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Abstract

The purpose of this thesis is the numerical integration of highly oscilla-

tory functions, over both univariate and multivariate domains. Oscillatory

integrals have many applications, including solving oscillatory differential

equations and acoustics. Such integrals have an unwarranted reputation for

being difficult to compute. We will demonstrate that high oscillation is in fact

beneficial: the methods discussed improve with accuracy as the frequency of

oscillations increases. The asymptotic expansion will provide a point of de-

parture, allowing us to prove that other, convergent methods have the same

asymptotic behaviour, up to arbitrarily high order. This includes Filon-type

methods, which require moments and Levin-type methods, which do not re-

quire moments but are typically less accurate and are not available in certain

situations. By combining these two methods, we will obtain a Moment-free

Filon-type method for the case where the integral has a stationary point.

Though we initially focus on the exponential oscillator, we also demon-

strate the effectiveness of these methods for other oscillators such as the
Bessel and Airy functions. The methods are also applicable in certain cases

where the integral is badly behaved; such as integrating over an infinite inter-

val or when the integrand has an infinite number of oscillations. Finally we

present a result that combines the asymptotic expansion with a least squares

system, which appears to converge to the exact solution whilst retaining the

asymptotic decay.
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Introduction

In its most general form, we wish to find efficient numerical approximations for integrals

of the form

I[f ] =
∫

Ω
fω(x) dV,

where fω is a function that oscillates rapidly, and the parameter ω determines the rate of

oscillations. In practice, we separate the integral into a nonoscillatory function multiplied

by an oscillatory kernel. In applications, the kernel can often be expressed in the form of an

imaginary exponential function:

I[f ] =
∫

Ω
f(x) eiωg(x) dV,

where f and g are nonoscillatory functions, the frequency of oscillations ω is large and Ω is

some piecewise smooth domain. By taking the real and imaginary parts of this integral, we

obtain integrals with trigonometric kernels:

Re I[f ] =
∫

Ω
f(x) cosωg(x) dV and Im I[f ] =

∫
Ω
f(x) sinωg(x) dV.

If the integral cannot be written in this form, then for univariate integrals it typically can

be expressed as

I[f ] =
∫ b

a
f(x)>yω(x) dx,

where f is nonoscillatory and yω is an oscillatory kernel which satisfies a differential equation.

The aim of this thesis is the numerical approximation of such oscillatory integrals. Perhaps

surprisingly, high oscillations make numerical quadrature easier: we will develop methods

which actually improve with accuracy as the frequency ω increases.

Highly oscillatory integrals play a valuable role in applications. Using the modified

Magnus expansion [44], highly oscillatory differential equations of the form y′′ + g(t)y = 0,

where g(t) → ∞ while the derivatives of g are moderate, can be expressed in terms of an

infinite sum of highly oscillatory integrals. Differential equations of this form appear in many

areas, including special functions, e.g., the Airy function. From the field of acoustics, the

boundary element method requires the evaluation of highly oscillatory integrals, in order

to solve integral equations with oscillatory kernels [39]. Modified Fourier series use highly

oscillatory integrals to obtain a function approximation scheme that converges faster than

the standard Fourier series [51]. Other applications include fluid dynamics, image analysis

and more. These applications are presented in Chapter 1.
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We present an overview of prior research in Chapter 2. We begin with a quick review of

nonoscillatory integration, and explain the reasons why traditional quadrature techniques are

not effective in the presence of high oscillations. An enormous amount of research has been

conducted on the asymptotics of such integrals, thus we present an overview of asymptotic

expansions and the methods of stationary phase and steepest descent . We also investigate

existing numerical quadrature schemes, in particular the Filon method and Levin collocation

method . This thesis is mostly concerned with generalizing and improving these two methods.

With the groundwork in place, we consider in depth the univariate irregular exponential

oscillator without stationary points—points where g′(x) vanishes—in Chapter 3. We place

the Filon method and Levin collocation method within an asymptotic framework, and gen-

eralize the two methods to obtain higher order asymptotic approximations. We also develop

the asymptotic basis , where the terms of the asymptotic expansion are used in a collocation

system. Finally, we find simple error bounds for the Filon method.

When the exponential oscillator contains stationary points the asymptotics of the inte-

gral is altered. As a result, Levin-type methods do not approximate such integrals accurately.

Furthermore, complicated oscillators can make the construction of Filon-type methods im-

possible, though in some simple but important cases we are still able to find Filon-type

methods. Thus to make a practical quadrature scheme, we will combine these two methods

to obtain a Moment-free Filon-type method in Chapter 4. In the process, we also develop a

new asymptotic expansion for such integrals, which is related to the method of stationary

phase.

Having investigated these methods thoroughly for univariate integrals, we turn our at-

tention to the more difficult problem of multivariate integrals in Chapter 5. A generalization

of Filon-type methods to multivariate integrals is straightforward, and its asymptotic be-

haviour follows immediately from the asymptotic results of Chapter 2. Unfortunately, the

domains and oscillators for which a Filon-type method is derivable are extremely limited.

Thus we generalize Levin-type methods, which are applicable for integrals over complicated

domains, and oscillators which satisfy a nonresonance condition: a multivariate version of

requiring the absence of stationary points. Developing methods for when this condition is not

satisfied is the topic of the last two sections of this chapter, including the initial development

of a Moment-free Filon-type method for oscillatory integrals in which ∇g vanishes.

The Levin collocation method was generalized in [62] to oscillatory integrals with vector-

valued kernels. In Chapter 6, we apply the new results from Chapter 3 to obtain Levin-type

methods for such integrals. We first construct new asymptotic tools so that we can determine

the asymptotic order of the approximation scheme. This will lead us to two Levin-type

methods: the first collapses the vector-valued system to one collocation system, the second

is a direct generalization of the Levin collocation method of [62]. Finally, we demonstrate

that a vector-valued asymptotic basis can be constructed in order to obtain a high asymptotic

order approximation.

We wrap up some loose ends for univariate quadrature in Chapter 7, where methods
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are developed for oscillatory integrals which contain some sort of singularity. This includes

integrals over an unbounded region, and integrals which contain an infinite number of os-

cillations within the integration interval. The methods used to tackle these problems will

work for both exponential oscillators and integrals involving the Airy function. We can also

use the methods to compute certain special functions from their integral representations,

including the exponential, sine and cosine integrals, as well as the Airy function.

In Chapters 3, 5 and 6, the asymptotic basis allows us to capture the behaviour of the

asymptotic expansion, whilst significantly improving the error. Indeed, it is observed that

such a basis results in a quadrature scheme that appears to converge exponentially fast to

the exact value of the integral. The motivation of Chapter 8 is to put this observation onto

a firm theoretical grounding. We replace collocation with least squares, and are then able to

compute the error of the approximation exactly, though convergence is not proved. We also

utilize this method for solving oscillatory differential equations, using the Airy equation as

a simple example.
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Notation

Variables

x, y, z, t Univariate integration dummy variables

i, j, k, ` Summation dummy variables

x Multivariate integration dummy vector variable

d Dimension

G Lie group

g Lie algebra

Functions

w(x) Integration weight function

ψk Interpolation or collocation basis

ψk Vector-valued collocation basis

σk Asymptotic expansion term

σk Multivariate asymptotic expansion term

yω,y Vector-valued oscillatory kernel

Spaces

R Space of real numbers

N Space of nonnegative integers

Lp[a, b] Space of measurable functions f such that

(∫ b

a
|f(x)|p dx

)1/p

<∞

L∞[a, b] Space of measurable functions f such that

supa≤x≤b |f(x)| <∞

Lp Lp[a, b] where a and b are implied by context (and possibly

infinite)

Cr[a, b] Space of r-times differentiable functions

ix



C∞[a, b] Space of smooth functions

Products and norms

〈f, g〉 Function inner product

〈f, g〉2 L2 inner product
∫ b
a fḡ dx

[A,B] Lie group commutator

‖f‖ Function norm

‖f‖p Lp function norm:
(∫ b
a |f(x)|p dx

)1/p

‖f‖∞ L∞ function norm: supa≤x≤b |f(x)|

Multidimensional domains

Ω Multidimensional domain in Rd

∂Ω Boundary of Ω

Z` Piecewise smooth component of ∂Ω

T` Parameterization map of Z`

Ω` Domain in Rd−1 mapped onto Z` by T`
n Vector orthogonal to ∂Ω

Sd d-dimensional simplex

H Quarter disc

U Half disc

Complex plane

ḡ Complex conjugate

Re Real part

Im Imaginary part

ζk Complex contour

Differential forms

D0 The identity operator

Dm The mth derivative dm

dmx , for nonnegative integers m ∈ N

Dm The partial derivative ∂‖m‖1

∂x
m1
1 ...∂x

md
d

for m = (m1, · · · ,md)
> ∈

Nd

∧ Wedge product

dV Volume differential dx = dx1 dx2 · · · dxd = dx1∧ dx2∧· · ·∧
dxd

x



ds d-dimensional surface differential
dx2 ∧ · · · ∧ dxd

− dx1 ∧ dx3 ∧ · · · ∧ dxd
...

(−1)d−1 dx1 ∧ · · · ∧ dxd−1



JT Jacobian determinant of a map T

J i1,...,idT Jacobian determinant of a map T with respect to the indices

i1, . . . , id.

JdT (x) Vector of Jacobian determinants
J2,...,d
T (x)

−J1,3,...,d
T (x)

...
(−1)d−1J1,...,d−1

T (x)



∇ Gradient operator

∇· Divergence operator

∆ Laplacian operator ∇2 = ∇ · ∇

Special functions

Ai,Bi Airy functions

Jν , Yν , Iν Bessel functions of order ν

H
(1)
ν , H

(2)
ν Hankel functions of order ν

erf Error function

Γ Incomplete Gamma function

si Sine integral function

ci Cosine integral function

En Exponential integral function

pFq Hypergeometric function

Pk kth Legendre polynomial

Tk kth Chebyshev polynomial

Vectors and matrices∑
m The sum

∑d
k=1mk for the vector m> = (m1, · · · ,md)

detA Determinant of the square matrix A

‖A‖ Norm of the matrix A
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(aij)p×q The p× q matrix whose entry in the ith row and jth column

is aij

Ip The p× p identity matrix

I Ip, where p is implied by context

1p×q The p× q matrix whose entries are all one: (1)p×q
1 The matrix 1p×q, where p and q are implied by context

1> The row vector 11×q, where the dimension q is implied by

context

|A| For A = (aij)p×q, the p × q matrix whose ijth entry is |aij |:
(|aij |)p×q. Note the distinction between |A|, ‖A‖ and detA

A−1 Matrix inverse

A+ Matrix pseudoinverse

Asymptotics

f ∼ ∑∞k=0 · · · Asymptotic expansion

f(x) ∼ g(x), x→ b f is asymptotically the same as g as x approaches b

O(·) Big-O notation

o(·) Little-O notation

O(·) Function big-O notation: f = O(g) if
∥∥∥f (k)

∥∥∥
∞

= O(g) for

k = 0, 1, . . .

f ∼ O
(
ω−s

)
f has an asymptotic expansion whose first term decays like

O
(
ω−s

)
Operators

L[v] Levin differential operator v′ + iωg′v

L[v] Vector-valued Levin differential operator v′ + A>v

or multivariate Levin differential operator ∇ · v + iω∇g · v
M[y] Chung, Evans and Webster differential kernel operator

M?[z] Adjoint of M
Z[w, z] Bilinear concomitant

P [f ] Vector of f applied to the nodes and multiplies of a colloca-

tion scheme

Oscillatory integrals

ω Frequency of oscillations

f Amplitude of oscillations

g Oscillator

xii



Ω Domain of integration

a, b Endpoints of integration interval

I[f ] Univariate oscillatory integral
∫ b
a f(x)eiωg(x) dx

Ig[f,Ω] Multivariate oscillatory integral
∫
Ω f(x)eiωg(x) dV

I[f ] Vector-valued kernel oscillatory integral
∫ b
a f(x)>y(x) dx

r Order of stationary point

s Asymptotic order of method

Oscillatory quadrature

QF [f ] Filon-type method

QFg [f,Ω] Multivariate Filon-type method

QL[f ] Levin-type method

QLg [f,Ω] Multivariate Levin-type method

QB[f ] Levin-type method with asymptotic basis

φr,k Moment-free Filon-type method basis

φk Multivariate Moment-free Filon-type method basis
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Chapter 1

Applications

Before delving into the details of approximating highly oscillatory integrals, we first moti-

vate their utility by briefly describing some applications. We begin with the two applications

that have reinvigorated the investigation of oscillatory quadrature: the modified Magnus ex-

pansion and acoustic integral equations. We begin with a description of the modified Magnus

expansion in Section 1.1, which allows us to rewrite the solution to an oscillatory differen-

tial equation as an infinite sum of oscillatory integrals. Furthermore it has applications in

geometric integration, as the approximation stays within the Lie group that the solution

of the differential equation evolves in. Determining how an object scatters sound waves is

accomplished via an integral equation with an oscillatory kernel. This naturally leads to the

computation of oscillatory integrals, as described in Section 1.2.

Following these more recent applications, we review a couple of traditional applications.

Many special functions have highly oscillatory integral representations, and in Section 1.3

we give an overview of several such functions. Finally, in Section 1.4 we look at function

approximation with orthogonal series, which invariably have coefficients that are highly

oscillatory integrals. We also see how oscillatory integrals play a role in spectral methods

when such orthogonal series are used.

There are a plethora of other applications for oscillatory quadrature besides those dis-

cussed in this chapter. Indeed, wherever one finds waves—which are, of course, ubiquitous

in physics—there is a good chance that oscillatory integrals require computation. These

applications “...range from electromagnetics and nonlinear optics to fluid dynamics, plasma

transport, computerized tomography, celestial mechanics, computation of Schrödinger spec-

tra, Bose–Einstein condensates...” [45].

1.1. Modified Magnus expansion

The motivation behind the renewed interest by Iserles and Nørsett in approximating

oscillatory integrals began due to new results in the field of geometric integration. Suppose

we wish to solve the homogeneous matrix-valued linear ordinary differential equation

Y ′(t) = A(t)Y (t), Y (0) = Y0.

This has a solution of the form the form Y (t) = eM(t)Y0, where M satisfies the differential

1



equation

M ′ = A− 1

2
[M,A]+

1

12
[M, [M,A]]− 1

720
[M, [M, [M, [M,A]]]]+· · · , M(0) = 0, (1.1.1)

cf. [46]. If the solution Y0 lies in the Lie group G and the matrix A(t) lies in the corresponding

Lie algebra g for all t, then Y evolves within G. Numerically solving the differential equation

for M , as opposed to the original differential equation for Y has the important property that

the approximation preserves this group structure. Though G can be nonlinear, g must be a

linear space, and any numerical solver that utilizes only linear operations will remain within

g. The Magnus expansion [69] gives us a solution to (1.1.1) in terms of only the matrix A:

M(t) =
∫ t

0
A(x) dx− 1

2

∫ t

0

∫ x1

0
[A(x2), A(x1)] dx2 dx1

+
1

4

∫ t

0

∫ x1

0

∫ x2

0
[[A(x3), A(x2)], A(x1)] dx3 dx2 dx1

+
1

12

∫ t

0

∫ x1

0

∫ x1

0
[A(x3), [A(x2), A(x1)]] dx3 dx2 dx1 + · · · .

(1.1.2)

Truncating this sum and employing a suitable quadrature scheme for approximating the

integrals gives us a powerful numerical method which preserves group structure [46].

We now turn our attention to highly oscillatory differential equations, where the matrix

A has eigenvalues with large imaginary parts and nonpositive real parts. Our interest in the

Magnus expansion stems not from its preservation of group structure, but rather another

important property: the solution is written in terms of integrals. A great deal of cancellation

occurs when integrating a highly oscillatory function, thus it stands to reason that the integral

will be small in magnitude. Thus the modified Magnus expansion [43] consists of rewriting

the original differential equation so that A itself encapsulates the oscillatory behaviour,

resulting in the integrals in (1.1.2) becoming small in magnitude.

Suppose we have time stepped to tn with step size h, to obtain an approximation yn of

the solution y(tn). Define the function v so that

y(tn + τ) = eτÃv(τ),

where Ã = A(tn + αh). Our approximation yn+1 of y(tn+1) would then be ehÃv1, where v1

will be the approximation of v(h). We find that v satisfies the differential equation

v′ = B(τ)v, v(0) = yn, for B(τ) = e−τÃ
[
A(tn + τ)− Ã

]
eτÃ.

Because the imaginary parts of the eigenvalues of A are large, so are those of Ã, thus

the exponentials within the definition of B are oscillatory functions. Thus the integrals

in (1.1.2)—with B in place of A—are small, with higher dimensional integrals being even

smaller in magnitude (this phenomenon will be explained in more detail in later chapters
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of this thesis, though it follows from classical asymptotic theory). Furthermore, the more

oscillatory the solution the faster the integrals decay. It is thus sensible to truncate this sum,

and the accuracy of such a truncation amazingly improves as the frequency of oscillations

increases. We are, however, left with the problem of approximating the resulting oscillatory

integrals.

1.2. Acoustic integral equations

In the field of acoustics, the scattering of a sound wave off an object can be modelled

by the solution to the Helmholtz equation over a domain Ω with a Dirichlet, Neumann or

mixed boundary conditions, cf. [38]. In other words, we seek the solution to the equation

∆u(x) + k2u(x) = 0

with

u(x) = f(x), x ∈ ∂Ω1 and
∂u

∂n
(x) = 0, x ∈ ∂Ω2,

where ∂Ω = ∂Ω1
S
∂Ω2. The solution to this partial differential equation can be written in

terms of integral equations over the boundary of the domain. In certain cases, the problem

can be reduced to solving integral equations of the form

i

4

∫
∂Ω
H

(1)
0 (k ‖x− y‖) q(y) dsy = u(x)

in R2, where H is the Hankel function [2], or

1

4π

∫
∂Ω

eik‖x−y‖

‖x− y‖
q(y) dsy = u(x)

in R3 [38].

Since the kernel of these integral equations are oscillatory, collocation and other Galerkin

methods require solving oscillatory integrals, even when the basis itself is nonoscillatory.

Furthermore, the frequency of oscillations is known, and thus we know for an incoming wave

ui(x) = uis(x)eikgi(x) that the solution has the form

q(x) = qs(x)eikgi(x), x ∈ ∂Ω,

where qs is asymptotically a nonoscillatory function [15]. The knowledge of how the solution

behaves asymptotically can be used in the construction of a collocation basis, giving us a

hybrid high frequency boundary element method [42]. Suppose we approximate qs by

qc(τ) =
∑

ckψk(τ),

3



where {ψk} is a set of linearly independent basis functions. We determine the constants ck
by collocating at the points xk = κ(tk), where κ : [0, 1] → ∂Ω is a parameterization of the

boundary. This requires solving integrals of the form (in two dimensions)

i

4

∫ 1

0
H

(1)
0 (k ‖κ(tn)− κ(τ)‖) eik[gi(κ(τ))−gi(κ(tn))] ‖∇κ(τ)‖ψk(τ) dτ.

Hankel functions can be expressed asymptotically in terms of complex exponential, so at

large frequencies this oscillatory integral behaves like an irregular Fourier oscillator. Thus

being able to approximate oscillatory integrals allows us to derive an approximation to the

solution of acoustic integral equations.

1.3. Special functions

Special functions play an extraordinarily important role in applied mathematics and

physics, and how to compute such functions efficiently is an active area of research. Many

special functions have integral representations that are oscillatory integrals. Some examples
are:

• Airy functions

Ai (x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt

• Bessel and Hankel functions

Jn(x) =
1

2π

∫ π

0
cos(nt− x sin t) dt

Yn(x) =
1

π

∫ π

0
sin(x sin t− nt) dt− 1

π

∫ ∞
0

[
ent + (−1)ne−nt

]
e−x sinh t dt

H(1)
n (x) = Jn(x) + iYn(x)

H(2)
n (x) = Jn(x)− iYn(x)

• Error function (for complex z)

erf(z) =
2√
π

∫ z

0
e−t

2

dt

• Incomplete Gamma function (for complex z)

Γ(a, z) =
∫ ∞
z

ta−1e−t dt
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• Sine, cosine and exponential integrals

si(x) = −
∫ ∞
x

sin t

t
dt

ci(x) = −
∫ ∞
x

cos t

t
dt

En(z) =
∫ ∞

1

e−zt

tn
dt

• Hypergeometric functions

• Basic hypergeometric functions

Basic hypergeometric functions are found in [32], all other functions are found in [2].

As described in more detail in Chapter 2, this is the application which existing research

into approximating oscillatory functions has focused on most, especially with regards to

asymptotics. The fact that each integral has a very specific form facilitates computation,

particular when deforming the path of integration into the complex plane.

That being said, there is still room for improvement in the computation of special

functions. Most computational implementations use the asymptotic expansion whenever

it achieves the requested accuracy, whilst reverting to nonoscillatory methods otherwise.

Furthermore, different regions in the complex plane have different asymptotic expansions,

and—unless more sophisticated tools such as hyperasymptotics are utilized [10]—huge errors

can result when near the border between expansions.

1.4. Orthogonal series

The higher order basis functions of orthogonal series invariably are oscillatory. The

canonical example is the Fourier series, though polynomial orthogonal series also follow this

pattern. The standard Fourier series over the interval [−π, π], written in complex form, is

f(x) ∼ 1

2π

∞∑
k=−∞

〈
f, eik·

〉
eikx,

where 〈·, ·〉 is the standard L2 complex inner product:

〈f, g〉 =
∫ π

−π
f(t) ḡ(t) dt.

Thus the coefficients of the series are the oscillatory (for large k) integrals

〈
f, eik·

〉
=
∫ π

−π
f(t) e−ikt dt.
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Of course, the coefficients of the series can be approximated in O(n log n) operations via

the fast Fourier transform (FFT), which in fact interpolates f at the chosen sample points.

However, if interpolation is not required we can approximate the coefficients of this series

using the methods developed in Chapter 3 with a fixed number of operations per coefficient,

resulting in only O(n) complexity.

Other orthogonal series include the modified Fourier series of [51]. This series is con-

structed by replacing sin kx in the standard trigonometric Fourier series with sin(k − 1
2)x,

so that

f(x) ∼ c0
2

+
∞∑
k=1

ck cos kx+ sk sin(k − 1

2
)x.

This series converges at a faster rate than the standard Fourier series when f is not periodic.

It was proved by this author (a result that will not appear in this thesis) that the partial sum

of this series up to n approximates f ∈ C3[−π, π] with order O
(
n−2

)
in (−π, π) and with

order O
(
n−1

)
at the endpoints ±π; indeed, when the function is smooth a full asymptotic

expansion can be found in terms of Lerch transcendent functions [9] and the derivatives

of f at the endpoints [79]. This compares to standard Fourier series’ convergence rate of

O
(
n−1

)
in the interior and lack of convergence at the boundary. Higher convergence rates

can be achieved by using polyharmonic series [59], whose approximation properties were

investigated in [52]. Furthermore, these results can be generalized for function approximation

over multivariate domains [53]. In all of these cases the fast Fourier transform is not available,

hence we must resort to computing the coefficients of the series using oscillatory quadrature.

Of greater importance—it is hard to beat approximation by orthogonal polynomials in

the univariate case—is function approximation over multivariate domains. Suppose we are

given a domain Ω and a linear self-adjoint operator L. Then from standard spectral theory

we know that, subject to suitable boundary conditions, the eigenfunctions of L form an

orthogonal series. In all but the most exceptional cases, the FFT algorithm is no longer

applicable, hence if we are to use an orthogonal system as a function approximation scheme,

we must resort to quadrature methods.

Related to this subject are Galerkin methods, or in particular spectral methods. Suppose

we wish to solve the linear differential equation

L[u] = f,

with some boundary condition imposed. A Galerkin method approximates a weak solution

to this equation by ensuring that the equality holds true on a subspace spanned by the basis

{ψ1, . . . , ψn}. In other words, for some inner product 〈·, ·〉, we approximate u by

v =
n∑
k=1

ckψk,
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determining the coefficients ck by solving the system

〈L[v] , ψ1〉 = 〈f, ψ1〉 , . . . , 〈L[v] , ψn〉 = 〈f, ψn〉 .

If ψk does not have compact support (e.g., finite elements), then it is typically an orthogonal

series such as Fourier series. But then the inner products in the system become oscillatory

integrals.
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Chapter 2

History

In this chapter we review existing research into oscillatory integrals and their quadra-

ture. Oscillatory quadrature’s development and foundation differs greatly from nonoscilla-

tory quadrature theory. Where traditional quadrature methods study the accuracy as the

step size decreases or the number of sample points increases, oscillatory quadrature has fo-

cused primarily on the asymptotics as the frequency ω goes to infinity. Because of this,

asymptotic expansions, complex analysis, partial integration and collocation take a central

role, in place of the study of zeros of orthogonal polynomials and Taylor series.

In Section 2.1 we explain why approximating such integrals needs special attention: tra-

ditional quadrature methods are not accurate. We then turn our attention to a brief overview

of existing research related to oscillatory quadrature. This can be divided into two groups:

asymptotic theory and quadrature methods. The key difference between the two methodolo-

gies is that asymptotics is concerned with how the integrals behave as the frequency increases,

whereas quadrature takes a more practical view by investigating convergent approximations

for fixed frequencies. Section 2.2 derives the most basic asymptotic expansion via integration

by parts, Section 2.3 looks at the method of stationary phase and Section 2.4 investigates the

method of steepest descent, which deforms the path of integration into the complex plane

in order to turn an oscillating integrand into an exponentially decreasing integrand, whose

asymptotic expansion can then be determined. We then develop the counterpart for the

asymptotic expansion for integrals over multivariate domains in Section 2.6, after reviewing

multivariate integration theory in Section 2.5.

Oscillatory quadrature methods have not received as much attention as the asymptotic

theory of oscillatory integrals. Indeed, it took over 75 years from the construction of the

first of these methods—the Filon method [29]—until its asymptotic well-behavedness was

realized [44]. In Section 2.7 we describe how the Filon method was initially constructed,

forgoing its recent generalization until Chapter 3. This method is dependent on using the

standard Fourier oscillator eiωx, hence its generality is limited. In Section 2.8 we review the

Levin collocation method, which applies to general oscillators. Chung, Evans and Webster

extended the Levin collocation method to higher order oscillators, which is explained in

Section 2.9. In Section 2.10 we look at how the method of steepest descent can be used

as a quadrature method in addition to its use in asymptotics. Finally we give a very brief

overview of other oscillatory quadrature methods in Section 2.11.
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Remark : If the results were presented in their full detail, this chapter alone could easily

span several volumes. So in the interest of brevity, we mostly forgo rigour in favour of

formal derivation and intuitive arguments. Many of the results presented here are classical,

and for those which are not we refer to other authors who have significantly more thorough
treatments.

2.1. Nonoscillatory quadrature

To understand why we need special methods for oscillatory integrals, it is important to

study where traditional quadrature methods fail. Most nonoscillatory quadrature methods

approximate an integral by a weighted sum sampling the integrand at n discrete points

{x1, . . . , xn}, and averaging the samples with suitable weights {w1, . . . , wn}:

∫ b

a
w(x)f(x) dx ≈

n∑
k=1

wkf(xk), (2.1.1)

where w is some nonnegative weight function. The first definition of an integral one typically

learns is the Riemann sum

∫ b

a
f(x) dx = lim

n→∞
1

n

n−1∑
k=0

f

(
k

n
(b− a) + a

)
.

Thus if we take n large enough the sum will approximate the value of the integral, and indeed

falls into the framework of (2.1.1). This is equivalent to dividing the interval of integration

into panels of size 1/n and approximating the integral in each panel by a rectangle of the

same height as the function at the left endpoint. Though this does indeed work as an

approximation scheme, its speed of convergence is very slow and it is not useful in practice.

This is the simplest example of a composite Newton–Cotes formula. Newton–Cotes

formulæ consist of approximating the integrand f by a polynomial of degree n, which matches

f at n evenly spaced points. A closed Newton–Cotes formula includes the endpoints of the

interval, otherwise it is an open Newton–Cotes formula. Newton–Cotes methods do not

necessarily converge as n goes to infinity [21], in particular convergence fails for the classic

Runge example ∫ 1

−1

1

25x2 + 1
dx.

Thus a composite rule must be used, where the interval of integration is divided into equally

spaced panels and a Newton–Cotes method is used within each panel.

The next composite Newton–Cotes method is the trapezoidal rule, where the function

f is approximated by a trapezoid within each panel, or alternatively, f is approximated in

each panel by an affine function and the resulting piecewise affine function is integrated in
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closed form. This is equivalent to the weighted sum, for h = (b− a)/n:

∫ b

a
f(x) dx ≈ h

2
f(a) + h

n−1∑
k=1

f(x+ kh) +
h

2
f(b).

In place of affine functions we could use higher order polynomials in each panel. Using a

quadratic function results in Simpson’s rule:

∫ b

a
f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

This is particularly important for the history of oscillatory quadrature, since the original

Filon method is based on a composite Simpson’s rule.

Like Newton–Cotes, most other quadrature schemes consist of choosing the weights so

that (2.1.1) is exact when f is a polynomial of a certain degree, though not necessarily choos-

ing evenly spaced nodes. The idea is that, if f can be approximated well by a polynomial,

the quadrature error should be small. We can make the formula exact for polynomials of

degree n− 1 if we fix the nodes xk and determine the weights wk by solving the system

∫ b

a
w(x) dx =

n∑
k=1

wk . . .
∫ b

a
w(x)xn−1 dx =

n∑
k=1

wkx
n−1
k . (2.1.2)

The most often used method in practice is Gaussian quadrature. The idea behind Gaus-

sian quadrature is to choose the nodes and weights in order to to maximize the degree of

polynomials for which (2.1.1) is exact. In (2.1.1) there are 2n unknowns, hence it might be

possible to choose values for these unknowns so that polynomials up to degree 2n − 1 are

integrated exactly. It is well known that to achieve this goal, the sample points should be

placed at the zeros of the associated orthogonal polynomials, and the weights can then be

determined using (2.1.2), which is a linear system of equations.

Unless the integrand has a special form, the weight function is typically w(x) ≡ 1.

The orthogonal polynomials with respect to a constant weight function are the well-known

Legendre polynomials, leading us to the Gauss–Legendre formulæ. The first few of these

polynomials are

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x), . . . .

The higher order polynomials can be computed via the recurrence relationship

(n+ 1)Pn+1 = (2n+ 1)xPn − nPn−1,

cf. [2]. The sample points {x1, . . . , xn} for an n point Gauss–Legendre rule are the zeros of

the polynomial Pn, i.e.,

0 = Pn(x1) = · · · = Pn(xn).
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Figure 2.1: The absolute error in approximating
∫ 1
0 x

2eiωx dx by an n-point Gauss–Legendre
quadrature scheme, for n = 1, 10 and 25.

The weights are

wi =
2(1− x2

i )

[nPn−1(xi)]
2 ,

cf. [21]. An efficient way of computing both the nodes and weights of a Gauss–Legendre rule

was presented in [36], based on computing the eigenvalues and eigenvectors of a symmetric

tridiagonal matrix.

The other Gaussian quadrature method of relevence to this thesis is Gauss–Laguerre

quadrature, where the integral has the form∫ ∞
0

e−xf(x) dx.

The associated orthogonal polynomials are the Laguerre polynomials.

Regardless of the particular method used, (2.1.1) fails as a quadrature scheme for high

frequency oscillation when w(x) ≡ 1, unless n grows with ω. To see this, consider the integral

∫ b

a
f(x) sinωx dx ≈

n∑
k=1

wkf(xk) sinωxk,

where n, wk and xk are all fixed for increasing ω. Assuming that this sum is not identically

zero, it cannot decay as ω increases. This can be seen in Figure 2.1, for the integral

∫ 1

0
x2eiωx dx.

A simple application of integration by parts—which will be investigated further in the next

section—reveals that the integral itself decays like O
(
ω−1

)
. Thus the error of any weighted

sum is O(1), which compares to an error of order O
(
ω−1

)
if we simply approximate the

integral by zero! It is safe to assume that a numerical method which is less accurate than

equating the integral to zero is of little practical use. On the other hand, letting n be pro-

portional to the frequency can result in considerable computational costs. This is magnified
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significantly when we attempt to integrate over multivariate domains. Even nonoscillatory

quadrature is computationally difficult for multivariate integrals, and high oscillations would

only serve to further exasperate the situation. Thus we must look for alternative methods

to approximate such integrals.

2.2. Asymptotic expansion

Whereas standard quadrature schemes are inefficient, a straightforward alternative exists

in the form of asymptotic expansions. Unlike the preceding approximation, asymptotic ex-

pansions actually improve with accuracy as the frequency increases, and—assuming sufficient

differentiability of f and g—to arbitrarily high order. Furthermore the number of operations

required to produce such an expansion is independent of the frequency, and extraordinar-

ily small. Even more surprising is that this is all obtained by only requiring knowledge of

the function at the endpoints of the interval, as well as its derivatives at the endpoints if

higher asymptotic orders are required. There is, however, one critical flaw which impedes

their use as quadrature formulæ: asymptotic expansions do not in general converge when

the frequency is fixed, hence their accuracy is limited.

Whenever g is free of stationary points—i.e., g′(x) 6= 0 within the interval of integration—

we can derive an asymptotic expansion in a very straightforward manner by repeatedly

applying integration by parts. The first term of the expansion is determined as follows:

I[f ] =
∫ b

a
f(x)eiωg(x) dx =

1

iω

∫ b

a

f(x)

g′(x)

d

dx
eiωg(x) dx

=
1

iω

[
f(b)

g′(b)
eiωg(b) − f(a)

g′(a)
eiωg(a)

]
− 1

iω

∫ b

a

d

dx

[
f(x)

g′(x)

]
eiωg(x) dx.

The term

1

iω

[
f(b)

g′(b)
eiωg(b) − f(a)

g′(a)
eiωg(a)

]
(2.2.1)

approximates the integral I[f ] with an error

− 1

iω
I

[
d

dx

[
f(x)

g′(x)

]]
= O

(
ω−2

)
,

using the fact that the integral decays like O
(
ω−1

)
[85]. Thus the more oscillatory the

integrand, the more accurately (2.2.1) can approximate the integral, with a relative accuracy

O
(
ω−1

)
. Moreover the error term is itself an oscillatory integral, thus we can integrate by

parts again to obtain an approximation with an absolute error O
(
ω−3

)
. Iterating this

procedure results in an asymptotic expansion:
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Figure 2.2: The base-10 logarithm of the error in approximating
∫ 1
0 cosx eiω(x2+x) dx. The

left graph compares the one-term (solid line), three-term (dotted line) and ten-term (dashed line)
asymptotic expansions. The right graph shows the error in the s-term asymptotic expansion for
ω = 20.

Theorem 2.2.1 Suppose that g′ 6= 0 in [a, b]. Then

I[f ] ∼ −
∞∑
k=1

1

(−iω)k

{
σk(b)e

iωg(b) − σk(a)eiωg(a)
}
,

where

σ1 =
f

g′
, σk+1 =

σ′k
g′
, k ≥ 1.

We can find the error term for approximating I[f ] by the first s terms of this expansion:

I[f ] = −
s∑

k=1

1

(−iω)k

{
σk(b)e

iωg(b) − σk(a)eiωg(a)
}

+
1

(−iω)s
I
[
σ′s
]

= −
s∑

k=1

1

(−iω)k

{
σk(b)e

iωg(b) − σk(a)eiωg(a)
}

+
1

(−iω)s
I
[
σs+1g

′
]
.

In Figure 2.2 we use the partial sums of the asymptotic expansion to approximate the

integral ∫ 1

0
cosx eiω(x2+x) dx.

We compare three partial sums of the asymptotic expansion in the left graph: s equal to

one, three and ten. This graph demonstrates that increasing the number of terms used in

the expansion does indeed increase the rate that the error in approximation goes to zero

for increasing ω. However, at low frequencies adding terms to the expansion can actually

cause the approximation to become worse. Thus higher order asymptotic series are only

appropriate when the frequency is large enough. Furthermore for any given frequency the

expansion reaches an optimal error, after which adding terms to the expansion actually
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Figure 2.3: Plot of cos 20x2.

increases the error. This is shown in the right graph for ω fixed to be 20, in which case the

optimal expansion consists of five terms.

2.3. Method of stationary phase

In the asymptotic expansion from the previous section, it is interesting to note that

as the frequency increases, the behaviour of the integral is more and more dictated by the

behaviour of the integrand at the endpoints of the interval. In fact, the behaviour within

the interior of the interval is irrelevant as ω →∞, and all integrals with the same boundary

data begin to behave the same as the frequency increases. Though at first counterintuitive,

this can be justified via a geometric argument. Consider for the moment the simple integral∫ 1

−1
cosωx dx.

The integrand has extrema at the points

0,±π
ω
,±2π

ω
,±3π

ω
. . . .

Furthermore, due to cancellation, the integral between adjacent extrema is equal to zero. It

thus follows that, if k is chosen to be the largest positive integer such that kπ
ω ≤ 1, then

∫ 1

−1
cosωx dx =

∫ 1

−kπ
ω

cosωx dx+
∫ −kπ

ω

−1
cosωx dx.

As ω becomes large, the intervals of integration become smaller, and the value of the in-

tegrand at the boundary becomes more significant. When we use a nontrivial amplitude

function and an oscillator without stationary points, the same sort of cancellation occurs,

albeit to a slightly lesser extent.
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On the other hand, this cancellation does not occur wherever the oscillator g has a

stationary point—a point ξ where g′(ξ) = 0. As can be seen in Figure 2.3, for the oscillator

g(x) = x2, the integrand becomes nonoscillatory in a small neighbourhood of the stationary

point. Thus the asymptotics depends also on the behaviour at the stationary points, in

addition to the behaviour at the endpoints of the interval.

We now determine how the stationary point contributes to the asymptotics of the inte-

gral, by utilizing the method of stationary phase. Consider for a moment the integral∫ ∞
−∞

f(x)eiωg(x) dx,

where g(x) has a single stationary point of order r − 1 at zero:

0 = g′(0) = · · · = g(r−1)(0), g(r)(0) 6= 0 and g′(x) 6= 0 whenever x 6= 0.

Assume that this integral converges and that f(x) is bounded. As ω increases, the value

of the integral at the stationary point quickly dominates: the contribution from everywhere

away from the stationary point is largely cancelled due to oscillations. Near the stationary

point, g(x) behaves like g(0) + grx
r, for some constant gr, and f(x) behaves like f(0). Thus

it stands to reason that

∫ ∞
−∞

f(x)eiωg(x) dx ∼ f(0)eiωg(0)
∫ ∞
−∞

eiωgrx
r

dx =
f(0)

r
e

iπ
2rΓ

(
1

r

)
eiωg(0)

(grω)
1
r

.

The asymptotic behaviour when the integral is taken over a finite interval is the same,

since the contributions from the endpoints of the interval decay like O
(
ω−1

)
, whereas the

stationary points contribution decays like O
(
ω−

1
r

)
. For a proper proof and error bounds

of this formula, see [74]. The stationary phase approximation can be extended to a full

asymptotic expansion. We however prefer to utilize a new alternative derivation of this

expansion developed in Chapter 4.

2.4. Method of steepest descent

Suppose that f and g are entire functions. In this case we can apply Cauchy’s theorem

and deform the integration path into the complex plane. The idea is to construct a path

of integration ζ(t) so that the oscillations in the exponential kernel are removed. We then

expand this new Laplace-type integral into its asymptotic expansion. In Section 2.10, we

look at recent results that use the path of steepest descent to construct a quadrature scheme,

rather than simply as an asymptotic tool. In this chapter, we determine the path of steepest

descent for the specific oscillators g(x) = x and g(x) = x2 à la [38], referring the reader to

more comprehensive treatments [1, 11, 74, 89] for more complicated oscillators.
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Figure 2.4: The path of steepest descent for the oscillator g(z) = z2.

Writing g(z) as Re g(z) + i Im g(z), we note that

eiωg(z) = eiωRe g(z)e−ω Im g(z).

Thus if Im g(z) > 0, then the oscillator decays exponentially as ω → ∞. There is still an

oscillatory component eiωRe g(z), unless the path is deformed so that Re g(z) ≡ c. If we have

a Fourier integral ∫ b

a
f(x)eiωx dx,

this is equivalent to choosing the path ζc(t) = c+ it, or in other words, the path of steepest

descent from any point is directly perpendicular to the real axis. Thus we can use Cauchy’s

theorem to deform the path from a to b by integrating along ζa into the complex plane some

distance N , cross over to the path ζb, then integrate along that path back to b:

∫ b

a
f(x)eiωx dx = ieiωa

∫ N

0
f(ζa(t))e

−ωt dt+e−ωN
∫ b

a
f(t+iN)eiωt dt−ieiωb

∫ N

0
f(ζb(t))e

−ωt dt.

Assuming that f only has exponential growth in the complex plane, the middle integral goes

to zero when we let N go to infinity:

∫ b

a
f(x)eiωx dx = ieiωa

∫ ∞
0

f(ζa(t))e
−ωt dt− ieiωb

∫ ∞
0

f(ζb(t))e
−ωt dt.

We have thus converted the Fourier integral into two Laplace integrals, which can be ex-

panded into their asymptotic expansions. For the Fourier integral itself the method of

steepest descent will give the very same asymptotic expansion as if we had simply integrated

by parts, however with the extra requirement of analyticity and only exponential growth in

the complex plane. This is not to say it does not have its uses as a quadrature scheme, as

will be seen in Section 2.10.
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When the oscillator is more complicated—say, with stationary points—the method of

steepest descent is tremendously useful as an asymptotic tool. The method of stationary

phase only gives the first term in the asymptotic expansion, and the method of steepest

descent is needed to determine the higher order terms. The path of integration is now

significantly more complicated, and must go through the stationary point. Consider the

simplest oscillator with a stationary point: g(z) = z2. Making the real part constant results

in defining the path of steepest descent as ±
√
c2 + it, for 0 ≤ t < ∞. The choice in sign is

determined by the sign of c. For the path out of the two endpoints we obtain

ζ−1(t) = −
√

1 + it and ζ1(t) =
√

1 + it.

These two paths do not connect, hence Cauchy’s theorem is not yet applicable. To connect

the paths we must cross the real axis at some point. In this case, eiωz2 exhibits exponential

decay in the lower left and upper right quadrants, whilst it increases exponentially in the

remaining two quadrants. Thus we wish to pass through the saddle point at z = 0 to avoid

the areas of exponential increase. There are two paths through zero:

ζ±0 (t) = ±
√

it.

We must integrate along both of these curves for the contour path to connect.

Figure 2.4 draws the resulting path of steepest descent for this particular integral. This

corresponds to the following integral representation:

∫ 1

−1
f(x)eiωx2

dx =

(∫
ζ−1

−
∫
ζ−0

+
∫
ζ+0

−
∫
ζ1

)
f(x)eiωx2

dx

= eiω
∫ ∞

0
f(ζ−1(t))e−ωtζ ′−1(t) dt−

∫ ∞
0

f(ζ−0 (t))e−ωtζ−0
′
(t) dt

+
∫ ∞

0
f(ζ+

0 (t))e−ωtζ+
0
′
(t) dt− eiω

∫ ∞
0

f(ζ1(t))e−ωtζ ′1(t) dt

(2.4.1)

Each of these integrals is a Laplace integral. Assuming that these integrals converge—

in other words, f cannot increase faster than the exponential decay along the contour of

integration—we can apply Watson’s lemma to determine the asymptotic expansion:

Theorem 2.4.1 [74] Suppose that q is analytic and

q(t) ∼
∞∑
k=0

akt
k+λ−µ

µ , t→ 0,

for Re λ > 0. Then ∫ ∞
0

q(t)e−ωt dt ∼
∞∑
k=0

Γ

(
k + λ

µ

)
ak

ω
k+λ
µ

, ω →∞,

whenever the abscissa of convergence is not infinite.
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For the integrals along the paths ζ±1 in (2.4.1), the integrand should be smooth at t = 0, so

that λ, µ = 1, and the contributions from the endpoints decay like O
(
ω−1

)
. A singularity

is introduced because of ζ±0
′
, and each integrand behaves like 1√

t
at zero. Thus µ = 2, and

λ = 1, and the lemma predicts that these two integrals decay like O
(
ω−

1
2

)
.

This technique of converting oscillatory integrals to Laplace integrals can be generalized

to other oscillators, including oscillators with higher order stationary points, see [11]. The

idea essentially remains the same: find the path of steepest descent, connecting disconnected

paths through the stationary point. Once the integral is converted to a sum of Laplace

integrals, Watson’s lemma gives the asymptotic expansion. We will not actually utilize these

asymptotic results extensively in this thesis: we will focus on methods which do not require

deformation into the complex plane. We do however utilize the path of steepest descent

again in Section 2.10, where a brief overview of a numerical quadrature scheme that obtains

asymptotically accurate results via contour integration is presented.

2.5. Multivariate integration

We now turn our attention to multivariate asymptotics. We utilized integration by parts

in the derivation of the univariate asymptotic expansion, which implicitly depended on the

fundamental theorem of calculus. Thus in the construction of the multivariate asymptotic

expansion, we need to use the multivariate version of the fundamental theorem of calculus:

Stokes’ theorem. In this section we restate this theorem, as well as defining key notation

that will be used throughout this thesis.

Let ds be the d-dimensional surface differential:

ds =


dx2 ∧ · · · ∧ dxd

− dx1 ∧ dx3 ∧ · · · ∧ dxd
...

(−1)d−1 dx1 ∧ · · · ∧ dxd−1

.
The negative signs in the definition of this differential are chosen to simplify the notation of its

exterior derivative. Stokes’ theorem informs us, for some vector-valued function v : Rd → Rd

and piecewise smooth boundary Ω, that∫
∂Ω
v · ds =

∫
Ω

d(v · ds) =
∫

Ω
∇ · v dV.

The definition of the derivative matrix of a vector-valued map T : Rd → Rn, with

component functions T1, . . . , Tn, is simply the n× d matrix

T ′ =

D
e1T1 · · · DedT1
...

. . .
...

De1Tn · · · DedTn

 .
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Note that ∇g> = g′ when g is a scalar-valued function. The chain rule states that (g ◦
T )′(x) = g′(T (x))T ′(x). The Jacobian determinant JT of a map T : Rd → Rd is the

determinant of its derivative matrix T ′. For the case T : Rd → Rn with n ≥ d we define the

Jacobian determinant of T for indices i1, . . . , id as J i1,...,idT = JT̃ , where T̃ = (Ti1 , · · · , Tid)
>.

Suppose we know that a function T maps Z ⊂ Rd−1 onto Ω. Then the definition of the

integral of a differential form is∫
Ω
f · ds =

∫
Z
f(T (x)) · JdT (x) dV,

where JdT (x) is a vector of Jacobian determinants
J2,...,d
T (x)

−J1,3,...,d
T (x)

...
(−1)d−1J1,...,d−1

T (x)

.

In the univariate asymptotic expansion, we exploited integration by parts to write an

integral over an interval in terms of the integrands value at the endpoints of the interval

and a smaller integral over the whole interval. This is essentially a rewritten form of the

product rule for differentiation. For the multivariate case we proceed in the same manner:

use the product rule for Stokes’ theorem to rewrite the original integral as an integral along

the boundary of the domain and a smaller integral within the domain. The product rule for

a function w : Rd → R is:∫
∂Ω
wv · ds =

∫
Ω
∇ · (wv) dV =

∫
Ω

[∇w · v + w∇ · v] dV.

Reordering the terms in this equation, we obtain a partial integration formula:∫
Ω
∇w · v dV =

∫
∂Ω
wv · ds−

∫
Ω
w∇ · v dV. (2.5.1)

2.6. Multivariate asymptotic expansion

With a firm concept of how to derive a univariate asymptotic expansion and the mul-

tivariate tools of the preceding section, we now find the asymptotic expansion of higher

dimensional integrals in the form

I[f ] = Ig[f,Ω] =
∫

Ω
f(x)eiωg(x) dV,

where the domain Ω has a piecewise smooth boundary. In this section we assume that the

nonresonance condition is satisfied, which is somewhat similar in spirit to the condition that
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g′ is nonzero within the interval of integration. The nonresonance condition is satisfied if,

for every point x on the boundary of Ω, ∇g(x) is not orthogonal to the boundary of Ω at

x. In addition, ∇g 6= 0 in the closure of Ω, i.e., there are no stationary points. Note that

the nonresonance condition does not hold true if g is linear and Ω has a completely smooth

boundary, such as a circle, since ∇g must be orthogonal to at least one point in ∂Ω.

Based on results from [89]—which were rediscovered in [49]—we derive the following

asymptotic expansion. We also use the notion of a vertex of Ω, for which the definition may

not be immediately obvious. Specifically, we define the vertices of Ω as:

• If Ω consists of a single point in Rd, then that point is a vertex of Ω.

• Otherwise, let {Z`} be an enumeration of the smooth components of the boundary of

Ω, where each Z` is of one dimension less than Ω, and has a piecewise smooth boundary

itself. Then v ∈ ∂Ω is a vertex of Ω if and only if v is a vertex of some Z`.

In other words, the vertices are the endpoints of all the smooth one-dimensional edges in the

boundary of Ω. In two-dimensions, these are the points where the boundary is not smooth.

Theorem 2.6.1 Suppose that Ω has a piecewise smooth boundary, and that the nonreso-

nance condition is satisfied. Then, for ω →∞,

Ig[f,Ω] ∼
∞∑
k=0

1

(−iω)k+d
Θk [f ] ,

where Θk [f ] depends on Dmf for
∑
m ≤ k, evaluated at the vertices of Ω.

Proof :

In the partial integration formula (2.5.1), we choose w = eiωg

iω and

v =
f∇g
‖∇g‖2

.

Because ∇g 6= 0 within Ω, this is well defined and nonsingular. It follows that

∇ · w = eiωg∇g,

thence ∫
Ω
feiωg dV =

1

iω

∫
∂Ω

f

‖∇g‖2
eiωg∇g · ds− 1

iω

∫
Ω
∇ ·

[
f∇g
‖∇g‖2

]
eiωg dV.

Iterating the process on the remainder term gives us the asymptotic expansion

Ig[f,Ω] ∼ −
s∑

k=1

1

(−iω)k

∫
∂Ω

eiωgσk · ds+
1

(−iω)s

∫
Ω
∇ · σseiωg dV, (2.6.1)
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for

σ1 = f
∇g
‖∇g‖2

and σk+1 = ∇ · σk
∇g
‖∇g‖2

.

We now prove the theorem by expressing each of these integrals over the boundary in

terms of its asymptotic expansion. Assume the theorem holds true for lower dimensions,

where the univariate case follows from Theorem 2.2.1. For each `, there exists a domain

Ω` ∈ Rd−1 and a smooth map T` : Ω` → Z` that parameterizes the `th smooth boundary

component Z` by Ω`, where every vertex of Ω` corresponds to a vertex of Z`, and vice-versa.

We can thus rewrite each surface integral as a sum of standard integrals:∫
∂Ω

eiωgσk · ds =
∑
`

∫
Z`

eiωgσk · ds =
∑
`

Ig` [f`,Ω`] , (2.6.2)

where, for y ∈ Ω`,

f`(y) = σk(T`(y)) · JdT (y) and g`(y) = g(T`(y)).

It follows from the definition of the nonresonance condition that the function g` satisfies the

nonresonance condition in Ω`. This follows since if g` has a stationary point at ξ then

0 = ∇g`>(ξ) = (g ◦ T`)′ (ξ) = ∇g(T`(ξ))>T ′`(ξ),

or in other words g is orthogonal to the boundary of Ω at the point T`(ξ).

Thus, by our assumption,

Ig` [f`,Ω`] ∼
∞∑
i=0

1

(−iω)i+d−1
Θi[f`],

where Θi [f`] depends on Dmf` for
∑
m ≤ i applied at the vertices of Ω`. But Dmf` depends

on Dm [σk ◦ T`] for
∑
m ≤ i applied at the vertices of Ω`, which in turn depends on Dmf for∑

m ≤ i+ k, now evaluated at the vertices of Z`, which are also vertices of Ω. The theorem

follows from plugging these asymptotic expansions in place of the boundary integrals in

(2.6.1).

Q.E.D.

It is a significant challenge to find the coefficients of this asymptotic expansion explicitly,

hence we use this theorem primarily to state that the asymptotics of a multivariate integral

are dictated by the behaviour of f and its derivatives at the vertices of the domain of

integration.

2.7. Filon method

Though the importance of asymptotic methods cannot be overstated, the lack of con-

vergence forces us to look for alternative numerical schemes. In practice the frequency of
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Figure 2.5: Louis Napoleon George Filon.

oscillations is fixed, and the fact that an approximation method is more accurate for higher

frequency is irrelevant; all that matters is that the error for the given integral is small. Thus,

though asymptotic expansions lie at the heart of oscillatory quadrature, they are not use-

ful in and of themselves unless the frequency is extremely large. In a nutshell, the basic

goal of this thesis, then, is to find and investigate methods which preserve the asymptotic

properties of an asymptotic expansion, whilst allowing for arbitrarily high accuracy for a

fixed frequency. Having been spoilt by the pleasures of asymptotic expansions, we also want

methods such that the order of operations is independent of ω, and comparable in cost

to the evaluation of the expansion. Fortunately, methods have been developed with these

properties, in particular the Filon method and Levin collocation method.

The first known numerical quadrature scheme for oscillatory integrals was developed

in 1928 by Louis Napoleon George Filon [54]. Filon presented a method for efficiently

computing the Fourier integrals

∫ b

a
f(x) sinωx dx and

∫ ∞
0

f(x)

x
sinωx dx.

As originally constructed, the method consists of dividing the interval into 2n panels of size

h, and applying a modified Simpson’s rule on each panel. In other words, f is interpolated at

the endpoints and midpoint of each panel by a quadratic. In each panel the integral becomes

a polynomial multiplied by the oscillatory kernel sinωx, which can be integrated in closed

form. We determine the quadratic for the kth panel vk(x) = ck,0 + ck,1x+ ck,2x
2 by solving

the system:

vk(xk) = f(xk), vk(xk+1) = f(xk+1), vk+2 = f(xk+2).
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We thus sum up the approximation on each subinterval:

∫ b

a
f(x) sinωx dx ≈

n−1∑
k=0

∫ x2k+2

x2k

vk(x) sinωx dx. (2.7.1)

The moments ∫ b

a

1
x
x2

 sinωx dx

are all known trivially, thus we can compute (2.7.1) explicitly. The infinite integral was then

computed using a series transformation. This method was generalized in [68] by using higher

degree polynomials in each panel, again with evenly spaced nodes.

In the original paper by Filon, it is shown that the error of the Filon method is bounded

by

C sin
hω

2

(
1− 1

16
sec

hω

4

)
.

This suggests that h must shrink as ω increases in order to maintain accuracy, a property

which we have stated we are trying to avoid. Furthermore, Tukey [87]—which is referenced

in Abramowitz and Stegun [2]—suggests that the Filon method cannot be accurate, due to

problems with aliasing. This argument is fundamentally flawed, as aliasing does not exist

when the number of sample points is allowed to increase. A related complaint was presented

by Clendenin in [19], which says that, due to the use of evenly spaced nodes, at certain

frequencies a nonzero integral is approximated by zero. Thus in order to achieve any relative

accuracy the step size must decrease as the frequency increases. An earlier review of the

Filon method [58], which Clendenin referenced, asserts that the error can not be worse than

the error in interpolation by piecewise quadratics. Thus Clendenin’s mistake was to focus

on relative error: the Filon method’s absolute error is still small at such frequencies.

What Filon failed to realize—and indeed apparently many other talented mathematicians

who have used the Filon method since its inception—is the most important property of the

Filon method: its accuracy actually improves as the frequency increases! Indeed, for a fixed

step size the error decays like O
(
ω−2

)
. Thus h need not shrink as ω increases, rather, if

anything, it should increase, thus reducing the required number of operations. This renders

the existence of problem frequencies a nonissue: when ω is large, the issue Clendenin found

will only surface at step sizes significantly smaller than necessary. Moreover, in Section 3.1

we will investigate Filon-type methods which use higher order polynomials, and avoid the

problem of the integral vanishing completely.

Very little work on the Filon method was done for the remainder of the twentieth century,

mostly consisting of investigating specific kernels similar in form to the Fourier oscillator. A

Filon method for larger intervals is presented in [30], where a higher order rule is used for
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each panel. This paper again makes the mistake of investigating asymptotic behaviour as

hω → 0. The paper [17] generalized the Filon method for integrals of the form

∫ b

a
f(x) eax cos kx dx.

More complicated methods based on the Filon method are explained in Section 2.11.

2.8. Levin collocation method

The computation of the Filon approximation rests on the ability to compute the moments∫ b

a
xkeiωx dx.

For this particular oscillator the moments are computable in closed form, either through

integration by parts or by the identity∫ b

a
xkeiωx dx =

1

(−iω)k+1
[Γ(1 + k,−iωa)− Γ(1 + k,−iωb)] ,

where Γ is the incomplete Gamma function [2]. But often in applications we have irregular

oscillators, giving us integrals of the form∫ b

a
f(x)eiωg(x) dx.

In this case knowledge of moments depends on the oscillator g. If we are fortunate, the

moments are still known, and the Filon method is applicable. This is true if g is a polynomial

of degree at most two or if g(x) = xr. But we need not step too far outside the realm of these

simple examples before explicit moment calculation falls apart: moments are not even known

for g(x) = x3−x nor g(x) = cos x. Even when moments are known, they are typically known

in terms of special functions, such as the incomplete Gamma function or more generally the

hypergeometric function [2]. The former of these is efficiently computable [88]. The latter,

on the other hand, are significantly harder to compute for the invariably large parameters

needed, though some computational schemes exist [31, 73, 67]. Thus it is necessary that we

find an alternative to the Filon method.

In 1982, David Levin developed the Levin collocation method [60], which approximates

oscillatory integrals without using moments. A function F such that d
dx

[
F eiωg

]
= feiωg

satisfies

I[f ] =
∫ b

a
feiωg dx =

∫ b

a

d

dx

[
F eiωg

]
dx = F (b)eiωg(b) − F (a)eiωg(a).

By expanding out the derivatives, we can rewrite this condition as L[F ] = f for the operator

L[F ] = F ′ + iωg′F.
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Note that we do not impose boundary conditions: since we are integrating, any particular

solution to this differential equation is sufficient. If we can approximate the function F ,

then we can approximate I[f ] easily. In order to do so, we use collocation with the operator

L. Let v =
∑ν
k=1 ckψk for some basis {ψ1, . . . , ψν}. Given a sequence of collocation nodes

{x1, . . . , xν}, we determine the coefficents ck by solving the collocation system

L[v] (x1) = f(x1), . . . ,L[v] (xν) = f(xν).

We can then define the approximation QL[f ] to be

QL[f ] =
∫ b

a
L[v] eiωg dx =

∫ b

a

d

dx

[
veiωg

]
dx = v(b)eiωg(b) − v(a)eiωg(a).

Levin was the first to note the asymptotic properties of these quadrature schemes, as

well as the importance of endpoints in the collocation system. This method has an error

I[f ]−QL[f ] = O
(
ω−1

)
when the endpoints of the interval are not included in the collocation

nodes. When the endpoints are included, on the other hand, the asymptotic order increases

to I[f ]−QL[f ] = O
(
ω−2

)
. Though Filon failed to notice it, this property holds true for the

Filon method as well, as discovered in [44]. This follows since the Levin collocation method

with a polynomial basis is equivalent to a Filon method, whenever g(x) = x. In Chapter 3,

we will see how this asymptotic behaviour relates to the asymptotic expansion, and exploit

this relation in order to improve the asymptotic order further.

A Levin collocation method was also constructed for oscillatory integrals over a square.

In this case a Levin differential operator was constructed by iterating the method for each

dimension. Though we do investigate multivariate Levin-type methods in Chapter 5, we will

not use this construction as it is limited to hypercubes.

Levin generalized his method for integrals whose vector-valued kernel satisfies a differ-

ential equation [61, 62]. In other words, the method computes integrals of the form

∫ b

a
f(x)>y(x) dx,

such that

y′(x) = A(x)y(x).

The function y is oscillatory whenever A has eigenvalues with large imaginary components

and nonpositive real components. The Levin collocation method can be used whenever the

inverse of A and its derivatives are small. An example of such an integral is one involving

Bessel functions [2], where we have the kernel

y(x) =
(
Jm−1(ωx)
Jm(ωx)

)
, A(x) =

(
m−1
x −ω
ω −mx

)
.
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In this case

A−1(x) =
1

ω2x2 −m2 +m

(
−mx ωx2

−ωx2 (m− 1)x

)
.

The entries of this matrix, and its derivatives, are all O
(
ω−1

)
.

The collocation system is found in a similar manner as before. We wish to find a function

F such that (F>y)′ = f>y. Expanding out derivatives gives us the new differential operator

L[v] = v′ + A>v.

Thus, given a vector-valued basis {ψk}, we approximate F by v =
∑n
k=1 ckψk, where n = dν

for d equal to the dimension of the kernel y, and the coefficients ck are determined by solving

the system

L[v] (x1) = f(x1), . . . ,L[v] (xν) = f(xν).

We then obtain the Levin collocation method:

QL[f ] = v(b)>y(b)− v(a)>y(a).

Like the original Levin collocation method, the vector-valued version also improves with

accuracy as the frequency increases.

Theorem 2.8.1 [62] Let B(x) = ωA−1(x) and assume that x1 = a and xν = b. If B and its

derivatives are bounded uniformly for all ω > α, then

∣∣∣I[f ]−QL[f ]
∣∣∣ < C

(b− a)ν

ω2

In Chapter 6 we will generalize this method to obtain higher asymptotic orders by deriving

a vector-valued asymptotic expansion.

2.9. Chung, Evans and Webster method

Often methods represented as weighted sums, as in Section 2.1, are preferred. Though

Filon and Levin collocation methods are extremely powerful, they do not fall into this frame-

work. In [26], Evans and Webster construct such a method for irregular exponential oscilla-

tors, based on the Levin collocation method. We want to choose weights wj and nodes xj

such that ∫ 1

−1
φk(x)eiωg(x) dx =

n∑
j=0

wjφk(xj) (2.9.1)

for some suitable basis φk. Unlike Gaussian quadrature, we do not choose φk to be polyno-

mials. Instead, we choose them based on the Levin differential equation:

φk = L[Tk] = T ′k + iωg′Tk,
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where Tk are the Chebyshev polynomials. The moments with respect to φk are computable

in closed form: ∫ 1

−1
φk(x)eiωg(x) dx = Tk(1)eiωg(1) − Tk(−1)eiωg(−1).

We can thus determine suitable weights and nodes to maximize the number of functions φk
such that (2.9.1) holds. As this is a Levin-type method, it preserves the asymptotic niceties

of the Levin collocation method.

This was generalized in [18, 24] for computation of the oscillatory integral∫ 1

−1
f(x)y(x) dx,

where the oscillatory kernel y satisfies the differential equation

M[y] = pmy
(m) + · · ·+ p0y = 0,

for some functions {p0, . . . , pm}. As before, we want to choose nodes, weights and a basis so

that ∫ b

a
φk(x)y(x) dx =

n∑
j=0

wjφk(xj).

The adjoint of M is

M?[z] = (−1)m(pmz)(m) + (−1)m−1(pm−1z)(m−1) + · · · − (p1z)′ + p0z.

The Lagrange identity then states that

zM[y]− yM?[z] = (Z[y, z])′, (2.9.2)

where Z is the bilinear concomitant

Z[y, z] =
m∑
r=1

∑
j+k=r−1

(−1)k(prz)(k)y(j).

Integrating (2.9.2) and using the fact that M[y] = 0, we find that∫ b

a
M?[z] y dx = Z[y, z](a)− Z[y, z](b). (2.9.3)

We can thus choose our basis to be φk =M?[Tk], in which case the moments are computable

using (2.9.3), hence the nodes and weights can be determined by solving an algebraic equa-

tion. Numerical results for approximating the integral∫ 1

1
2

exJ0(ω cosx) dx

suggest that the method improves with accuracy as the frequency increases. Using the

method over infinite integration domains is explored in [25].
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Remark : Based on the asymptotic expansion and many results in this thesis, it seems

likely that imposing the condition

x0 = a and xn = b,

in the same vein as Gauss–Lobatto quadrature, should improve the asymptotic order of the

method. As far as I am aware, this idea has not yet been explored.

2.10. Numerical steepest descent

The method of steepest descent, described briefly in Section 2.4, has an important feature

that is neglected in its asymptotic form: the integrand along the path of integration does

not oscillate, and thus can be approximated by using the nonoscillatory quadrature methods

of Section 2.1. In this section we will give an overview of research based on this idea

for oscillatory quadrature methods. Traditionally these techniques have been used in the

computation of special functions, where f and g are fixed for any particular special function;

however, recent research has investigated utilizing this technique for general f and g.

As described in Section 1.3, special functions often have highly oscillatory integral repre-

sentations. Many methods for the computation of such special functions have been developed

based on these integral representations and the method of steepest descent. Where in Sec-

tion 2.4, the path of steepest descent was used merely to obtain the asymptotics of such

integrals, in computation it can be used as an integration path, with nonoscillatory quadra-

ture methods applied to the resulting integrals. Since the integral becomes exponentially

decreasing, these methods can be extremely accurate. They have been used to compute Airy

functions [34], Scorer functions [33] and an array of other special functions with integral rep-

resentations [35]. Unfortunately they depend on the knowledge or computation of the path

of steepest descent, which depends on the particular oscillator.

Contemporary with the work in this thesis is the investigation of numerical steepest

descent for the general case by Daan Huybrechs and Stefan Vandewalle. In [40], they inves-

tigated univariate integrals, including those with stationary points. By employing Gauss–

Laguerre quadrature along the path of steepest descent, high asymptotic order methods were

obtained. In the case with no stationary points, if n quadrature points are used for each

path (so 2n points total), the method has an error O
(
ω−2n−1

)
, as ω →∞. Furthermore, it

is shown that the path of steepest descent can be computed using Newton’s method. The

method was also generalized for multivariate integrals in [41].

Though these methods are incredibly powerful, we will instead focus on Filon and Levin

methods, due to several factors. The path of steepest descent goes to infinity and back again,

thus the numerical steepest descent methods require the integrand of the oscillatory integral

to be analytic throughout the entire complex plane, except perhaps at poles and branch

points. The poles and branch points add difficulty to the computation of the steepest descent
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path, as great care must be taken to stay on the same branch cut so that Cauchy’s theorem

remains valid. This is manageable for univariate integrals, but becomes an exhausting task

for multivariate integrals, where there can be complicated poles and branch points for each

variable. Furthermore, the amount of computation needed to obtain an approximation is

significantly greater, due to the need of computing the path of steepest descent. Finally, the

methods are less effective at low frequencies: an infinite integral with the kernel e−ωx does

not decay quickly when ω is close to zero.

An alternative complex plane method was used to solve the first problem of [12]. The

idea is that a deformation into the complex plane does not necessarily have to be along

the path of steepest descent. As long as it is deformed into the exponentially decreasing

quadrant, the exponential decay will take over and only a small, manageable number of

oscillations will remain, and standard quadrature methods become viable. Unfortunately,

such a method does not achieve higher asymptotic orders; the error only decays at the same

rate as the integral itself.

2.11. Other numerical methods

There are assorted other numerical methods developed for approximating oscillatory in-

tegrals, typically specializing on particular oscillators. We will not investigate these methods

in detail in this thesis, but they are mentioned here for completeness. Many methods exist

for the Fourier oscillator, which were reviewed in [27]. They all are based on the fact that

moments are computable, and hence are Filon-type methods. The Bakhvalov and Vasil’eva

method [8] interpolates f by Legendre polynomials Pk, and uses the fact that the moments

of such polynomials are known explicitly:

∫ 1

−1
Pk(x)eiωx dx = ik

(
2π

ω

) 1
2

Jk+ 1
2
(ω), (2.11.1)

where Jk is a Bessel function [2].

A method based on Clenshaw–Curtis quadrature was also devised, where f is interpolated

by Chebyshev polynomials Tk. We do not have simple formulæ for the resulting moments,

so the polynomials Tk are then expanded into Legendre polynomials and (2.11.1) is applied

[80, 63]. An alternative from [3] is to express the moments in terms of the hypergeometric

function 0F1 [2]. Special functions can be avoided in both these methods by expanding the

Legendre or Chebyshev polynomials into the standard polynomial basis xk, whose moments

can be found via partial integration [5]. This is not effective for large k due to significant

cancellation in the expansions [27].

Though it was not observed in any of these papers, all of these Filon-type methods—

methods based on interpolating f—have the same asymptotic behaviour as the Levin col-

location method. If the endpoints of the interval are included in the interpolation nodes,
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then error decays like O
(
ω−2

)
; otherwise the error decays at the same rate as the integrand

O
(
ω−1

)
. This will be explored in more detail in the next chapter, as well as generalization in

order to achieve even higher asymptotic orders. The importance of this observation cannot

be over stressed: it means that high oscillation is beneficial, not a hindrance. Furthermore,

it also means that the number of interpolation points required should actually decrease as

the frequency of oscillations increases. Thus at high frequencies we never need to utilize

large order polynomials in order to obtain accurate results.

There are several other methods not mentioned in [27]. Longman had a series of related

papers [64, 65, 66] for integrals over infinite intervals, based on expressing the integral as

an infinite sum and applying the Euler transformation. A method for irregular oscillatory

integrals over infinite intervals based on series transformations is presented in [83]. In this

case the Euler transformation is again utilized, as well as Aitken’s ∆2-process [13], Wynn’s

ε-algorithm [13] and Sidi’s W -transformation [84].

Piessens developed a Gaussian quadrature formula with respect to the weight function

sinx over the interval [−π, π] [81]. It however relies on considering each period separately,

thus still requires a large number of function evaluations to obtain accurate approximations.

A similar method based on Gaussian quadrature was developed by Zamfirescu [92], and

described in [44] (the original paper is in Romanian). We can rewrite the sine Fourier

integral as ∫ 1

0
f(x) sinωx dx =

∫ 1

0
f(x)(1 + sinωx) dx−

∫ 1

0
f(x) dx.

The second of these integrals is nonoscillatory, so the methods of Section 2.1 can be used

to approximate its value. The first integral now has a nonnegative weight function, hence

we can approximate it by a weighted sum. Since the moments with respect to the weight

function are known, we can successfully compute the quadrature weights needed.

A very effective quadrature scheme is developed in [56] for the standard Fourier oscillator.

The paper uses a weighted sum of the value of the function f and its first derivative at evenly

spaced nodes, determining the weights so as to maximize the degree of polynomials integrated

exactly. It is noted that, for a method of N points, the error behaves like O
(
ω−N

)
. This is

generalized to use higher order derivatives of f in [57], resulting in a significant decrease in
error.

A method based on a minimax algorithm for oscillatory integrals of the form

∫ b

a
f(x)φ(x) dx

is presented in [70]. It proves that the method is optimal-by-order. It then demonstrates

30



the method for the specific integrals

∫ b

a
f(x)

{
sinωx

cosωx
dx,

in which case the method consists of approximating f by a spline v and integrating

∫ b

a
v(x)

{
sinωx

cosωx
dx

explicitly. This is generalized to multivariate integrals over Cartesian products of intervals

in [72, 71, 93]. In these papers, explicit quadrature formulæ are presented for the integrals

∫ b

a

∫ d

c
f(x, y)

{
sinωx sinωy

cosωx cosωy
dx.

In [6], local Fourier bases are used to approximate oscillatory integrals, with a general-

ization to multivariate rectangular domains in [7]. Unfortunately, though the resulting linear

system is sparse, these methods require that the number of bases functions grows with the

frequency, hence they are not competitive with other methods discussed in this thesis.

There is also a comparison of methods for irregular oscillators in [27]. In addition to

the Levin collocation method and the Chung, Evans and Webster method already discussed,

there is method developed by Evans in [22] where the transformation y = g(x) is used to

convert the irregular oscillator to a standard Fourier oscillator:

I[f ] =
∫ g(b)

g(a)

f(g−1(y))

g′(g−1(y))
eiωy dy. (2.11.2)

Once the integral is in this form, a Filon-type method can be employed, in particular the

method based on Clenshaw–Curtis quadrature. This technique is successful whenever the

interval does not contain stationary points. Unfortunately it requires the computation of

the inverse of g, albeit only at the interpolation points.

Another method for irregular oscillators is proposed by Evans in [23]. Instead of inter-

polating f by polynomials, we can interpolate f(x)
g′(x) using a basis of the form

∑
ckψk(g(x)).

Then making the transformation y = g(x), as in (2.11.2), does not require the computation

of inverses of g. We must, however, be careful in the choice of the basis ψk. A related idea

for integrals with stationary points will be presented in Chapter 4.

In [14], the problem of solving the acoustic equation of Section 1.2 was tackled. This

method required the computation of oscillatory integrals, for which a new quadrature scheme

was derived. As mentioned in Section 2.3, at high frequencies, univariate oscillatory integrals
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are dominated by the contribution from the stationary points and endpoints (multivariate

integrals are dominated by contributions from stationary points, resonance points and ver-

tices). Thus we can obtain a high accuracy approximation by numerically integrating near

these important points, and throwing away the contributions from the more oscillatory re-

gions. This is accomplished by utilizing smooth windowing functions that focus on ε neigh-

bourhoods of these important points. The part of the integral which we throw away decays

exponentially fast as the frequency increases; though the error in the approximation only

decays at the same rate as the integral due to quadrature error in each ε neighbourhood.
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Chapter 3

Univariate Highly Oscillatory Integrals

Having reviewed the existing literature, we now begin developing the Filon and Levin

collocation methods further. The basic idea is to put these two methods on the same

framework as the asymptotic expansion, which will allow us to generalize the methods for

higher asymptotic orders, whilst retaining their convergent properties. In this chapter we

focus on the univariate highly oscillatory integral

I[f ] =
∫ b

a
f(x)eiωg(x) dx.

Until Chapter 4 we assume that g′ does not vanish within [a, b], in other words there are

no stationary points. We also assume for simplicity that f and g are smooth, i.e., infinitely

differentiable. Generalization of the results presented here to the case where f, g ∈ Cr[a, b]
is straightforward.

The key observation is that the asymptotic expansion only depends on the value and

derivatives of f evaluated at the boundary points. Thus if we can write our approximation

scheme as a highly oscillatory integral I[v], then we can determine the asymptotic order of

the error of the approximation by comparing f and v at the endpoints. The two primary

numerical methods we investigated in the preceding chapter—the Filon method and Levin

collocation method—both satisfy this property.

We begin with the development of Filon-type methods in Section 3.1, which is based on

results in [48]. The idea is fairly straightforward: instead of dividing the interval into panels

and performing a piecewise quadratic interpolation as in the original Filon method, we use

Hermite interpolation over the entirety of the interval. This ensures that the derivatives

of the interpolant match those of f up to a given order, and the approximation achieves a

higher asymptotic order. Furthermore it retains the character of the original Filon method:

adding additional sample points reduces the error further.

These new Filon-type methods require moments, which in certain applications are un-

available. Thus in Section 3.2 we look again at the Levin collocation method, using the

ideas from the construction of Filon-type methods to derive Levin-type methods, which also

obtain higher asymptotic order. This is accomplished in much the same manner; we use

multiplicities in the collocation system. We also compare the Filon-type and Levin-type

methods numerically. In their initial development, we use a polynomial basis in Levin-type

methods. This is not strictly necessary, and in Section 3.3 we use information about f and

33



g to develop a more suitable collocation basis, which is based on the asymptotic expansion.

This is exploited in Section 3.4, which investigates approximating integrals where f is badly

behaved, in particular the Runge example.

In their initial construction, Filon-type and Levin-type methods require derivatives of

f in order to achieve higher asymptotic orders. If f is at all complicated, computing its

derivatives is a nontrivial task. In Section 3.5 we use an idea developed in [47] to achieve

higher asymptotic orders without using derivatives, by choosing interpolation points that

behave like finite difference formulæ as the frequency ω increases. Finally, in Section 3.6 we

find some error bounds for a Filon-type method and a Filon–trapezoidal rule, where f is

approximated by a piecewise affine function v which is integrated exactly.

Remark : Section 3.1 is based on results by Iserles and Nørsett in [48]. Sections 3.2

through 3.4 contain original research, first presented in [75]. Section 3.5 is based on re-

sults again by Iserles and Nørsett, from [47]. Section 3.6 consists of new research, derived

with Daan Huybrechs.

3.1. Filon-type methods

The following corollary will be used in the proof of the order of error for Filon-type and

Levin-type methods.

Corollary 3.1.1 Allowing f to depend on ω, suppose for some n ≥ 0 that f = O
(
ω−n

)
,

where O
(
ω−n

)
means that the L∞[a, b] norm of f and its derivatives are all O

(
ω−n

)
,

cf. Notation. Furthermore, suppose that

0 = f(a) = f ′(a) = · · · = f (s−1)(a) ,

0 = f(b) = f ′(b) = · · · = f (s−1)(b) .

Then I[f ] ∼ O
(
ω−n−s−1

)
, for ω →∞.

Proof : Recall the asymptotic expansion from Section 2.2:

I[f ] = −
s+1∑
k=1

1

(−iω)k

{
σk(b)e

iωg(b) − σk(a)eiωg(a)
}

+
1

(−iω)s+1

∫ b

a
g′σs+2eiωg dx,

where

σ1 =
f

g′
, σk+1 =

σ′k
g′
, k ≥ 1.

Each σk depends on f and its first k − 1 derivatives, in the sense that it is a sum of terms

independent of ω, each multiplied by some function in the set
{
f, . . . , f (k−1)

}
. Thus it follows
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that 0 = σk(a) = σk(b) for all k ≤ s, and the first s terms of the asymptotic expansion are

identically zero. Thus we obtain

I[f ] = − 1

(−iω)s+1

{
σs+1(b)eiωg(b) − σs+1(a)eiωg(a)

}
+

1

(−iω)s+1

∫ b

a
g′σs+2eiωg dx.

From the properties of O(·) in Notation, we know that σs+1 = O
(
ω−n

)
. Thence σs+1(b)

and σs+1(a) are O
(
ω−n

)
. Furthermore, the integral is also of order O

(
ω−n

)
, and all three

terms are O
(
ω−n−s−1

)
.

Q.E.D.

We could, of course, use the partial sums of the asymptotic expansion to approximate

I[f ]. The accuracy of this approximation would improve as the frequency of oscillations ω

increased. Unfortunately, the expansion will typically not converge for fixed ω, thus there is

a limit to the accuracy of an asymptotic expansion. Hence we derive a Filon-type method ,

a method which will provide convergent approximations whilst retaining the asymptotic

behaviour of the expansion. Given some sequence of nodes {x1, . . . , xν} and multiplicities

{m1, . . . ,mν}, the idea is to approximate f by a polynomial v =
∑n
k=1 ckx

k−1 using Hermite

interpolation, where n =
∑
mk. We thus determine the coefficients ck by solving the system

v(xk) = f(xk) , v
′(xk) = f ′(xk) , . . . , v

(mk−1)(xk) = f (mk−1)(xk) , k = 1, . . . , ν.

We will assume for simplicity that x1 = a and xν = b. If the moments of eiωg are available,

then we can calculate I[v] explicitly. We thus define a Filon-type method as

QF [f ] = I[v] =
n∑
k=1

ckI
[
xk−1

]
.

Because the accuracy of QF [f ] depends on the accuracy of v interpolating f , adding ad-

ditional sample points and multiplicities will typically decrease the error. If v converges

uniformly to f , then the approximation QF [f ] converges to the solution I[f ]. We can easily

prove the asymptotic order of this method:

Theorem 3.1.2 [48] Let s = min {m1,mν}. Then

I[f ]−QF [f ] ∼ O
(
ω−s−1

)
.

Proof : The order of error of this method follows immediately from Corollary 3.1.1:

I[f ]−QF [f ] = I[f ]− I[v] = I[f − v] ∼ O
(
ω−s−1

)
as ω →∞, since f − v and its first s− 1 derivatives are zero at the endpoints.

Q.E.D.
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Figure 3.6: The error scaled by ω3 of the asymptotic expansion (left graph, top), QF [f ] with only
endpoints and multiplicities both two (left graph, bottom)/(right graph, top), and QF [f ] with

nodes
{

0, 1
2 , 1

}
and multiplicities {2, 1, 2} (right graph, bottom) for I[f ] =

∫ 1
0 cosx eiωx dx.

We will now compare Filon-type methods to the asymptotic expansion numerically to

show that we can indeed decrease the error by adding interpolation points. Consider the

fairly simple integral

I[f ] =
∫ 1

0
cosx eiωx dx.

In Figure 3.6 we compare several methods of order three: the two-term asymptotic ex-

pansion, QF [f ] with nodes {0, 1} and multiplicities {2, 2}, and QF [f ] with nodes
{

0, 1
2 , 1

}
and multiplicities {2, 1, 2}. Even when sampling f only at the endpoints of the interval,

the Filon-type method represents a significant improvement over the asymptotic expansion,

having approximately one-twelfth the error, while using exactly the same information about

the function f . Adding an additional interpolation point results in an error indistinguishable

from zero in the graph. Adding additional node points continues to have a similar effect.

3.2. Univariate Levin-type methods

The major problem with using Filon-type methods is that they still require explicit

formulæ for the moments I
[
xk
]
, which are not known for general functions g. But we can

employ the same idea of using multiplicities for the Levin collocation method, to obtain a

Levin-type method . We still wish to find a particular solution to the differential equation

L[v] = f for L[v] = v′ + iωg′v.

For the given nodes {x1, . . . , xν} we associate a sequence of multiplicities {m1, . . . ,mν}. We

then determine an approximate solution

v =
n∑
k=1

ckψk,
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where {ψ1, . . . , ψn} is a given basis and n =
∑
mk.

The unknown coefficients ck are determined by solving the system:

L[v] (xk) = f(xk),L[v]′ (xk) = f ′(xk), . . . ,L[v](mk−1) (xk) = f (mk−1)(xk), k = 1, . . . , ν.

(3.2.1)

The number of equations in this system is n, exactly the same as the number of unknowns

in v. If every multiplicity mk is one, then this is equivalent to the original Levin collocation

method. We will prove that, as in a Filon-type method, if the multiplicities at the endpoint

are greater than or equal to s, then I[f ] − QL[f ] ∼ O
(
ω−s−1

)
. Thus we obtain the same

asymptotic behaviour as a Filon-type method without requiring moments, and using exactly

the same information about f and g. In order to prove the order of error, we require that the

regularity condition is satisfied, which states that the set of functions {ψk} can interpolate

any function at the given nodes and multiplicities.

Theorem 3.2.1 Suppose that the regularity condition is satisfied, and that g′ 6= 0 within

[a, b]. Then

I[f ]−QL[f ] ∼ O
(
ω−s−1

)
,

where s = min {m1,mν} and

QL[f ] = v(b)eiωg(b) − v(a)eiωg(a).

Proof : The error term of the approximation is I[f ]−QL[f ] = I[f − L[v]]. In order to use

Corollary 3.1.1 we need to show that f −L[v] = O(1). Since f is independent of ω, we need

only worry about L[v]. Using Cramer’s rule, we will show that each ck is of order O
(
ω−1

)
.

Define the operator P [f ], written in partitioned form as

P [f ] =

 ρ1[f ]
...

ρν [f ]

 , where ρk[f ] =

 f(xk)
...

f (mk−1)(xk)

 .
Basically, P [f ] maps f to the value of it and its derivatives at every node in {x1, . . . , xν}
with multiplicities {m1, . . . ,mν}. Note that the system (3.2.1) can be written as Ac = f ,

for c = (c1, · · · , cn)> and

A = (P [L[ψ1]] , · · · ,P [L[ψn]]) =
(
P
[
ψ′1
]

+ iωP
[
g′ψ1

]
, · · · ,P

[
ψ′n
]

+ iωP
[
g′ψn

])
= P + iωG,

where

P =
(
P
[
ψ′1
]
, · · · ,P

[
ψ′n
])
, G =

(
P
[
g′ψ1

]
, · · · ,P

[
g′ψn

])
and f = P [f ] .

Solving the system Gc = f is equivalent to interpolating f by {g′ψk} at the given nodes

and multiplicities. Thus the regularity condition ensures that detG 6= 0. It follows that
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Figure 3.7: The error scaled by ω3 of the two-term asymptotic expansion (left graph, top), QL[f ]

(left graph, bottom)/(right graph, top) and QF [f ] (right graph, bottom) both with only endpoints

and multiplicities two for I[f ] =
∫ 1
0 cosx eiω(x2+x) dx.

detA = (iω)n detG + O
(
ωn−1

)
, hence large enough ω ensures that A is nonsingular and

(detA)−1 = O
(
ω−n

)
. Furthermore detAk = O

(
ωn−1

)
, for Ak defined as the matrix A

with the kth column replaced by f , since it has one less column of order O(ω). Hence, by

Cramer’s rule,

ck =
detAk
detA

= O
(
ω−1

)
.

It follows that v = O
(
ω−1

)
; thus L[v] = O(1), and the theorem follows.

Q.E.D.

Theorem 3.2.2 provides a simplified version of the regularity condition. It is especially

helpful as it ensures that the standard polynomial basis can be used with a Levin-type

method and any choice of nodes and multiplicities. Recall from [82] that a Chebyshev set is

a basis of n functions that spans a set M that satisfies the Haar condition; in other words,

that every function u ∈M has less than n+ 1 roots to the equation u(x) = 0 in the interval

[a, b]. Equivalently, the basis can interpolate at any given sequence of n nodes.

Theorem 3.2.2 Suppose that the basis {ψ1, . . . , ψn} is a Chebyshev set. Then the regu-

larity condition is satisfied for all choices of nodes and multiplicities.

Figure 3.7 will demonstrate the effectiveness of this method. Consider the integral∫ 1
0 cos(x)eiω(x2+x) dx, in other words f(x) = cosx and g(x) = x2 + x. We have no sta-

tionary points and moments are computable, hence all the methods discussed so far are

applicable. We compare the asymptotic expansion with a Filon-type method and a Levin-

type method, each with nodes {0, 1} and multiplicities both two. For this choice of f and g,
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Figure 3.8: The error scaled by ω3 of QL[f ] (left graph, top) and QF [f ] (left graph, bottom) both
with only endpoints and multiplicities two compared toQL[f ] (left graph, middle) andQF [f ] (right

graph) both with nodes
{

0, 1
4 ,

2
3 , 1

}
and multiplicities {2, 2, 1, 2} for I[f ] =

∫ 1
0 cosx eiω(x2+x) dx.

the Levin-type method is a significant improvement over the asymptotic expansion, whilst

the Filon-type method is even more accurate.

Figure 3.8 compares the Levin-type method and the Filon-type method with the addition

of two sample points. This graph helps emphasize the effectiveness of adding node points

within the interval of integration. With just two additional node points, only one of which

has multiplicity greater than one, the error of QL[f ] is less than a sixth of what it was. In

fact it is fairly close to the former QF [f ] while still not requiring the knowledge of moments.

On the other hand, adding the same node points and multiplicities to QF [f ] results in an

error significantly smaller than the original QL[f ]. It should be emphasized that even QL[f ]

with only endpoints is still a very effective method, as all the values in this graph are divided

by ω3 ≥ 2003 = 8 · 106.

3.3. Asymptotic basis

For a Levin-type method we do not have to use polynomials for the collocation basis

{ψk}. Not only can we greatly improve the accuracy of the approximation by choosing

the basis wisely, but surprisingly we can even obtain higher asymptotic orders. The idea

is to choose {ψk} so that L[v] is qualitatively similar in shape to f within the interval of

integration. We know the asymptotic expansion is very accurate at high frequencies, however

it diverges in general, and is not very accurate in the low frequency regime. In this section

we use the terms of the asymptotic expansion, however we throw away the coefficients of the

expansion, determining them via a Levin collocation system. It turns out that we retain the

asymptotic order of the expansion, whilst improving the accuracy significantly.
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Theorem 3.3.1 Define QB[f ] as a Levin-type method with the basis

ψ1 =
f

g′
and ψk+1 =

ψ′k
g′
.

If the regularity condition is satisfied then

QB[f ]− I[f ] = O
(
ω−n−s−1

)
,

where s is again the minimum endpoint multiplicity s = min {m1,mν}.

Proof : We postpone a detailed proof of this theorem until Theorem 5.3.2, since it is a

special case of the multivariate version. We however present a very brief sketch of the proof.

Note that

L[v]− f =
n∑
k=1

ckL[ψk]− f =
n∑
k=1

ck
(
ψ′k + iωg′ψk

)
− f

=
n∑
k=1

ck
(
g′ψk+1 + iωg′ψk

)
− g′ψ1

=g′
[
(iωc1 − 1)ψ1 +

n∑
k=2

(ck−1 + iωck)ψk + cnψn+1

]

=
g′

detA

[
(iω detA1 − detA)ψ1 +

n∑
k=2

(detAk−1 + iω detAk)ψk + detAnψn+1

]
,

where A is again the matrix associated with the Levin collocation system and Ak is the

matrix A with the kth row replaced by f = P [f ], as in Theorem 3.2.1. It is possible to

show via determinant manipulations that each of the constants within the bracket are O(1),

whilst we have already seen in the proof of Theorem 3.2.1 that (detA)−1 = O
(
ω−n

)
. Thus

L[v]− f = O
(
ω−n

)
,

and the proof follows from Corollary 3.1.1.

Q.E.D.

In the examples that follow, we include the constant function ψ1(x) ≡ 1 in our collocation

basis, in addition to the terms of the asymptotic basis. This does not affect the proof of the

preceding theorem, other than that the error is now O
(
ω−n−s

)
.

Consider the integral
∫ 1
0 log(x + 1) eiωx dx. In Figure 3.9, we compare methods of or-

der O
(
ω−4

)
. This includes the three-term asymptotic exansion, QF [f ] (which is equivalent

to QL[f ] with a polynomial basis) with nodes {0, 1} and multiplicities both three, and QB[f ]
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Figure 3.9: The error scaled by ω4 of the three-term asymptotic expansion (left graph, top),
QF [f ] with endpoints for nodes and multiplicities three (left graph, bottom), and QB[f ] in with

nodes
{

0, 1
2 , 1

}
and multiplicities one (right graph) for I[f ] =

∫ 1
0 log(x+ 1) eiωx dx.
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Figure 3.10: The base-10 logarithm of the error of the s-term asymptotic expansion (top), QF [f ]

with endpoints for nodes and multiplicities s (middle), and QB[f ] with nodes {k/ (s− 1)}s−1
k=0

and multiplicities all one (bottom) for I[f ] =
∫ 1
0 log(x+ 1)eiωx dx.

using nodes
{

0, 1
2 , 1

}
and multiplicities all one. The results are decent, with QB[f ] being

slightly more accurate than QF [f ] on average, though with a smaller collocation system.

The problem with the asymptotic expansion and QF [f ] with endpoints for nodes and

multiplicities both s is that, in general, as s → ∞ these methods diverge. Hence another

worthwhile comparison is to see how QB[f ] compares to these two methods for fixed ω and

increasing asymptotic order. Thus fix ω = 50, chosen purposely relatively small since the

larger ω, the longer it takes for increasing the asymptotic order to cause the approximations

to diverge. This choice results in Figure 3.10, where we take the base-10 logarithm of the

errors. This figure clearly shows the benefit of using QB[f ] for this particular case. Though

at lower orders the errors of QF [f ] and QB[f ] are very similar, at higher orders they differ

by orders of magnitude.
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Figure 3.11: The error scaled by ω6 of QB[f ] with nodes
{

0, 1
4 ,

1
2 ,

3
4 , 1

}
and multiplicities all one

(bottom), nodes
{

0, 1
2 , 1

}
and multiplicities {1, 3, 1} (middle), and nodes {0, 1} and multiplicities

both equal to two (top) for I[f ] =
∫ 1
0 log(x+ 1)eiωx dx.

We can also compare QB[f ] with itself under different choices of node points. Though

we retain the same f and g, we compare different methods of order O
(
ω−6

)
to increase

the number of possible node choices. We consider three choices of nodes and multiplicities:

nodes
{

0, 1
4 ,

1
2 ,

3
4 , 1

}
and multiplicities all one, nodes

{
0, 1

2 , 1
}

and multiplicities {1, 3, 1},
and nodes {0, 1} and multiplicities both equal to two. This results in Figure 3.11. We take

relatively mild values for ω as for any value significantly larger the accuracy reaches IEEE

machine precision. It is not entirely suprising that the more concentrated the sampling the

less accurate the approximation. Though they are not displayed in the preceding figure,

for comparison the asymptotic expansion performed horribly, oscillating between 23 and 25,

whilst QF [f ] with nodes {0, 1} and multiplicities five performed roughly in the middle of the

pack, oscillating between 0.2 and 0.8.

3.4. Runge’s phenomenon

Unfortunately, it is not always true that the Filon-type method is more accurate than the

asymptotic expansion. Take the case of the Fourier oscillator and f(x) =
(
1 + 25x2

)−1
, now

over the interval [−1, 1]. This suffers from Runge’s phenomenon, as described in [82], where

certain nonoscillatory functions have oscillating interpolation polynomials. Since the Filon-

type method is based on interpolation, it is logical that the accuracy of QF [f ] is directly

related to the interpolation accuracy. In Figure 3.12 we see that adding additional nodes

actually reduces the accuracy of QF [f ]. It should be noted that in this example QF [f ] with

only endpoints and the one-term asymptotic expansion are equivalent, which can be trivially

proved by finding the explicit formula for QF [f ]. Thus the asymptotic expansion is the best

method of the three tried.
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Figure 3.12: The error scaled by ω2 of QF [f ] with only endpoints (right graph), endpoints and
two additional evenly spaced points (left graph, bottom), and endpoints and four additional evenly
spaced points (left graph, top), where all multiplicities are one for I[f ] =

∫ 1
−1

1
1+25x2 eiωx dx.
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Figure 3.13: The error scaled by ω2 of QF [f ] with only endpoints (right graph), endpoints and
two additional Chebyshev interpolation points (left graph, top), and endpoints and four additional
Chebyshev interpolation points (left graph, bottom), where all multiplicities are one for I[f ] =∫ 1
−1

1
1+25x2 eiωx dx.

We know that using Chebyshev interpolation points, also described in [82], eliminates

Runge’s phenomenon. Using this choice for nodes, along with the required endpoint nodes,

results in the errors seen in Figure 3.13. Now adding additional node points results in a

more accurate approximation. This certainly is a huge improvement over Figure 3.12, but

Filon-type methods definitely do not have the same magnitude of improvement over the

asymptotic expansion that they did in Figure 3.7.

Since QB[f ] is not polynomial interpolation, there is a good chance that Runge’s phe-

nomenon will not affect us in the same way. In fact, numerical tests show that QB[f ] has

significantly less error than its polynomial counterparts. Direct computation shows that

detA is a polynomial in ω of degree n − 1, not of degree n. Fortunately, the proof of The-
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Figure 3.14: The error scaled by ω4 of the three-term asymptotic expansion (left graph, bottom),
QF [f ] with only endpoints and multiplicities three (left graph, top), and QB[f ] with endpoints
and two Chebyshev nodes, all with multiplicity one (right graph) for I[f ] =

∫ 1
−1

1
1+25x2 eiωx dx.
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Figure 3.15: The error scaled by ω3 of QF [f ] with endpoints and multiplicities both two (left
graph, top), QL[f ] with endpoints and multiplicities both two (left graph, bottom), the two-term
asymptotic expansion (right graph, top) and QB[f ] with endpoints and multiplicities all one (right

graph, bottom) for I[f ] =
∫ 1
0 e10xeiω(x2+x) dx.

orem 3.3.1 holds as is, except that QB[f ] now has error of order O
(
ω−n−s+1

)
. Again we

compare methods of similar order in Figure 3.14, which shows that QB[f ] is the best of the

three methods tried.

Remark : Another option, with regard to Runge’s phenomenon, is to use cubic splines

in place of interpolation. Unfortunately this suffers from the fact that a cubic spline can

only match the function and its first two derivatives at the endpoints, hence the order is

at most O
(
ω−4

)
in the present framework, though higher order splines can achieve higher

asymptotic orders. In Section 3.6 we investigate using the simplest “spline” approximation,

namely piecewise affine functions.
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s Asym. expan. QF [f ] QL[f ] QB[f ]

2 0.0083 0.042 0.015 0.00059
3 0.00011 0.0016 0.00043 2.8 · 10−6

5 1.7 · 10−8 1.3 · 10−6 3 · 10−7 9.9 · 10−12

Table 3.1: The absolute value of the errors for ω = 200 of the following methods of or-
der O

(
ω−s−1

)
: the s-term asymptotic expansion, QF [f ] and QL[f ] with endpoints and mul-

tiplicities both s, and QB[f ] with nodes {k/ (s− 1)}s−1
k=0 and multiplicities all one for I[f ] =∫ 1

0 e10xe200i(x2+x) dx.

Similar to Runge’s phenomenon is the situation when f increases much too fast to be

accurately approximated by polynomials. Let f(x) = e10x and g(x) = x2 + x. Note that

this appears to be a ludicrously difficult example—not only do we have high oscillations but

f exceeds 22, 000 in the interval of integration! Amazingly, we will see that the methods

described are still very accurate, especially a Levin-type method with asymptotic basis. We

compare QB[f ] which has only endpoints for nodes and multiplicities all one to the two-term

asymptotic expansion and QF [f ] with only endpoints for nodes and multiplicities both two

in Figure 3.15. We omit the proof that the regularity condition for QB[f ] is satisfied, as it

is a simple exercise in linear algebra.

In this example QF [f ] produces a tremendously bad approximation, due to the difficulty

in interpolating an exponential by a polynomial. As seen in Table 3.1, the actual error for

ω = 200 is about 0.042. On the other hand, the asymptotic expansion performed signifi-

cantly better than the Filon-type method, though still not spectacularly, with an error of

approximately 0.0083 for ω = 200. The star of this show is clearly QB[f ], where the ac-

tual error for ω = 200 is about 0.000585; less than a tenth of the error of the asymptotic

expansion.

Adding additional nodes to QB[f ] increases the accuracy further. For example, again

with ω = 200, adding a single node at the midpoint decreases the error to 2.79 · 10−6 while

adding nodes at 1
4 , the midpoint, and 3

4 further decreases the error to the astoundingly small

9.93 · 10−12. This example demonstrates just how powerful these quadrature techniques

are compared to Gauss–Legendre quadrature: even with 100, 000 points Gauss–Legendre

quadrature had an error of 0.11, not even close to the accuracy of the Filon-type method,

to say nothing of QB[f ].

3.5. Derivative-free methods

One issue with the Filon-type and Levin-type methods is that they ostensibly require

derivatives in order to achieve higher asymptotic orders. If the function f is even moderately

complicated, the task of determining its derivatives can be unmanageable. Approximating
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the value of the derivatives—say by finite differences—might also not be feasible. But we are

concerned with asymptotic orders, hence we only require an accurate approximation to the

derivative at high frequencies. This leads us to the idea for Filon-type methods, originating

in [47], to interpolate at the points a, a + 1
ω and b − 1

ω , b, so that v approximates the first

derivative at the endpoint with an error O
(
ω−2

)
as ω increases. Adding additional points

that depend on ω allows us to approximate higher derivatives. We use the following lemma

to prove the order of error:

Lemma 3.5.1 Suppose that

f(a), f(b) = O
(
ω−s

)
, f ′(a), f ′(b) = O

(
ω−s+1

)
, · · · , f (s)(a), f (s)(b) = O(1)

and

f(x), f ′(x), . . . , f (s+1)(x) = O(1) , a ≤ x ≤ b.

Then

I[f ] ∼ O
(
ω−s−1

)
.

Proof : The theorem follows immediately from the asymptotic expansion. Since σk, which

was defined in Theorem 2.2.1, is a combination of f and its first k− 1 derivatives, it follows

that σk(a), σk(b) = O
(
ω−s−1+k

)
and σk(x) = O(1). Thus the terms in the s-term expansion

are all O
(
ω−s−1

)
while the error integral is

1

(−iω)s
I
[
σs+1g

′
]

= O
(
ω−s−1

)
.

Q.E.D.

Theorem 3.5.2 [47] Suppose that we interpolate at the points

xk, xk +
γk,1
ω
, . . . , xk + (mk − 1)

γk,mk

ω
, k = 1, . . . , ν,

where
{
γ1,1, . . . , γk,mk

}
are constants. Then

I[f ]−QF [f ] = O
(
ω−s−1

)
,

where s = min {m1,mν}.

Proof : Let vω be the interpolation of f at the given points, where the dependence on ω

is written explicitly. From the Taylor expansion we know that

f (k)(a)− v(k)
ω (a) = O

(
ω−m1+k

)
f (k)(b)− v(k)

ω (b) = O
(
ω−mν+k

) for k = 1, . . . , s.
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Figure 3.16: The errors in approximating
∫ 1
0
x+1
x−2eiω(x2+x) dx for an adaptive Filon-type method

(solid line) and an adaptive Levin-type method (thick line). In the left graph, both methods have
nodes

{
0, 1

ω , 1−
1
ω , 1

}
and the error is scaled by ω3. In the right graph, both methods have nodes{

0, 1
ω ,

2
ω , 1−

2
ω , 1−

1
ω , 1

}
and the error is scaled by ω4.

Furthermore, as ω → ∞, v
(k)
ω → ṽ(k), where ṽ is the Hermite interpolation polynomial

with nodes {x1, . . . , xν} and multiplicities {m1, . . . ,mν}. Thus

f (k) − v(k)
ω ∼ f (k) − ṽ(k) = O(1) .

The theorem then follows from Lemma 3.5.1.
Q.E.D.

We refer to such an approximation as an adaptive Filon-type method . We can construct

an adaptive Levin-type method similarly.

As an example, we compare adaptive Filon-type methods and adaptive Levin-type meth-

ods in Figure 3.16 for the integral ∫ 1

0

x+ 1

x− 2
eiω(x2+x) dx.

We look at both methods with nodes
{

0, 1
ω , 1−

1
ω , 1

}
, which do indeed achieve an asymptotic

order of O
(
ω−3

)
. Adding the additional points 2

ω and 1− 2
ω increases the asymptotic order

to O
(
ω−4

)
. As in previous examples, Filon-type methods are more accurate than Levin-type

methods.

3.6. Error bounds and the Filon–trapezoidal rule

This section is based on as-of-yet unpublished joint work with Daan Huybrechs. We

will present error bounds for both Filon-type methods and composite Filon methods. We

focus on the Fourier oscillator g(x) = x, though most of the results can be generalized in a
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straightforward manner to other Filon-type methods via the change of variables u = g(x). We

choose the simplicity of the Fourier oscillator, however, partly due to the lack of significant

other oscillators for which a Filon-type method is computable.

Though the asymptotic properties of Filon-type and Levin-type methods are excellent,

in implementation one typically has a fixed frequency and the behaviour of the error for

larger frequencies is irrelevant. Thus we wish to find a bound on the error. The most trivial

error bound for a Filon-type method is∣∣∣I[f ]−QF [f ]
∣∣∣ = |I[f − v]| ≤ (b− a) ‖f − v‖∞ .

The quadrature error must be less than the error in interpolation, and must converge when-

ever interpolation converges uniformly. It follows that if we use Chebyshev interpolation

points—or better yet, Lobatto points to ensure that the endpoints are included and we

achieve O
(
ω−2

)
asymptotic decay—the approximation is guaranteed to converge. Unfortu-

nately, this bound does not decay as ω increases, hence it is not particularly sharp at large

frequencies. We can, however, integrate by parts to obtain a second error bound, assuming

that the endpoints are included in the interpolation points:

∣∣∣I[f ]−QF [f ]
∣∣∣ =

∣∣∣∣ 1

iω
I
[
f ′ − v′

]∣∣∣∣ ≤ (b− a)

ω

∥∥∥f ′ − v′∥∥∥ .
Iterating this procedure results in the following theorem:

Theorem 3.6.1 Let s = min {m1,mν}. Then

∣∣∣I[f ]−QF [f ]
∣∣∣ ≤ min



(b− a) ‖f − v‖∞
b−a
ω ‖f

′ − v′‖∞
...

b−a
ωs

∥∥∥f (s) − v(s)
∥∥∥
∞

1
ωs+1

[
2
∥∥∥f (s) − v(s)

∥∥∥
∞

+ (b− a)
∥∥∥f (s+1) − v(s+1)

∥∥∥
∞

]
.

The L∞ norms could be expressed in terms of bounds related to Hermite interpolation. We

however leave them as is for clarity.

In Figure 3.17, we compare the error bound determined by Theorem 3.6.1 to the ac-

tual error, for the integral
∫ 1
0 cosx eiωx dx. We do so for two Filon-type methods: the first

with only endpoints for nodes and multiplicities both one, the second with nodes
{

0, 1
2 , 1

}
and multiplicities {2, 1, 2}. This bound does indeed capture the asymptotic decay of the

approximation, though there definitely is room for improvement.

An alternative to adding interpolation points is to apply a composite scheme: divide the

interval into panels and use a Filon-type method on each panel. This is closely related to

the original Filon method, except with the possibility of interpolating f by something other
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Figure 3.17: The base-10 logarithm of the error and bound in approximating
∫ 1
0 cosx eiωx dx, for

the Filon-type method with endpoints for nodes and multiplicities both one (left graph) and the
Filon-type method with nodes

{
0, 1

2 , 1
}

and multiplicities {2, 1, 2} (right graph).

than a quadratic. We choose to focus on a Filon–trapezoidal rule, where we approximate f

by a piecewise affine function with panels of the same size. This idea was suggested in [21].

We wish to find the rate that the error decays as the panel size h approaches zero. Let vn

be the piecewise affine function, so that (for h = (b−a)
n )

vn(a) = f(a), vn(a+ h) = f(a+ h), . . . , vn(b− h) = f(b− h), vn(b) = f(b).

By applying Theorem 3.6.1 on each panel, combined with the facts that |v(x)− f(x)| =

O
(
h2
)

and |v′(x)− f ′(x)| = O(h), we immediately know that the error is both O
(
h2
)

and

O
(
h
ω

)
as h → 0. However, numerical results suggest that the error is actually of a smaller

magnitude, behaving like O
(
h2

ω

)
. The following is a proof of this observation:

Theorem 3.6.2

lim
n→∞n

2
∫ 1

0
[f(x)− vn(x)] eiωx dx = O

(
ω−1

)
.

Proof : Let en = f − vn. Note that

∫ 1

0
en(x)eiωx dx =

n−1∑
i=0

∫ xi+1

xi
en(x)eiωx dx,
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where xi = a+ ih. For xi ≤ x ≤ xi+1,

en(x) = f(x) +
f(xi)− f(xi+1)

xi+1 − xi
(x− xi)− f(xi)

= f ′(xi)(x− xi) +
f ′′(xi)

2
(x− xi)2 +O(x− xi)3

−
[
f ′(xi) +

f ′′(xi)

2
(xi+1 − xi) +O

(
h2
)]

(x− xi)

=
f ′′(xi)

2
(x− xi)(x− xi+1) +O(x− xi)3 −O

(
h2
)

(x− xi).

Note that

lim
n→∞n

3
∫ xi

xi+1

O(x− xi)3 eiωx dx = lim
n→∞n

3O
(
h4
)

= 0.

Likewise

lim
n→∞n

3O
(
h2
) ∫ xi

xi+1

(x− xi)eiωx dx = lim
n→∞n

3O
(
h4
)

= 0.

Thus we need not worry about higher order terms. Thus we focus on the error term

f ′′(xi)

2

∫ xi+1

xi
(x− xi)(x− xi+1)eiωx dx =

f ′′(xi)e
iωxi

2ω3

[
−2i + hω + eiωh(2i + hω)

]
.

Summing up we obtain:

lim
n→∞n

2−2i + hω + eiωh(2i + hω)

h2ω3

n−1∑
i=1

hf ′′(xi)e
iωxi

=
1

2ω3

∫ 1

0
f ′′(x)eiωx dx lim

h→0

−2i + hω + eiωh(2i + hω)

h3
.

We can compute this limit with L’Hôpital’s rule:

lim
h→0

−2i + hω + eiωh(2i + hω)

h3
= ω lim

h→0

1 + eiωh(ihω − 1)

3h2
= ω3 lim

h→0

−heiωh

6h
= −ω

3

6
.

Thus

lim
n→∞n

2
∫ 1

0
eh(x)eiωx dx = − 1

12

∫ 1

0
f ′′(x)eiωx dx = O

(
ω−1

)
.

Q.E.D.

Note that this theorem is in fact a generalization of the standard Euler–Maclaurin for-

mula. The last line of the proof, − 1
12

∫ 1
0 f
′′(x)eiωx dx, becomes − 1

12 [f ′(1)− f ′(0)] when we
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Figure 3.18: The base-10 errors scaled by n2 in approximating
∫ 1
0 cosx eiωx dx by the Filon–

trapezoidal rule (left) and Filon-type method with Lobatto quadrature points (right), for ω = 10
(solid line), 100 (dotted line) and 1000 (dashed line).

let ω → 0. We can obtain higher terms in this expansion, however, since the terms are highly

oscillatory integrals themselves, the usefulness of such an exercise is unclear.

As an example, consider again the integral

∫ 1

0
cosx eiωx dx.

In Figure 3.18 we compare the error of the Filon–trapezoidal rule for three choices of ω. Note

how the rate of decay for each value of ω is the same, O
(
n−2

)
, however increasing ω causes

the actual error to decrease. However, n needs to scale in proportion to ω in order to achieve

this decay rate. This is not to suggest that we need n to increase as ω increases in order to

achieve the requisite accuracy: we always have the error bound that the quadrature cannot

do any worse than interpolation error, which is independent of ω. In the right graph, we

can see a comparison with a Filon-type method using Lobatto quadrature points. As can be

seen, using Hermite interpolation instead of a composite rule results in the approximation

converging at a faster rate to the exact integral.
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Chapter 4

Stationary Points

In the preceding chapter, we assumed that the oscillatory integrals have no stationary

points, in other words, g′(x) 6= 0 within the interval of integration. Of course integrals with

stationary points are important in applications. For simplicity we assume the integral has

a single stationary point at x = 0, and that we are integrating over the interval [−1, 1]. In

other words, we want to approximate the integral

I[f ] =
∫ 1

−1
f(x)eiωg(x) dx,

where ω is large and g has a single stationary point of order r − 1 at zero. This means that

0 = g(0) = g′(0) = · · · = g(r−1)(0), g(r)(0) > 0,

and g′(x) 6= 0 for 0 < |x| ≤ 1. If g(0) 6= 0 then we transform the integral into the required

form as follows: ∫ 1

−1
f(x)eiωg(x) dx = eiωg(0)

∫ 1

−1
f(x)eiω[g(x)−g(0)] dx.

The condition that g(r)(0) > 0 implies that g(x) > 0 for 0 < x ≤ 1, and (−1)rg(x) > 0

for −1 ≤ x < 0. This condition can be relaxed, at the expense of complicating the proofs.

The more general case of integrals over [a, b] with multiple stationary points can easily be

transformed into several integrals of this form, as long as the number of stationary points is

finite.

The methods of stationary phase and steepest descent, cf. Section 2.3 and Section 2.4,

provide only asymptotic results; for fixed frequency the accuracy of the approximation is

limited. It is possible to compute the integrals by moving to the complex plane and integrat-

ing along the path of steepest descent with nonoscillatory quadrature methods, as mentioned

briefly in Section 2.10. Unfortunately, both f and g must be analytic in order to deform the

integration path, and the path of steepest descent must be known or computed. In addition,

greater care is needed when the oscillator has branch points in the complex plane, as the

path must remain on the correct branch cut.

In this chapter we will present methods based on Filon-type quadrature for approximat-

ing such integrals. We begin in Section 4.1 with the development of the recently discovered

Iserles and Nørsett asymptotic expansion. With this expansion in hand, we can successfully

determine the asymptotic order of a Filon-type method in Section 4.2. Both the Iserles
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and Nørsett expansion and Filon-type methods require moments, hence we construct a new

asymptotic expansion that does not require moments in Section 4.3. From this asymptotic

expansion we can find a basis for a Filon-type method which can be integrated explicitly

in closed form, which is done in Section 4.4. Finally, we demonstrate how these methods

can be generalized for oscillators that behave like xr near zero, where r is not an integer, in

Section 4.5.

Remark : Sections 4.1 and 4.2 are based on results by Iserles and Nørsett in [48]. The rest

of the chapter contains original research, first presented in [78].

4.1. The Iserles and Nørsett asymptotic expansion

Until Section 4.5, we assume that f and g are in C∞[−1, 1]. Asymptotic expansions are

invaluable tools for high frequency integration. For the integral in question, there are two

existing asymptotic expansions: the Iserles and Nørsett expansion [48] and the well-known

method of stationary phase [74]. The former of these requires knowledge of the moments

I[1],...,I
[
xr−1

]
but leads us to the more powerful numerical approximation of Filon-type

methods [48]. Stationary phase does not require moments, unfortunately it only provides

an asymptotic result, hence its usefulness as a numerical quadrature scheme is limited.

The standard technique of deriving asymptotic expansions for integrals without station-

ary points, namely integration by parts, fails due to the introduction of a singularity at the

stationary point. But we can make the singularity removable (here we assume r = 2):

I[f ] = I[f − f(0)] + f(0)I[1] =
1

iω

∫ 1

−1

f(x)− f(0)

g′(x)

d

dx
eiωg(x) dx+ f(0)I[1]

=
1

iω

[
f(1)− f(0)

g′(1)
eiωg(1) − f(−1)− f(0)

g′(−1)
eiωg(−1)

]
− 1

iω
I

[
d

dx

[
f(x)− f(0)

g′(x)

]]
+ f(0)I[1] .

(4.1.1)

Iterating this procedure on the error term I
[

d
dx

[
f(x)−f(0)
g′(x)

]]
results in an asymptotic expan-

sion. If there are higher order stationary points, we can subtract out a polynomial to ensure

both the function value and necessary derivatives of the integrand vanish in order to make

the singularity removable. We thus obtain the following theorem, whose proof is very similar

to the asymptotic expansion we will develop in Theorem 4.3.3.

Theorem 4.1.1 [48] Define µ[f ] =
∑r−2
k=0

f (k)(0)
k! µk(x), where L[µk] (x) = xk for L[v] =

v′ + iωg′v. Furthermore, let

σ0(x) = f(x), σk+1(x) =
d

dx

σk(x)− L[µ[σk]] (x)

g′(x)
.
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Then

I[f ] ∼
∞∑
k=0

1

(−iω)k

{
µ[σk](1)eiωg(1) − µ[σk](−1)eiωg(−1)

}

−
∞∑
k=0

1

(−iω)k+1

{
σk(1)− L[µ[σk]] (1)

g′(1)
eiωg(1) − σk(−1)− L[µ[σk]] (−1)

g′(−1)
eiωg(−1)

}
.

The following corollary, originally stated in [48] and the analogue of Corollary 4.1.2 for

stationary points, follows from this asymptotic expansion. It is used in the proof of the

asymptotic order of Filon-type methods.

Corollary 4.1.2 [48] Suppose that

0 = f(−1) = · · · = f (s−1)(−1),

0 = f(0) = · · · = f (rs−2)(0),

0 = f(1) = · · · = f (s−1)(1).

Then

I[f ] ∼ O
(
ω−s−1/r

)
, ω →∞.

Proof : Note that σk depends on f and its first k derivatives, hence the requirement at the

boundary points. We prove the requirement on the number of derivatives at the stationary

point by induction. The case where s = 1 is clear: we need f and its first r − 2 derivatives

to be zero in order for µ[σ0] = µ[f ] = 0. The corollary thus follows from L’Hôpital’s rule,

and the fact that g′ has a zero of order r − 1.

Q.E.D.

The asymptotic order now depends on the stationary point, in addition to the endpoints.

4.2. Filon-type methods

Recall from Section 3.1 that a Filon-type method is constructed by interpolating the

function f by another function v, using a set of basis functions {ψk}, at a sequence ofnodes

{x1, . . . , xν} and multiplicities {m1, . . . ,mν}. Then I[f ] is approximately equal to I[v]. This

definition holds as is when there are stationary points, the only complication being that the

moments I[ψk] must be known.

The following theorem is from [48]. It states that the asymptotic behaviour of a Filon-

type method depends on the number of derivatives interpolated at the stationary point

and the endpoints of the interval. As before, unlike an asymptotic expansion, we can add

additional interpolation points within the interval to reduce the error further.
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Figure 4.19: The base-10 logarithm of the error in approximating
∫ 1
−1 cosx eiωx2

dx. In the left

graph, we scale the error by ω3/2 for the one-term asymptotic expansion (top) and two Filon-
type methods with multiplicities all one: nodes {−1, 0, 1} (middle) and nodes

{
−1,−1

2 , 0,
1
2 , 1

}
(bottom). In the right graph, we scale the error by ω5/2 for the two-term asymptotic expansion
(top), Filon-type method with nodes {−1, 0, 1} and multiplicities {2, 3, 2} (middle) and nodes{
−1,−1

2 , 0,
1
2 , 1

}
and multiplicities {2, 1, 3, 1, 2} (bottom).

Theorem 4.2.1 [48] Let v(x) =
∑n
k=1 ckψk(x), where ψk is independent of ω and n =∑ν

k=1mk. Assume that x1 = −1, xη = 0 and xν = 1. The coefficients ck are determined by

solving the system

v(xk) = f(xk), . . . , v
(mk−1)(xk) = f (mk−1)(xk), k = 1, 2, . . . , ν.

If this system is nonsingular, m1,mν ≥ s and mη ≥ rs− 1, then

I[f ]−QF [f ] ∼ O
(
ω−s−1/r

)
,

where

QF [f ] = I[v] =
n∑
k=1

ckI[ψk] .

Proof : The theorem follows as a direct consequence of Corollary 4.1.2:

I[f ]−QF [f ] = I[f − v] ∼ O
(
ω−s−1/r

)
.

Q.E.D.

In practice—as in the case without stationary points, cf. Theorem 3.1.2—ψk(x) is typically

defined to be xk−1, i.e., we use standard polynomial interpolation. The reasons are two-fold:

polynomial interpolation is well-understood and guaranteed to interpolate at the given nodes

and multiplicities, and the simplicity of the integrand suggests that the moments I
[
xk
]

are

likely to be known. However, when the moments are unknown, Filon-type methods with the

polynomial basis cannot provide an approximation.
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As a simple example of Theorem 4.2.1, consider the integral

∫ 1

−1
cosx eiωx2

dx.

In the left graph of Figure 4.19 we compare three approximations of order O
(
ω−3/2

)
: the

one-term asymptotic expansion versus two Filon-type methods with multiplicities all one,

one with nodes {−1, 0, 1} and the other with nodes
{
−1,−1

2 , 0,
1
2 , 1

}
. As can be seen, all

methods have the predicted asymptotic order. The Filon-type methods are considerably more

accurate than the asymptotic expansion, the first of which uses the exact same information

about f and its derivatives. Adding interpolation points does indeed decrease the error

further. The right graph compares three similar methods that are of asymptotic order

O
(
ω−5/2

)
, demonstrating that higher order methods are computable.

4.3. Moment-free asymptotic expansion

We now use the preceding two sections as a jumping off point in the derivation of

moment-free methods, beginning first with an asymptotic expansion. The idea behind the

new expansion is to note that we do not necessarily need to subtract a polynomial in (4.1.1),

it is only necessary that the function we subtract can interpolate f and sufficient derivatives

of f at the stationary point. Hence we can replace the moments I
[
xk
]
, which may not

be computable in closed form, with I[ψk], where ψk is constructed in such a way that the

integral is guaranteed to be computable. In order to do this, we first look at the canonical

case of g(x) = xr. In a similar manner to Section 2.8, suppose there exists a function F such

that
d

dx

[
F (x)eiωg(x)

]
= xkeiωg(x).

We can expand out the left side to obtain the following differential equation, where L[F ] is

defined to be F ′ + iωg′F :

L[F ] (x) = F ′(x) + iωg′(x)F (x) = xk.

Replacing g′(x) with rxr−1 we obtain the equation F ′(x) + riωxr−1F (x) = xk. In the

Levin collocation method, Section 2.8, and Levin-type methods, Section 3.2, a solution to an

equation of this form was numerically approximated using collocation; but neither of these

methods are accurate when stationary points are present. In this particular case, however,

a solution is known in closed form:

F (x) =
ω−

1+k
r

r
e−iωxr+ 1+k

2r iπ

[
Γ

(
1 + k

r
,−iωxr

)
− Γ

(
1 + k

r
, 0

)]
, x ≥ 0,
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where Γ is the incomplete Gamma function [2]. Incomplete Gamma functions are well-

understood, and can be computed efficiently [20]. In fact, modern mathematical program-

ming packages, such as Maple, Mathematica and Matlab (via the mfun function) have

very efficient built-in numerical implementations.

Intuition suggests that if we replace xr with g(x), then L[F ] will give us the ψk we are

looking for, hopefully independent of ω. The following lemma shows that our intuition is

indeed correct, subject to a minor alteration to ensure smoothness around x = 0:

Lemma 4.3.1 Let

φr,k(x) = Dr,k(sgnx)
ω−

k+1
r

r
e−iωg(x)+ 1+k

2r iπ

[
Γ

(
1 + k

r
,−iωg(x)

)
− Γ

(
1 + k

r
, 0

)]
,

where

Dr,k(sgnx) =


(−1)k sgnx < 0 and r even,

(−1)ke−
1+k
r iπ sgnx < 0 and r odd,

−1 otherwise.

Then φr,k ∈ C∞[−1, 1] and, for L[F ] = F ′ + iωg′F ,

L
[
φr,k

]
(x) = sgn(x)r+k+1 |g(x)|

k+1
r −1 g′(x)

r
.

Furthermore, L
[
φr,k

]
∈ C∞[−1, 1]. Finally,

I
[
L
[
φr,k

]]
= φr,k(1)eiωg(1) − φr,k(−1)eiωg(−1).

Proof :

The form of L
[
φr,k

]
away from the stationary point follows immediately from the equa-

tion for the derivative of the incomplete Gamma function [2]. The smoothness of L
[
φr,k

]
follows from the fact that

L
[
φr,k

]
(x) =

d

dx

[
sgn(x)k+1 1

1 + k
|g(x)|

1+k
r

]
, x 6= 0.

The antiderivative of L
[
φr,k

]
is clearly smooth away from zero, while its limit at zero is also

infinitely differentiable:

sgn(x)k+1 |g(x)|
1+k
r = sgn(x)k+1

∣∣∣∣∣g(r)(0)

r!
xr +O

(
xr+1

)∣∣∣∣∣
1+k
r

=

(
g(r)(0)

r!

)k+1
r

xk+1(1 +O(x))
k+1
r .

57



Combining the smoothness of L
[
φr,k

]
with the fact that φr,k is continuous ensures that

φr,k ∈ C∞[−1, 1]. The value of the final integral thus follows from the fundamental theorem

of calculus.
Q.E.D.

Remark : The use of sgn and the case statement in the preceding lemma are merely to

choose the branch cut so that (xr)1/r = x for both positive and negative x.

We can also prove that
{
L
[
φr,k

]}
is a Chebyshev set [82], hence can interpolate at any

given sequence of sample points.

Lemma 4.3.2 The basis
{
L
[
φr,k

]}
is a Chebyshev set.

Proof : Let u = sgn(x) |g(x)|1/r, so that u ranges monotonically from − |g(−1)|1/r to

|g(1)|1/r. Let g−1
+ (u) equal x ≥ 0 such that g(x) = u, and g−1

− (u) equal to x < 0 such that

g(x) = u. When r is odd then g−1
± = g−1. Note that sgnx = sgnu, hence x = g−1

sgnu(ur).

Thus we obtain

∑
ckL

[
φr,k

]
(x) = sgn(x)r+1 g

′(x) |g(x)|
1
r−1

r

∑
ck sgn(x)k |g(x)|

k
r =

g′(x)u1−r

r

∑
cku

k.

It follows that interpolating f by L
[
φr,k

]
is equivalent to interpolating

rur−1f(x)

g′(x)

by the polynomial
∑
cku

k. This function is clearly well-defined for u 6= 0, hence we must

show that it is also well-defined for u = x = 0. But this follows since

ur−1

g′(x)
=

sgn(x)r+1 |g(x)|1−1/r

g′(x)
=

sgn(x)g(x)

|g(x)|1/r g′(x)

=
grx

r +O
(
xr+1

)
xr(gr +O(x))1/r(rgr +O(xr))

=
gr +O

(
xr+1

)
(gr +O(x))1/r(rgr +O(xr))

.

The limit of this as x goes to zero, hence also as u goes to zero, is 1

rg
1/r
r

. Thus L
[
φr,k

]
is a

Chebyshev set.

Q.E.D.

Though we have only shown that the basis
{
L
[
φr,k

]}
can interpolate at a sequence of

sample points, the fact that it can interpolate with multiplicities as well follows from a trivial
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limiting argument, since every L
[
φr,k

]
is smooth. Using L

[
φr,k

]
in place of xk, we can derive

an alternative to the asymptotic expansion in Section 4.1, which does not depend on any
moments:

Theorem 4.3.3 Define µ[f ] =
∑r−2
k=0 ckφr,k so that

L[µ[f ]](0) = f(0), . . . ,L[µ[f ]](r−2) (0) = f (r−2)(0).

Furthermore, let

σ0(x) = f(x), σk+1(x) =
d

dx

σk(x)− L[µ[σk]] (x)

g′(x)
.

Then

I[f ] ∼
∞∑
k=0

1

(−iω)k

{
µ[σk](1)eiωg(1) − µ[σk](−1)eiωg(−1)

}

−
∞∑
k=0

1

(−iω)k+1

{
σk(1)− L[µ[σk]] (1)

g′(1)
eiωg(1) − σk(−1)− L[µ[σk]] (−1)

g′(−1)
eiωg(−1)

}
.

Proof : This proof is roughly based on the proof of Theorem 3.2 in [48]. Note that the

existence of such a µ follows from Lemma 4.3.2. We find that σk ∈ C∞[−1, 1], since

σk(x)− L[µ[σk]] (x)

g′(x)
=

O
(
xr−1

)
g(r)(0)
(r−1)!x

r−1 +O(xr)
=

O(1)
g(r)(0)
(r−1)! +O(x)

is in C∞[−1, 1]. Then

I[σk] = I[σk − L[µ[σk]]] + I[L[µ[σk]]]

=
1

iω

∫ 1

−1

σk − L[µ[σk]]

g′
d

dx
eiωg dx+

{
µ[σk](1)eiωg(1) − µ[σk](−1)eiωg(−1)

}

=
1

iω

{
σk(1)− L[µ[σk]] (1)

g′(1)
eiωg(1) − σk(−1)− L[µ[σk]] (−1)

g′(−1)
eiωg(−1)

}

+
{
µ[σk](1)eiωg(1) − µ[σk](−1)eiωg(−1)

}
− 1

iω
I[σk+1] .

The theorem follows by induction.

Q.E.D.

The method of stationary phase can be derived as a consequence of Theorem 4.3.3. Con-

sider the case of r equal to two. Then µ[f ](x) =
√

2
g′′(0)f(0)φ2,0(x), since L[φ2,0] (0) =

√
g′′(0)

2 .

If we assume that |g(x)| grows at least quadratically as x → ±∞, then
∫±∞
±1 feiωg dx =
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Figure 4.20: The error scaled by ω3/2 of the one-term asymptotic expansion (left graph), versus
the error scaled by ω5/2 of the two-term asymptotic expansion (right graph), for the integral∫ 1
−1 cosx eiω(4x2+x3) dx.

O
(
ω−1

)
[74]. If we assume that a function which vanishes at the stationary point has a

higher asymptotic order, then formally we obtain

I[f ] =
∫ ∞
−∞

feiωg dx+O
(
ω−1

)
=
∫ ∞
−∞

(f − L[µ[f ]])eiωg dx+
∫ ∞
−∞
L[µ[f ]] eiωg dx+O

(
ω−1

)

=
e

iπ
4

2
√
ω

√
2

g′′(0)
f(0)

{[
lim
x→∞Γ

(
1

2
,−iωg(x)

)
− Γ

(
1

2
, 0
)]

−
[

lim
x→−∞

Γ
(

1

2
,−iωg(x)

)
− Γ

(
1

2
, 0
)]}

+O
(
ω−1

)

= e
iπ
4

√
2π

ωg′′(0)
f(0) +O

(
ω−1

)
.

This is equivalent to the stationary phase contribution found in Section 2.3.

We now demonstrate this asymptotic expansion in action. Note that µ[σk](±1) =

O
(
ω−1/r

)
, thus the partial sum up to s− 1 of the asymptotic expansion has an asymptotic

order O
(
ω−s−1/r

)
. Consider the case where f(x) = cosx with the polynomial oscillator

g(x) = 4x2 + x3. The moments cannot be integrated in closed form, hence the Iserles and

Nørsett expansion is not applicable to this integral. On the other hand, Figure 4.20 demon-

strates numerically that Theorem 4.3.3 does indeed give an asymptotic expansion. For a

more complicated example, consider the integral where f(x) = (x+ 2)−1 with the oscillator

g(x) = 1− cosx− 1
2x

2 +x3. Figure 4.21 demonstrates that the expansion works with higher

order stationary points—in this case r = 3—and with nonpolynomial oscillators.
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Figure 4.21: The error scaled by ω4/3 of the one-term asymptotic expansion (left graph), versus
the error scaled by ω7/3 of the two-term asymptotic expansion (right graph), for the integral∫ 1
−1

1
x+2eiω(1−cosx− 1

2x
2+x3) dx.

4.4. Moment-free Filon-type methods

In Lemma 4.3.1, we determined a basis of functions such that the moments are guaran-

teed to be known, hence it makes sense to choose ψk = L
[
φr,k−1

]
in a Filon-type method.

Moreover, it was proved in Lemma 4.3.2 that ψk is a Chebyshev set, hence we know that it

can interpolate at the given nodes and multiplicities. Using this basis we obtain a Moment-

free Filon-type method, resulting in the following theorem:

Theorem 4.4.1 Let ψk = L
[
φr,k−1

]
. Assume that x1 = −1, xη = 0 and xν = 1. If

m1,mν ≥ s and mη ≥ rs− 1, then

I[f ]−QF [f ] ∼ O
(
ω−s−1/r

)
,

where

QF [f ] =
n∑
k=1

ck
[
φr,k−1(1)eiωg(1) − φr,k−1(−1)eiωg(−1)

]
.

When the integral does not contain stationary points—i.e., r = 1—then this method is

equivalent to the Moment-free Filon-type method constructed in [91].

Figure 4.22 demonstrates the power of a Moment-free Filon-type method with the same

integral as in Figure 4.20. Note that the errors in the left graph are of the same asymptotic

order as the left graph of Figure 4.20, however the error is significantly less. This is despite

the fact that we are using exactly the same information about f as we are in the asymp-

totic expansion. Furthermore, this figure demonstrates how adding interpolation points can

further reduce the error. The right graph shows how adding sufficient multiplicities to a

Filon-type method does indeed increase the asymptotic order, and compares the resulting

quadrature with the equivalent asymptotic expansion. We obtain similar results for the

integral with a higher-order stationary point found in Figure 4.21, as seen in Figure 4.23.
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Figure 4.22: Errors in approximating I[f ] =
∫ 1
−1 cosx eiω(4x2+x3) dx. In the left graph, the error

scaled by ω3/2 of a Filon-type method with nodes {−1, 0, 1} and multiplicities all one (top) versus

a Filon-type method with nodes
{
−1,−1

2 , 0,
1
2 , 1

}
and multiplicities all one (bottom). In the right

graph, the error scaled by ω5/2 of the two-term asymptotic expansion (top) versus a Filon-type
method with nodes {−1, 0, 1} and multiplicities {2, 3, 2} (bottom).

50 100 150 200
Ω

0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04

50 100 150 200
Ω

0.001
0.002
0.003
0.004
0.005
0.006

Figure 4.23: Errors in approximating I[f ] =
∫ 1
−1

1
x+2eiω(1−cosx− 1

2x
2+x3) dx. In the left graph, the

error scaled by ω4/3 of the one-term asymptotic expansion (top), a Filon-type method interpolating
at the nodes {−1, 0, 1} and multiplicities {1, 2, 1} (middle) and a Filon-type method with nodes{
−1,−1

2 , 0,
1
2 , 1

}
and multiplicities {1, 1, 2, 1, 1} (bottom). In the right graph, the error scaled by

ω7/3 of the two-term asymptotic expansion (top) and a Filon-type method with nodes {−1, 0, 1}
and multiplicities {2, 5, 2} (bottom).

Remark : We purposely chose oscillators such that g′′(x) 6= 0 for 0 < |x| < 1. Without this,

g′(x) would no longer be monotone away from zero and the basis L
[
φr,k

]
would differ greatly

in behaviour from the polynomial basis. Though the theorems remain valid, numerical

results suggest that L
[
φr,k

]
becomes much less accurate for interpolation, hence a significant

amount of sample points would be required. A simple workaround is to choose a sufficiently

small neighbourhood around zero such that this condition is satisfied, and use a Moment-
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free Filon-type method within this neighbourhood. We could then approximate the integral

outside this neighbourhood using a Levin-type method, which is not affected numerically by

g′′ vanishing.

Remark : In Lemma 4.3.2, we showed that under a change of variables, interpolation by

L
[
φr,k

]
is equivalent to interpolation of a function by polynomials. It might be possible to

use this fact to determine the equivalent of Chebyshev points, in order to determine where

the interpolation points should be. Alternatively, it might also be possible to construct a

Gauss-like quadrature rule by choosing points and weights to maximize the order of L
[
φr,k

]
which are integrated exactly.

4.5. Fractional powers

We finally consider the case where g(x) ∼ grx
r at zero and r is no longer an integer. To

avoid the issue of choosing the correct branch cut, we restrict our attention to positive x:

∫ 1

0
f(x)eiωg(x) dx.

In fact, g(x) is typically imaginary otherwise, and therefore either exponentially increasing

or decreasing in the interval [−1, 0). Restricting our attention to positive x simplifies the

functions φr,k from Lemma 4.3.1:

φr,k(x) = −ω
−k+1

r

r
e−iωg(x)+ 1+k

2r iπ

[
Γ

(
1 + k

r
,−iωg(x)

)
− Γ

(
1 + k

r
, 0

)]

and

L
[
φr,k

]
(x) =

g(x)
k+1
r −1g′(x)

r
.

An unfortunate consequence of having a stationary point on the boundary is that the asymp-

totic expansion now depends on one more derivative of f . The derivation of the asymptotic

expansion is significantly more difficult since it is not true that each σk is smooth. Thus we

will not derive an equivalent to Theorem 4.3.3; instead we generalize Corollary 4.1.2:

Theorem 4.5.1 Suppose that

0 = f(0) = · · · = f (dsre−1)(0),

0 = f(1) = · · · = f (s−1)(1).

Furthermore, assume that g(x) ∼ grx
r as x→ 0, and that the ∼ relationship is differentiable

s+ 1 times (i.e., g(k)(x) ∼ r!
(r−k)!x

r−k for k = 0, 1, . . . , s+ 1). If r ≥ 2 or dsre − sr + 1 < r,
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then

I[f ] ∼ O
(
ω−s−

dsre−sr+1
r

)
, ω →∞.

Otherwise,

I[f ] ∼ O
(
ω−s−1

)
, ω →∞.

Proof : Since f is smooth, we know that f(x) ∼ O
(
xdsre

)
as x→ 0 and f(x) ∼ O((1− x)s)

as x→ 1, where both relationships are differentiable. Thus at zero σ0(x) = f(x) ∼ O
(
xdsre

)
.

Define

σk+1 =
d

dx

σk
g′
.

It is easy to see that σk(x) ∼ O
(
xdsre−kr

)
as x goes to zero and σk(x) ∼ O

(
(1− x)s−k

)
as

x goes to one.

For k ≤ s − 1, we have limx→0
σk(x)
g′(x) = limx→0O

(
xdsre−(k+1)r+1

)
= 0, and likewise

σk(1)
g′(1) = 0. Thus

I[σk] =
1

iω

∫ 1

0

σk
g′

d

dx
eiωg dx =

1

iω

{
σk(1)

g′(1)
eiωg(1) − lim

x→0

σk(x)

g′(x)

}
− 1

iω
I[σk+1]

= − 1

iω
I[σk+1] .

It follows by induction that I[f ] = (−iω)−sI[σs]. Since σs(x) ∼ O
(
xdsre−sr

)
and is dif-

ferentiable away from zero, the theorem follows from Theorem 13.1 and Theorem 13.2 in

[74].

Q.E.D.

As in the integer power case, if g(x) = xr then L
[
φr,k

]
(x) = xk, hence we obtain a

standard Filon-type method. On the other hand, consider the example g(x) = x
3
2 + x3.

Obtaining high asymptotic order in a Filon-type method depends on taking derivatives of

the interpolation basis at the endpoint and stationary point, hence the smoothness of L
[
φr,k

]
is important. However, for this particular g we obtain (with r = 3/2):

g(x)
1+k
r = xk+1(1 + x

3
2 )

2
3 (1+k).

This is not a C∞[0, 1] function, instead it is only in Ck+2[0, 1], and

L[φr,k] =
1

1 + k

d

dx
g(x)

1+k
r
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Figure 4.24: Errors in approximating
∫ 1
0 exeiω(x3/2+x5/2) dx. In the left graph the error scaled by

ω2 of a Filon-type method with nodes {0, 1} and multiplicities {2, 1} (top) versus a Filon-type

method with nodes
{

0, 1
3 ,

2
3 , 1

}
and multiplicities {2, 1, 1, 1} (bottom). In the right graph the error

scaled by ω8/3 of a Filon-type method with nodes {0, 1} and multiplicities {3, 2} (top) versus a

Filon-type method with nodes
{

0, 1
3 ,

2
3 , 1

}
and multiplicities {3, 2, 2, 2} (bottom).

is only in Ck+1[0, 1]. On the other hand, consider the oscillator g(x) = xrh(x), where h is

in C∞[0, 1] and is nonzero at x = 0. Then

g(x)
1+k
r = xk+1h(x)

1+k
r ,

which is smooth. A suitably altered Lemma 4.3.2 demonstrates that this basis still forms

a Chebyshev set. We thus focus on oscillators of this form, though a Moment-free Filon-

type method should work in the previous case, with a restriction on the asymptotic orders

achievable and no guarantee of interpolation.

As an example, consider the integral
∫ 1
0 exeiω(x3/2+x5/2) dx. In Figure 4.24 we compare

four Moment-free Filon-type methods. In the two Filon-type methods in the left graph s is

equal to one, therefore dre − r + 1 = 3
2 = r and we obtain an asymptotic decay of O

(
ω−2

)
.

In the right graph we compare two Filon-type methods with s = 2, hence the asymptotic

order is increased to O
(
ω

8
3

)
.

65



Chapter 5

Multivariate Highly Oscillatory Integrals

We now turn our attention to the multivariate integral

Ig[f,Ω] =
∫

Ω
f(x)eiωg(x) dV,

where Ω is a piecewise smooth boundary in Rd and x = (x1, . . . , xd)
> ∈ Rd. We emphasize

the dependence of the integral on its domain and oscillator, as the approximation methods

we will construct will be in terms of oscillatory integrals over lower dimensional domains

and with different oscillators. The construction of quadrature schemes proceeds much as

it did in the univariate case: we write the methods as oscillatory integrals and use the

asymptotic expansion to determine the asymptotic order of the methods. Interestingly, and

unexpectedly, we find that oscillatory integration is significantly easier than nonoscillatory

integration: we can obtain extraordinarily accurate approximations at large frequencies using

only function values at the vertices of the domain.

In analogue to Theorem 2.6.1, we will initially require the nonresonance condition. Recall

that this requires that ∇g(x) is not orthogonal to the boundary of Ω at every point x on

the boundary of Ω. Also, there cannot be stationary points, thus ∇g 6= 0 within the closure

of Ω. In Section 5.1 we develop the multivariate version of Filon-type methods. This is

almost identical to their univariate construction, the only snag being difficulties associated

with standard polynomial interpolation. However, they still require moments, which now

depend on both the integration domain Ω and the oscillator g. These are known if g is an

affine oscillator and Ω is a simplex or a disc, or if g(x) = g1(x1) + · · ·+ gd(xd) is separable,

the univariate moments of each gk are known and Ω is a rectangular domain. Besides

these examples, moments could possibly be computable—say, by symbolic algebra—in only

extraordinary cases.

Because of these issues, Levin-type methods are of increased importance for multivariate

integrals. We present a generalization of Levin-type methods over domains for which a

boundary parameterization is known in Section 5.2. This is based on Stokes’ theorem, in

place of the fundamental theorem of calculus used in the univariate case. We then generalize

the asymptotic basis in Section 5.3, which as before allows us to increase the asymptotic

order without increasing the size of the Levin collocation system.

Requiring the nonresonance condition prohibits many important integrals from being

evaluated. The last two sections of this chapter are concerned with alleviating this issue.
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The requirement that ∇g is not orthogonal to the boundary corresponds to a stationary

point in an integral over the boundary of the domain. Thus we will see in Section 5.4 that a

Levin-type method only fails when trying to compute such boundary integrals, and we need

only concern ourselves with handling stationary points where ∇g vanishes. The univariate

case was handled in Chapter 4, hence we can already handle bivariate integrals with reso-

nance points. In Section 5.5 we explore generalizing the Moment-free Filon-type methods to

multivariate integrals with stationary points. This will result in requiring the computation

of oscillatory integrals involving incomplete Gamma functions over the boundary, which we

leave as an open problem.

Remark : Section 5.1 is based on results by Iserles and Nørsett in [49]. The rest of the

chapter consists of original research. Sections 5.2 and 5.3, and parts of Section 5.4, were first

presented in [76].

5.1. Multivariate Filon-type methods

Recall the asymptotic expansion derived in Section 2.6. Though it was possible, we

chose not to find the terms in the expansion Θk [f ] explicitly. The issue is that it is a

significant logistical task in large dimensions, versus the simplicity of the Filon-type methods

and Levin-type methods we develop. Thus we only use this asymptotic expansion for error

analysis, not as a means of approximation. The following corollary serves the same purpose

as Corollary 3.1.1: it will be used to prove the order of error for multivariate Filon-type and

Levin-type methods.

Corollary 5.1.1 Let V be the set of all vertices of a domain Ω, cf. Section 2.6 for the

definition of a vertex. Suppose that f = O
(
ω−n

)
. Suppose further that

0 = Dmf(v)

for all v ∈ V and m ∈ Nd such that 0 ≤ ∑
m ≤ s − 1. If the nonresonance condition is

satisfied, then

Ig[f,Ω] ∼ O
(
ω−n−s−d

)
.

Proof : We prove this corollary by induction on the dimension d, with the univariate case

following from Corollary 3.1.1. We begin by showing that the sum in (2.6.1) (up to s+ d) is

s+d∑
k=1

1

(iω)k

∫
∂Ω

eiωgσk · ds = O
(
ω−n−s−d

)
, (5.1.1)

for

σ1 = f
∇g
‖∇g‖2

and σk+1 = σk+1 = ∇ · σk
∇g
‖∇g‖2

.
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Since every σk depends on f and its partial derivatives, it follows that σk = O
(
ω−n1

)
. Fur-

thermore, 0 = Dmσk(v) for all v ∈ V and every
∑
m ≤ s− k, where 1 ≤ k ≤ s. Employing

the definition of the integral of a differential form, cf. Section 2.5, we determine from the in-

duction hypothesis that (2.6.2) is of order O
(
ω−n−(s−k)−(d−1)

)
for all 1 ≤ k ≤ s. For k > s,

we know that (2.6.2) is at least of order O
(
ω−n−(d−1)

)
. Since each (2.6.2) is multiplied by

(−iω)−k−1 in the construction of (5.1.1), it follows that this sum is O
(
ω−n−s−d

)
. Finally,

the remainder term in (2.6.1)

1

(−iω)−s−d
Ig[∇ · σs+d,Ω] = O

(
ω−s−n−d

)
,

since ‖σs+d‖∞ = O
(
ω−n

)
. Thus Ig[f,Ω] ∼ O

(
ω−s−n−d

)
.

Q.E.D.

We find a generalization of Filon-type methods for multivariate integrals in [49]. As

in the univariate case, the function f is interpolated by a multivariate polynomial v, and

moments are assumed to be available. Define

QFg [f,Ω] = Ig[v,Ω] ,

where v is the Hermite interpolation polynomial of f at a given set of nodes {x1, . . . ,xν}
with multiplicities {m1, . . . ,mν}, obtained by solving the system

Dmv(xk) = Dmf(xk), 0 ≤
∑
m ≤ mk − 1, k = 1, . . . , ν.

Assuming a solution to this system exists, it is clear from Corollary 5.1.1 that

QFg [f,Ω]− Ig[f,Ω] = O
(
ω−s−d

)
,

where s is the minimum multiplicity associated with a vertex.

Moments are known whenever g is affine and Ω is a simplex. Consider the integral over

the bivariate simplex: ∫ 1

0

∫ 1−x

0
xpyqeiω(k1x+k2y) dy dx.

The interior integral can be integrated explicitely:

∫ 1−x

0
xpyqeiω(k1x+k2y) dy = xpeiωk1x

∫ 1−x

0
yqeiωk2y dy

= xpv(1− x)eiω[k1x+k2(1−x)] − xpv(0)eiω[k1x+k2],

where v is a polynomial of degree q determined via a simple application of integration by

parts. But taking the integral of this over (0, 1) is simply a sum of moments with respect
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Figure 5.25: The Hermite interpolation error for cos(x+ y2). In the left graph, we interpolate at
the vertices {(0, 0), (1, 0), (0, 1)} with multiplicities all one. In the right graph, we interpolate at

the nodes
{

(0, 0), (1, 0), (0, 1),
(

1
3 ,

1
3

)}
with multiplicities {2, 2, 2, 1}.

to an affine oscillator: this is also known in closed form. Similar logic holds for higher

dimensional simplices. If we attempted to solve the same integral over another domain, for

example
∫ 1
0

∫ T (x)
0 where T is not affine, we would need to integrate the term

xpv(T (t))eiω[k1x+k2T (t)].

Both the amplitude and oscillator functions are no longer polynomial, and unless we are hit

by a stroke of serendipity, this cannot be integrated in closed form. However as long as the

oscillator is affine, we could triangulate the domain by a simplicial complex, for which we can

integrate over. This adds significant amount of computational complexity to the quadrature

scheme, thus we prefer utilizing Levin-type methods in this situation.

As a simple example, consider the integral over the 2-dimensional simplex∫
S2

cos(x+ y2) eiω(x−y) dV.

We consider two Filon-type methods: one interpolating at vertices {(0, 0), (1, 0), (0, 1)} with

multiplicities all one, the other interpolating at
{

(0, 0), (1, 0), (0, 1),
(

1
3 ,

1
3

)}
with multiplic-

ities {2, 2, 2, 1}. In Figure 5.25 we plot the interpolation error: the quadrature error thus

must be bounded in the first case by 0.125 and the second case by 0.01, though both of these

bounds neglect the asymptotic properties of Filon-type methods. In Figure 5.26 we compare

the error in quadrature. As can be seen, the methods reach their predicted asymptotic order:

the first decays like O
(
ω−3

)
whilst interpolating derivatives in the second approximation in-

creases the asymptotic order to O
(
ω−4

)
.
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Figure 5.26: The error scaled by ω3 of QFg [f, S2] interpolating only at the vertices with mul-

tiplicities all one (left graph), and the error scaled by ω4 with vertex multiplicities all two and
an additional point at

(
1
3 ,

1
3

)
with multiplicity one (right graph), for approximating

∫
S2

cos(x +

y2) eiω(x−y) dV .

0

e1

e2

H

Figure 5.27: A unit quarter disc H , where e1 = (1, 0) and e2 = (0, 1).

5.2. Multivariate Levin-type methods

In this section we will derive a Levin-type method for the multivariate highly oscillatory

integral Ig[f,Ω]. As in the univariate case, we will not require moments. This enables the

approximation of highly oscillatory integrals with more complicated oscillators and over more

complicated domains than was possible with a Filon-type method. We begin by demonstrat-

ing how to derive a multivariate Levin-type method on a specific two-dimensional domain,

namely a quarter unit disc H as seen in Figure 5.27. Afterwards, we generalize the technique

to higher dimensional and more general domains.

In the univariate case, we determined the collocation operator L[v] using the fundamental
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theorem of calculus. We mimic this by using Stokes’ theorem. Suppose we have a bivariate

function F (x, y) = (F1(x, y), F2(x, y))> such that

I[f ] =
∫
∂H

eiωgF · ds =
∫
∂H

eiωg(F1 dy − F2 dx), (5.2.1)

where ds = ( dy,− dx)> is the surface differential. We can express the integrand as the

differential form ρ = eiωg(x,y)F (x, y) · ds. Then

dρ = (F1,x + iωgxF1)eiωg dx ∧ dy − (F2,y + iωgyF2)eiωg dy ∧ dx (5.2.2)

= (F1,x + F2,y + iω(gxF1 + gyF2))eiωg dx ∧ dy

= (∇ · F + iω∇g · F )eiωg dx ∧ dy

= L[F ] eiωg dV,

where L[F ] = ∇ · F + iω∇g · F . We can rewrite the condition (5.2.1) as L[F ] = f .

We now use the operator L[F ] to collocate f . Let v(x, y) =
∑n
k=1 ckψk(x, y), for some

basis {ψk}, where ψk : R2 → R2. Given a sequence of nodes {x1, . . . ,xν} ⊂ R2 and

multiplicities {m1, . . . ,mν}, we determine the coefficients ck by solving the system

DmL[v] (xk) = Dmf(xk), 0 ≤
∑
m ≤ mk − 1, k = 1, . . . , ν,

where again m ∈ Nd and
∑
m is the sum of the entries of the vector m. We then obtain,

using T1(t) = (cos t, sin t)>, T2(t) = (0, 1− t)> and T3(t) = (t, 0)> as the positively oriented

boundary,

Ig[f,H] ≈ Ig[L[v] , H] =
∫∫
H
L[v] eiωg dx ∧ dy =

∫∫
H

dρ =
∮
∂H

ρ =
∮
∂H

eiωgv · ds

=
∫ π

2

0
eiωg(T1(t))v(T1(t)) · T ′1(t) dt+

∫ 1

0
eiωg(T2(t))v(T2(t)) · T ′2(t) dt+

∫ 1

0
eiωg(T3(t))v(T3(t)) · T ′3(t) dt

=
∫ π

2

0
eiωg(cos t,sin t) [v2(cos t, sin t) cos t− v1(cos t, sin t) sin t] dt−

∫ 1

0
v2(0, 1− t)eiωg(0,1−t) dt+

∫ 1

0
v1(t, 0)eiωg(t,0) dt.

This is a sum of three univariate highly oscillatory integrals, with oscillators eiωg(cos t,sin t),

eiωg(0,1−t) and eiωg(t,0). If we assume that these three oscillators have no stationary points,

which can be shown to be equivalent to the nonresonance condition, then we can approximate

each of these integrals with a univariate Levin-type method, as described in Section 3.2.
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Hence we define:

QLg [f,H] = QLg1

[
f1,

(
0,
π

2

)]
+QLg2 [f2, (0, 1)] +QLg3 [f3, (0, 1)] ,

for f1(t) = v2(cos t, sin t) cos t−v1(cos t, sin t) sin t, g1(t) = g(cos t, sin t), f2(t) = −v2(0, 1−t),
g2(t) = g(0, 1− t), f3(t) = v1(t, 0) and g3(t) = g(t, 0).

We approach the general case in a similar manner. Suppose we are given a sequence of

nodes {x1, . . . ,xν} in Ω ⊂ Rd, multiplicities {m1, . . . ,mν} and basis functions {ψ1,ψ2, . . .},
where ψk : Rd → Rd. Assume further that we are given a positive-oriented boundary of

Ω defined by a set of functions T` : Ω` → Rd, where Ω` ⊂ Rd−1 is again a domain with

piecewise smooth boundary and the `th boundary component Z` is the image of T`. Fur-

thermore, assume we have the same information—nodes, multiplicities, basis and boundary

parameterization—for each Ω`, recursively down to the one-dimensional edges. We define a

Levin-type method QLg [f,Ω] recursively as follows:

• If Ω = (a, b) ⊂ R, then QLg [f,Ω] is equivalent to a univariate Levin-type method, á la

Section 3.2.

• If Ω ⊂ Rd, the definition of L[v] remains

L[v] = ∇ · v + iω∇g · v.

Define v =
∑n
k=1 ckψk, where n will be the number of equations in the system (5.2.3).

We then determine the coefficients ck by solving the collocation system

DmL[v] (xk) = Dmf(xk), 0 ≤
∑
m ≤ mk − 1, k = 1, . . . , ν. (5.2.3)

We now define

QLg [f,Ω] =
∑
`

QLg` [f`,Ω`] , (5.2.4)

where g`(x) = g(T`(x)) and f` = v(T`(x)) · JdT`(x), cf. Notation for the definition of

JdT`(x). Assume that the nodes and multiplicities for each Levin-type method QLg` [f`,Ω`]

contain the vertices of Ω` with the same multiplicity as the associated vertex of Ω. In

other words, if xj = T`(u) is a vertex of Ω, then u has a multiplicity of mj .

The regularity condition for the multivariate case is defined by the following two conditions:

• The basis {∇g ·ψk} can interpolate at the given nodes and multiplicities.

• The regularity condition is satisfied for each Levin-type method in the right side of

(5.2.4).

We thus derive the following theorem:
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Theorem 5.2.1 Suppose that both the nonresonance and regularity condition are satisfied.

Suppose further that {x1, . . . ,xν} contains all the vertices of Ω, namely, {xi1 , · · · ,xiν}. Then

I[f ]−QL[f ] ∼ O
(
ω−s−d

)
,

where s = min {mi1 , · · · ,miν}.

Proof : Assume the theorem holds for all dimensions less than d. The univariate case was

proved in Theorem 3.2.1. We begin by showing that

Ig[f,Ω]− Ig[L[v] ,Ω] = Ig[f − L[v] ,Ω] = O
(
ω−s−d

)
.

This will follow if L[v] = O(1). Let

P [f ] =

 ρ1[f ]
...

ρν [f ]

 , for ρk[f ] =

 D
pk,1f(xk)

...
Dpk,nkf(xk)

 , k = 1, . . . , ν,

where pk,1, . . . ,pk,nk ∈ Nd, nk = 1
2mk(mk + 1), are the lexicographically ordered vectors

such that
∑
pk,i ≤ mk−1. As in the proof of Theorem 3.2.1, P [f ] maps f to itself evaluated

at the given nodes and multiplicities. The system (5.2.3) has the form Ac = f , where

A = (P [L[ψ1]] , · · · ,P [L[ψn]]) = (P [∇ ·ψ1] + iωP [∇g ·ψ1] , · · · ,P [∇ ·ψn] + iωP [∇g ·ψn])

= P + iωG,

for

P = (P [∇ ·ψ1] , · · · ,P [∇ ·ψn]), G = (P [∇g ·ψ1] , · · · ,P [∇g ·ψn]) and f = P [f ] .

Note that G is the matrix associated with the system resulting from the basis {∇g ·ψk}
interpolating at the given nodes and multiplicities, hence the regularity condition ensures

that detG is nonsingular. By the same logic as in Theorem 3.2.1, it follows that the A is

nonsingular for large ω and ck = O
(
ω−1

)
. Thus L[v] = O(1), and Corollary 5.1.1 states

that Ig[f,Ω]− Ig[L[v] ,Ω] = O
(
ω−s−d

)
.

We now show that

QLg [f,Ω]− Ig[L[v] ,Ω] = O
(
ω−s−d

)
.

Define the differential form ρ = eiωgv · ds, where ds is again the surface differential, cf. No-

tation. It can easily be seen that dρ = L[v] eiωg dV , see (5.2.2). Thus

Ig[L[v] ,Ω] =
∫

Ω
dρ =

∫
∂Ω
ρ =

∑
`

∫
Z`
ρ,
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where Z` = T`(Ω`). Furthermore, using the definition of the integral of differential form:

∫
Z`
ρ =

∫
Z`

eiωgv · ds =
∫

Ω`
eiωg(T`(x))v(T`(x)) · JdT`(x) dV

=
n∑
j=1

cj

∫
Ω`

eiωg(T`(x))ψj(T`(x)) · JdT`(x) dV

=
n∑
j=1

cjIg`

[
f`,j ,Ω`

]
,

for f`,j(x) = ψj(T`(x)) · JdT`(x). By assumption, since the nonresonance and regularity

conditions are satisfied, QLg`

[
f`,j ,Ω`

]
− Ig`

[
f`,j ,Ω`

]
= O

(
ω−s−d+1

)
, where this Levin-type

method has the same nodes and multiplicities as QLg` [f`,Ω`] in (5.2.4). Due to the linearity

of QL, QLg` [f`,Ω`] =
∑n
j=1 cjQ

L
g`

[
f`,j ,Ω`

]
. Thus

QLg [f,Ω]− Ig[L[v] ,Ω] =
∑
`

(
QLg` [f`,Ω`]−

∫
Z`
ρ

)

=
∑
`

n∑
j=1

cj
(
QLg`

[
f`,j ,Ω`

]
− Ig`

[
f`,j ,Ω`

])
(5.2.5)

=
∑
`

n∑
j=1

O
(
ω−1

)
O
(
ω−s−d+1

)
= O

(
ω−s−d

)
.

Putting both parts together we obtain that Ig[f,Ω]−QLg [f,Ω] = O
(
ω−s−d

)
.

Q.E.D.

Admittedly the regularity condition seems strict, however, it typically holds in practice.

There is no equivalent to a Chebyshev set in higher dimensions [16], so we cannot

generalize Theorem 3.2.2. We can, however, under certain circumstances show that the

regularity condition is satisfied whenever the standard polynomial basis can interpolate at

the given nodes and multiplicities. The following corollary states, for simplicial domains and

affine g, that a Levin-type method is equivalent to a Filon-type method with the standard

polynomial basis. This is the main problem domain where Filon-type methods are effective,

so in essence Levin-type methods are an extension of Filon-type methods.

Corollary 5.2.2 If g is affine, then Ig[L[v] ,Ω] = QFg [f,Ω] whenever ψk = ψk t, where ψk

is the standard polynomial basis and t ∈ Rd is chosen so that t · ∇g 6= 0. Furthermore, if Ω

is the d-dimensional simplex Sd, then QLg [f, Sd] is equal to QFg [f, Sd] whenever a sufficient

number of sample points are taken.
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Proof : Note that solving a Levin-type method collocation system is equivalent to inter-

polating with the basis ψ̃j = L[ψj ] = t ·∇ψj +iωψjt ·∇g. We begin by showing that ψ̃k and

ψk are equivalent. Assume that
{
ψ̃1, . . . , ψ̃j−1

}
has equivalent span to {ψ1, . . . , ψj−1}. This

is true for the case ψ1 ≡ 1 since L[t] = iωt · ∇g = C, where C 6= 0 by hypothesis. Note that

ψj(x1, . . . , xd) = xp11 . . . xpdd for some nonnegative integers pk. Then, for t = (t1, · · · , td)>,

ψ̃j =iωψjt · ∇g + t · ∇ψj = Cψj +
d∑

k=1

tkDekψj

=Cψj +
d∑

k=1

tkpkx
p1
1 . . . x

pk−1
k−1 x

pk−1
k x

pk+1
k+1 . . . x

pd
d .

The sum is a polynomial of degree less than the degree of ψj , hence it lies in the span of

{ψ1, . . . , ψj−1}. Thus ψj lies in the span of
{
ψ̃1, . . . , ψ̃j

}
. It follows that interpolation by

each of these two bases is equivalent, or in other words Ig[L[v] ,Ω] = QFg [f,Ω].

We prove the second part of the theorem by induction, where the case of Ω = S1 holds

true by the definition QLg [f, S1] = Ig[L[v] , S1]. Now assume it is true for each dimension

less than d. Since g is affine and each boundary T` of the simplex is affine we know that

each g` is affine. Furthermore we know that the Jacobian determinants of T` are constants,

hence each f` is a polynomial. Thus QLg` [f`, Sd−1] = QFg` [f`, Sd−1] = Ig` [f`, Sd−1], as long as

enough sample points are taken so that f` lies in the span of the interpolation basis. Hence

QLg [f, Sd] = Ig[L[v] , Sd] = QFg [f, Sd].

Q.E.D.

An important consequence of this corollary is that, in the two-dimensional case, a Levin-type

method provides an approximation whenever the standard polynomial basis can interpolate

f at the given nodes and multiplicities, assuming that g is affine and the nonresonance

condition is satisfied in Ω.

We can now demonstrate the effectiveness of this method with several numerical exam-
ples. For simplicity, we take ψk = ψk 1, where ψk is the d-dimensional polynomial basis

and 1 is the d-dimensional vector of all ones (1, . . . , 1)>. Note that this attaches an artificial

orientation to this approximation scheme, however, this will not affect the asymptotics of the

method. We begin with the case of integrating over a simplex, which Corollary 5.2.2 showed

is equivalent to a Filon-type method. Let f(x, y, z, t) = x2, g(x, y, z, t) = x − 2y + 3z − 4t

and approximate Ig[f, S4] by QLg [f, S4] collocating only at the vertices with multiplicities all

one. As expected, we obtain an error of order O
(
ω−5

)
, as seen in Figure 5.28. Because this

Levin-type method is equivalent to a Filon-type method, it would have solved this integral

exactly had we increased the number of node points so that ψk(x, y, z, t) = x2 was included
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Figure 5.28: The error scaled by ω5 of QLg [f, S4] collocating only at the vertices with multiplicities

all one, for Ig[f, S4] =
∫
S4
x2eiω(x−2y+3z−4t) dV .
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Figure 5.29: The error scaled by ω3 of QLg [f, S2] collocating only at the vertices with multiplicities

all one (left graph), and the error scaled by ω4 with vertex multiplicities all two and an additional
point at

(
1
3 ,

1
3

)
with multiplicity one (right graph), for Ig[f, S2] =

∫
S2

(
1

x+1 + 2
y+1

)
eiω(2x−y) dV .

as a basis vector.

Now consider the more complicated function f(x, y) = 1
x+1 + 2

y+1 with oscillator g(x, y) =

2x − y, approximated by QLg [f, S2], again only sampling at the vertices with multiplicities

all one. As expected we obtain an order of error of O
(
ω−3

)
. By adding an additional

multiplicity to each vertex, as well as the sample point
(

1
3 ,

1
3

)
with multiplicity one to ensure

that we have ten equations in our system as required by polynomial interpolation, we increase

the asymptotic order by one to O
(
ω−4

)
. Both of these cases can be seen in Figure 5.29.

Note that the different scale factor means that the right graph is in fact much more accurate,

as it has about 1/ωth the error. Finally we demonstrate an integral over a three-dimensional

simplex. Let f(x, y) = x2− y+ z3 and g(x, y) = 3x+ 4y− z. Figure 5.30 shows the error of

QLg [f, S3], sampling only at the vertices, multiplied by ω4.
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Figure 5.30: The error scaled by ω4 of QLg [f, S3] collocating only at the vertices with multiplicities

all one, for Ig[f, S3] =
∫
S3

(x2 − y + z3)eiω(3x+4y−z) dV .
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Figure 5.31: The error scaled by ω3 of QLg [f,H] collocating only at the vertices with multiplicities

all one (left graph), and the error scaled by ω4 with vertex multiplicities all two and an additional

point at
(

1
3 ,

1
3

)
with multiplicity one (right graph), for Ig[f,H] =

∫
H ex cosxy eiω(x2+x−y2−y) dV .

Because Levin-type methods do not require moments, they allow us to integrate over

more complicated domains that satisfy the nonresonance condition, without resorting to

tessellation. For example, we return to the case of the quarter unit disc H. Let f(x, y) =

ex cosxy, g(x, y) = x2 + x − y2 − y, and choose vertices for nodes with multiplicities all

one. Note that g is nonlinear, in addition to the domain not being a simplex. Despite these

difficulties, QLg [f,H] still attains an order of error O
(
ω−3

)
, as seen in the left hand side of

Figure 5.31. If we increase the multiplicities at the vertices to two, adding an additional

node at
(

1
3 ,

1
3

)
with multiplicity one, we obtain an error of order O

(
ω−4

)
. This can be seen

in the right side of Figure 5.31. This example is significant since, due to the unavailability

of moments, Filon-type methods fail to provide approximations in a quarter disc, let alone

with nonlinear g. Were g linear, we could have tessellated H to obtain a polytope, but that

would have resulted in an unnecessarily large number of calculations. With nonlinear g we
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do not even have this option, hence Filon-type methods are completely unsuitable.

5.3. Asymptotic basis condition

It is important to note that, for a Levin-type method, we do not necessarily need to use

polynomials for {ψk}. Not only can we greatly improve the accuracy of the approximation

by choosing the basis wisely, but surprisingly we can even obtain a higher asymptotic order.

The asymptotic basis condition is satisfied if the basis {ψ1, . . . ,ψn} satisfies the following

conditions:
∇g ·ψ1 = f, ∇g ·ψk+1 = ∇ ·ψk, k = 1, 2, . . . .

For the univariate case, this condition becomes the asymptotic basis of Section 3.3:

ψ1 =
f

g′
, ψk+1 =

ψ′k
g′
, k = 1, 2, . . . .

We will use QB[f ] to denote a Levin-type method whose basis satisfies the asymptotic basis

condition.

Surprisingly, this choice of basis increases the asymptotic order of QB[f ] to O
(
ω−ñ−s−d

)
,

where s is again the minimum vertex multiplicity and ñ is equal to the minimum of the

number of equations in every collocation system (5.2.3) solved for in the definition of QL,

recursively down to the univariate integrals. It follows that if Ω ⊂ R, then ñ = n. As an

example, if we are collocating on a two-dimensional simplex at only the three vertices with

multiplicities all one, then the initial collocation system has three equations, whilst each

boundary collocation system has only two equations. Thus ñ = min {3, 2, 2, 2} = 2, and the

order is O
(
ω−2−1−2

)
= O

(
ω−5

)
.

The following lemma is used extensively in the proof of the asymptotic order:

Lemma 5.3.1 Suppose {ψk} satisfies the asymptotic basis condition. Then, for k ≥ 1,

det
(
gk,ak, · · · ,ak+j , B

)
= det

(
gk, gk+1, · · · , gk+j+1, B

)
,

where B represents all remaining columns that render the matrices square and ak = pk +

iωgk, for

pk = P [∇ ·ψk] , gk = P [∇g ·ψk] .

Proof : We know that pk = P [∇ ·ψk] = P [∇g ·ψk+1] = gk+1. Thus we can multiply the

first column by iω and subtract it from the second to obtain

det
(
gk,pk + iωgk, · · · ,ak+j , B

)
= det

(
gk, gk+1,ak+1, · · · ,ak+j , B

)
.

The lemma follows by repeating this process on the remaining columns.

Q.E.D.
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This lemma holds for any column interchange on both sides of the determinant. We can now

prove the theorem:

Theorem 5.3.2 Suppose every basis {ψk} in a Levin-type method satisfies the asymptotic

basis condition. Then

QBg [f,Ω]− Ig[f,Ω] ∼ O
(
ω−ñ−s−d

)
.

Proof : We begin by showing that L[v]− f = O
(
ω−n

)
. Note that

L[v]− f =
n∑
k=1

ckL[ψk]− f =
n∑
k=1

ck (∇ ·ψk + iω∇g ·ψk)− f

=
n∑
k=1

ck (∇g ·ψk+1 + iω∇g ·ψk)−∇g ·ψ1

=∇g ·
[
(iωc1 − 1)ψ1 +

n∑
k=2

(ck−1 + iωck)ψk + cnψn+1

]

=
∇g

detA
·
[
(iω detA1 − detA)ψ1 +

n∑
k=2

(detAk−1 + iω detAk)ψk + detAnψn+1

]
,

where again Ak is the matrix A with the kth column replaced by f . Since the regularity

condition is satisfied, we know that (detA)−1 = O
(
ω−n

)
, cf. Theorem 3.2.1, thus it remains

to be shown that each term in the preceding equation is O(1). This boils down to showing

that each of the following terms areO(1): iω detA1−detA, detAk−1+iω detAk for 2 ≤ k ≤ n

and finally detAn. The first case follows from Lemma 5.3.1 after rewriting the determinants
as

iω detA1 − detA =iω detA1 − det (p1 + iωg1,a2, · · · ,an)

=iω detA1 − iω det (g1,a2, · · · ,an)− det (p1,a2, · · · ,an)

=− det (g2,a2, · · · ,an) = O(1) ,

where we used the facts that p1 = g2 and f = g1. Similarly,

detAk−1 + iω detAk = det (a1, · · · ,ak−2, g1,pk + iωgk,ak+1, · · · ,an)

+ iω det (a1, · · · ,ak−2,pk−1 + iωgk−1, g1,ak+1, · · · ,an)

= det (a1, · · · ,ak−2, g1,pk,ak+1, · · · ,an)

+ iω det (a1, · · · ,ak−2, g1, gk,ak+1, · · · ,an)

+ iω det (a1, · · · ,ak−2, gk, g1,ak+1, · · · ,an)

− ω2 det (a1, · · · ,ak−2, gk−1, g1,ak+1, · · · ,an)

= det (a1, · · · ,ak−2, g1,pk,ak+1, · · · ,an)

− ω2 det (a1, · · · ,ak−2, gk−1, g1,ak+1, · · · ,an).
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Figure 5.32: The error scaled by ω4 of QBg [f, S2] collocating only at the vertices with multiplicities

all one (left graph), and the error scaled by ω5 collocating at the vertices as well as each of the
boundary midpoints {(1/2, 0), (0, 1/2), (1/2, 1/2)} with multiplicities all one (right graph), for∫
S2

(
1

x+1 + 2
y+1

)
eiω(2x−y) dV .

Using Lemma 5.3.1 the first of these determinants is O(1), whilst the second determinant

has two columns equal to gk−1, hence is equal to zero. The last determinant detAn is also

O(1), due to Lemma 5.3.1. Thus we have shown that L[v]− f = O
(
ω−n

)
.

From Corollary 5.1.1, it follows that

Ig[f,Ω]− Ig[L[v] ,Ω] = O
(
ω−n−s−d

)
= O

(
ω−ñ−s−d

)
.

For the univariate case the lemma has been proved, since QBg [f, (a, b)] = Ig[L[v] , (a, b)]. By

induction, QBg`

[
f`,j ,Ω`

]
− Ig`

[
f`,j ,Ω`

]
= O

(
ω−ñ−s−(d−1)

)
in (5.2.5). It follows that

Ig[f,Ω]−QBg [f,Ω] = (Ig[f,Ω]− Ig[L[v] ,Ω])−
(
QBg [f,Ω]− Ig[L[v] ,Ω]

)
=O

(
ω−ñ−s−d

)
.

Q.E.D.

The derivatives required to find each ψk can quickly become unmanageable when either

f or g is even moderately complicated. This issue can be mitigated since it is possible to

show that including j other basis functions, for example the first j polynomials, and using a

basis which satisfies the asymptotic basis condition for the remaining basis functions results

in an error of order O
(
ω−ñ−s−d+j

)
. With this in mind, in all the examples we include the

constant function 1 in our basis. This results in errors on the order O
(
ω−ñ−s−d+1

)
.

For the remainder of this section we will use the basis ψk = (ψk,−ψk)>, where

ψ1 =
f

gx − gy
, ψk+1 =

ψk,x − ψk,y
gx − gy

, k = 1, 2, . . . .
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Figure 5.33: The error scaled by ω4 of QBg [f,H] collocating only at the vertices with multiplicities

all one (left graph), and the error scaled by ω7 of QBg [f,H] collocating only at the vertices with

multiplicities all two (right graph), for Ig[f,H] =
∫
H ex cosxy eiω(x2+x−y2−y) dV .

This satisfies the asymptotic basis condition, since

∇g ·ψ1 =
f

gx − gy
∇g · (1,−1)> = f,

∇g ·ψk+1 =
ψk,x − ψk,y
gx − gy

∇g · (1,−1)> = ψk,x − ψk,y = ∇ ·ψk.

Recall the example where f(x, y) = 1
x+1 + 2

y+1 with oscillator g(x, y) = 2x − y over the

simplex S2. We now use QBg [f, S2] in place of QLg [f, S2], collocating only at the vertices.

Since this results in each univariate boundary collocation having two node points, we know

that ñ = 2. Hence we now scale the error by ω4, i.e., we have increased the order by one, as

seen in Figure 5.32. Since the initial two-dimensional system has three node points, adding

the midpoint to the sample points of each univariate integral should increase the order again

by one to O
(
ω−5

)
. This can be seen in the right side of Figure 5.32.

There is nothing special about a simplex or linear g: the asymptotic basis works equally

well on other domains with nonlinear g, assuming that the regularity and nonresonance

conditions are satisfied. Recall the example with f(x, y) = ex cosxy and g(x, y) = x2 +

x − y2 − y on the quarter disc H. As in the simplex case, QBg [f,H] collocating only at

vertices with multiplicities all one results in an error of O
(
ω−4

)
, as seen in the left side

of Figure 5.33. Note that increasing multiplicities not only increases s, but also ñ. If we

increase the multiplicities to two, then s = 2 and ñ = 4, and the order increases to O
(
ω−7

)
,

as seen in the right side of Figure 5.33. It should be emphasized that, though the scale is

large in the graph, the error is being divided by ω7 ≥ 1007 = 1014. As a result, the errors

for the right graph are in fact less than the errors in the left graph.
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Figure 5.34: Depiction of a half disc U , where the vector ∇g represents the direction of the
gradient of g(x, y) = y − x, highlighting where it is orthogonal to the boundary of U .

5.4. Resonance points

Up until this point we have avoided computing highly oscillatory integrals that do not

satisfy the nonresonance condition. But we know that a large class of integrals fail this

condition: for example if g is linear then any Ω with a completely smooth boundary must

have at least two point of resonance. In this section we investigate such integrals, and see

where Levin-type methods fail.

Suppose that ∇g is orthogonal to the boundary of Ω ⊂ Rd at a single point u. Let

us analyse what happens at this point when we push the integral to the boundary, as in a

Levin-type method. If T` is the map that defines the boundary component Z` containing u,

then the statement of orthogonality is equivalent to

∇g(T`(ξ))>T ′`(ξ) = 0,

where ξ ∈ Ω`, u = T`(ξ) and T ′` is the derivative matrix of T`. After pushing the integral to

the boundary we now have the oscillator g` = g ◦ T`. But it follows that

∇g`(ξ)> = (g ◦ T`)′(ξ) = ∇g(T`(ξ))>T ′`(ξ) = 0.

In other words the resonance point has become a stationary point. An asymptotic expansion

in [50] states that a Filon-type method must sample at a stationary point in order to obtain

a higher asymptotic order than that of the integral, hence, by the same logic, a Levin-type

method must also sample at a stationary point. It follows that a Levin-type method cannot

be used because the regularity condition can never be satisfied, since ∇g`(ξ)>ψk(ξ) = 0.

Moreover, in general each g` is a fairly complicated function and no moments are available,

thus Filon-type methods are not feasible.
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Figure 5.35: The error scaled by ω5/2 in approximating Ig [f, U ] =
∫∫
U cosx cos y eiω(y−x) dV .

The left graph approximates the integral by Ig [L[v], U ], where L[v] is determined by collocation at
the two vertices and the resonance point, all with multiplicities one. The right graph approximates
Ig [L[v], U ] by three Moment-free Filon-type methods.

As a concrete example, consider the unit half disc U , with g(x, y) = y − x, as seen in

Figure 5.34. The boundary curve which exhibits the problem is defined for Ω1 = (0, π)

as T1(t) = (cos t, sin t)>. We find that ∇g is orthogonal to the boundary at the point

T1

(
3π
4

)
=
(
−
√

2
2 ,
√

2
2

)>
, since ∇g

(
T1

(
3π
4

))>
T ′1
(

3π
4

)
= (−1, 1)

(
− sin 3π

4 , cos 3π
4

)>
= 0. Com-

bining Theorem 2.6.1 and [50], we assert that in order to obtain an order of error O
(
ω−s−

3
2

)
our collocation points must include (−1, 0) and (1, 0) with multiplicity s, as well as the point

of resonance
(
−
√

2
2 ,
√

2
2

)
with multiplicity 2s− 1. We assume that the resulting system is in

fact solvable. When we push the integral to the boundary, we obtain two line integrals:

∫
U
feiωg ≈

∫
U
L[v] eiωg =

∫
Z1

eiωgv · ds+
∫
Z2

eiωgv · ds

= Ig1 [f1, (0, π)] + Ig2 [f2, (−1, 1)] ,

where Z2 corresponds to the boundary of U on the x-axis, while

f1(t) = (− sin t, cos t)> · v(cos t, sin t), g1(t) = g(cos t, sin t) = sin t− cos t,

f2(t) = v1(t, 0) and g2(t) = g(t, 0) = −t.

We see that Ig[f, U ]− Ig1 [f1, (0, π)]− Ig2 [f2, (−1, 1)] does indeed appear to have an order of

error O
(
ω−5/2

)
in the left graph of Figure 5.35, where the univariate integrals are computed

numerically using Mathematica. It follows that, if we can approximate these univariate

integrals with the appropriate error, then we can derive an equivalent to Theorem 5.2.1 for

when the nonresonance condition is not satisfied.

Note that Ig1 [f1, (0, π)] is a one-dimensional integral with oscillator g1(t) = sin t− cos t.
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But g′1
(

1
2

)
= − cos 3π

4 + sin 3π
4 = 0, meaning that we have a stationary point. Unfortunately

none of the moments of g1 are elementary, including the zeroth moment. Thus neither

a standard Filon-type method nor the Iserles and Nørsett expansion from Chapter 4 are

applicable. However, we can employ a Moment-free Filon-type method to approximate

these integrals successfully. To avoid issues with g′′1 vanishing, we write the integral as

Ig1

[
f1,

(
0,
π

2

)]
+ Ig1

[
f1,

(
π

2
, π
)]

+ Ig2 [f2, (−1, 1)] .

The first integral has no stationary points, thus we utilizing a Moment-free Filon-type method

with nodes
{

0, π2

}
and multiplicities both one. The second integral has a single stationary

point at 3π
4 , thus we use the nodes

{
π
2 ,

3π
4 , π

}
again with multiplicities all one. The last

integral is simply a constant times the zeroth moment of the Fourier oscillator, thus either

Filon-type methods will compute it exactly. The right graph of Figure 5.35 shows the

resulting error, which is almost indistinguishable from the left graph which computes the

univariate integral exactly. Thus the error is dominated by the initial bivariate collocation
system.

5.5. Stationary points

The conclusion of the previous section—which can be confirmed by analysing the proof

of Theorem 5.2.1—is that resonance points do not present a problem; in themselves they

only affect the approximation in the lower dimensional boundary integrals. Thus if we are

able to compute integrals with stationary points then we can handle resonance points as

well. In Chapter 4, we obtained a method for univariate oscillatory integrals with stationary

points via incomplete Gamma functions. In this section we attempt to generalize this result

for bivariate integrals. As this is a work in progress, we restrict our attention to a simple

particular integral: ∫∫
S2

f(x, y)eiω(x2+y2) dV,

where S2 is again the two-dimensional simplex. We however compute this integral in a way

that allows for generalization. This integral has a single stationary point at zero.

In Lemma 4.3.1, we determined the basis for a univariate Moment-free Filon-type method

to be

φr,k(x) =
ω−

k+1
r

r
e−iωg(x)Γ

(
1 + k

r
,−iωg(x)

)
, x ≥ 0,

where we drop the constant Dr,k since we restrict our attention to positive x. This suggests

an ansatz for the first basis function in the multivariate case:

φ0(x, y) = ω−
1
2

(
e−iωq1(x,y)Γ

(
1

2
,−iωq1(x, y)

)
, e−iωq2(x,y)Γ

(
1

2
,−iωq2(x, y)

))>
,
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where q1 and q2 have not yet been determined. The choice of constant in front will become

clear later. Plugging this function into the operator

L[v] = ∇ · v + iω∇g · v

gives us

L[φ0] = i
√
ωe−iωq1Γ

(
1

2
,−iωq1

)
∂

∂x
(g − q1) + i

√
ωe−iωq2Γ

(
1

2
,−iωq2

)
∂

∂y
(g − q2)

− ∂q1

∂x

e
−iπ
4

√
q1
− ∂q2

∂y

e
−iπ
4

√
q2
.

For this to be nonoscillatory we must eliminate the terms involving incomplete Gamma

functions, thus we require q1 and q2 to solve

∂g

∂x
=
∂q1

∂x
and

∂g

∂y
=
∂q2

∂y
. (5.5.1)

At first glance one might be tempted to set q1, q2 = g, unfortunately, this causes L[φ0] to

be no longer smooth at zero:

L[φ0] =
e
−iπ
4

√
g
∇ · g =

e
−iπ
4√

x2 + y2
(x+ y).

Thus we have the additional requirement that

∂q1

∂x

1
√
q

1

and
∂q2

∂y

1
√
q

2

(5.5.2)

are smooth. For the oscillator g(x, y) = x2 + y2 inspection reveals that q1(x, y) = x2

and q2(x, y) = y2 satisfy both conditions (though this is not the only possible solution:

q1(x, y) = q2(x, y) = (x+y)2

2 works as well). In this case

L[φ0] = −4e−iπ4 ,

hence we can scale φ0 by −1
4eiπ4 , giving us

φ0(x, y) = −1

4
eiπ4ω−

1
2

(
e−iωx2

Γ
(

1

2
,−iωx2

)
, e−iωy2

Γ
(

1

2
,−iωy2

))>
.

The next two terms are much more straightforward:

φ1(x, y) =
1

2iω
(1, 0)> ⇒ L[φ1] (x, y) = x,

φ2(x, y) =
1

2iω
(0, 1)> ⇒ L[φ2] (x, y) = y.
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Figure 5.36: In the left graph, we depict the integral
∫∫
S2

(cosxy + y + 1) eiω(x2+y2) dV scaled by

ω. In the right graph, we depict the error scaled by ω3/2 in approximating the integral by interpolat-
ing at the nodes {(0, 0), (1, 0), (0, 1)} and with nodes

{
(0, 0), (1, 0), (0, 1),

(
1
2 , 0

)
,
(
0, 1

2

)
,
(

1
2 ,

1
2

)}
.

Higher order terms can be found without too much difficulty. The quadratic terms are

φ3(x, y) =
1

2iω

[
(x, 0)> − φ0(x, y)

]
⇒ L[φ1] (x, y) = x2,

φ4(x, y) =
1

4iω
(y, x)> ⇒ L[φ2] (x, y) = xy,

φ5(x, y) =
1

2iω

[
(0, y)> − φ0(x, y)

]
⇒ L[φ1] (x, y) = y2.

.

This process can be continued, giving us a representation of all the moments as integrals

along the boundary of our domain. This holds true over any domain, though we focus on

the simplex. In Figure 5.36 we compare approximation methods for the integral∫∫
S2

(cosxy + y + 1) eiω(x2+y2) dV.

In Figure 5.36, we approximate this integral with two methods: the first method interpolates

at the vertices {(0, 0), (1, 0), (0, 1)}; the second method again interpolates at the vertices, as

well as three additional interpolation nodes at
{(

1
2 , 0

)
,
(
0, 1

2

)
,
(

1
2 ,

1
2

)}
. In both methods,

we integrate the resulting boundary integrals exactly. The first method appears to have an

asymptotic order of O
(
ω−3/2

)
, while the second method has an asymptotic order of O

(
ω−2

)
.

This is due to a resonance point at
(

1
2 ,

1
2

)
, which contributes to the asymptotic order of the

method. These errors are compared to the integral itself, which decays like O
(
ω−1

)
.

The problem we have not yet dealt with is how to integrate the resulting boundary

integrals. We have several different kernels which must be integrated over the boundary of

the domain. Suppose we parameterize the boundary as T (t) = (T1(t), T2(t))>. The kernels
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for the terms associated with φ1 and φ2 are irregular exponential kernels:

eiω[T1(t)2+T2(t)2].

If we integrate over a circle, we obtain a nonoscillatory integral; otherwise the results of

Chapter 3 and Chapter 4 should accurately approximate the integrals. The kernels associated

with the basis function φ0—and all basis functions that depend on φ0—depend on the

incomplete Gamma function. An example of such a kernel is

eiωT2(t)2Γ
(

1

2
,−iωT1(t)2

)
.

This is no longer strictly an exponential kernel, and the incomplete Gamma function does

not satisfy a differential equation of the form of Chapter 6. Thus we require the development

of new quadrature methods for such kernels before the results of this section form a useable

quadrature scheme.

Extending this method to other oscillators requires finding q1 and q2 which satisfy the

requirements (5.5.1) and (5.5.2). Here are some examples where this task is straightforward:

• If g(x, y) = g1(x) + g2(y), g1(x) = O
(
x2
)
, g2(y) = O

(
y2
)

and g1 and g2 are nonzero

away from zero, then q1(x, y) = g1(x) and q2(x, y) = g2(y).

• If g(x, y) = g̃(x, y)2, then q1(x, y) = q2(x, y) = g̃(x, y).

How to choose q1 and q2 for other kernels requires further investigation, as does the analysis

of the resulting basis L[φk] when it is no longer a standard polynomial basis. For example,

though we cannot prove an equivalent to Lemma 4.3.2, we may be able to prove that the

basis is dense, and find interpolation points where convergence is guaranteed.

87



Chapter 6

Higher Order Oscillators

In this chapter, we are concerned with numerically approximating the integral

I[f ] =
∫ b

a
f(x)>y(x) dx,

where f : R → Rd is a smooth vector-valued function and y : R → Rd is a smooth,

highly oscillatory vector-valued function. We assume that y depends on a parameter ω that

determines the frequency of oscillations. We also assume that y satisfies the differential

equation

y′(x) = A(x)y(x),

where A is a d × d matrix-valued function that depends on ω and has no turning points:

A(x) is nonsingular for every x in [a, b]. Some common examples are

y(x) = eiωg(x), A(x) = iωg′(x),

y(x) =
(
Jm−1(ωx)
Jm(ωx)

)
, A(x) =

(
m−1
x −ω
ω −mx

)
,

y(x) =
(

Ai (−ωx)
−ωAi ′(−ωx)

)
, A(x) =

(
0 1
−ω3x 0

)
,

where Ai is an Airy function and Jm is a Bessel function [74].

Due to similar logic as in Section 2.1, for large values of ω, traditional quadrature tech-

niques fail to approximate I[f ] efficiently. Unless the number of sample points is sufficiently

greater than the frequency of oscillations, the relative error of Gauss–Legendre quadrature

increases drastically as the frequency becomes large.

The goal of this chapter is to generalize the Levin collocation method of Section 2.8 to

obtain higher asymptotic orders. This will be accomplished in a similar vein to the Levin-type

method from Section 3.2, which generalized the original Levin collocation method for the

exponential oscillatory kernel y = eiωg. The asymptotic expansion was used to determine

the asymptotic behaviour of the error of a Levin-type method. Thus our first task is to

derive a vector-valued kernel version of the asymptotic expansion. This is accomplished

in Section 6.2, using the asymptotic tools developed in Section 6.1. With an asymptotic

expansion in hand, we can successfully find the order of error for a Levin-type method.
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Two such constructions are presented: Section 6.3 reduces the vector-valued problem to a

single differential equation, while Section 6.4 solves a vector-valued collocation system. In

Sections 3.3 and 5.3, it was noted that choosing a particular basis for a Levin-type method

causes the asymptotic order to increase without the need for nontrivial multiplicities (though

still using derivatives). In Section 6.5, we construct a vector-valued version of such a basis,

allowing us to obtain higher asymptotic orders with significantly smaller systems.

Remark : The entirety of this chapter consists of original research, though contemporary

research by Shuhang Xiang obtained similar results to Theorem 6.2.1 and Theorem 6.4.1

with a polynomial basis. Xiang’s work is unpublished as of the submission of this thesis.

Every section other than Section 6.3 was first presented in [77].

6.1. Matrix and function asymptotics

In this section we present notation for the asymptotic behaviour of matrices and functions

that depend on ω as a parameter. For the entirety of the chapter, all norms are L∞ norms,

for vectors, matrices and functions. The norm of a function is taken over the interval [a, b].

See Notation for the matrix and vector notation used.

We now define the big-O and little-o notation for matrices. Let A = (aij)p×q and

Ã = (ãij)p×q be two p×q matrices which depend on a real parameter ω, such that the entries

of Ã are always nonnegative. We write A = O
(
Ã
)

for ω → ∞ if it is true componentwise:

aij = O(ãij). This operator has several important properties, where B = (bij)q×r, B̃ =

(b̃ij)q×r with nonnegative entries and ϕ is a p-dimensional vector:

• A = O(1) implies that all the components of A are bounded for increasing ω, where 1

is the p× q matrix whose entries are all one (cf. Notation).

• Multiplication works as expected: AB = O
(
ÃB̃

)
.

• O
(
1Ã
)

is not necessarily equivalent to O
(
Ã
)
, but Ã = O

(
1Ã
)

and Ã = O
(
Ã1
)
.

• ‖A‖ and
∥∥∥A>∥∥∥ have the same asymptotic order: ‖A‖ = O

(∥∥∥A>∥∥∥) and
∥∥∥A>∥∥∥ = O(‖A‖).

• ‖ϕ‖ is of the same asymptotic order as |ϕ|> 1p×1 = 1> |ϕ|.

• If A is square and O(1), then detA = O(1).

The definition and properties of the little-o notation o(A) are essentially the same, with all

occurrences of O replaced with o.

We can find the asymptotic behaviour of A−1 under certain assumptions, which will be

necessary for the proof of Theorem 6.4.1.
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Theorem 6.1.1 Suppose that A = P+G is a square matrix. If P = o(1) and G is invertible

with G−1 = O(1), then A is nonsingular when ω is large and A−1 = O(1).

Proof : Note that A = (PG−1 + I)G = (I −M)G for M = −PG−1. Since G−1 = O(1),

it follows that M = o(1) and large ω ensures that ‖M‖ < 1. We thus know that the inverse

of I −M exists, and furthermore

(I −M)−1 = I +M(I −M)−1 = I + o(1) (I −M)−1.

If (I − M)−1 was not O(1), we would obtain a contradiction, since the right side of the

equality could not be of the same asymptotic order. It follows that (I −M)−1 = O(1), and

we can write

A−1 = G−1(I −M)−1 = O(1) .

Q.E.D.

In practice G is typically independent of ω, in which case it is only necessary to show that

G is nonsingular.

We now turn our attention to functions which depend on ω as a parameter, for example

f(x) = ωx. Let f be a function that depends on ω, and f̃ a nonnegative constant that

depends on ω. We write f = O
(
f̃
)

if the norm of f and its derivatives are all of order O
(
f̃
)

as ω →∞. In other words, ∥∥∥f (m)
∥∥∥ = O

(
f̃
)
, m = 0, 1, . . . .

The most common usage is f = O(1), which states that f and its derivatives are bounded

in [a, b] for increasing ω. We also use this notation for vector-valued and matrix-valued

functions in a componentwise manner. Let A(x) = (aij(x))p×q be a matrix-valued function

that depends on ω, and let Ã = (ãij)p×q be a matrix with nonnegative components, which

also depends on ω. We write A = O
(
Ã
)

if it is true componentwise: aij = O(ãij) for

ω →∞.

Note that this class of functions has the following properties, where A = O
(
Ã
)

and

B = O
(
B̃
)

are matrix-valued functions:

• For every x ∈ [a, b], A(x) = O
(
Ã
)
.

• All derivatives of A belong to the same class: A(m) = O
(
Ã
)

for every nonnegative integer

m.

• If A and B are both p × q matrix-valued functions, then A + B = O
(
Ã+ B̃

)
=

O((max{ãij , b̃ij})p×q).
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• If the dimensions of A and B are compatible, then AB = O
(
ÃB̃

)
.

• Scalar multiplication works as expected: if c = O(c̃) then cA = O
(
c̃Ã
)
.

• Integration is of the same order as A itself:
∫ b
a A(x) dx = O

(
Ã
)
.

6.2. Asymptotic expansion

An asymptotic expansion is a valuable tool in the analysis of integrals, and for large ω

will provide a fairly accurate numerical approximation to I[f ]. Consider for a moment the

one-dimensional oscillator y = eiωg analysed in Chapter 3. In the derivation of its asymptotic

expansion in Section 2.2, we used the fact that y satisfies the differential equation

y′(x) = iωg′(x)y(x) = A(x)y(x).

The asymptotic expansion follows from writing y as A−1y′, assuming that A(x) 6= 0 in the

interval of integration, and integrating by parts:∫ b

a
fy dx =

∫ b

a
fA−1y′ dx =

[
fA−1y

]b
a
−
∫ b

a
(fA−1)′y dx

=
1

iω

[
f(b)

g′(b)
y(b)− f(a)

g′(a)
y(a)

]
− 1

iω

∫ b

a

(
f

g′

)′
y dx.

Throughout this chapter the notation A−1 means matrix (or scalar) inverse, not function

inverse. As ω becomes large, the term

1

iω

[
f(b)

g′(b)
y(b)− f(a)

g′(a)
y(a)

]

approximates the integral with an error of order O
(
ω−2

)
, since

∫ b
a

(
f
g′

)′
y dx = O

(
ω−1

)
[85].

Furthermore, the error term is itself a highly oscillatory integral, thus we can iterate the

process to obtain a full asymptotic expansion.

We obtain a vector-valued version of the asymptotic expansion by using integration by

parts in a similar manner:

Theorem 6.2.1 Suppose that y satisfies the differential equation

y′(x) = A(x)y(x),

in the interval [a, b], for some invertible matrix-valued function A such that A−1 = O
(
Â
)
,

for ω →∞. Define

QAs [f ] =
s−1∑
k=0

(−1)k
[
σk(b)

>A−1(b)y(b)− σk(a)>A−1(a)y(a)
]
,
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where

σ0 ≡ f , σk+1 = (A−>σk)
′, k = 0, 1, . . . .

If f = O(f̃) and y(x) = O(ỹ) for a ≤ x ≤ b, then

I[f ]−QAs [f ] = (−1)s
∫ b

a
σ>s y dx = O

(
f̃>Âs+1ỹ

)
, ω →∞.

Proof : Note that

∫ b

a
σ>k y dx =

∫ b

a
σ>k A

−1y′ dx =
[
σ>k A

−1y
]b
a
−
∫ b

a
(σ>k A

−1)′y dx

=
[
σ>k A

−1y
]b
a
−
∫ b

a
σ>k+1y dx.

Thus, by induction, the first equality holds. We now show that σ>k = O
(
f̃>Âk

)
. This is

obvious when k = 0 from the definition of σ0. Otherwise, assume it is true for σk, and we

will prove it for σk+1:

σ>k+1 = σ>k
′
A−1 + σ>k A

−1′ = O
(
f̃>Âk

)
O
(
Â
)

+ O
(
f̃>Âk

)
O
(
Â
)

= O
(
f̃>Âk+1

)
.

The theorem now follows since∫ b

a
σ>s y dx =

[
σ>s A

−1y
]b
a
−
∫ b

a
σ>s+1y dx = O

(
f̃>Âs+1ỹ

)
+O

(
f̃>Âs+1ỹ

)
= O

(
f̃>Âs+1ỹ

)
.

Q.E.D.

Corollary 6.2.2 follows immediately from Theorem 6.2.1, and will be used in the proof of

Theorem 6.3.1 and Theorem 6.4.1. It is a generalization of Corollary 3.1.1, and states that

the asymptotic behaviour of an integral depends only on the value of f and its derivatives

at the endpoints of the integration interval.

Corollary 6.2.2 Suppose that

0 = f(a) = f(b) = f ′(a) = f ′(b) = · · · = f (s−1)(a) = f (s−1)(b).

Then

I[f ] = O
(
f̃>Âs+1ỹ

)
.

The asymptotic expansion for y(x) = eiωg(x) follows immediately when g′ 6= 0 within

the interval of integration, in which case A−1(x) = 1/(iωg(x)) = O
(
ω−1

)
. Thus QAs [f ]
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Figure 6.37: The error of QA1 [f ] scaled by ω7/4 (left graph), compared to the error of QA2 [f ]

scaled by ω13/4 (right graph), for I[f ] =
∫ 2
1 [cosxAi (−ωx)− ω exAi ′(−ωx)] dx.

approximates I[f ] with an error O
(
ω−s−1

)
. For the other two examples, assuming that

0 < a < b,

y(x) =
(
Jm−1(ωx)
Jm(ωx)

)
= O

(
ω−1/21

)
, A−1 = O

(
ω−2 ω−1

ω−1 ω−2

)
= O

(
ω−11

)
,

y(x) =
(

Ai (−ωx)
−ωAi ′(−ωx)

)
= O

(
ω−1/4

ω5/4

)
, A−1 = O

(
0 ω−3

1 0

)
,

where the asymptotics of the Bessel and Airy functions can be found in [2]. In the Bessel

case, each component of A−1 is O
(
ω−1

)
, hence, if f = O(1), then we have an error of order

f̃>Âs+1ỹ = O
(∥∥∥Âs+1

∥∥∥ ‖ỹ‖) = O
(
ω−s−

3
2

)
.

In the Airy case, we know that

Â2kỹ =
(
ω−3k 0

0 ω−3k

)
ỹ =

(
ω−3k−1/4

ω−3k+5/4

)
,

Â2k+1ỹ =

(
0 ω−3(k+1)

ω−3k 0

)
ỹ =

(
ω−3k−7/4

ω−3k−1/4

)
.

Thus, if f̃ = 1,

f̃>Âs+1ỹ = O
(
ω−

3
2s−

1
4

)
.

On the other hand, if f̃ = (1, 0)>, then

f̃>Âs+1ỹ = O
(
ω−

3
2s−

7
4

)
.
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As a simple example, consider the integral∫ 2

1
f>y dx =

∫ 2

1

[
cosxAi (−ωx)− ω exAi ′(−ωx)

]
dx.

In this case f(x) = (cosx, ex)> and y(x) = (Ai (−ωx) ,−ωAi ′(−ωx))
>

. Figure 6.37 com-

pares the one-term and two-term expansions. As can be seen, adding an additional term

does indeed increase the asymptotic order by 3/2. In this example, as well as in all other

examples, the approximation is compared to a Gauss–Legendre quadrature approximation

with sufficient data points and working precision to ensure machine precision accuracy.

6.3. High order Levin-type methods

As with the exponential oscillator, the fundamental problem with using an asymptotic

expansion as a numerical approximation is that for fixed ω the accuracy is limited: the sum

QAs [f ] does not typically converge as s→∞. To combat this issue, we will derive a Levin-

type method that has the same asymptotic behaviour as the asymptotic expansion, whilst

providing the ability to decrease error further. In Section 6.4, we generalize the vector-

valued kernel version of the Levin collocation method developed in [62], and described in

Section 2.8. Before we do so, we will present an alternative for the case when d = 2,

which results in smaller systems and increased accuracy than the usual vector-valued kernel

Levin-type methods.

Consider the integral

I[f ] =
∫ b

a
f>y dx =

∫ b

a
f1y + f2y

′ dx,

where y satisfies the differential equation

y′′(x) + q(x)y′(x) + ωr(x)y(x) = 0.

As an ansatz, we write the antiderivative of the integrand as

v>y = v1y + v2y
′.

Taking this ansatz’s derivative, we obtain the differential operator:

v′1y + v1y
′ + v′2y

′ + v2y
′′ = (v′1 − ωrv2)y + (v1 + v′2 − qv2)y′. (6.3.1)

Thus we want v1 and v2 to satisfy

v′1 − ωrv2 = f1 and v1 + v′2 − qv2 = f2.

Let v = v2 and define v1 = f2 − v′ + qv. Plugging these values into (6.3.1) results in a

differential equation with only one unknown function:

L̃[v] = v′′ − q′v − qv′ + ωrv = f ′2 − f1.
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A particular solution v to this differential equation can be approximated via collocation, as

in the Levin-type method constructed in Section 3.2. We then approximate I[f ] by

QL[f ] = v(b)>y(b)− v(a)>y(a)

=
[
f2(b)− v′(b) + q(b)v(b)

]
y(b) + v(b)y′(b)

−
[
f2(a)− v′(a) + q(a)v(a)

]
y(a)− v(a)y′(a).

Consider specifically an integral involving the Airy function:

I[f ] =
∫ 2

1
f(x)Ai (−ωx) dx.

In this case, we have the simplified collocation operator

L̃[v] = v′′ + ω3xv.

This is almost exactly the same as the Levin differential operator v′+iωg′v; the only difference

is a second derivative v′′ in place of v′. Thus we obtain the following theorem:

Theorem 6.3.1 Assume that 0 < a < b, x1 = a and x2 = b. Let v =
∑
ckψk be the

solution to the collocation system

L̃[v] (xk) = f(xk), · · · , L̃[v](mk−1) (xk) = f (mk−1)(xk), k = 1, . . . , ν.

If {ψ1, . . . , ψn} can interpolate at a given sequence of nodes {x1, . . . , xν} with multiplicities

{m1, . . . ,mν}, then

∫ b

a
f(x)Ai (−ωx) dx−QL[f ] ∼ O

(
ω−

3
2s−

7
4

)
,

where

QL[f ] = −v′(b)y(b) + v(b)y′(b) + v′(a)y(a)− v(a)y′(a)

and s = min {m1,mν}.

Proof : The proof that L̃[v] and its derivatives are bounded for increasing ω is virtually

identical to the proof of Theorem 3.2.1. Let f = (f, 0)>, v = (−v′, v)
>

and y(x) =

(Ai (−ωx) ,−ωAi ′(−ωx))
>

. Then

I[f ]−QL[f ] =
∫ b

a
(f − L̃[v])Ai (−ωx) dx =

∫ b

a
(f − L[v])>y dx.

The theorem follows from Corollary 6.2.2.

Q.E.D.
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Figure 6.38: The error in approximating
∫ 2
1 cosxAi (−ωx) dx, scaled by ω13/4 for a Levin-type

method with nodes
{

1, 3
2 , 2

}
and multiplicities all one (left graph), and scaled by ω19/4 for a

Levin-type method with nodes {1, 2} and multiplicities both two (right graph).

Similar theorems can be derived for other oscillators in a very straightforward manner,

but we focus on the Airy kernel for simplicity.

In Figure 6.38 we use this new method to approximate the integral∫ 2

1
cosxAi (−ωx) dx.

In the left graph we use three nodes—the two endpoints of the interval and the midpoint—

which achieves an asymptotic order O
(
ω
−13
4

)
. In the second graph we demonstrate that

using multiplicities successfully increases the asymptotic order: the error now decays like

O
(
ω
−19
4

)
.

Remark : There is probably a relationship between this construction and the Chung, Evans

and Webster method of Section 2.9. Indeed, it is quite possible that this method can be ex-

tended to oscillators which satisfy higher order differential equations by utilizing the adjoint

representation and Lagrange identity, though we leave this as an open problem.

6.4. Vector-valued kernel Levin-type methods

In Section 2.8, a method was developed to compute integrals using a collocation system.

This method was generalized to include multiplicities in Section 3.2, for the specific oscillator

eiωg. By adding multiplicities to the endpoints, we obtained a method with higher asymptotic

order. In this section, we complete the generalization for vector-valued kernels. Unlike the

preceding section, we leave everything in a vector form: we do not collapse the problem

into a single differential equation. This simplifies the construction of the method for more

complicated oscillators. We will use the asymptotic expansion to determine the asymptotic

order of the resulting Levin-type methods. Note that we include cases that were not analysed
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in Theorem 2.8.1, such as the Airy function case where
∥∥∥A−1

∥∥∥ does not decay. When a Levin-

type method is equivalent to the original Levin collocation method, we obtain the asymptotic

bound derived in [90], which is more accurate than the original bound found in [62].

Had we known a vector-valued function F such that(
F>y

)′
= f>y,

then computing the integral I[f ] would have been trivial: I[f ] =
[
F>y

]b
a
. We can rewrite

this condition as

L[F ] = f for L[F ] = F ′ + A>F .

Finding F explicitly is in general impossible. However, we can approximate this function

using collocation. Suppose we are given a sequence of nodes {x1, . . . , xν}, multiplicities

{m1, . . . ,mν} and basis functions {ψ1, . . . , ψn}, where ψk : R→ Rd for d again equal to the

dimension of y(x). Let v(x) =
∑n
k=1 ckψk(x) for n = d

∑
mk. We determine the coefficients

ck by equating the function value and derivatives of L[v] and f at the given nodes, up to

the given multiplicities. This is equivalent to solving the system

L[v] (xk) = f(xk), . . . ,L[v](mk−1) (xk) = f (mk−1)(xk), k = 1, 2, . . . , ν. (6.4.1)

The number of equations in this system is n, which equals the number of unknowns ck. We

then define a Levin-type method as

QL[f ] =
∫ b

a
L[v] (x)>y(x) dx = v(b)>y(b)− v(a)>y(a).

The following theorem proves the asymptotic order of a Levin-type method, assuming that

A−1 = o(1).

Theorem 6.4.1 Assume that the following conditions are met:

(1) f = O(f̃), A = O(Ã) and y(x) = O(ỹ).

(2) A(x) is invertible for x ∈ [a, b] and A−1 = O(Â), where ÃÂ = O(1) and Â = o(1).

(3) The basis {ψ1, . . . , ψn} is independent of ω.

(4) The basis {ψ1, . . . , ψn} can interpolate at the given nodes and multiplicities.

Then for large ω QL[f ] is well-defined and

I[f ]−QL[f ] = O
(
f̃>Â1Âsỹ

)
,

where s = min {m1,mν}.
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Proof :

We will prove the order of error by applying Corollary 6.2.2 to the integral

I[f ]−QL[f ] =
∫ b

a
(f − L[v])>y dx.

The theorem will follow from this corollary if we can show that both f and L[v] are of order

O
(
Ã>1Â>f̃

)
. This is true for f since

f = A>A−>f = O
(
Ã>Â>f̃

)
= O

(
Ã>1Â>f̃

)
.

The remainder of the theorem consists of proving the order of L[v]. Let P [g] be the n-

dimensional vector consisting of the function g : R → Rd evaluated at each node and

multiplicity, written in partitioned form as

P [g] =



g(x1)
...

g(m1−1)(x1)
...

g(xν)
...

g(mν−1)(xν)


.

Furthermore, let Ψ be the d × n matrix-valued function such that the kth column of Ψ(x)

equals ψk(x):

Ψ(x) = (ψ1(x), . . . ,ψn(x)).

Then we can write the system (6.4.1) as Bc = ϕ, where c = (c1, . . . , cn)>,

B = P [L[Ψ]] = (P [L[ψ1]], . . . ,P [L[ψn]]), ϕ = P [f ] (6.4.2)

and v = Ψc.

Collocating f by v′ +A>v is equivalent to collocating A−>f by A−>v′ + v, or in other

words,

P
[
A−>Ψ′ + Ψ

]
c = P

[
A−>f

]
.

Note that A−>Ψ′ = O
(
Â>1d×n

)
= o(1d×n). Furthermore P [Ψ] consists of the basis func-

tions evaluated at the given nodes and multiplicities, thus by hypothesis is nonsingular. It

follows that the alternate collocation matrix P
[
A−>Ψ′ + Ψ

]
= P

[
A−>Ψ′

]
+ P [Ψ] satisfies

the conditions of Theorem 6.1.1, hence its inverse exists and is O(1) when ω is large and

c = P
[
A−>Ψ′ + Ψ

]−1
P
[
A−>f

]
= O

1n×n

 Â>f̃...
Â>f̃


 .
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We thus find that

L[v] = L[Ψc] = A>(A−>Ψ′ + Ψ)c = O

Ã>1d×n

 Â>f̃...
Â>f̃


 .

The theorem follows since

1d×n

 Â>f̃...
Â>f̃

 = (1d×d, . . . ,1d×d)

 Â>f̃...
Â>f̃

 =
n

d
1d×dÂ

>f̃ .

Q.E.D.

The following corollary shows, under fairly general conditions, that a polynomial basis

will always obtain the desired order of error in a Levin-type method. It proves this order of

error for cases which were not included in the preceding theorem, such as integrals with an

Airy kernel.

Corollary 6.4.2 Suppose that A(x) = C−1K(x)C for some nonsingular matrix K such

that K−1 = O
(
K̂
)

for K̂ = o(1). Then a Levin-type method with the standard polynomial

basis has an order of error

QL[f ]− I[f ] = O
(
f̃>

∣∣∣C−1
∣∣∣ K̂1K̂sỹ

)
.

Proof :

The standard polynomial basis is equivalent to taking

Ψ(x) =
(
Id, xId, . . . , x

n/dId
)
.

Suppose that C = Id, hence A = K. In this case P [Ψ] is a block confluent Vandermonde

matrix, where the confluent Vandermonde matrix is the matrix associated with Hermite

interpolation. Thus P [Ψ] is nonsingular, and this corollary follows from Theorem 6.4.1.

Now suppose that C 6= Id. The remainder of the proof of this corollary consists of showing

that the Levin-type method we have constructed is equivalent to a Levin-type method with

the matrix K in place of A, hence both methods have exactly the same error. Note that

y2 = Cy satisfies the differential equation y′2 = Ky2. Furthermore

I[f ] =
∫ b

a
f>y dx =

∫ b

a
f>C−1y2 dx =

∫ b

a
f>2 y2 dx,

for f2 = C−>f . We have just shown that a Levin-type method for the oscillator y2 has the

requisite order of error. Let v2 be the collocation function associated with the Levin-type

method with y2. We will show that

v>y = v>2 y2 = v>2 Cy.
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Let

C̄ =

C . . .
C

 .
For the y2 collocation system, we solve the system B2c2 = ϕ2, where

B2 = P
[
Ψ′
]

+ P
[
K>Ψ

]
and ϕ2 = P [f2] = P

[
C−>f

]
= C̄−>ϕ.

Because of the block diagonal structure of Ψ, C>Ψ = ΨC̄>. Thus we find that

P
[
K>Ψ

]
= P

[
C−>A>C>Ψ

]
= P

[
C−>A>ΨC̄>

]
= C̄−>P

[
A>Ψ

]
C̄>.

Because of this, and the fact that P [Ψ′] commutes with C̄>,

C̄>B2C̄
−> = C̄>(P

[
Ψ′
]

+ P
[
K>Ψ

]
)C̄−> = C̄>(P

[
Ψ′
]

+ C̄−>P
[
A>Ψ

]
C̄>)C̄−>

= P
[
Ψ′
]

+ P
[
A>Ψ

]
= B.

It follows that

C>v2 = C>ΨB−1
2 ϕ2 = ΨC̄>B−1

2 C̄−>ϕ = ΨB−1ϕ = v.

Q.E.D.

The Bessel kernel satisfies the conditions of this corollary with C = I. For the Airy

kernel, we take C = diag (ω3/2, 1), in which case

K(x) = CA(x)C−1 =

(
0 ω3/2

−ω3/2x 0

)
.

Then

K−1(x) =

 0 − 1
ω3/2x

1
ω3/2 0

 = o(1) ,

and the requisite hypothesis is satisfied. The asymptotic order of error predicted by the

preceding corollary is equivalent to that of the asymptotic expansion for both the case where

f̃ = 1 and f̃ = (1, 0)>.

Returning to the example of Figure 6.37, we now approximate the same integral,

I[f ] =
∫ 2

1

[
cosxAi (−ωx)− ω exAi ′(−ωx)

]
dx,

using a Levin-type method with polynomial basis in Figure 6.39. Using exactly the same

information as the asymptotic expansion, we reduce the error by a factor of two. Unlike an

asymptotic expansion, we also have the ability to reduce the error further by adding nodes
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Figure 6.39: The error scaled by ω7/4 of QL[f ] with endpoints for nodes and multiplicities both
one (left graph) and QL[f ] with nodes {1, 4/3, 5/3, 2} and multiplicities all one (middle graph),
and the error scaled by ω13/4 of QL[f ] with endpoints for nodes and multiplicities both two (right
graph), for I[f ] =

∫ 2
1 [cosxAi (−ωx)− ω exAi ′(−ωx)] dx.
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Figure 6.40: The error scaled by ω13/4 of QL[f ] with endpoints for nodes and multiplicities both
one (left graph), compared to the error scaled by ω19/4 of QL[f ] with endpoints for nodes and
multiplicities both two (right graph), for I[f ] =

∫ 2
1 Ai (−ωx) dx.

within the interior of the interval. Adding just two nodes, one at 4/3 and one at 5/3, reduces

the error by a factor of 100. This figure also demonstrates that adding multiplicities to the

endpoints does indeed increase the asymptotic order.

As another example, consider the computation of the zeroth moment of the Airy function

Ai, in particular
∫ 2
1 Ai (−ωx) dx. In this case, y remains the same, while we take f = (1, 0)>.

As predicted, Figure 6.40 shows that the approximation has an error of order ω−13/4 with

multiplicities both one, which increases to ω−19/4 with the addition of multiplicities. This is

indeed a higher asymptotic order than the previous integral involving Airy functions.

Remark : With this approximation in hand we can immediately approximate any of the

higher moments, using the integral relation∫
xk+3Ai (x) dx = xk+2Ai ′(x)− (k + 2)xk+1Ai (x) + (k + 1)(k + 2)

∫
xkAi (x) dx,

cf. [2]. This presents the possibility of constructing a Filon-type method, where we approx-
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Figure 6.41: The error scaled by ω7/2 of QL[f ] with endpoints for nodes and multiplicities
both two (left graph), compared to QL[f ] with nodes {1, 3/2, 2} and multiplicities {2, 1, 2} (right

graph), for I[f ] =
∫ 2
1

[
x−2J2(ωx) + x3J3(ωx)

]
dx.

imate the integral
∫ b
a f(x)Ai (−ωx) dx by interpolating f by a polynomial v, and using the

formulæ for the moments to compute
∫ b
a v(x)Ai (−ωx) dx. As this idea is tangential to the

topic of this chapter, we will not investigate it further.

Finally, consider the integral
∫ 2
1

[
x−2J2(ωx) + x3J3(ωx)

]
dx. In Figure 6.41 we compare

two methods of order O
(
ω−7/2

)
: the first with endpoints for nodes and multiplicities both

equal to two, and the second with an additional node at 3/2 with multiplicity one. We obtain

the expected order of error and adding an additional interpolation point further decreases

the error.

6.5. Asymptotic basis

One key—and easily overlooked—degree of freedom in a Levin-type method is in the

choice of basis. Though the obvious choice of using polynomials does indeed provide good

approximation, it ignores the wealth of information known about f and A which could be

used to make L[v] close to f . In Section 3.3 it was noted that for the eiωg oscillator, using

the functions σk from the asymptotic expansion as a basis caused the order of the resulting

Levin-type method to increase with each additional node point. In this section we show that

this carries over to vector-valued kernels as well. This observation is of considerably more

importance for the vector-valued case, since it allows us to derive a high asymptotic order

approximation with a significantly smaller system. Note, however, that we still require the

same number of derivatives for f and A as in the asymptotic expansion.

Define the asymptotic basis as

ψ1 = A−>f , ψk+1 = A−>ψ′k, k = 1, 2, . . . .
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As in Theorem 6.4.1, suppose that f = O
(
f̃
)
, A = O

(
Ã
)

and A−1 = O
(
Â
)
, where

ÃÂ = O(1). Thus ψk = O(Âk>f̃). Let

W = diag (1, ‖Â‖, . . . , ‖Ân−1‖).

If f = O(1), then the entries in the jth column of B are all O
(
‖Âj−1‖

)
, where B is again

the matrix (6.4.2) associated with the collocation system (6.4.1): B = P [Ψ′] + P
[
A>Ψ

]
.

We now want to select all the terms B that are of maximum order, thus let G equal all the

terms of BW−1 that behave like O(1). The following theorem states that under this choice

of basis, a Levin-type method will have a higher asymptotic order.

Theorem 6.5.1 Suppose that f = O(1), Â(k+1)>f̃ = O
(
Âk>f̃

)
, and that G is nonsingular

with G−1 = O(1). Then

I[f ]−QB[f ] = O
(
‖Ân‖1>Âs+1ỹ

)
,

where QB[f ] is a Levin-type method using the asymptotic basis and s = min {m1,mν}.

Proof :

We will show that L[v]− f = O
(
‖Ân‖1

)
. First we find that

L[v]− f =
n∑
k=1

ckL[ψk]− f =
n∑
k=1

ck
(
ψ′k + A>ψk

)
− f

=
n∑
k=1

ck
(
A>ψk+1 + A>ψk

)
− A>ψ1

= A>
[
(c1 − 1)ψ1 +

n∑
k=2

(ck−1 + ck)ψk + cnψn+1

]

=
A>

detB

[
(detB1 − detB)ψ1 +

n∑
k=2

(detBk−1 + detBk)ψk + detBnψn+1

]
, (6.5.1)

where the matrix Bk is the matrix B with its kth column replaced by ϕ = P [f ], cf. Cramer’s

rule. If bij is the ijth entry of B = P
[
Ψ′ + A>Ψ

]
, then bij = O

(
‖Âj−1‖

)
, hence the ijth

entry of BW−1 is
bij

‖Âj−1‖ = O(1). It follows that BW−1 − G = o(1), as all terms of order

O(1) are within G. Since G is nonsingular, Theorem 6.1.1 states that (BW−1)−1 = O(1).

Thus we obtain

(detB)−1 = detB−1 = det(BW−1W )−1 = detO(1) detW−1
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= O(1)

n−1∏
j=0

‖Âj‖

−1

= O

n−1∏
j=0

‖Âj‖−1

 .

We now wish to show that the term multiplied by ψk in (6.5.1), namely detB1 − detB,

detBk−1 + detBk or detBn, is of order O
(∏n

j=0
j 6=k−1

‖Âj‖
)
. Note that,

det
(
. . . ,P

[
A>ψk

]
, . . . ,P

[
A>(ψk+1 + ψk)

]
, . . .

)
= det

(
. . . ,P

[
A>ψk

]
, . . . ,P

[
A>ψk+1

]
, . . .

)

which follows since we can add the multiple of one column to another without altering a

determinant. Using this fact, along with determinant manipulations à la Theorem 5.3.2, we

obtain

detB1 − detB = det
(
P
[
A>ψ1

]
,P
[
A>(ψ3 +ψ2)

]
, . . . ,P

[
A>(ψn+1 +ψn)

])
− det[P

[
A>(ψ2 +ψ1)

]
,P
[
A>(ψ3 +ψ2)

]
, . . . ,P

[
A>(ψn+1 +ψn)

]
]

=− det
(
P
[
A>ψ2

]
,P
[
A>(ψ3 +ψ2)

]
, . . . ,P

[
A>(ψn+1 +ψn)

])
=− det

(
P
[
A>ψ2

]
,P
[
A>ψ3

]
, . . . ,P

[
A>ψn+1

])
=− det

(
P
[
ψ′1
]
,P
[
ψ′2
]
, . . . ,P

[
ψ′n
])
.

Since P [ψ′k] = O
(
‖Âk‖, . . . , ‖Âk‖

)>
, the kth column in this determinant is composed of

entries of order O
(
‖Âk‖

)
, thus the determinant is of the requisite order O

(∏n
k=1 ‖Âk‖

)
.
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Likewise, writing the kth column of B, P [L[ψk]] = P
[
A>(ψk +ψk+1)

]
, as bk,

detBk−1+ detBk = det
(
b1, . . . , bk−2,P

[
A>ψ1

]
, bk, bk+1, . . . , bn

)
+ det

(
b1, . . . , bk−2, bk−1,P

[
A>ψ1

]
, bk+1, . . . , bn

)
= det

(
b1, . . . , bk−2,P

[
A>ψ1

]
,P
[
A>ψk+1

]
, bk+1, . . . , bn

)
+ det

(
b1, . . . , bk−2,P

[
A>ψ1

]
,P
[
A>ψk

]
, bk+1, . . . , bn

)
+ det

(
b1, . . . , bk−2,P

[
A>ψk

]
,P
[
A>ψ1

]
, bk+1, . . . , bn

)
+ det

(
b1, . . . , bk−2,P

[
A>ψk−1

]
,P
[
A>ψ1

]
, bk+1, . . . , bn

)
= det[P

[
A>ψ2

]
, . . . ,P

[
A>ψk−1

]
,P
[
A>ψ1

]
,P
[
A>ψk+1

]
,

P
[
A>ψk+2

]
, . . . ,P

[
A>ψn+1

]
]

+ det[P
[
A>ψ2

]
, . . . ,P

[
A>ψk−1

]
,P
[
A>ψk−1

]
,P
[
A>ψ1

]
,

bk+1, . . . , bn]

= det
(
P
[
ψ′1
]
, . . . ,P

[
ψ′k−2

]
,P [f ],P

[
ψ′k
]
,P
[
ψ′k+1

]
, . . . ,P

[
ψ′n
])

=O

 n∏
j=0

j 6=k−1

‖Âj‖

 .

By similar logic, detBn is O
(∏n−1

j=0 ‖Âj‖
)
. Thus the kth term in (6.5.1)—the term mul-

tiplied by A>ψk—is of order O
(
‖Ân‖/‖Âk−1‖

)
. But this term is multiplied by A>ψk =

O
(
Â(k−1)>f̃

)
, hence

L[v]− f =
n∑
k=1

O
(
‖Ân‖
‖Âk−1‖

Â(k−1)>f̃

)
= O

(
‖Ân‖

) n∑
k=1

O

Â(k−1)>f̃∥∥∥Âk−1
∥∥∥
 = O

(∥∥∥Ân∥∥∥1
)
,

and the theorem follows from Corollary 6.2.2.

Q.E.D.

The decomposition to determine the matrix G can be achieved with symbolic algebra in

the general case, and by construction in specific cases. As an example, consider the Bessel

kernel (J0(ωx), J1(ωx))>. Then

A(x) =
(

0 −ω
ω −x−1

)
and W = O

(
diag (1, ω−1, ω−2, . . . , ω−n+1)

)
.
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Figure 6.42: The error scaled by ω31/4 of QB[f ] with endpoints for nodes and multiplicities
both one (left graph), compared to QA5 [f ] (right graph), for the oscillatory integral I[f ] =∫ 2
1 [cosxAi (−ωx)− ω exAi ′(−ωx)] dx.

We can write

A = A1 + ωA2 for A2 =
(

0 −1
1 0

)
,

where A−1 = −ω−1A2 + O
(
ω−21

)
. We want to select only the terms of maximum order.

The term of maximum order for ψk is ω−kφk, where

φ1(x) = −A>2 f , φk+1(x) = −A>2 φ′k(x) = (−A>2 )k+1f (k).

Thus we obtain the matrix

G = P
[(
A>2 φ1, . . . , A

>
2 φn

)]
= P

[(
f , . . . , (−A>2 )n−1f (n−1)

)]
.

the form of G for other examples can be found by similar logic.

We once again return to the example from Figure 6.37: computing the integral

I[f ] =
∫ 2

1

[
cosxAi (−ωx)− ω exAi ′(−ωx)

]
dx.

Consider the case with only the endpoints for nodes and multiplicities both one. Then n = 4,

i.e., the dimension times the number of nodes, and the theorem predicts an error of order

O
(∥∥∥Â4

∥∥∥1>Â2y
)

= O
(
ω−6

(
ω−3, ω−3

)(
ω−1/4

ω5/4

))
= O

(
ω−31/4

)
.

For comparison, to obtain the same order of error we would have needed to take s equal to

five in the asymptotic expansion, or a Levin-type method with multiplicities at least four

at the endpoints. This Levin-type method would require solving a much larger system of

4 ·2 ·d = 16 equations. Figure 6.42 confirms the order of error of the new Levin-type method

with asymptotic basis, and compares the error to that of the asymptotic expansion of the
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Figure 6.43: The error scaled by ω13/2 of QB[f ] with endpoints for nodes and multiplicities both
one (left graph), compared to the error scaled by ω17/2 of QB[f ] with an additional node at the

midpoint with multiplicity one (right graph), for
∫ 2
1

[
x−2J2(ωx) + x3J3(ωx)

]
dx.

same order. Note that the method becomes so accurate that it is impractical to extend

this graph further: computing the integral with Gauss–Legendre quadrature to sufficient

accuracy to make a comparison is extraordinarily expensive.

Figure 6.43 demonstrates that adding a node to QB[f ] does indeed increase the asymp-

totic order, using the integral from Figure 6.41

I[f ] =
∫ 2

1

[
x−2J2(ωx) + x3J3(ωx)

]
dx.

In this case, ‖Ân‖ = O
(
ω−n

)
, hence adding a single node increases the order by two. Note

that, because of the large difference in the scaling factor, the errors in the right graph are in

fact significantly smaller than those in the left graph.

Remark : The derivatives required to find each ψk can quickly become unmanageable when

either f or A is moderately complicated. This issue can be mitigated since it is possible to

show that including the first k of these basis functions, along with any other basis functions

of one’s choice, results in an error of order O
(∥∥∥Âk∥∥∥1>Âs+1y

)
. In short, adding even just

the single, trivially computed, basis function ψ1 = A−>f to the standard polynomial basis

will increase the asymptotic order. It may also be possible to use finite differences in place

of derivatives, in a similar vein to Section 3.5, though this idea has not been thoroughly

investigated.

Remark : It is obvious how to construct an asymptotic basis for the Levin-type methods of

Section 6.3. Indeed, the proof of the asymptotic order should be significantly simpler, being

a simple generalization of Theorem 3.3.1. This idea has not yet been investigated in detail.
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6.6. Future work

There are still several open questions. The first question is whether similar techniques

can be used for multivariate highly oscillatory integrals. It may be possible to combine

the techniques from this chapter and Chapter 5—which derived a Levin-type method for

integrals of the form ∫
Ω
f(x)eiωg(x) dx

—to compute integrals whose highly oscillatory component satisfies a partial differential

equation. Another open question is quadrature for integrals which contain a turning point,

for example ∫ 1

0
f(x) Ai (−ωx) dx. (6.6.1)

A turning point is any point ξ where the matrix A(ξ) becomes singular, hence the derivation

of the asymptotic expansion is no longer valid over an interval containing such a point. A

way to compute (6.6.1) in particular will be presented in Chapter 7, though it cannot be

generalized to other kernels containing turning points.

A method for irregular exponential oscillators eiωg with stationary points was presented

in Chapter 4. In this case an interpolation basis was found that could be integrated in closed

form, regardless of what the oscillator g was. This basis was constructed by using incomplete

Gamma functions [2], where the choice of basis resulted from solving the differential equation

v′ + (r − 1)iωxr−1v = xk. (6.6.2)

It might be possible to find a related ansatz for the vector-valued case. For example, consider

the integral ∫ 1

−1
f(x) y(x) dx,

where y satisfies an Airy-like equation

y′′ + ωqy = 0, where q(0) = 0 and q′(0) 6= 0.

Emulating the derivation for the exponential oscillator in (6.6.2) would require finding a

solution to the equation

v′′ + ωxv = xk.

Mathematica can compute a solution to this differential equation in terms of Airy functions

and regularized generalized hypergeometric functions, however hypergeometric functions lack

the simplicity of the incomplete Gamma function, and computation is significantly more

challenging.
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Chapter 7

Unbounded Domains and Infinite Oscillations

As of this chapter, we have only looked at integrals with well-behaved integrands. We

now look at two cases that contain singularities. The first situation is when the interval of

integration is unbounded. The canonical example is

∫ ∞
1

eiωx

x
dx,

which is related to the exponential, sine and cosine integrals [2]. This integral does not

converge absolutely, however it does exist as an improper integral:

∫ ∞
1

eiωx

x
dx = lim

b→∞

∫ b

1

eiωx

x
dx.

Another situation which we will investigate is when the kernel has an infinite number of

oscillations within the integration interval, or in other words, for the integral∫ b

a
f(x)eiωg(x) dx,

the oscillator g(x) has a singularity. An example of such an integral is∫ 1

0
eiωx−1

dx.

Despite the apparent intractability of these two problems, a Levin-type method with an

appropriate collocation basis is still an extraordinarily effective quadrature scheme.

In Section 7.1, we analyse oscillatory integrals over unbounded intervals. This proceeds

as usual: we first derive an asymptotic expansion, which is used in the proof of order for

associated Levin-type methods. This methodology again proves successful for integrals with

infinite oscillations, in Section 7.2. In Section 7.3, we see that the same ideas can be utilized

for other oscillators, in particular integrals involving Airy functions over unbounded intervals.

In Section 1.3 it was noted that a useful application for oscillatory integration was the

computation of special functions. We finally have the tools necessary for computing special

functions using their oscillatory integral representations, which we use for the Airy function

in Section 7.4.

Remark : This chapter consists of as-of-yet unpublished original research, though the

asymptotic expansions derived are similar to expansions found in [74].
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7.1. Unbounded integration domains

In this section we investigate the case where the interval of integration is unbounded, for

example integrating over (a,∞). Consider the integral

E1(−iω) =
∫ ∞

1

eiωx

x
dx,

where E1 is the exponential integral [2]. This function is important since we can derive the

cosine integral Ci and sine integral Si from its real and imaginary parts. As before, we begin

by deriving an asymptotic expansion:

Theorem 7.1.1 Suppose that 1/g′ and its derivatives are bounded in [a,∞), f(x)→ 0 as

x→∞ and d
dx

[
f(x)
g′(x)

]
∼ xαu(x), for a smooth function u such that it and its derivatives are

bounded, and this relationship holds under differentiation. If α < −1, then

I[f ] ∼
∞∑
k=1

1

(−iω)k
σk(a)eiωg(a),

where, as before,

σ1 =
f

g′
, σk+1 =

σ′k
g′
, k ≥ 1.

Proof : Expanding out the first term of the asymptotic expansion we have

∫ M

a
feiωg dx =

1

iω

[
f

g′
eiωg

]M
a

− 1

iω

∫ M

a

(
f(x)

g′(x)

)′
eiωg dx.

We know that f(M)
g′(M)eiωg(M) → 0 as M →∞, since g′ does not approach zero. Furthermore,

the integral I
[(

f
g

)′]
converges absolutely, since the integrand decays faster than x−1. Finally,

we obtain (
σ′1(x)

g′(x)

)′
∼
(
xαu(x)

g′(x)

)′
= xα

(
u′(x)

g′(x)
+ α

u(x)

xg′(x)
− u(x)g′′(x)

g′(x)2

)
.

It is not hard to see that u′(x)
g′(x) + α u(x)

xg′(x) −
u(x)g′′(x)
g′(x)2

is smooth and it and its derivatives are

bounded, thus σ′1(x) satisfies the conditions on f , and the theorem follows by induction.

Q.E.D.

A version of Corollary 3.1.1 follows immediately, where now f only depends on the endpoint

a. We cannot, however, use this corollary to derive a Filon-type method, since polynomials

do not decay at infinity. We can show that Levin-type methods do work with any basis:
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Theorem 7.1.2 Suppose that f and g satisfy the requirements of Theorem 7.1.1. Then,

using the notation of Theorem 3.2.1,

QL[f ]− I[f ] = O
(
ω−s−1

)
,

where s = m0 and

QL[f ] = −v(a)eiωg(a).

Proof : Suppose each function in the basis {ψ1, . . . , ψn} satisfies the conditions on f in

Theorem 7.1.1. Then the proof of this theorem is unaltered from Theorem 3.2.1, since

I[L[v]] = QL[f ]. If the basis {ψ1, . . . , ψn} does not satisfy the conditions, we replace it by a

basis
{
ψ̃0, . . . , ψ̃n

}
that does satisfy these properties. Define ψ̃k(x) so that it equals ψk(x)

for all x0 ≤ x ≤ xν , goes to zero smoothly in xν < x < N < ∞ for some fixed constant

N > xν and ψ̃k(x) ≡ 0 for N ≤ x <∞. The collocation system (3.2.1) with this new basis

is unchanged from the original collocation system, hence QL[f ] is also unchanged. However,

ψ̃k now satisfies the requisite properties, and the theorem follows.

Q.E.D.

Returning to the E1 case, we obtain an asymptotic expansion

E1(−iω) ∼ eiω
∞∑
k=1

(−1)k−1 (k − 1)!

(−iω)k
.

It should come as no surprise that this is equivalent to the expansion in [2]. We can use the

asymptotic basis with a Levin-type method—this time without a constant function in the

basis—to derive an approximation. Consider the case of arbitrarily chosen nodes {1, 5, 10,

20} with multiplicities all one. This has an order of error O
(
ω−6

)
, thus we compare it to the

asymptotic expansion of order O
(
ω−6

)
in the left side of Figure 7.44. Even with arbitrarily

chosen nodes, QB[f ] is substantially more accurate than the asymptotic expansion; in this

case it has less than a tenth of the error. We can also compare the real parts of each

approximation to −Ci (ω), where Ci is the cosine integral as defined in [2]. This results in

the right side of Figure 7.44.

We can also use this method to compute

En(−iω) =
∫ ∞

1

eiωt

tn
dt.

With this approximation in hand, we can successfully compute the incomplete Gamma func-

tion
Γ(a,−iω) = (−iω)aE1−a(−iω),
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Figure 7.44: On the left, the error scaled by ω6 of the asymptotic expansion (top) and QB[f ]

with nodes {1, 5, 10, 20} and multiplicities all one (bottom) for I[f ] =
∫∞
1

1
xeiωx dx compared to

E1(−iω). On the right, the real parts of the same approximations compared to −Ci (ω).

whenever a < 1. When a ≥ 1, Γ(a,−iω) can be computed by the recursive formula

Γ(a, x) = (a− 1)Γ(a− 1, x) + xa−1e−x.

This approximation for the incomplete Gamma functions can then be used in conjunction

with a Moment-free Filon-type method, to obtain an approximation scheme in terms of only

elementary operations.

7.2. Infinite oscillations

Another potential issue is when there are an infinite number of oscillations within the

interval of integration. For example, consider the integral

∫ 1

0
eiωx−1

dx.

The convergence of such integrals follows from the definition of a Riemann integral. Assuming

g′ goes to infinity at a sufficiently fast rate, we can indeed derive an asymptotic expansion:

Theorem 7.2.1 Suppose that g is smooth, g′ is nonzero in [a, b), 1/g′(x) ∼ (x − b)αu(x)

as x→ b, and f(x) ∼ (x− b)βv(x), where α ≥ 1 and both ∼ relationships are differentiable.

Suppose further that u, v and their derivatives are bounded. If α + β ≥ 1, then

I[f ] ∼
∞∑
k=1

1

(−iω)k
σk(a)eiωg(a).
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Proof : Let M ∈ (a, b) and note that

∫ M

a
feiωg dx =

1

iω

[
f

g′
eiωg

]M
a

− 1

iω

∫ M

a

(
f

g′

)′
eiωg dx

∼ 1

iω

[
(x− b)α+βuveiωg

]M
a
− 1

iω

∫ M

a
ṽeiωg dx,

where ṽ ∼ (x− b)α+β−1 [(α + β)uv + (x− b)(uv)′], which satisfies the conditions on v. Since

α + β ≥ 1 > 0, we know that (x− b)α+β → 0 as M → b. Furthermore, β̃ = α + β − 1 > 0,

hence the integrand is bounded. Thus we let M → b to obtain

I[f ] = − 1

iω

f(a)

g′(a)
eiωg(a) − 1

iω

∫ b

a
ṽeiωg dx.

Since α + β̃ = 2α + β − 1 ≥ α ≥ 1, we can repeat the process with ṽ in place of f and β̃ in

place of β. The asymptotic expansion follows by induction.

Q.E.D.

An equivalent theorem holds over unbounded intervals:

Corollary 7.2.2 Assume that a > 0. Consider the integral over (a,∞), where 1
g′(x) ∼

xαu(x), f(x) ∼ xβv(x), again both ∼ relationships are differentiable, and α < 0. If α+β < 0,

then

I[f ] ∼
∞∑
k=1

1

(−iω)k
σk(a)eiωg(a).

Proof : The proof to this corollary is similar to Theorem 7.2.1. Let s be an integer large

enough so that sα + β ≤ −2. Then the s-term expansion over (a,M) is

−
s∑

k=1

1

(−iω)k
{σk(M)− σk(a)}+

1

(−iω)s

∫ M

a
σ′se

iωg dx.

Note that σ1(x) ∼ xα+βu(x)v(x) and σ′1(x) ∼ xα+β
[
(α + β)x−1u(x)v(x) + (u(x)v(x)

]′
.

Hence σk(x) = xkα+β ṽ for some smooth function ṽ, where ṽ = O(1). It follows that the

terms evaluated at M of the expansion vanish as M → ∞. Furthermore the integral I[σ′s]

converges absolutely, since |σ′s(x)| ≤ Cxsα+β ≤ C ′x−2.

Q.E.D.

A Filon-type method for the bounded interval case follows immediately, where now the

order of the method depends only on the multiplicity at a. Finding a Levin-type method is
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Figure 7.45: Errors scaled by ω2 of the one-term asymptotic expansion (top) compared to a

Levin-type method collocating at {1/2, 1} with multiplicities both one, for I[f ] =
∫ 1
0 eiωx−1

dx.

more difficult. We derive it for the finite-interval case, though the infinite-interval case can

be handled in the same manner. Note that∫ M

a
L[v] eiωg dx = v(M)eiωg(M) − v(a)eiωg(a).

In order for this to converge as M → b, v(M) must go to zero. Hence assume that the

collocation basis satisfies ψk(b) = 0. In this case, we define

QL[f ] = I[L[v]] = −v(a)eiωg(a).

The behaviour of L[v] = v′ + iωg′v at b depends on the order of the zeros of ψk at b: if the

order of the pole of g′ is greater than that of the zeros, then L[v] will be unbounded at b.

Thus we ensure that the order of the zeros of each ψk are at least that of the order of the pole

of g′. Assuming that b is not a collocation point, we can, for any basis, replace ψk by some

smooth ψ̃k such that ψ̃k(x) = ψk(x) for all a ≤ x ≤ xν , ψ̃k(x) goes to zero in xν ≤ x ≤ N < b

and ψ̃k(x) ≡ 0 for N ≤ x ≤ b, where N is some constant. As in Theorem 7.1.2, this does

not effect the collocation system at all, meaning that replacing ψk by ψ̃k has no effect on

QL[f ]. Hence the requirements on the basis are effectively unchanged.

Theorem 7.2.3 Suppose that f satisfies the requirements of Theorem 7.2.1 or Corol-

lary 7.2.2, and b is not a collocation point. Then

QL[f ]− I[f ] = O
(
ω−s−1

)
,

where s = m0 and QL[f ] = −v(a)eiωg(a).

As a numerical example, consider the integral I[f ] =
∫ 1
0 eiωx−1

dx. Figure 7.45 compares

a Levin-type method with the polynomial basis to the asymptotic expansion. In Figure 7.46,
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Figure 7.46: Errors scaled by ω2 of the one-term asymptotic expansion (left graph, top) compared
to a Levin-type method collocating at {1, 2} with multiplicities both one (left graph, bottom),
and errors scaled by ω3 of the two-term asymptotic expansion (right graph, top) compared to
a Levin-type method collocating at {1, 2} with multiplicities {2, 1} (right graph, bottom), for

I[f ] =
∫∞
1 cosx eiωx2

dx.

we consider the unbounded integral
∫∞
1 cosx eiωx2

dx, and compare two Levin-type methods

to the asymptotic expansion: the first Levin-type method of order O
(
ω−2

)
and the second

Levin-type method of order O
(
ω−3

)
. In all three diagrams, Levin-type methods are a clear

improvement over the asymptotic expansion of the same order.

7.3. Higher order oscillators

We can also generalize the techniques of this chapter for higher order oscillators. For

simplicity, we will focus on the case yω(x) = Ai (−ωx), over the interval (a,∞) for a > 0:

I[f ] =
∫ ∞
a

f(x)Ai (−ωx) dx.

Assume that f and its derivatives are bounded. This integral has both an infinite domain,

and an increasingly large frequency of oscillations at∞. The convergence of the integral will

follow from the proof of the asymptotic expansion. We obtain the first term of the expansion

over a finite interval via integration by parts:

IM [f ] =
∫ M

a
fyω dx = − 1

ω3

f(x)

x
y′ω(x) +

(
f(x)

x

)′
yω(x)

M
a

− 1

ω3
IM

(f(x)

x

)′′
As M → ∞, the contributions from that endpoint in the first term go to zero. Moreover,

note that:

IM

(f
x

)′′ = 2IM

[
f

x3

]
− 2IM

[
f ′

x2

]
+ IM

[
f ′′

x

]
.
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Figure 7.47: The error scaled by ω13/4 of the one-term asymptotic expansion (left graph) compared
to a Levin-type method collocating at {1, 3} with multiplicities all one (middle graph) and a

Levin-type method collocating at
{

1, 3
2 , 2, 3

}
again with multiplicities all one (right graph), for

I[f ] =
∫∞
1 Ai (−ωx) dx.

The first two of these integrals converge absolutely as M → ∞. To prove that the last

integral converges, we integrate it by parts once more. The nonintegral terms evaluated at

M go to zero. The remaining integral term can be written as:

IM

(f ′′
x2

)′′ = 6IM

[
f ′′

x4

]
− 4IM

[
f (3)

x3

]
+ IM

[
f (4)

x2

]
.

All three of these integrals converge absolutely. Thus it follows that we can let M →∞ to

obtain

I[f ] =
∫ ∞
a

fyω dx =
1

ω3

f(a)

a
y′ω(a) +

(
f(a)

a

)′
yω(a)

− 1

ω3
I

(f(x)

x

)′′ .
Using induction we derive an asymptotic expansion:

Theorem 7.3.1 Suppose that f and its derivatives are bounded in (a,∞). Then

∫ ∞
a

f(x)Ai (−ωx) dx ∼ −
∞∑
k=1

1

ω3k−1

σk(a)

a
Ai ′(−ωa)− 1

ω

(
σk(a)

a

)′
Ai (−ωa)

 ,
for σ1(x) = f(x) and σk+1(x) =

(
σk(x)
x

)′′
.

The asymptotic error for Levin-type methods can be proved similarly to Theorem 6.4.1,

where now

QL[f ] = −v(a)>y(a) = −v1(a)y(a)− v2(a)y′(a).

Figure 7.47 compares the asymptotic expansion to two Levin-type methods for the first

moment over the interval (1,∞), which do indeed exhibit an increase of accuracy over the

asymptotic expansion, whilst maintaining the asymptotic order. An application of this

theorem will appear in the next section.
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We can utilize the approximation over the interval (a,∞) to obtain an approximation for

the case of integrating the Airy function Ai (−ωx) in a domain which contains the turning

point x = 0. When a < 0, computing the integral over the interval (a, 0) is numerically trivial:

the integrand is nonoscillatory, and the value of the integral itself goes to 1
3 exponentially

fast as ω →∞ [2]. Thus assume that a = 0. From [2], we know that

∫ ∞
0

Ai (−ωx) dx =
2

3ω
,

hence we can write

I[f ] =
∫ b

0
Ai (−ωx) dx =

2

3ω
−
∫ ∞
b

Ai (−ωx) dx.

We know how to approximate the integral
∫∞
b Ai (−ωx) dx, thus we have found a way of

approximating
∫ b
0 Ai (−ωx) dx. All other moments can be expressed explicitly in terms of

Ai, Ai′, and the first moment, by using the recurrence relationships from [2]:∫
xAi (x) dx = Ai ′(x) ,∫
x2Ai (x) dx = xAi ′(x)− Ai (x) ,∫

xk+3Ai (x) dx = xk+2Ai ′(x)− xk+1Ai (x) + (n+ 1)(n+ 2)
∫
xnAi (x) dx.

Thus Filon-type methods are a viable option for the Airy kernel. The error in approximation

for the first moment is exactly same as in Figure 7.47.

7.4. Computing the Airy function

We now use the tools we have developed throughout this thesis to compute the Airy

function Ai (x), in particular when x is negative and the Airy function is oscillatory. We

utilize the integral representation

Ai (x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt.

We can transform this expression into a form more conducive to the methods developed with

a change of variables, giving us

Ai (x) =

√
−xe−i 23 (−x)3/2

π
Re

∫ ∞
0

e
i(−x)3/2

„
t3

3 −t+
2
3

«
dt.

This integral contains both a stationary point of order two at t = 1 and an infinite number

of oscillations at∞. We thus use a Moment-free Filon-type method from Chapter 4 over the
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Figure 7.48: Base-10 errors in computing Ai (−x) by Ãi (−x), for the one-term asymptotic
expansion (top), approximation with nodes {0, 1, 2} with multiplicities all one (second), nodes{

0, 1
2 , 1,

3
2 , 2, 3

}
with multiplicities all one (third) and nodes {0, 1, 2} with multiplicities {2, 3, 2}.

interval (0, 2) and a Levin-type method with asymptotic basis over (2,∞). Suppose we are

given an increasing sequence of nodes {x1, . . . , xν} with multiplicities {m1, . . . ,mν}, where

xρ = 2, for some ρ ≤ ν. Then, for

g(t) =
t3

3
− t+

2

3
,

define QFg [1, (0, 2)] as the Moment-free Filon-type method interpolating at the first ρ nodes

{x1, . . . , xρ} with multiplicities {m1, . . . ,mρ}. Furthermore, define QBg [1, (2,∞)] as the

Levin-type method with asymptotic basis, collocating at the nodes {xρ, . . . , xν} and multi-

plicities {mρ, . . . ,mν}. Then we obtain an approximation

Ãi (x) =

√
−xe−i 23 (−x)3/2

π
Re

{
QFg [1, (0, 2)] +QBg [1, (2,∞)]

}
In Figure 7.48, we compare four methods for computing the Airy function for negative

x of large magnitude: the standard one-term asymptotic expansion, found in [2], our new

approximation Ãi with nodes {0, 1, 2} and multiplicities all one, nodes
{

0, 1
2 , 1,

3
2 , 2, 3

}
with

multiplicities all one and finally Ãi with nodes {0, 1, 2} and multiplicities {2, 3, 2}. This

figure demonstrates that we can indeed improve the accuracy over the asymptotic expansion

by orders of magnitude. It should be emphasized that we have not proved that this approx-

imation scheme is guaranteed to converge with the addition of nodes, nor determined what

the optimum placement is for the nodes and multiplicities.

There exist many alternative methods for approximating Airy functions for large |x|,
mostly based on deformation to the complex plane and integrating along the path of steepest

descent. A comprehensive list of algorithms was compiled in [67]. In [34], Gauss–Laguerre
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quadrature is utilized along the path of steepest descent, though the error is never compared

to the asymptotic expansion, and it is unclear whether high asymptotic orders are achieved.

It is instead suggested to switch to the asymptotic expansion whenever |x| is large, for

example |x| ≥ 15.
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Chapter 8

Asymptotic Least Squares Approximation

In the study of ordinary differential equations, very accurate results can be achieved

efficiently when the solution is nonoscillatory. At the same time, when the solution oscillates

rapidly, asymptotic results such as the Wentzel–Kramers–Brillouin approximation (WKB

approximation, also known as the Liouville–Green approximation) [74] can be used to ap-

proximate the solution to the differential equation, where the accuracy actually improves as

the frequency of oscillations increases. Unfortunately, there is a limit to the accuracy of this

expansion, meaning that for moderate oscillations this expansion is not appropriate as an

approximation scheme. In this chapter we present a method which has the same asymptotic

behaviour as the asymptotic expansion, whilst being incredibly more accurate, and in fact

appears to converge to the exact solution, even for small frequencies.

In Section 3.3, Section 5.3 and Section 6.5, we used the asymptotic expansion in a collo-

cation system to approximate a particular solution to the Levin differential equation. This

approach successfully captured the asymptotic decay of the expansion, while significantly

improving the accuracy. Indeed, it was noted in Figure 3.10 that this approximation scheme

appeared to converge to the solution for fixed frequency at an exponentially fast rate as col-

location points were added. The motivation behind this chapter is to prove this observation,

and to generalize the method to other oscillatory differential equations. In place of colloca-

tion, we use a least squares system, as intuition suggests that the errors of both methods

are related, and proving convergence for least squares should be significantly easier. Though

we find an explicit, computable formula for the error in norm, we unfortunately fail to find

simple conditions for which this expression goes to zero. We hence leave the final step in the

proof of convergence as an open problem.

We analyse the asymptotic behaviour of differential equations with respect to a parameter

ω →∞, over a finite interval. In other words, we wish to solve the differential equation

Lω[v] (x) = f(x), a ≤ x ≤ b, (8.0.1)

where Lω[v] (x) is a linear differential operator. Of course, a unique solution to such an

equation only exists if suitable initial or boundary value conditions are imposed. We however

search merely for a particular solution: if the equation is inhomogenous, then this allows us

to convert the equation into its homogenous form; otherwise, we exploit the fact that the

equation is an ODE and find linearly independent particular solutions, which will span the

solution space. By accurately approximating the linearly independent solutions and taking
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an appropriate linear combination, we immediately obtain an approximation to (8.0.1) with

boundary conditions imposed.

An example is the Airy equation, where Lω[v] (x) = v′′(x) + ωxv(x) and f(x) is zero.

The idea is that ω represents the “frequency” of oscillations, and hence as ω increases the

solution to the differential equation becomes more and more oscillatory. Using traditional

approximation methods, such as the Runge–Kutta method or finite elements, would necessi-

tate decreasing the step-size in order to compensate for the oscillations. As ω increases this

becomes a monumental task, hence it is necessary to search for alternative approximation

schemes.

We assume that the we know the asymptotic behaviour of the particular solution we

wish to approximate. This means, for a solution v to (8.0.1), we know functions ψk such

that

v(x) ∼
∞∑
k=1

dk
ωk+s

ψk(x),

where dk are some constants which we need not know. Applying Lω[v] to both sides of the

preceding equation, we obtain an asymptotic expansion for f :

f(x) ∼
∞∑
k=1

dk
ωk+s

Lω[ψk] (x).

In Section 8.1, we develop an approximation vLS
n,ω that is asymptotically close to v, in

particular,
∥∥∥Lω[vLS

n,ω

]
− f

∥∥∥
2

= O
(
ω−n−s−1

)
. Furthermore, we guarantee that the accuracy

always improves as n increases, and as n goes to infinity
∥∥∥Lω[vLS

n,ω

]
− f

∥∥∥
2

becomes expo-

nentially small. Furthermore, we find a criterion—which is satisfied in all our examples—to

determine a simple expression for the exact L2 error of the method. This expression appears

to lend itself to a proof of convergence, though the proof is not completed.

With this approximation in hand, we then turn our attention to two important exam-

ples. First we revisit the approximation of highly oscillatory integrals, in Section 8.2. This

is essentially the asymptotic basis utilized in Section 3.3, with least squares in place of collo-

cation. Then, in Section 8.3, we investigate second order ODEs, particularly those for which

the WKB approximation is known. In both cases, we demonstrate numerically that the

approximation appears to converge exponentially fast for fixed ω, as n→∞. We follow this

with a brief discussion on numerical issues with the approximation scheme in Section 8.4.

Here we compare numerically least squares to collocation, a comparison which suggests that

the errors of the two methods are indeed related. We also present an alternative to the

asymptotic basis which uses finite differences in place of derivatives. Finally, we comment

on other applications that this method might have in Section 8.5.

Remark : This chapter consists of as-of-yet unpublished original research.
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8.1. Asymptotic least squares approximation

While an explicit solution to the differential equation (8.0.1) is not typically available,

often an asymptotically accurate approximation is known; in other words a function v is

known such that Lω[v]→ f as ω →∞. In many circumstances, we have a whole expansion,

where taking more terms in the expansion causes Lω[v] to converge faster to f as ω increases.

Unfortunately, when the parameter ω is fixed this expansion does not in general converge,

and for small ω the expansion is not an accurate approximation whatsoever.

The asymptotic expansion has the form

v(x) ∼
∞∑
k=1

dk
ωk+s

ψk(x),

for some set of functions {ψk}, where the coefficients dk are given. The idea behind the

method is to treat the constants dk as unknowns, determined not by the usual methods but

by minimizing the norm ‖f − Lω[v]‖, where the norm results from a related complex-valued

inner product 〈·, ·〉. We prove the results for a general inner product, however, in all examples

below we use the standard L2 inner product

〈f, g〉 =
∫ b

a
f(x)ḡ(x) dx.

Though the expansion itself can actually become less accurate as terms are added, this cannot

happen when we minimize the norm. Furthermore, we will prove that this approximation

has the same asymptotic decay as the original expansion, for increasing ω.

Theorem 8.1.1 Suppose that∥∥∥∥∥∥f −
n∑
k=1

dk
ωk+s

Lω[ψk]

∥∥∥∥∥∥ = O
(
ω−n−s

)
, ω →∞, (8.1.1)

for some coefficients dk. Let vLS
n,ω(x) =

∑n
k=1 ckψk(x), where the coefficients ck are chosen to

minimize ∥∥∥f − Lω[vLS
n,ω

]∥∥∥ .
Then ∥∥∥f − Lω[vLS

n,ω

]∥∥∥ = O
(
ω−n−s

)
.

Proof : We know for ck = dk/ω
k+s that

∥∥∥f − Lω[vLS
n,ω

]∥∥∥ = O
(
ω−n−s

)
. Thus, as the error

for the minimizer is less than or equal to this, the theorem follows.

Q.E.D.
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We call this method asymptotic least squares . In our examples,

f(x) =
n∑
k=1

dk
ωk+s

Lω[ψk] (x) +O
(
ω−n−s

)
holds true uniformly pointwise, thus (8.1.1) holds true for the L2 norm. As n increases, we

know that
∥∥∥f − Lω[vLS

n,ω

]∥∥∥ has no choice but to decrease, until it converges. The error of

its limit must decay faster for increasing ω than any finite choice of n, as it is by necessity

smaller. Hence we obtain the following corollary:

Corollary 8.1.2 Let v? = limn→∞ v
LS
n,ω. Then ‖f − Lω[v?]‖ decays exponentially fast as

ω →∞.

Minimizing the norm is accomplished by finding the minimum to the associated quadratic

function

∥∥∥f − Lω[vLS
n,ω

]∥∥∥2
= 〈f, f〉 −

∑
c̄k (〈f,Lω[ψk]〉+ 〈Lω[ψk] , f〉) +

∑
cj c̄k 〈Lω[ψj ] ,Lω[ψk]〉

= c?Ac− (b+ b̄)c+ ‖f‖2 ,

where

A =


〈Lω[ψ1] ,Lω[ψ1]〉 · · · 〈Lω[ψn] ,Lω[ψ1]〉

...
. . .

...

〈Lω[ψ1] ,Lω[ψn]〉 . . . 〈Lω[ψn] ,Lω[ψn]〉

 and b =

 〈f,Lω[ψ1]〉
...

〈f,Lω[ψn]〉

.
(8.1.2)

It is well known that a minimum of this linear system is c = A+b whenever A is positive

definite, where A+ is the pseudoinverse (which is equivalent to A−1 when A is nonsingular).

Since A is a Gram matrix, it is positive definite whenever it is nonsingular, or equivalently

whenever the basis {Lω[ψ1] , . . . ,Lω[ψn]} is linearly independent. If the basis is linearly

dependent, the minimum can still be determined by using singular value decomposition.

The fact that the approximation converges to something exponentially small is insuffi-

cient for a numerical approximation, as ω is fixed and the constant in front of the exponen-

tially decreasing term is unknown. In our examples, however, the approximation appears to

converge to the exact solution at an exponentially fast rate. The following theorem gives us

a computable expression for the error in approximation:

Theorem 8.1.3 Fix the frequency ω. Suppose that we can find find functions {φ1, . . . , φn}
such that Lω[ψk] = φk+1 + ωφk, where φ1 = f . If the functions {φ1, . . . , φn+1} are linearly

dependent, then f = Lω
[
vLS
n,ω

]
for ω large enough. Otherwise,

‖f − Lω[vn]‖2 =
1

ξ?ωG
−1
n+1ξω

,
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where ? is the conjugate transpose, Gn is the Gram matrix associated with {φ1, . . . , φn},

Gn =

 〈φ1, φ1〉 · · · 〈φ1, φn〉
...

. . .
...

〈φn, φ1〉 · · · 〈φn, φn〉

 and ξω =


1
−ω
ω2

...
(−ω)n

.

Proof :

As a shorthand, we will write

〈q ⊗ r〉 =

 〈q1, r1〉 · · · 〈qn, r1〉
...

. . .
...

〈q1, rm〉 · · · 〈qn, rm〉

 for q =

 q1
...
qn

 and r =

 r1
...
rn

.
We also define

ψ =

 ψ1
...
ψn

 hence Lω[ψ] =

Lω[ψ1]
...

Lω[ψn]

 =

 φ2 + ωφ1
...

φn+1 + ωφn

.
Furthermore, let φ̃k = (φ1, . . . , φk−1, φk+1, . . . , φn+1)>.

Assume that {φ1, . . . , φn+1} are linearly independent, which means that the functions

{Lω[ψ1] , . . . ,Lω[ψn]} are also linearly independent, since

n∑
k=1

ckLω[ψk] = ωc1φ1 +
n∑
k=2

(ωck + ck−1)φk + cnφn+1 6= 0.

We can rearrange the terms in the error of the approximation, using the fact that f−Lω
[
vLS
n,ω

]
is orthogonal to every Lω[ψk], hence orthogonal to Lω

[
vLS
n,ω

]
:

∥∥∥f − Lω[vLS
n,ω

]∥∥∥2
=
〈
f − Lω

[
vLS
n,ω

]
, f − Lω

[
vLS
n,ω

]〉
=
〈
f − Lω

[
vLS
n,ω

]
, f
〉

= ‖f‖2 −
n∑
k=1

ck 〈φk+1 + ωφk, f〉

= (1− ωc1) ‖f‖2 −
n∑
k=2

(ck−1 + ωck) 〈φk, f〉 − cn 〈φn+1, f〉

= − 1

detA

[
(ωA1 − detA) ‖f‖2 +

n∑
k=2

(Ak−1 + ωAk) 〈φk, f〉

+An 〈φn+1, f〉
]
, (8.1.3)
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where Ak is the determinant of the matrix A with the kth row replaced with b = 〈f,Lω[ψ]〉,
as in Cramer’s rule.

We now show that the sum within the brackets of (8.1.3) is equal to − detGn+1. With

a similar procedure to the proof of Theorem 5.3.2, the first term is

ωA1 − detA = ω det 〈(φ1, φ3 + ωφ2, . . . , φn+1 + ωφn)⊗ Lω[ψ]〉

− det 〈(φ2 + ωφ1, φ3 + ωφ2, . . . , φn+1 + ωφn)⊗ Lω[ψ]〉

= − det 〈(φ2, φ3 + ωφ2, . . . , φn+1 + ωφn)⊗ Lω[ψ]〉

= − det 〈(φ2, φ3, . . . , φn+1)⊗ Lω[ψ]〉

= − det
〈
φ̃1 ⊗ Lω[ψ]

〉
.

Similarly

Ak−1 + ωAk

= det 〈(Lω[ψ1] , . . . ,Lω[ψk−2] , f, φk+1 + ωφk,Lω[ψk+1] , . . . ,Lω[ψn])⊗ Lω[ψ]〉

+ ω det 〈(Lω[ψ1] , . . . ,Lω[ψk−2] , φk + ωφk−1, f,Lω[ψk+1] , . . . ,Lω[ψn])⊗ Lω[ψ]〉

= det 〈(φ2, . . . , φk−1, f, φk+1 + ωφk,Lω[ψk+1] , . . . ,Lω[ψn])⊗ Lω[ψ]〉

− det 〈(φ2, . . . , φk−1, f, ωφk,Lω[ψk+1] , . . . ,Lω[ψn])⊗ Lω[ψ]〉

= det 〈(φ2, . . . , φk−1, f, φk+1, φk+2, . . . , φn+1)⊗ Lω[ψ]〉

= (−1)k det 〈(φ1, . . . , φk−1, φk+1, . . . , φn+1)⊗ Lω[ψ]〉 = (−1)k det
〈
φ̃k ⊗ Lω[ψ]

〉
.

Finally,

An = det 〈(φ2 + ωφ1, . . . , φn + ωφn−1, f)⊗ Lω[ψ]〉 = (−1)n det 〈(φ1, . . . , φn)⊗ Lω[ψ]〉

= (−1)n det
〈
φ̃n+1 ⊗ Lω[ψ]

〉
.

Thus it follows that the sum in the bracket of (8.1.3) is equal to

n+1∑
k=1

(−1)k 〈φk, φ1〉 det
〈
φ̃k ⊗ Lω[ψ]

〉

= − det


〈φ1, φ1〉 〈φ2, φ1〉 · · · 〈φn+1, φ1〉

〈φ1, φ2 + ωφ1〉 〈φ2, φ2 + ωφ1〉 · · · 〈φn+1, φ2 + ωφ1〉
...

...
. . .

...
〈φ1, φn+1 + ωφn〉 〈φ2, φn+1 + ωφn〉 · · · 〈φn+1, φn+1 + ωφn〉



= − det


〈φ1, φ1〉 〈φ2, φ1〉 · · · 〈φn+1, φ1〉
〈φ1, φ2〉 〈φ2, φ2〉 · · · 〈φn+1, φ2〉

...
...

. . .
...

〈φ1, φn+1〉 〈φ2, φn+1〉 · · · 〈φn+1, φn+1〉

 = − detGn+1,

after determinant manipulations.
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We next show that
detA = ξ?ω adjGn+1 ξω,

where adjGn+1 is the adjugate matrix of Gn+1:

adjGn+1 =


det

〈
φ̃1 ⊗ φ̃1

〉
· · · det

〈
φ̃n ⊗ φ̃1

〉
...

. . .
...

det
〈
φ̃1 ⊗ φ̃n

〉
· · · det

〈
φ̃n ⊗ φ̃n

〉
 .

Exploiting the multilinear nature of determinants, we find that

detA = det 〈(φ2 + ωφ1, · · · , φn+1 + ωφn)⊗ Lω[ψ]〉 =
n+1∑
k=1

ωk
〈
φ̃k ⊗ Lω[ψ]

〉
.

But

det 〈u⊗ Lω[ψ]〉 = det

 〈u⊗ φ2 + ωφ1〉
...

〈u⊗ φn+1 + ωφn〉

 =
n+1∑
k=1

ω̄k−1 det
〈
u⊗ φ̃k

〉
.

Thus

detA =
n+1∑
j,k=1

ωj−1ω̄k−1 det
〈
φ̃j ⊗ φ̃k

〉
= ξ?ωadjGn+1 ξω.

Hence we have found that∥∥∥f − Lω[vLS
n,ω

]∥∥∥2
=

detGn+1

ξ?ωadjGn+1 ξω
=

1

ξ?ωG
−1
n+1ξω

.

We still need to handle the situation where the functions {φ1, . . . , φn+1} are linearly

dependent. If the basis {Lω[ψ1] , . . . ,Lω[ψn]} is still linearly independent, then the error is

zero since

‖f − Lω[v]‖2 =
detGn+1

detA
= 0.

Thus we can assume {Lω[ψ1] , . . . ,Lω[ψn]} are also linearly dependent. Let j ≤ n be the

smallest integer such that φj+1 =
∑j
k=1 akφk. Then, letting ṽ =

∑j
k=1 ckφk,

Lω[ṽ] = ωc1φ1 +
j∑

k=2

(ωck + ck−1)φk + cjφj+1 = (a1cj + ωc1)φ1 +
j∑

k=2

(ωck + ck−1 + akcj)φk.

We want to show that 
ω a1
1 ω a2

. . . . . .
...

1 ω + aj

 c =


1
0
...
0


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has a solution. From the theory of companion matrices [86], we know that the determinant

of the matrix in this equality is equal to the polynomial

(−ω)j − aj(−ω)j−1 + · · ·+ a2ω − a1.

Large ω ensures that this polynomial is nonzero.

Q.E.D.

This theorem tells us exactly the error of approximation using only information needed in

computing the approximation, except in the exceptional case where φk are linearly dependent

and an unfortunate choice of ω is used. An example of a situation when this method fails is

solving the differential equation

v′ + ωv = e−x

with ω = 1. In this case ψk = f (k) = (−1)kf for f(x) = e−x, thus

Lω[ψk] = ψk+1 + ψk = (−1)k(f − f) = 0,

hence every choice of coefficients minimizes the norm
∥∥∥f − Lω[vLS

n,ω

]∥∥∥ = ‖f‖. In this example,

the exact solution is

vω(x) =

{
e−x

ω−1 + Ce−ωx ω 6= 1,

xe−x + Ce−x otherwise.

Thus ω = 1 corresponds to a pole in the ω plane: the solution is continuous with respect to ω

everywhere else. Thus it is not a relic of the approximation, but rather due to a fundamental

property of the differential equation. Because of the nature of the problem, and the fact that

even a slight perturbation of ω rectifies it, we will not dwell further on this issue. In all our

examples φk are linearly independent, hence we are not affected by this problem.

8.2. Highly oscillatory integrals

In the next two sections, we will investigate how asymptotic least squares can be used

in practice. In both cases, we use it to find very accurate solutions to highly oscillatory

differential equations. We return to the highly oscillatory integral without stationary points

I[f ] =
∫ b

a
f(x)eiωg(x) dx, g′(x) 6= 0.

In this section we use asymptotic least squares to find an alternate approximation which

appears to converge exponentially fast to the integral in question.

In a spirit similar to the Levin collocation method and Levin-type methods, we rewrite

this integral as a differential equation:

Lω[v] = v′ + iωg′v = f. (8.2.1)
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As in Section 2.8, if we approximate a solution to this differential equation then we auto-

matically obtain an approximation to the integral, because

∫ b

a
feiωg dx ≈

∫ b

a
Lω[v] eiωg dx =

∫ b

a
(veiωg)′dx = v(b)eiωg(b) − v(a)eiωg(a).

Since we are using definite integration, the constant of integration is irrelevant. In other

words, we do not care which particular solution to (8.2.1) is approximated, only that the

residual Lω[v] − f is small. Thus we do not need to impose any boundary or initial value

conditions.

Typically the asymptotic expansion for such integrals is determined by partial integra-

tion, as in Section 2.2. Instead, we wish to find an expansion not for the integral, but for the

associated differential equation. The derivation of the asymptotic expansion is accomplished

in a straightforward manner, the first term follows from choosing vA
1 so that iωg′vA

1 = f , or

in other words,

vA
1 =

f

iωg′
resulting in Lω

[
vA

1

]
− f =

1

iω

d

dx

f

g′
.

The next term is chosen so that this error term is cancelled:

vA
2 = vA

1 −
1

(iω)2g′
d

dx

f

g′
=

f

iωg′
− 1

(iω)2g′
d

dx

f

g′
⇒ Lω

[
vA

2

]
−f = − 1

(iω)2

d

dx

1

g′
d

dx

f

g′
.

Iterating this process results in the following expansion:

Lemma 8.2.1 Suppose that g′ 6= 0 within [a, b]. Define

ψ1 =
f

g′
, ψk+1 =

ψ′k
g′
.

Then ∥∥∥Lω[vA
n,ω

]
− f

∥∥∥ = O
(
ω−n

)
for vA

n,ω = −
n∑
k=1

(−iω)−kψk.

Though in general the solutions to this differential equation are oscillatory, the terms

in this expansion are not. This results from not imposing any boundary conditions: we are

picking out a single nonoscillatory solution to the equation. The existence of such a solution

was proved in [60], however, this fact is not needed in the proofs of this section. Thus,

strictly speaking, we are not solving a highly oscillatory differential equation, but rather, we

are solving the oscillatory differential equation

F ′ = f(x)eiωg(x)

by removing the oscillatory component.
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With an asymptotic expansion in hand, we can employ asymptotic least squares to

approximate a solution to (8.2.1), and obtain the approximation

QB[f ] = vLS
n,ω(b)eiωg(b) − vLS

n,ω(a)eiωg(a).

This is closely related to collocation by the asymptotic basis which was presented in Sec-

tion 3.3. Note that collocation is equivalent to minimizing an l2 norm at the given collocation

points. So essentially we merely replace the discrete l2 norm with the continuous L2 norm.

Doing so has several benefits:

• We are now guaranteed to converge to something close to the solution, whereas in the

l2 case adding additional points presented the possibility of divergence. This is simi-

lar to Runge’s phenomenon with polynomial interpolation, but without the wealth of

knowledge known about the basis that can be used in choosing collocation points.

• As originally presented, an additional criterion known as the regularity condition was

needed, requiring that the basis {ψk} could interpolate at the given nodes.

There are, however, some disadvantages. The most obvious is that we need to compute

nonoscillatory integrals in order to determine the inner products, whereas collocation requires

significantly less computation. Furthermore, when we use collocation we can ensure that the

approximant Lω[v] is equal to f at the boundary points, resulting in an order of error

O
(
ω−n−2

)
versus O

(
ω−n−1

)
.

From Theorem 8.1.1 and the fact that∣∣∣I[f ]−QLS[f ]
∣∣∣ =

∣∣∣I[f − Lω[vLS
n,ω

]]∣∣∣ ≤ √b− a ∥∥∥f − Lω[vLS
n,ω

]∥∥∥
2

= O
(
ω−n

)
,

we know immediately that asymptotic least squares approximates the integral with an asymp-

totic error O
(
ω−n

)
. But the highly oscillatory component in the integral increases the

asymptotic order even further:

Theorem 8.2.2 Define

QLS[f ] = vLS
n,ω(b)eiωg(b) − vLS

n,ω(a)eiωg(a).

Then

I[f ]−QLS[f ] = O
(
ω−n−1

)
.

Proof :

If {Lω[ψ1] , . . . ,Lω[ψn]} are linear dependent, then {φ1, . . . , φn+1} in Theorem 8.1.3 are

linearly dependent, and the theorem informs us that QLS[f ] is exact for large enough ω.
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Figure 8.49: Errors in approximating
∫ 1
0 cosx eiω(x2+x) dx. The error scaled by ωn+1 for the

n-term asymptotic expansion (top) and QLS[f ] (bottom), for n = 1, 2 and 4.

Otherwise, in a similar manner to the proof of Theorem 8.1.3, we determine that

f − Lω[v] = − 1

detA

(ωA1 − detA)f +
n∑
k=2

(Ak + ωAk+1)φk + Anφn+1

 , (8.2.2)

where A and Ak are subject to the same definitions as in (8.1.2) and (8.1.3). We cannot

combine this sum into one determinant, but each term is O(ωn). Furthermore, it is clear

from Theorem 8.1.3 that 1
detA = O

(
ω−2n

)
. Thus we obtain f − Lω[v] = O

(
ω−n

)
, which

holds pointwise. This relationship can be differentiated: the asymptotic order is contained

within the coefficients of (8.2.2). Thus the theorem is proved via integration by parts:

I[f ]−QLS[f ] =
∫ b

a
(f − Lω

[
vLS
n,ω

]
)eiωg dx

=
1

iω

[{
f(b)− Lω

[
vLS
n,ω

]
(b)
}

eiωg(b) −
{
f(a)− Lω

[
vLS
n,ω

]
(a)
}

eiωg(a)
]

− 1

iω

∫ b

a

f − Lω
[
vLS
n,ω

]
g′

′ eiωg dx

= O
(
ω−n−1

)
.

Q.E.D.

As an example, consider the integral

∫ 1

0
cosx eiω(x2+x) dx.

In Figure 8.49 we compare the error in approximating I[f ] byQLS[f ] to that of the asymptotic

expansion of the same order, for n = 1, n = 2 and n = 4. As can be seen, a dramatic increase

in accuracy is obtained, with the increase becoming more significant as the asymptotic order

increases.
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Figure 8.50: The base-10 logarithm of the errors in approximating
∫ 1
0 log(x + 1)eiωx dx, for

three choices of ω. We compare
∥∥∥f − Lω[vLS

n,ω

]∥∥∥ (dotted line), QLS[f ] (solid line), the n-term
asymptotic expansion (dashed line) and Gauss–Legendre quadrature with n points (thick line).

Perhaps the more interesting question is how the approximation behaves as we increase

n, with respect to a fixed frequency ω. Returning to an example first presented in Section 3.3,

consider the intergral ∫ 1

0
log(x+ 1) eiωx dx.

In this case, the basis is equivalent to

ψ1(x) = log(x+ 1), ψk(x) = (x+ 1)−k−1,

and we can easily compute the inner products in closed form. In Figure 8.50, we compare

asymptotic least squares with its computable bound

∣∣∣I[f ]−QLS[f ]
∣∣∣ ≤ ∥∥∥f − Lω[vLS

n,ω

]∥∥∥ =

√
1

ξ?ωGn+1ξω
,

the asymptotic expansion of the same order and the Gauss–Legendre quadrature scheme

with n nodes. In the first graph, we see that even for small frequencies, the method is very

powerful: we obtain machine precision accuracy by solving an 11 × 11 system, though the

bound is noticeably less optimistic. Interestingly, the error is almost exactly the same as

Gauss–Legendre quadrature. As ω increases, the bound becomes more accurate, as does the

asymptotic expansion. Furthermore QLS[f ] becomes even more efficient: when ω is 100 we

obtain machine precision accuracy by solving a 5 × 5 system. On the other hand, Gauss–

Legendre quadrature becomes less and less effective, where by ω = 100 it is completely useless

with ten function samplings. Of course this is an unfair comparison: if we did not know

the inner products explicitly, we would have had to employ Gauss–Legendre quadrature to

compute them. Hence it must be emphasized that we present the error in Gauss–Legendre

quadrature as a reference, not as a valid comparison. A more appropriate comparison is

presented in Section 8.4, where we compare Gauss–Legendre quadrature to the method that

uses collocation.

Both the examples so far presented have had well-behaved integrands, besides the os-

cillations. The next example involves an integral whose amplitude suffers from Runge’s
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Figure 8.51: The base-10 logarithm of the errors in approximating
∫ 1
0

1
10x2+1

eiωx dx, for three

choices of ω. We compare
∥∥∥f − Lω[vLS

n,ω

]∥∥∥ (dotted line), QLS[f ] (solid line) and the n-term
asymptotic expansion (dashed line).
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Figure 8.52: The base-10 logarithm of the error in approximating
∫ 1
0 e
− 1
x2

+iωx
dx, for three

choices of ω.

phenomenon [82]: in particular we approximate the integral

∫ 1

0

1

10x2 + 1
eiωx dx.

The derivatives of f grow incredibly fast. Yet surprisingly, exponential convergence rate

appears to be maintained, though the method does not converge quite as astoundingly quick

as in the preceding example. This is demonstrated numerically in Figure 8.51. In the

first graph we do not plot the asymptotic expansion, as ω is so small that this expansion

never achieves even one digit of accuracy, and the error grows exponentially. From these

graphs we can gather that the bound is off by a factor of 100, but appears to capture

the behaviour of the decay of error. Furthermore, though in all of the graphs convergence

appears to be exponential, increasing ω causes the convergence rate to increase drastically.

Finally, it is worth noting that in one point of the last graph the asymptotic expansion is

more accurate: this is since we are minimizing the norm
∥∥∥f − Lω[vLS

n,ω

]∥∥∥, rather than the

error
∣∣∣I[f ]−QLS[f ]

∣∣∣. Thus this is merely due to happenstance, rather than to any inherent

property of these approximation schemes.

Both examples so far have utilized analytic functions, and seem to roughly achieve expo-

nential convergence. In fact, many other examples not pictured also exhibit such convergent
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behaviour, including the following amplitude functions with g(x) = x:

cos 10(x2 + x), cos 10x2, Ai (3(x− 1)) ,

Ai
(
3(x2 − 1)

)
, Γ(x+ 2) and e−x

2
.

On the other hand, if f is only Cr, convergence is impossible: the asymptotic basis depends

on derivatives and is no longer well-defined (unless a clever construction utilizing generalized

functions is possible, though retaining convergence seems highly unlikely). This leaves one

other possible set of functions f that we can use this approximation method for: functions

which are C∞ but not analytic. Thus consider the integral

∫ 1

0
e
− 1
x2

+iωx
dx.

This has a single point where analyticity is lost: at x = 0. Unfortunately, it seems in Fig-

ure 8.52 that convergence to the exact solution is no longer achieved, though the asymptotic

decay rate is still maintained due to Theorem 8.1.1. If we choose an integration range that

does not contain 0, then exponential convergence appears to be achieved again.

8.3. Highly oscillatory ordinary differential equations

In the preceding section, we found a particular solution to a first order differential equa-

tion. In this section, we take the next step and investigate second order differential equations.

In particular, we focus on the Airy-type differential equation

Lω[v] = f for Lω[v] (x) = v′′(x) + ω2q(x)v(x),

where we assume that q(x) > 0 for a ≤ x ≤ b. Since we are no longer focused on integration,

which particular solution is approximated is important, hence we will find approximations

for all of the basis functions which span the entire solution space.

As it is more in line with the method presented in the preceding section, we first consider

the inhomogenous case Lω[v] = f for f not identically zero. Finding a particular solution

allows us to convert the problem into a homogenous differential equation. Our first task,

then, is to find an asymptotic expansion for any particular solution. Like before, the first

term is determined by choosing vA
1 so that ω2qvA

1 = f , or in other words

vA
1 =

f

ω2q
resulting in Lω

[
vA

1

]
− f = − 1

ω2

(
f

q

)′′
.

Iterating this procedure, in analogue to Lemma 8.2.1, we obtain the following asymptotic

expansion:
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Figure 8.53: The base-10 logarithm of the error in the residual
∥∥∥Lω[vLS

n,ω

]
− f

∥∥∥ (solid line) and

the residual
∥∥∥Lω[vA

n,ω

]
− f

∥∥∥ (dashed line), for ω = 1, 25 and 100.

Lemma 8.3.1 Define

ψ1 =
f

q
, ψk+1 = −ψ

′′
k

q
and vA

n,ω =
n∑
k=1

(ω)−2kψk.

Then ∥∥∥Lω[vA
n,ω

]
− f

∥∥∥ = O
(
ω−2n

)
.

Using the basis ψk in a least squares system, we obtain an approximation vLS
n,ω to some

particular solution v of the differential equation. The conditions of Theorem 8.1.1 and

Theorem 8.1.3 are both satisfied, thus we know, for φk(x) = q(x)σk(x) and replacing ω with

ω2 in the definition of ξ, that

∥∥∥Lω[vLS
n,ω

]
− f

∥∥∥2
=

1

ξ?Gn+1ξ
= O

(
ω−4n

)
.

As an example, consider the inhomogenous Airy equation

v′′(x) + ω2xv(x) = 1.

From [74], we know that it has a particular solution

Wi (−ω2/3x)

ω4/3
for Wi (x) = π

[
Bi (x)

∫ x

0
Ai (t) dt− Ai (x)

∫ x

0
Bi (t) dt

]
.

However, this specific particular solution is different from the one which we will approximate:

it becomes oscillatory as ω increases whereas our approximating basis is nonoscillatory.

Figure 8.53 compares the error in residual of asymptotic least squares to the asymptotic

expansion.

Finding particular solutions to the homogenous equation

Lω[v] (x) = 0, a ≤ x ≤ b,

requires a bit more finesse; applying the previous technique without change results in finding

a particular solution that satisfies the differential equation exactly, but is completely useless:
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v(x) ≡ 0. Because of the form of the differential equation, WKB analysis gives us asymptotic

expansions for the two independent solutions [74]. We now present a formal derivation of

this asymptotic expansion, based loosely on the derivation found in [55]. The idea is to

assume that the oscillations are exponential in nature with period ω, which suggests using

the ansatz v = heiωg. We then obtain

Lω[v] = (h′′ + iω[2g′h′ + hg′′] + ω2h[q − g′2])eiωg.

Cancelling out the ω2 term involves choosing g so that g′2 = q, in other words:

g = ±
∫
q1/2 dx.

The choice of plus or minus determines which of the two independent solutions the expansion

approximates. We obtain the alternate differential equations

L̃±ω [h] = 0 for L̃±ω [h] = h′′ ± iω(2g′h′ + hg′′) = h′′ ± iω

2
√
q

[
4qh′ + q′h

]
.

The ± can be subsumed into the parameter ω, meaning that L̃±ω = L̃±ω. Hence we can focus

on the single differential equation L̃ω = L̃+
ω , keeping in mind that ω can be either positive

or negative.

To find the asymptotic expansion for this new differential equation, we begin by choosing

h so that 4qh′ + q′h = 0, thus cancelling the term which grows with ω. This is equivalent to

solving

4

h
dh = −q

′

q
dx, or in other words σ0 = h = q−1/4.

This has an error

L̃ω[σ0] = σ′′0 =
4qq′′ − 3q′

2

16q7/4
.

To continue the derivation of the expansion, we need to find a solution to the equation

1

2
√
q

[
4qh′ + q′h

]
= σ,

where σ is a general function. We can rewrite this as

4q
dh

dx
+ q′h = 2

√
qσ,

which has a solution

h = q−1/4
∫
σq−1/4 dx.

Thus by induction we obtain the following theorem:
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Theorem 8.3.2 Define

σ0 = q−1/4, σk+1 = q−1/4
∫
σ′′kq
−1/4 dx

and

vA
n,ω = eiω

R
q1/2dx

n∑
k=0

(−iω)−kσk.

Then ∥∥∥Lω[vA
n,±ω

]∥∥∥ = O
(
ω−n

)
.

With this asymptotic expansion in hand, we can employ asymptotic least squares. Note that∥∥∥Lω[e±iωgh
]∥∥∥ =

∥∥∥e±iωgL̃±ω [h]
∥∥∥ =

∥∥∥L̃±ω[h]
∥∥∥ ,

hence if we minimize the norm for the residual of the alternate differential operator L̃ω, we

automatically do so for the original operator L. Unfortunately, as touched on before, we

can easily minimize the residual with the solution v(x) ≡ 0, which is not especially useful.

To prevent this, we force it to approximate a nonzero particular solution by insisting that

the first coefficient in the expansion is one, or in other words, we actually approximate a

particular solution to the equation L̃ω[v] = σ′′0 . If ṽLS
n,ω is the approximation for the alternate

differential equation, then we can define the approximation

vLS
n,ω = eiω

R √
q dx

[
σ0 − ṽLS

n,ω

]
The two linear independent solutions are thus vLS

n,±w. The requirements of Theorem 8.1.1

and Theorem 8.1.3 are again satisfied: in this case φk = 1
2
√
q [4qσ′k + q′σk].

As an example, consider the canonical case of the Airy equation; where q(x) = x, and

we assume that 0 < a < b. Then ∫
q1/2 dx =

2

3
x

3
2 .

Furthermore, it can be computed that

σ0(x) = x−1/4, σ1(x) = − 5

48
x−7/4, σ2(x) =

385

4608
x−13/4, . . . .

The coefficients in this expansion are immaterial as far as asymptotic least squares is con-

cerned, thus we use the basis

ψk(x) = x−
1
4−

3
2k.

Even for this simple case, computation for high frequencies is still very much an important

problem. The standard computational implementation of the Airy function is to use the

asymptotic expansion whenever the required precision can be achieved, while reverting to
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Figure 8.54: The base-10 logarithm of the residual errors
∥∥∥Lω[vLS

n,ω

]∥∥∥ (bottom) and
∥∥∥Lω[vA
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(top) for ω = 1, 25 and 100.
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Figure 8.55: The base-10 logarithm of the error
∥∥∥vLSBC
n,ω − v

∥∥∥
∞

(solid line) versus the error∥∥∥vABC
n,ω − v

∥∥∥
∞

(dashed line) for the boundary value problem v(1) = 1 and v(2) = 2.

other computational methods—e.g., power series or Gauss–Legendre quadrature—when the

precision needed is too fine for the asymptotic expansion [28]. Thus improving upon the

asymptotic expansion whilst maintaining its asymptotic properties is extremely useful. This

is not to suggest that no other methods exist for the asymptotic regime: indeed, [35] com-

putes such integrals by using the path of steepest descent to transform the Airy function’s

integral representation into an exponential decaying integral, for which traditional quadra-

ture methods are effective. We also derived another asymptotically accurate approximation

to the Airy equation in Section 7.4.

Figure 8.54 compares the error in residual
∥∥∥Lω[vLS

n,ω

]∥∥∥ to the error in residual for the

n-step asymptotic expansion, for ω equal to 1, 25 and 100. The residual
∥∥∥Lω[vA

n,ω

]∥∥∥ can

be found exactly in terms of the inner products used in computing vLS
n,ω. As predicted,

asymptotic least squares beats the asymptotic expansion in all three graphs. Indeed, for ω =

1 the asymptotic expansions error steadily increases, while asymptotic least squares appears

to converge exponentially fast. Increasing the frequency causes the rate of convergence to

increase.

Though it is important that the residual is small, it is almost certainly more important

that we approach the solution we are trying to approximate. This is where we truly diverge

from the development of highly oscillatory integrals, where any particular solution was ac-
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Figure 8.56: The error
∣∣∣Ai (−x)− vLSIC

n (x)
∣∣∣ for n = 1, 4, 9 and 1 ≤ x ≤ 8000.

ceptable. Thus we now consider the boundary value problem where v(a) = 1 and v(b) = 2.

The exact solution has the form

v(x) = AAi
(
−ω2/3x

)
+BBi

(
−ω2/3x

)
,

where Ai and Bi are Airy functions [2], and A and B are found so that v satisfies the

boundary conditions. We thus approximate the solution by

vLSBC
n,ω (x) = ABCvLS

n,ω(x) +BBCvLS
n,−ω(x),

where we determine the coefficients ABC and BBC so that the boundary conditions are

satisfied: vLSBC
n,ω (1) = 1 and vLSBC

n,ω (2) = 2. Alternatively, we could also approximate the

solution with a linear combination of the asymptotic expansions, defining vABC
n,ω with vA

n,±ω

in place of vLS
n,±w. In Figure 8.55, we compare the base-10 logarithm of the L∞ error in

approximating v by vLSBC
n,ω and vABC

n,ω , for three values of ω. As can be seen, the method

remains very accurate for boundary value problems, and amazingly, appears to converge

uniformly to the solution at an exponential rate.

Remark : We do not actually compute the L∞ error, rather we take the maximum of the

error evaluated at 40 evenly spaced points within the interval. No noticeable difference in

the approximation error was seen when moving from 20 to 40 points.

The fact that the method is accurate when ω = 1 suggests an interesting possibility:

using the method to compute the standard Airy equation for an initial value problem, rather

than a boundary value problem. To avoid the turning point, we begin at a = 1 and wish

to minimize the norm up to b = ∞. We can compute the inner products needed in closed

form, so there is no issue with having an unbounded interval. We approximate the solution

to the initial value problem

v′′(x) + xv(x) = 0, v(1) = Ai (−1) , v′(1) = −Ai ′(−1) ,

whose exact solution is simply v(x) = Ai (−x). We approximate it by

vLSIC
n (x) = AICvLS

n,ω(x) +BICvLS
n,−ω(x),
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where AIC and BIC are now chosen so that vLSIC
n (1) = Ai (−1) and vLSIC

n
′
(1) = −Ai ′(−1).

Figure 8.56 shows the error of this method for three choices of n: n = 1, 4 and 9. We

can infer from this figure that the error quickly reaches a maximum, and then decreases

at the same rate as the solution, namely like O
(
x−1/4

)
. Moreover, adding additional basis

functions appears to cause this approximation to converge uniformly, over infinite time!

Thus with very little computational work at all—we only needed to solve a 9 × 9 linear

system—we have obtained an approximation to the Airy function accurate to seven digits

throughout (−∞,−1). When this is increased to a 40 × 40 system we achieve machine

precision throughout the line segment.

Alternatively to this approximation, we could have just expanded the Airy function into

its known asymptotic expansion. In that case, the error in approximation would have decayed

arbitrarily quickly for increasing x, however the expansion would not satisfy the initial value

conditions. For other oscillatory differential equations we do not have this luxury: though

we can find two linearly independent asymptotic expansions, there is no way to know which

linear combination is asymptotic to the solution for any particular initial value problem.

8.4. Numerical issues

There are several issues preventing this method from reaching its full potential: the

requirement to compute derivatives, computation of inner products, need for the asymptotic

expansion and solving linear systems with ill conditioned matrices. In this section we explain

how these issues affect the approximation, and develop some potential workarounds for the

problems. Though we do study these workarounds numerically, we do not prove any theorems

about their accuracy.

A very simple, yet powerful alternative to using derivatives is motivated by results from

[47]. We return to the case of highly oscillatory integrals, where for simplicity we assume

that we have an integral over [0, 1] with the Fourier oscillator g(x) = x:

I[f ] =
∫ 1

0
f(x)eiωx dx.

Filon-type methods were developed in Section 3.1, where Hermite interpolation was used

with derivatives at the endpoints to obtain high order approximations. Then in Section 3.5,

it was noted that a derivative could be replaced by interpolation near the endpoints. In

particular, interpolating at the points
{

0, 1
ω , 1−

1
ω , 1

}
had the same asymptotic order as

interpolating the function and its derivative at the endpoints 0 and 1. This suggests that

the first two terms of our basis can be f(x) and f(x+ 1
ω ) instead of f(x) and f ′(x). In the

framework of this chapter, we require an asymptotic expansion in terms of our basis. The

first term of such an expansion is determined in exactly the same manner as in Section 8.2,

namely f(x)
iω , so that Lω[v] = f(x)+O

(
ω−1

)
. We now wish to cancel out the remainder term
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Figure 8.57: The base-10 logarithm of the errors in approximating
∫ 1
0

1
10x2+1

eiωx dx, for three

choices of ω. We compare QLS[f ] (solid line) to the finite difference basis (dotted line).

f ′(x)
iω with finite differences, which can be accomplished with the basis element

f(x+ 1
ω )−f(x)
ω .

Thus we obtain

Lω
[
f(x)

iω
+
f(x+ 1

ω )− f(x)

ω

]
= f(x) +

f ′(x)− ω
[
f(x+ 1

ω )− f(x)
]

iω
+
f ′(x+ 1

ω )− f ′(x)

ω

= f(x) +O
(
ω−2

)
.

This derivation can be extended, suggesting the basis

f(x) , f
(
x+

1

ω

)
, f
(
x− 1

ω

)
, f
(
x+

1

2ω

)
, . . . , f

(
x± 1

kω

)
, . . . .

This basis is of course numerically unsuitable—the basis becomes almost linearly dependent

as ω and k increase, which leads to very ill-conditioned matrices—but the basis can be

altered, say by using finite differences or by applying the Gram–Schmidt procedure. We also

require the first derivative f ′(x± 1
kω ), as we seed the functions in this basis into the operator

Lω[v] = v′ + iωv. Finally, though the derivatives of f do in fact lie in the closed span of

the basis, it is unclear whether the rate of decay is maintained. Figure 8.57 suggests it is,

where we employ this basis for the Runge example f(x) = 1
10x2+1

, with three choices of ω.

Unexpectedly, the finite difference basis outperforms the asymptotic basis for low frequencies,

though asymptotically they are equivalent. Whether the accuracy at low frequencies is an

inherent property of the finite difference basis or simply due to the choice of f requires

further investigation.

As touched on briefly in Section 8.2, numerical difficulties in the computation of inner

products might be alleviated by replacing a least squares system with a collocation system.

This means that we determine the coefficients in vC
n,ω(x) =

∑n
k=1 ckψk(x) by solving the

system

Lω
[
vC
n,ω

]
(x1) = f(x1), . . . ,Lω

[
vC
n,ω

]
(xn) = f(xn).
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Figure 8.58: The base-10 logarithm of the errors in approximating
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three choices of ω. We compare asymptotic least squares with finite difference basis (dashed line),
collocation with finite difference basis (dotted line) and n-point Gauss–Legendre quadrature (thick
line).

For oscillatory integrals, we obtain the approximation

QB[f ] = vC
n,ω(b)eiωg(b) − vC

n,ω(a)eiωg(a).

This is equivalent to the construction in Section 3.3, which also proved that as long as the

basis ψk can interpolate at the given collocation points and the endpoints of the interval are

included as collocation points, we obtain the asymptotic order

I[f ]−QB[f ] ∼ O
(
ω−n−2

)
.

In this section we do not include the constant function in the collocation basis. Figure 3.10

and Table 3.1 suggest that the exponential convergence rate is retained, however this con-

jecture is not proved. If we are able to prove the convergence rate for the asymptotic least

squares—say, via Theorem 8.1.3—then we may have the tools needed in order to prove the

convergence rate for QB[f ], à la the proof of convergence when interpolating at Chebyshev

points.

We can also combine collocation with the finite difference basis, as seen in Figure 8.58.

For the collocation method in this graph we use Lobatto quadrature points. There is no

particular reason known to use such collocation points, other than we want to include the

endpoints and Lobatto points seem to result in more accurate results than evenly spaced

points. This is the first figure in which the comparison with Gauss–Legendre quadrature is

almost fair: the number of sample points is exactly the same for each quadrature scheme,

however, the collocation method requires the value of f ′ at the collocation points in addition

to the value of f . Though for low frequencies Gauss–Legendre quadrature beats the new

methods presented, it quickly loses its lustre. Not pictured are the other two methods we

have discussed in this chapter: the original asymptotic least squares and collocation with

the asymptotic basis. Interestingly, both of these methods have almost the same error as

their finite difference counterparts. This picture also suggests that all these asymptotic

methods are roughly equivalent as the frequency increases, thus when the frequency is large,

it probably makes the most sense to use collocation with a finite difference basis.
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As for the requirement of the terms in an asymptotic expansion, the need for it may

indeed be a red-herring. Consider all the figures in which we took ω = 1. In this case we still

seem to achieve exponential convergence, despite the fact that the asymptotic expansion has

no meaning whatsoever for this fixed choice of ω. This suggests that the more fundamental

property used is the form of Theorem 8.1.3; the fact that the basis is also an asymptotic

expansion is only relevant in the asymptotic regime. If this is indeed the case, a possible

approximation scheme to any nonsingular vector-valued differential equation

y′ + Ay = f

would be a least squares approximation with the basis ψ1 = A−1f , ψk+1 = A−1ψ′k. This

is in fact the asymptotic basis presented in Section 6.5. Whether this method can compete

with traditional ODE methods in the nonoscillatory regime is doubtful.

In all the examples presented so far, we have used significantly more digits than specified

by IEEE arithmetic. This has partly been necessitated by our use of less than optimal bases:

in many of our examples the derivatives grow extraordinarily quickly, hence the norm of

the basis elements also grows. In addition, the finite difference basis becomes closer to

being singular as ω and k increase. These factors can be negated by normalizing the basis

or reordering the terms. Even with these tricks, there is a limit to the accuracy of the

methods; with machine precision accuracy, the error for the examples presented levels off

at approximately ten digits of accuracy. Ten digits is usually more than any application

actually needs [12], however it should be investigated why we achieve ten digits rather than,

say, 15 digits or five digits.

A least squares system typically leads to a badly conditioned matrix: even with moderate

values of n, the eigenvalues of such systems can easily be less than machine precision. This

results in a system, though analytically positive definite, numerically behaving as if it were

only positive semidefinite. Since we only need to solve very small systems to achieve high

accuracy approximation methods—the largest matrix in this entire chapter is 12× 12—this

problem is tractable, and the built-in linear solvers of modern mathematical packages (e.g.,

Maple, Mathematica and Matlab) should easily be able to circumvent this issue.

8.5. Future work

When deriving an asymptotic expansion throughout the complex plane, different sectors

require different asymptotic bases. In choosing which terms of the expansion are included,

one must take into account Stokes’ phenomenon, where exponentially small remainder terms

contribute significantly to the error of expansion [10]. This suggest an intriguing possibility:

unlike an asymptotic expansion, a least squares system has no choice but to improve when

additional basis elements are added. Thus it might be possible to achieve an approximation

that is valid throughout the complex plane by including the bases from the asymptotic

expansion in all sectors, and this should automatically remain valid across Stokes’ lines.
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For the differential equations in Section 8.3, an alternate accurate approximation scheme

exists based on highly oscillatory integrals, using the modified Magnus expansion [44]. In

this method the differential equation is modified, then the Magnus expansion is used to write

the solution to it as the matrix exponential of a sum of oscillatory integrals. An in depth

comparison between the method presented in this chapter and modified Magnus expansion,

discussed briefly in Section 1.1, would be interesting. These two methods are very similar

in character: both translate the problem into a numerical quadrature problem. However the

modified Magnus expansion depends also on multivariate integration and time-stepping. At

the same time, it does not require the terms in the asymptotic expansion.

Finally, there is the question of whether it is possible to generalize this method for

partial differential equations and integral equations. The most obvious example is that of

the Helmholtz equation

∇2v + ω2v = 0,

whose solution can become oscillatory as |ω| → ∞. In the theorems of Section 8.1, the

fact that Lω[v] was an ODE was not used: the univariate structure was hidden in the

inner product and norm. Thus given the asymptotics to a PDE, we could immediately

approximate the value of a particular solution using the method presented in this chapter.

Indeed, numerical results suggest that this can be used with great effectiveness for finding

a particular solution to an inhomogenous Helmholtz equation. But it is no longer true

that finitely many linearly independent solutions span the solution space, hence boundary

conditions can not be so easily disregarded. One might be tempted to find a set of particular

solutions, which then are used to approximately satisfy the boundary conditions, say with

another least squares system. However in general the solutions to such a PDE will be

oscillatory along the boundary—v(x) = eiωκ·x is a particular solution whenever κ is a unit

vector—thus if the boundary conditions are not oscillatory, this idea is impractical.
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Closing Remarks

Several methods exist for approximating highly oscillatory integrals efficiently, where the

accuracy improves as the frequency of oscillations increases. When moments are available,

we can use a Filon-type method, whilst a Levin-type method uses collocation to provide an

approximation whenever there are no stationary points. Moment-free Filon-type methods

were developed for oscillatory integrals whose moments are not available, including integrals

with stationary points. Both Filon-type and Levin-type methods can be generalized to

multivariate integrals, though there are issues with stationary points and resonance points.

We can also generalize Levin-type methods to handle oscillatory integrals over unbounded

domains, and integrals with an infinite amount of oscillation. Finally, we developed a method

which achieves the same asymptotic order as an asymptotic expansion, whilst appearing to

converge exponentially fast. In short, a large number of highly oscillatory integrals can be

approximated by at least one of the methods discussed in this thesis.

Related to the research of this dissertation is function approximation using the modified

Fourier series found in [51]. As mentioned in Section 1.4, with a slight modification of the

standard Fourier series, we obtain an orthogonal series that can approximate nonperiodic

functions efficiently. The coefficients of the resulting series are oscillatory integrals, hence

they can be approximated quickly using the methods we have developed. This results in

an accurate function approximation scheme. This series’ use in spectral methods is being

investigated by Ben Adcock [4].

Another area of research is applying the techniques presented in this thesis to the nu-

merical computation of highly oscillatory differential equations. We have already seen the

usefulness of our methods for linear ordinary differential equations where WKB expansions

are known. Another extremely important example is the time-dependent Schrödinger equa-

tions. Magnus expansion techniques have been used recently to approximate such equations

with numerical success [37]. Whether the integrals in such an expansion can be approximated

with acceptable asymptotic behaviour remains to be seen. The applications of numerically

efficient methods for approximating such equations are wide and numerous.

An aspect of Filon-type methods which has not been emphasized enough is the fact that

they maintain accuracy relative to the integral as ω moves throughout the complex plane.

Thus, with stark contrast to standard asymptotic theory, we do not need to change the

approximation for different sectors of the complex plane. Perhaps Moment-free Filon-type

methods can be developed that maintain this property, which could be utilized to determine

uniform approximations to special functions. This idea was used in Section 7.4 for negative

real values of the Airy function, but many more difficulties are present for complex arguments.
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In this case, a complex contour must be used, which must pass through stationary points to

avoid areas of exponential increase. The location of such points depends on the argument

of the Airy function. Efficient approximations for other special functions are desperately

needed, especially hypergeometric functions.

Another possible application is integration of nonoscillatory functions over moderately

large dimensional domains. This is a difficult problem, as either the number of sample

points required grows exponentially with the dimension, or Monte Carlo or quasi-Monte

Carlo methods must be used, which still require a significant number of sample points.

On the other hand, using only sample points at the vertices of the domain, we obtain

very accurate results for multivariate oscillatory integrals. The number of vertices of a d-

dimensional simplex is d + 1, which only grows linearly with the dimension. Thus we can

accurately integrate oscillatory integrals over simplices without sampling the integrand at

exponentially many points, though unfortunately the amount of work needed for Levin-type

methods or to compute moments still grows exponentially with the dimension. The work

required is still feasible at moderate sized dimensions, say d = 3, 4 or 5. It might be possible

to apply some of the ideas for oscillatory quadrature to nonoscillatory quadrature, at the

very least when the integrand has a known form.

There are most likely myriad other applications for oscillatory integrals. Highly oscilla-

tory waves are omnipresent in physics, which often are integrated in the approximation of

differential equations and integral equations. We have already briefly mentioned acoustics

and oscillatory Schrödinger equations. Moreover, we have used oscillatory quadrature to

approximate the Airy function, which itself originated in an optical physical problem. Con-

ventional wisdom is that oscillatory quadrature is difficult, and making people aware that

this is simply untrue is important.
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Stokes’ phenomenon 142
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Trapezoidal rule 9

V
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Vector-valued asymptotic expansion 91

Volume differential ix
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