansion:

THEOREM 2.1 Let f ∈ C∞ and g′(x) �= 0 for a � x � b. Define σk as

σ1[ f ](x) = f (x)

g′(x)
, σk+1[ f ](x) = σk[ f ]′(x)

g′(x)
, k � 1.

Then, for ω → ∞,

I [ f ] ∼ −
∞∑

k=1

1

(−iω)k
{σk[ f ](b) eiωg(b) − σk[ f ](a) eiωg(a)}.

A formal proof of this theorem can be found in Iserles & Nørsett (2005). We define

Q A
s [ f ] = −

s∑
k=1

1

(−iω)k
{σk[ f ](b) eiωg(b) − σk[ f ](a) eiωg(a)},

i.e. the s-step partial sum of the asymptotic expansion. From the omitted proof of the theorem, we know
that the error I [ f ] − Q A

s [ f ] is equal to 1
(−iω)s

∫ b
a g′(x) σs+1[ f ](x) eiωg(x) dx and by the definition of

asymptotic expansions we know that I [ f ]− Q A
s [ f ] ∼ O(ω−s−1). Hence, the error of the approximation

tends to zero as ω−s−1. In other words, the more oscillatory the integrand, the more accurately we can
approximate the integral! This flies in the face of common intuition, based on the problems associated
with Gaussian quadrature, that oscillations make numerical integration difficult.

From this theorem we now derive a corollary that will be used to find the order of error for the
Filon-type and Levin-type methods.

COROLLARY 2.1 Suppose 0 = f (a) = f (b) = f ′(a) = f ′(b) = · · · = f (s−1)(a) = f (s−1)(b) for
some positive integer s. Furthermore, allow f to depend on ω, and suppose that every function in the
set { f, . . . , f (s+1)} is of asymptotic order O(ω−n), ω → ∞, for some fixed n. Then, as ω → ∞,

I [ f ] ∼ O(ω−n−s−1).
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Proof. Fix s � 1. By simple inductive reasoning, we see that each σk[ f ] is a linear combination of
terms independent of ω multiplied by functions in the set { f, . . . , f (k−1)}. As a result, 0 = σk[ f ](a) =
σk[ f ](b) for all k � s, and it follows that Q A

s [ f ] is 0. Hence,

I [ f ] = − 1

(−iω)s+1
{σs+1[ f ](b) eiωg(b) − σs+1[ f ](a) eiωg(a)}

+ 1

(−iω)s+1

∫ b

a
g′(x) σs+2[ f ](x) eiωg(x) dx .

The first two terms are O(ω−n−s−1). We know that |σs+2[ f ]| � K
ωn for some constant K , since σs+2[ f ]

is a combination of f and its first s + 1 derivatives. Thus, the integral term is also O(ω−n−s−1) since∣∣∣∣ 1

(−iω)s+1

∫ b

a
g′(x) σs+2[ f ](x) eiωg(x) dx

∣∣∣∣ � K

ωn+s+1
(b − a) = O(ω−n−s−1).

�
Note that this corollary applies equally well when f and its derivatives are independent of ω, in

which case we take n = 0. Unless otherwise stated, we assume n = 0 when this corollary is used.

REMARK 2.1 In Corollary 2.1, it is necessary to impose the order requirement on both f and its first
s + 1 derivatives: f = O(ω−n) with no restriction on its derivatives is not sufficient. For example,
consider f (x) = ω−n eiωn x . Then f (k)(x) = ik−1ω(k−1)n eiωn x = O(ω(k−1)n) and the corollary does
not hold.

3. Filon-type methods

The shortcoming with using an asymptotic expansion as an approximation is that in general Q A
s [ f ]

diverges for fixed ω as s → ∞. In other words, for fixed ω, the accuracy of approximating an integral
by the partial sums Q A

s is limited. To work around this weakness, we derive a Filon-type method, which
extends the work of Filon as described in Iserles & Nørsett (2005).

THEOREM 3.1 Let s be some positive integer, let {xk}η0 be a set of node points such that a = x0 <
x1 < · · · < xη = b, and let {mk}η0 be a set of multiplicities associated with those node points such that
m0, mη � s. Suppose that v(x) = ∑n

k=0 ck xk , where n = ∑η
k=0 mk − 1, is the solution to the system

of equations

v(xk) = f (xk) ,

v ′(xk) = f ′(xk) ,

...

v(mk−1)(xk) = f (mk−1)(xk) ,

for every integer 0 � k � η. Then

I [ f ] − QF [ f ] ∼ O(ω−s−1),

where

QF [ f ] ≡ I [v] =
n∑

k=0

ck I [xk].
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Proof. Note that I [ f ] − QF [ f ] = I [ f ] − I [v] = I [ f − v]. By the definition of v , the hypotheses of
Corollary 2.1 hold for the function f − v , hence I [ f − v] ∼ O(ω−s−1). �

In other words, we interpolate f by a polynomial v using Hermite interpolation. Since we are assum-
ing that moments are available and QF [ f ] is a linear combination of moments, we know that QF [ f ] can
be computed. The obvious question then is if it has the same order of error as the asymptotic method,
as well as requiring the same number of derivatives, why bother? The answer is that in many situations
the accuracy of the Filon-type method is significantly higher than that of the asymptotic method, even
though it is of the same order. We also have the ability to add interior node points to further increase
the accuracy, and it is clear that QF [ f ] converges to I [ f ] whenever the interpolating polynomial v
converges uniformly to f .

We now compare asymptotic and Filon-type methods numerically. For example, consider the case of
the Fourier oscillator g(x) = x , and let f (x) = cos x over the interval [0, 1]. In Fig. 1, we compare sev-
eral methods of order three: Q A

2 [ f ], QF [ f ] with nodes {0, 1} and multiplicities {2, 2} and QF [ f ] with
nodes {0, 1

2 , 1} and multiplicities {2, 1, 2}. Even when sampling f only at the endpoints of the interval,
the Filon-type method represents a significant improvement over the asymptotic method, having approx-
imately one-twelfth the error, while using exactly the same information. Adding a single interpolation
point resulted in an error almost indistinguishable from zero when compared to the asymptotic method.
Adding additional node points continues to have a similar effect.

Unfortunately, it is not always true that the Filon-type method is more accurate than the asymptotic
method. Take the case of the Fourier oscillator and f (x) = (1+10x2)−1, now over the interval [−1, 1].
This suffers from Runge’s phenomenon, as described in Powell (1981), where certain non-oscillatory
functions have oscillating interpolation polynomials. Since the Filon-type method is based on inter-
polation, it is logical that the accuracy of QF [ f ] is directly related to how accurate the interpolation
is. In Fig. 2, we see that adding additional nodes actually reduces the accuracy of QF [ f ]. It should be
noted that in this example QF [ f ] with only endpoints and Q A

1 [ f ] are equivalent, which can be trivially
proved by finding the explicit formula for QF [ f ]. Thus, Q A

1 [ f ] is the best of the three methods tried.
We know that using Chebyshev interpolation points, also described in Powell (1981), helps reduce

the magnitude of Runge’s phenomenon. Using this choice for nodes, along with the required endpoint
nodes, results in the errors seen in Fig. 3. Now adding additional node points results in a more ac-
curate approximation. This certainly is a huge improvement over Fig. 2, but the Filon-type methods
definitely do not have the same magnitude of improvement over the asymptotic method as they did in
Fig. 1.

FIG. 1. The error scaled by ω3 of Q A
2 [ f ] (left figure, top), QF [ f ] with only endpoints and multiplicities both two (left fig-

ure, bottom)/(right figure, top) and QF [ f ] with nodes {0, 1
2 , 1} and multiplicities {2, 1, 2} (right figure, bottom) for I [ f ] =∫ 1

0 cos(x) eiωx dx .



MOMENT-FREE NUMERICAL INTEGRATION OF HIGHLY OSCILLATORY FUNCTIONS 217

FIG. 2. The error scaled by ω2 of QF [ f ] with only endpoints (right figure), endpoints and two additional evenly spaced points
(left figure, bottom) and endpoints and four additional evenly spaced points (left figure, top), where all multiplicities are one for

I [ f ] = ∫ 1
−1

1
1+10x2 eiωx dx .

FIG. 3. The error scaled by ω2 of QF [ f ] with only endpoints (right figure), endpoints and two additional Chebyshev inter-
polation points (left figure, top) and endpoints and four additional Chebyshev interpolation points (left figure, bottom), where all

multiplicities are one for I [ f ] = ∫ 1
−1

1
1+10x2 eiωx dx .

Another option, with regards to Runge’s phenomenon, is to use cubic splines in place of interpol-
ation. Unfortunately, this suffers from the fact that a cubic spline can only match up to the first derivative
at the endpoints, hence the order is at most O(ω−3) in the present framework. Since we are only consid-
ering methods with arbitrarily high order of convergence for increasing ω, we will not explore the use
of cubic or higher-degree splines.

4. Levin-type methods

Filon-type methods require that moments are easily computable, which is not necessarily the case. For-
tunately, we can work around this problem by expanding on the method developed by David Levin in
Levin (1997). What follows is a brief, and simplified, synopsis of the method described in that paper.
Suppose we have a function F(x) such that

d

dx
[F(x) eiωg(x)] = f (x) eiωg(x). (4.1)

It follows immediately that I [ f ] = [F(x) eiωg(x)]b
a . If we approximate F by some function v , then we

can approximate the integral by QL [ f ] = [v(x) eiωg(x)]b
a . By expanding out the derivative on the left-

hand side of (4.1) and canceling the eiωg(x) terms, we obtain the equation L[F](x) = f (x), where L is
the operator defined by L[F] = F ′ + iωg′F . Now let v(x) = ∑n

k=0 ck xk be the collocation polynomial
which is the solution to the system of equations L[v](xk) = f (xk) at points a = x0 < x1 < · · · < xη =
b. Then QL [ f ] approximates I [ f ] with error O(ω−2).
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The natural extension to the Levin method is to emulate a Filon-type method of the preceding section
and match not only the value of f and L[v] at the node points but also the values of the derivatives of
f and L[v], up to the given multiplicity. We prove in this section that if we again match the function
values f and L[v] and the first s − 1 derivatives at the endpoints, then we obtain an order of error of
O(ω−s−1). Since the proof of the following theorem does not rely on v being a polynomial, we allow
v to be a linear combination of a set of basis functions matching certain criteria—a generalization that
will be exploited in Section 5.

THEOREM 4.1 Suppose that g′(x) �= 0 for x ∈ [a, b]. Let {ψk}n
0 be a basis of functions independent

of ω and let s be some positive integer. Furthermore, let {xk}η0 be a set of node points such that a =
x0 < x1 < · · · < xη = b and {mk}η0 a set of multiplicities associated with those node points such that
m0, mη � s. Suppose that v = ∑n

k=0 ckψk , where n = ∑η
k=0 mk − 1, is the solution to the system of

collocation equations

L[v](xk) = f (xk) ,

dL[v]

dx
(xk) = f ′(xk) ,

...

dmk−1L[v]

dxmk−1 (xk) = f (mk−1)(xk) ,

for every integer 0 � k � η and L[v] = v ′ + iωg′v . Define

gk = [(g′ψk)(x0) , . . . , (g′ψk)
(m0−1)(x0) , . . . , (g′ψk)(xη), . . . , (g

′ψk)
(mη−1)(xη)]

T.

If the vectors {g0, . . . , gn} are linearly independent, then for sufficiently large ω the system has a unique
solution and

I [ f ] − QL [ f ] ∼ O(ω−s−1),

where
QL [ f ] ≡ [v(x) eiωg(x)]b

a = v(b) eiωg(b) − v(a) eiωg(a). (4.2)

Proof. We know that I [ f ] − QL [ f ] = I [ f ] − I [L[v]] = I [ f − L[v]]. Hence, we use Corollary 2.1
in a manner similar to the proof of Theorem 3.1. Unfortunately, L[v] depends on ω so we need to show
that all the functions in the set { f − L[v] , . . . , f (s+1) − L[v](s+1)} are bounded for increasing ω. Since
{ f, . . . , f (s+1)} are by definition independent of ω, we need only show that {L[v] , . . . , L[v](s+1)} are
O(1).

The vector of coefficients c = [c0, . . . , cn]T solves the system of equation Ac = f, where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L[ψ0](x0) · · · L[ψn](x0)
...

. . .
...

L[ψ0](m0−1)(x0) · · · L[ψn](m0−1)(x0)
...

. . .
...

L[ψ0](xη) · · · L[ψn](xη)
...

. . .
...

L[ψ0](mη−1) (xη) · · · L[ψn](mη−1) (xη)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (x0)
...

f (m0−1)(x0)
...

f (xη)
...

f (mη−1)(xη)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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For notational brevity, we regard matrices as row vectors whose entries are column vectors. If we let

pk = [ψ ′
k(x0) , . . . , ψ

(m0)
k (x0) , . . . , ψ ′

k(xη), . . . , ψ
(mη)
k (xη)]

T,

then A = [p0 + iωg0, . . . , pn + iωgn]. In later proofs, we will also use ak = pk + iωgk to denote the
(k + 1)th column of A.

Using Cramer’s rule, we find that ck = det Dk
det A for 0 � k � n, where Dk is the matrix A with

the (k + 1)th column replaced by f. Note that all the entries of the matrix Dk , except for a single col-
umn, are of order O(ω). Hence, it is obvious from the definition of the determinant that det Dk =
O(ωn).

We now show that 1
det A = O(ω−n−1). We know that

det A = det [iωg0, . . . , iωgn] + O(ωn) = (iω)n+1 det [g0, . . . , gn] + O(ωn).

But, by the hypothesis, the columns of this determinant are linearly independent, hence this determin-
ant is not zero and det A is an (n + 1)th-degree polynomial in ω. If ω is sufficiently large, then the
ωn+1 term overwhelms the O(ωn) term and det A �= 0, which proves that the system has a unique
solution. Furthermore, 1

det A = O(ω−n−1), and we have shown that ck = O(ω−1). Since each ψk is
independent of ω, it follows that v and its derivatives are also O(ω−1). Thus,

L[v]( j) = v( j+1) + iω
j∑

k=0

g(k+1)v( j−k) = O(ω−1) + O(1) = O(1),

for all 0 � j � s + 1. We have satisfied the hypotheses of Corollary 2.1 and the theorem follows. �
Theorem 4.2 provides somewhat simpler conditions on the basis {ψk}n

0 than in the preceding theo-
rem. It is especially helpful as it ensures that the standard polynomial basis can be used with the Levin-
type method and any choice of nodes and multiplicities. Recall from Powell (1981) that stating that a
basis is a Chebyshev set is equivalent to stating that it spans a set M that satisfies the Haar condition or,
in other words, that every function u ∈ M has less than n + 1 roots for the equations u(x) = 0 in the
interval [a, b].

THEOREM 4.2 Suppose that the basis {ψk}n
0 is a Chebyshev set. Then the conditions on {gk}n

0 of the
preceding theorem are satisfied for all choices of {xk}η0 and {mk}η0.

Proof. Let M be equal to the span of {ψk}n
0. We begin by showing that {g′ψk}n

0 is a Chebyshev set. Note
that {g′ψk}n

0 is a family of linearly independent functions since
∑

ckg′ψk = g′ ∑ ckψk and g′ �= 0. Let
M̃ = span{g′ψk}n

0 and ũ ∈ M̃ , where ũ is not identically zero. We know that ũ = g′u for some u ∈ M ,
and u is equal to zero less than n + 1 times. But if u(x) �= 0 then ũ(x) �= 0. Thus, M̃ satisfies the Haar
condition. It follows that the vectors [g′(y0) ψk(y0) , . . . , g′(yn) ψk(yn)]T for 0 � k � n are linearly
independent for any choice of nodes {yk}n

0 (see Powell, 1981). Thus, by a trivial limiting argument, we
know that {g0, . . . , gn} are linearly independent. �

The simplest and most obvious choice for {ψk} is the standard basis of polynomials, which we know
is a Chebyshev set. In fact, this choice is equivalent to the Filon-type method for the Fourier oscillator
case. This was proved in Xiang (2005) for the original Levin method (i.e. multiplicities all one), and the
proof is trivial to generalize for the preceding Levin-type method. For the remainder of this section, we
assume that {ψk} is the standard basis of polynomials.
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FIG. 4. The error scaled by ω3 of Q A
2 [ f ] (left figure, top), QL [ f ] (left figure, bottom)/(right figure, top) and QF [ f ] (right figure,

bottom) both with only endpoints and multiplicities two for I [ f ] = ∫ 1
0 cos(x) eiω(x2+x) dx .

FIG. 5. The error scaled by ω3 of QL [ f ] (left figure, top) and QF [ f ] both with only endpoints and multiplicities two (left
figure, bottom) compared to QL [ f ] (left figure, middle) and QF [ f ] (right figure) both with nodes {0, 1

4 , 2
3 , 1} and multiplicities

{2, 2, 1, 2} for I [ f ] = ∫ 1
0 cos(x) eiω(x2+x) dx .

How does a Levin-type method compare numerically to the asymptotic and Filon-type methods?
Consider the case with g(x) = x2 + x and f (x) = cos x . We fix s equal to two, hence the endpoints
for the Filon-type and Levin-type methods must have multiplicity at least two, and we obtain Fig. 4.
This figure suggests that, in reasonable situations, a Levin-type method is a clear improvement over the
asymptotic method, though not quite as accurate as a Filon-type method.

Figure 5 compares the Levin-type method and the Filon-type method with the addition of two sam-
ple points. This graph helps emphasize the effectiveness of adding node points within the interval of
integration. With just two node points, only one of which has multiplicity greater than one, the error of
QL [ f ] is less than a sixth of what it was. In fact, it is fairly close to the former QF [ f ] while still not
requiring the knowledge of moments. On the other hand, adding the same node points and multiplicities
to QF [ f ] results in an error indistinguishable from zero in comparison to the original QL [ f ]. It should
be emphasized that even QL [ f ] with only endpoints is still a very effective method as all the values in
this graph are divided by ω3 � 2003 = 8 × 106.

It comes as no surprise that the hierarchy of accuracy between the asymptotic, Filon-type and Levin-
type methods depends on the choice of f and g. After all, we have already seen that the Filon-type
method can be less accurate than the asymptotic method when f exhibits Runge’s phenomenon. Further
in this paper, we will see an example where a Levin-type method with polynomial basis is significantly



MOMENT-FREE NUMERICAL INTEGRATION OF HIGHLY OSCILLATORY FUNCTIONS 221

more accurate than a Filon-type method, and how it oscillates between being more accurate and less
accurate than the asymptotic method, for increasing ω.

5. Choosing a basis

It is important to note that for a Levin-type method, there is no particular reason to use polynomials
for {ψk}. Not only can we greatly improve the accuracy of the approximation by choosing the basis
wisely but also, surprisingly, we can even obtain higher asymptotic order. The idea is to choose {ψk}
so that L[v] is qualitatively similar in shape to f within the interval of integration. Pretend for a mo-
ment that Q A

s [ f ] is equal to I [ f ] = [F(x) eiωg(x)]b
a . Then F(x) = − ∑s

k=1
1

(iω)k σk[ f ](x). This sug-
gests that a reasonable choice for {ψk} is to define ψ0 = 1 and ψk = σk[ f ] for k � 1. Provided
that this choice for {ψk} satisfies the hypotheses of a Levin-type method, it turns out that we obtain
an error of order O(ω−n−s−1) for n = ∑η

k=0 mk − 1, i.e. where n + 1 is the number of equations
in the Levin-type method system. This is a very significant improvement since, unlike in the case of
a Filon-type method as well as a Levin-type method with polynomial basis, node points within the
interval increase the order and adding an additional multiplicity to each endpoint increases the order
by three.

To prove the order of the error we rely heavily on Cramer’s rule. As a result, we need to do several
determinant manipulations. Hence, we derive the following lemma, which we use repeatedly in the proof
of Theorem 5.1.

LEMMA 5.1 Let ψ0 = 1,ψ1 = f
g′ and ψk+1 = ψ ′

k
g′ for integer k � 1. If k � 1, then

det[gk, ak, . . . , ak+ j , B] = det[gk, gk+1, . . . , gk+ j+1, B], (5.1)

where gk and ak were defined in Theorem 4.1 and B represents any additional columns that render the
matrix square.

Proof. Note that ψ ′
k = g′ψk+1, for k � 1. Hence, we can rewrite pk as

pk = [ψ ′
k(x0) , . . . , ψ

(m0)
k (x0) , . . . , ψ ′

k(xη), . . . , ψ
(mη)
k (xη)]

T

= [(g′ψk+1)(x0) , . . . , (g′ψk+1)
(m0−1)(x0) , . . . , (g′ψk+1)(xη), . . . , (g

′ψk+1)
(mη−1)(xη)]

T

= gk+1.

Recall that ak = pk + iωgk . Thus, multiplying the first column of the determinant on the left-hand side
of (5.1) by iω and subtracting it from the second results in a second column equal to ak − iωgk = pk =
gk+1. Clearly, we can repeat this process on the remaining columns, hence the lemma follows by an
inductive argument. �

Note that Lemma 5.1 holds for any column interchange that occurs on both sides of the equality.
Using this lemma we can prove the following theorem:

THEOREM 5.1 Let {ψk} be defined as in the preceding lemma, and suppose that {xk}η0, {mk}η0 and {ψk}n
0

satisfy the conditions for Theorem 4.1. Then, if m0, mη � s,

I [ f ] − QL [ f ] ∼ O(ω−n−s−1),

where as before n = ∑η
k=0 mk − 1.
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Proof. Provided that we can show that the functions in the set {L[v] − f, . . . , L[v](s+1) − f (s+1)} are
of order O(ω−n), the theorem will follow from Corollary 2.1. If we fix 0 � j � s + 1, then

L[v]( j) − f ( j) =
n∑

k=0

ck L[ψk]( j) − f ( j) =
n∑

k=0

ck(ψ
( j+1)
k + iω(g′ψk)

( j)) − f ( j)

= iωc0g( j+1) +
n∑

k=1

ck[(g′ψk+1)
( j) + iω(g′ψk)

( j)] − (g′ψ1)
( j)

= iωc0g( j+1) + (iωc1 − 1)(g′ψ1)
( j) +

n∑
k=2

(ck−1 + iωck)(g
′ψk)

( j) + cn(g
′ψn+1)

( j)

= 1

det A

[
iω det D0 g( j+1) + (iω det D1 − det A)(g′ψ1)

( j)

+
n∑

k=2

(det Dk−1 + iω det Dk)(g
′ψk)

( j) + det Dn(g
′ψn+1)

( j)

]
.

Recall that we showed in the proof of Theorem 4.1 that 1
det A = O(ω−n−1). Hence, it is sufficient to

show that the numerator of the preceding fraction is O(ω). There are four types of terms we need to
handle: iω det D0, iω det D1 − det A, det Dk−1 + iω det Dk for integer 2 � k � n and det Dn . The first
of these cases follows immediately from Lemma 5.1. For the second case note that

det A − iω det D1 = det[a0, p1 + iωg1, a2, . . . , an] − iω det D1

= det[a0, p1, a2, . . . , an] + iω det[a0, g1, a2, . . . , an] − iω det D1

= iω det[g0, g2, a2, . . . , an],

where we use the fact that a0 = iωg0 and g1 = f since g′(xk) ψ1(xk) = f (xk). After applying
Lemma 5.1 to this determinant, it is clear that this case is also O(ω).

The third case is handled in a very similar manner. Like before, we begin by rewriting determinants:

det Dk−1 + iω det Dk = det[a0, . . . , ak−2, g1, pk + iωgk, ak+1, . . . , an]

+ iω det[a0, . . . , ak−2, pk−1 + iωgk−1, g1, ak+1, . . . , an]

= det[a0, . . . , ak−2, g1, gk+1, ak+1, . . . , an]

+ iω det[a0, . . . , ak−2, g1, gk, ak+1, . . . , an]

+ iω det[a0, . . . , ak−2, gk, g1, ak+1, . . . , an]

+ (iω)2 det[a0, . . . , ak−2, gk−1, g1, ak+1, . . . , an]

= det[a0, . . . , ak−2, g1, gk+1, ak+1, . . . , an]

+ (iω)2 det[a0, . . . , ak−2, gk−1, g1, ak+1, . . . , an].

After using Lemma 5.1 twice, the first of these determinants is clearly O(ω). But using the lemma
on the second determinant results in two columns being equal to gk−1, hence the determinant is zero.
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The fourth and final case, much like the first case, is O(ω) due to Lemma 5.1. Hence, we have shown
that L[v]( j) − f ( j) is of order O(ω−n) for all 0 � j � s + 1, and the proof is complete. �

To emphasize the distinction, we denote a Levin-type method with the standard polynomial basis as
QL [ f ] and a Levin-type method with the basis of the preceding theorem, which we call the asymptotic
basis, as QB[ f ]. Clearly, when the same node points and multiplicities are used and ω is sufficiently
large, QB[ f ] is a substantial improvement over QL [ f ] and QF [ f ]. Of course, it also requires f (k) for
k up to n + s −1, where the Filon-type method only requires f (k) for k up to s −1. Thus, in some sense,
it is more appropriate to compare QB[ f ] with other methods of the same order.

Consider the Fourier oscillator and let f (x) = log(x + 1). We compare methods of order O(ω−4),
and hence fix s = 3. This includes Q A

3 [ f ], QF [ f ] (which is equivalent to QL [ f ]) with nodes {0, 1}
and multiplicities {2, 2} and QB[ f ] using nodes {0, 1

2 , 1} and multiplicities all one. With this set-up we
obtain Fig. 6. The results are decent, with QB[ f ] being slightly more accurate than QF [ f ] on average.

The problem with Q A
s [ f ] and QF [ f ] is that in general as s → ∞ these methods diverge. Hence,

another worthwhile comparison is to see how QB[ f ] compares to these two methods for fixed ω and
increasing s. Thus, fix ω = 50, chosen purposely relatively small since the larger ω, the longer it takes
for increasing s to cause the approximation to diverge. This choice results in Fig. 7, where we take the
base-10 logarithms of the error. This figure clearly shows the benefit of using QB[ f ] for this particular
case. Though at lower orders the errors of QF [ f ] and QB[ f ] are very similar, at higher orders they
differ by orders of magnitude. For O(ω−9), the error of QB[ f ] is slightly better than 10−16 while the

FIG. 6. The error scaled by ω4 of Q A
3 [ f ] (left figure, top), QF [ f ] with endpoints for nodes and multiplicities two (left figure,

bottom) and QB [ f ] with nodes {0, 1
2 , 1} and multiplicities one (right figure) for I [ f ] = ∫ 1

0 log(x + 1) eiωx dx .

FIG. 7. The base-10 logarithm of the error of Q A
s [ f ] (top), QF [ f ] with endpoints for nodes and multiplicities s (middle) and

QB [ f ] with nodes {k/(s − 1)}s−1
k=0 and multiplicities all one (bottom) for I [ f ] = ∫ 1

0 log(x + 1) eiωx dx .
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error of QF [ f ] is slightly better than 10−12, and the error of Q A[ f ] is not even 10−12. At around 10−16

we reach IEEE machine precision, hence it would be meaningless to extend this graph to higher orders.

We can also compare QB[ f ] with itself under different choices of node points. Though we retain
the same f and g, we compare different methods of order O(ω−6) to increase the number of possible
node choices. We consider three choices of nodes and multiplicities: nodes {0, 1

4 , 1
2 , 3

4 , 1} and multiplic-
ities all one, nodes {0, 1

2 , 1} and multiplicities {1, 3, 1} and nodes {0, 1} and multiplicities both equal
to two. This results in Fig. 8. We take relatively small values for ω because the accuracy reaches IEEE
machine precision for larger values. It is not entirely surprising that the more concentrated the sampling,
the less accurate the approximation. Though they are not displayed in the preceding figure, for com-
parison Q A

5 [ f ] performed horribly, oscillating between 23 and 25, while QF [ f ] with nodes {0, 1} and
multiplicities five performed roughly in the middle of the pack, oscillating between 0.2 and 0.8.

Now consider the case of

E1(−iω) =
∫ ∞

1

eiωx

x
dx

where E1 is the exponential integral as defined in Abramowitz & Stegun (1964). This function is im-
portant since we can derive the sine and cosine integrals from its real and imaginary parts. Note that

FIG. 8. The error scaled by ω6 of QB [ f ] with nodes {0, 1
4 , 1

2 , 3
4 , 1} and multiplicities all one (bottom), nodes {0, 1

2 , 1} and

multiplicities {1, 3, 1} (middle) and nodes {0, 1} and multiplicities both equal to two (top) for I [ f ] = ∫ 1
0 log(x + 1) eiωx dx .

FIG. 9. The error scaled by ω6 of Q A
5 [ f ] (top) and QB [ f ] with nodes {1, 5, 10, 20, ∞} and multiplicities all one (bottom) for

I [ f ] = ∫ ∞
1

1
x eiωx dx compared to E1(−iω).
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FIG. 10. The error scaled by ω6 of Re Q A
5 [ f ] (top) and Re QB [ f ] with nodes {1, 5, 10, 20, ∞} and multiplicities all one (bottom)

for I [ f ] = ∫ ∞
1

1
x eiωx dx compared to −Ci(ω).

FIG. 11. The error scaled by ω4 of Q A
3 [ f ] (left figure, bottom), QF [ f ] with only endpoints and multiplicities two (left figure, top)

and QB [ f ] with end points and two Chebyshev nodes, all with multiplicity one (right figure) for I [ f ] = ∫ 1
−1

1
1+10x2 eiωx dx .

though we never explicitly handled the case of b = ∞, all the proofs up to this point are valid for this
situation as long as we can integrate by parts. Thus, we can use the asymptotic method with σk[ f ](x) =
f (k−1)(x) = (−1)k−1(k − 1)!x−k , meaning that σk[ f ](∞) = 0 and σk[ f ](1) = (−1)k−1(k − 1)! for
all k. Since σk[ f ](∞) is always zero, we have the added benefit that it is only necessary to evaluate
f and its derivatives at one of the endpoints to obtain the desired order. Thus, we derive the following
asymptotic expansion:

E1(−iω) ∼ eiω
∞∑

k=1

(−1)k−1(k − 1)!

(−iω)k
.

It should come as no surprise that this is equivalent to the expansion in Abramowitz & Stegun (1964).
Clearly, neither Filon-type methods nor Levin-type methods with polynomial basis can handle this

situation since polynomials diverge at ∞. On the other hand, we can use the asymptotic basis with a
Levin-type method to derive an approximation. Consider the case of arbitrarily chosen nodes {1, 5, 10,
20, ∞} with multiplicities all one. This has order of error O(ω−6), thus we compare it to the asymptotic
method with s = 5 in Fig. 9. Even with arbitrarily chosen nodes, QB[ f ] is substantially more accurate
than simply using the asymptotic expansion; in this case, it has less than a 10th of the error on average.
We can also compare the real parts of each approximation to −Ci(ω), where Ci is the cosine integral as
defined in Abramowitz & Stegun (1964). This results in Fig. 10.

We now consider again the function that suffered from Runge’s phenomenon. Since QB[ f ] is not
a polynomial interpolation, there is a good chance that Runge’s phenomenon will not affect us in the
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FIG. 12. The error scaled by ω3 of QF [ f ] with endpoints and multiplicities both two (left figure, top), QL [ f ] with endpoints and
multiplicities both two (left figure, bottom), Q A

2 [ f ] (right figure, top) and QB [ f ] with endpoints and multiplicities all one (right

figure, bottom) for I [ f ] = ∫ 1
0 e10x eiω(x2+x) dx .

TABLE 1 The absolute value of the errors for ω = 200 of
the following methods of order O(ω−s−1): Q A

s [ f ], QF [ f ]
and QL [ f ] with endpoints and multiplicities both s, and
QB[ f ] with nodes {k/(s − 1)}s−1

k=0 and multiplicities all

one for I [ f ] = ∫ 1
0 e10x e200i(x2+x) dx

s Q A
s [ f ] QF [ f ] QL [ f ] QB[ f ]

2 0.0083 0.042 0.015 0.00059
3 0.00011 0.0016 0.00043 2.8 × 10−6

5 1.7 × 10−8 1.3 × 10−6 3 × 10−7 9.9 × 10−12

same way. In fact, numerical tests show that QB[ f ] has significantly less error than its polynomial
counterparts. Direct computation shows that det A is a polynomial in ω of degree n, not of degree n + 1.
Fortunately, the proof of Theorem 5.1 holds as is, except that QB[ f ] now has error of order O(ω−n−s).
Again, we compare methods of similar order in Fig. 11, which shows that QB[ f ] is the best of the three
methods tried.

Another situation somewhat similar to Runge’s phenomenon is when f increases much too fast to
be accurately approximated by polynomials. Let f (x) = e10x and g(x) = x2 + x . Note that this appears
to be a ludicrously difficult example—not only do we have high oscillations but also f exceeds 22,000
in the interval of integration! Amazingly, we will see that the methods described in this paper are still
very accurate, especially a Levin-type method with asymptotic basis. We compare QB[ f ] which has
only endpoints for nodes and multiplicities all one to Q A

2 [ f ] and QF [ f ] with only endpoints for nodes
and multiplicities both two in Fig. 12. We omit the proof that the vectors {g0, . . . , gn} associated with
QB[ f ] are linearly independent as it is a simple exercise in linear algebra.

In this example, QF [ f ] produces a tremendously bad approximation, due to the difficulty in inter-
polating an exponential by a polynomial. As seen in Table 1, the actual error for ω = 200 is about
0.042. On the other hand, Q A

2 [ f ] performed significantly better than the Filon-type method, though
still not spectacularly, with an error of approximately 0.0083 for ω = 200. The star of this show is
clearly QB[ f ], where the actual error for ω = 200 is about 0.000585; less than a 10th of the error of
Q A

2 [ f ].
Adding additional nodes to QB[ f ] increases the accuracy further. For example, again with ω = 200,

adding a single node at the midpoint decreases the error to 2.79 × 10−6 while adding nodes at 1
4 ,
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the midpoint and 3
4 further decreases the error to the astoundingly small 9.93 × 10−12. This example

demonstrates just how powerful these quadrature techniques are compared to Gaussian quadrature: even
with 100,000 panels Gaussian quadrature had an error of 0.11, not even close to the accuracy of the
Filon-type method, to say nothing of QB[ f ].
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