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Abstract

The purpose of this thesis is the numerical integration of highly oscilla-
tory functions, over both univariate and multivariate domains. Oscillatory
integrals have many applications, including solving oscillatory differential
equations and acoustics. Such integrals have an unwarranted reputation for
being difficult to compute. We will demonstrate that high oscillation is in fact
beneficial: the methods discussed improve with accuracy as the frequency of
oscillations increases. The asymptotic expansion will provide a point of de-
parture, allowing us to prove that other, convergent methods have the same
asymptotic behaviour, up to arbitrarily high order. This includes Filon-type
methods, which require moments and Levin-type methods, which do not re-
quire moments but are typically less accurate and are not available in certain
situations. By combining these two methods, we will obtain a Moment-free
Filon-type method for the case where the integral has a stationary point.

Though we initially focus on the exponential oscillator, we also demon-

strate the effectiveness of these methods for other oscillators such as the
Bessel and Airy functions. The methods are also applicable in certain cases

where the integral is badly behaved; such as integrating over an infinite inter-
val or when the integrand has an infinite number of oscillations. Finally we
present a result that combines the asymptotic expansion with a least squares
system, which appears to converge to the exact solution whilst retaining the
asymptotic decay.
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Introduction

In its most general form, we wish to find efficient numerical approximations for integrals
of the form

11f] = [ fule)av,

where f, is a function that oscillates rapidly, and the parameter w determines the rate of
oscillations. In practice, we separate the integral into a nonoscillatory function multiplied
by an oscillatory kernel. In applications, the kernel can often be expressed in the form of an
imaginary exponential function:

1] = | fl@)e)av.

where f and ¢ are nonoscillatory functions, the frequency of oscillations w is large and €2 is
some piecewise smooth domain. By taking the real and imaginary parts of this integral, we
obtain integrals with trigonometric kernels:

Re I[f] = /Qf(a:) coswg(x)dV and Im I[f] = /Qf(zc) sinwg(x)dV.

If the integral cannot be written in this form, then for univariate integrals it typically can
be expressed as

1= [ 50 T e

where f is nonoscillatory and y,, is an oscillatory kernel which satisfies a differential equation.
The aim of this thesis is the numerical approximation of such oscillatory integrals. Perhaps
surprisingly, high oscillations make numerical quadrature easier: we will develop methods
which actually improve with accuracy as the frequency w increases.

Highly oscillatory integrals play a valuable role in applications. Using the modified
Magnus expansion [44], highly oscillatory differential equations of the form y” + g(t)y = 0,
where g(t) — oo while the derivatives of g are moderate, can be expressed in terms of an
infinite sum of highly oscillatory integrals. Differential equations of this form appear in many
areas, including special functions, e.g., the Airy function. From the field of acoustics, the
boundary element method requires the evaluation of highly oscillatory integrals, in order
to solve integral equations with oscillatory kernels [39]. Modified Fourier series use highly
oscillatory integrals to obtain a function approximation scheme that converges faster than
the standard Fourier series [51]. Other applications include fluid dynamics, image analysis
and more. These applications are presented in Chapter 1.
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We present an overview of prior research in Chapter 2. We begin with a quick review of
nonoscillatory integration, and explain the reasons why traditional quadrature techniques are
not effective in the presence of high oscillations. An enormous amount of research has been
conducted on the asymptotics of such integrals, thus we present an overview of asymptotic
expansions and the methods of stationary phase and steepest descent. We also investigate
existing numerical quadrature schemes, in particular the Filon method and Levin collocation
method. This thesis is mostly concerned with generalizing and improving these two methods.

With the groundwork in place, we consider in depth the univariate irregular exponential
oscillator without stationary points—points where ¢’(z) vanishes—in Chapter 3. We place
the Filon method and Levin collocation method within an asymptotic framework, and gen-
eralize the two methods to obtain higher order asymptotic approximations. We also develop
the asymptotic basis, where the terms of the asymptotic expansion are used in a collocation
system. Finally, we find simple error bounds for the Filon method.

When the exponential oscillator contains stationary points the asymptotics of the inte-
gral is altered. As a result, Levin-type methods do not approximate such integrals accurately.
Furthermore, complicated oscillators can make the construction of Filon-type methods im-
possible, though in some simple but important cases we are still able to find Filon-type
methods. Thus to make a practical quadrature scheme, we will combine these two methods
to obtain a Moment-free Filon-type method in Chapter 4. In the process, we also develop a
new asymptotic expansion for such integrals, which is related to the method of stationary
phase.

Having investigated these methods thoroughly for univariate integrals, we turn our at-
tention to the more difficult problem of multivariate integrals in Chapter 5. A generalization
of Filon-type methods to multivariate integrals is straightforward, and its asymptotic be-
haviour follows immediately from the asymptotic results of Chapter 2. Unfortunately, the
domains and oscillators for which a Filon-type method is derivable are extremely limited.
Thus we generalize Levin-type methods, which are applicable for integrals over complicated
domains, and oscillators which satisfy a nonresonance condition: a multivariate version of
requiring the absence of stationary points. Developing methods for when this condition is not
satisfied is the topic of the last two sections of this chapter, including the initial development
of a Moment-free Filon-type method for oscillatory integrals in which Vg vanishes.

The Levin collocation method was generalized in [62] to oscillatory integrals with vector-
valued kernels. In Chapter 6, we apply the new results from Chapter 3 to obtain Levin-type
methods for such integrals. We first construct new asymptotic tools so that we can determine
the asymptotic order of the approximation scheme. This will lead us to two Levin-type
methods: the first collapses the vector-valued system to one collocation system, the second
is a direct generalization of the Levin collocation method of [62]. Finally, we demonstrate
that a vector-valued asymptotic basis can be constructed in order to obtain a high asymptotic
order approximation.

We wrap up some loose ends for univariate quadrature in Chapter 7, where methods
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are developed for oscillatory integrals which contain some sort of singularity. This includes
integrals over an unbounded region, and integrals which contain an infinite number of os-
cillations within the integration interval. The methods used to tackle these problems will
work for both exponential oscillators and integrals involving the Airy function. We can also
use the methods to compute certain special functions from their integral representations,
including the exponential, sine and cosine integrals, as well as the Airy function.

In Chapters 3, 5 and 6, the asymptotic basis allows us to capture the behaviour of the
asymptotic expansion, whilst significantly improving the error. Indeed, it is observed that
such a basis results in a quadrature scheme that appears to converge exponentially fast to
the exact value of the integral. The motivation of Chapter 8 is to put this observation onto
a firm theoretical grounding. We replace collocation with least squares, and are then able to
compute the error of the approximation exactly, though convergence is not proved. We also
utilize this method for solving oscillatory differential equations, using the Airy equation as
a simple example.
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Notation

Variables
T,Y, 2, t Univariate integration dummy variables
1,7, k, 0 Summation dummy variables
T Multivariate integration dummy vector variable
d Dimension
g Lie group
g Lie algebra
Functions
w(z) Integration weight function
Uk Interpolation or collocation basis
Py, Vector-valued collocation basis
O Asymptotic expansion term
oL Multivariate asymptotic expansion term
Yo, Y Vector-valued oscillatory kernel
Spaces
R Space of real numbers
N Space of nonnegative integers
Lyla, b Space of measurable functions f such that
b 1/p
([rer ) <x
a
Loo[a, b Space of measurable functions f such that
SUPg<a<b ’f(l')' <0
L, Lyla,b] where a and b are implied by context (and possibly
infinite)
C"|a,b] Space of r-times differentiable functions
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Products and norms

f,9)

f7 g>2
A, B]
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oo

Space of smooth functions

Function inner product
Lo inner product ff fgdx
Lie group commutator
Function norm

L, function norm: (jf | f(x)P d:z:) Hp

Leo function norm: sup,<,<p | f(7)|

Multidimensional domains

Complex plane

Differential forms

Multidimensional domain in R?
Boundary of €2

Piecewise smooth component of 02
Parameterization map of Z,

Domain in R4 mapped onto Z, by Ty
Vector orthogonal to 0f)

d-dimensional simplex

Quarter disc
Half disc

Complex conjugate
Real part
Imaginary part

Complex contour

The identity operator

The mth derivative C?Tn;, for nonnegative integers m € N

The partial derivative % for m = (mq,--- ,md)T
Oz, .0z,

Nd

Wedge product
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ds d-dimensional surface differential

dro A--- N dzyg
—dzy A daxg Ao A day

(—1)d71 dxq /\ s AN dag_q

Jr Jacobian determinant of a map T
Jr}l""’id Jacobian determinant of a map 7" with respect to the indices
U1y ey bg
J4(x) Vector of Jacobian determinants
J%...,d ()
_J%,i'»,...,d(w)

(—1)d_1j;14“"d_1(m)

\Y% Gradient operator

V- Divergence operator

A Laplacian operator V2 =V -V
Special functions

Ai, Bi Airy functions

Ju, Y, I, Bessel functions of order v

ngl), Z(,Q) Hankel functions of order v

erf Error function

r Incomplete Gamma function

si Sine integral function

ci Cosine integral function

E, Exponential integral function

oFy Hypergeometric function

b kth Legendre polynomial

Ty kth Chebyshev polynomial
Vectors and matrices

>m The sum 2%21 my, for the vector m' = (my,---,my)

det A Determinant of the square matrix A

| Al Norm of the matrix A
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|A]

A—l
At

Asymptotics

f~ ZZOZO .

f(x) ~g(a),x —b
o()

o(")

o()

o)

Operators

Oscillatory integrals

~

The p x ¢ matrix whose entry in the ith row and jth column
is Qg

The p x p identity matrix

I,,, where p is implied by context

The p x ¢ matrix whose entries are all one: (1),xq4

The matrix 1,4, where p and ¢ are implied by context

The row vector 11x4, where the dimension ¢ is implied by
context

For A = (aij)pxq, the p x ¢ matrix whose ijth entry is |a;;|:
(|aij|)pxq- Note the distinction between |A|, ||A]| and det A
Matrix inverse

Matrix pseudoinverse

Asymptotic expansion

f is asymptotically the same as g as x approaches b
Big-O notation

Little-O notation

Function big-O notation: f = O(g) if Hf(k)H
k=0,1,...

O(g) for

o0

f has an asymptotic expansion whose first term decays like

O(w)

Levin differential operator v' 4 iwg'v

Vector-valued Levin differential operator v/ + AT v

or multivariate Levin differential operator V - v + iwVg - v
Chung, Evans and Webster differential kernel operator
Adjoint of M

Bilinear concomitant

Vector of f applied to the nodes and multiplies of a colloca-
tion scheme

Frequency of oscillations
Amplitude of oscillations
Oscillator
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Q Domain of integration

a,b Endpoints of integration interval

I[f] Univariate oscillatory integral ff f(x)ewd) dg

I, f, Q) Multivariate oscillatory integral [q f(z)e“d%®) 4V

I[f] Vector-valued kernel oscillatory integral | CIZ f(2)Ty(z) dz
r Order of stationary point

S Asymptotic order of method

Oscillatory quadrature

QY (/) Filon-type method

Qg[f Y Multivariate Filon-type method

QL1f] Levin-type method

Qé [f, €] Multivariate Levin-type method

QP[f] Levin-type method with asymptotic basis
Or i Moment-free Filon-type method basis

by Multivariate Moment-free Filon-type method basis
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Chapter 1

Applications

Before delving into the details of approximating highly oscillatory integrals, we first moti-
vate their utility by briefly describing some applications. We begin with the two applications
that have reinvigorated the investigation of oscillatory quadrature: the modified Magnus ex-
pansion and acoustic integral equations. We begin with a description of the modified Magnus
expansion in Section 1.1, which allows us to rewrite the solution to an oscillatory differen-
tial equation as an infinite sum of oscillatory integrals. Furthermore it has applications in
geometric integration, as the approximation stays within the Lie group that the solution
of the differential equation evolves in. Determining how an object scatters sound waves is
accomplished via an integral equation with an oscillatory kernel. This naturally leads to the
computation of oscillatory integrals, as described in Section 1.2.

Following these more recent applications, we review a couple of traditional applications.
Many special functions have highly oscillatory integral representations, and in Section 1.3
we give an overview of several such functions. Finally, in Section 1.4 we look at function
approximation with orthogonal series, which invariably have coefficients that are highly
oscillatory integrals. We also see how oscillatory integrals play a role in spectral methods
when such orthogonal series are used.

There are a plethora of other applications for oscillatory quadrature besides those dis-
cussed in this chapter. Indeed, wherever one finds waves—which are, of course, ubiquitous
in physics—there is a good chance that oscillatory integrals require computation. These
applications

«

...range from electromagnetics and nonlinear optics to fluid dynamics, plasma
transport, computerized tomography, celestial mechanics, computation of Schrodinger spec-
tra, Bose-Einstein condensates...” [45].

1.1. Modified Magnus expansion

The motivation behind the renewed interest by Iserles and Ngrsett in approximating
oscillatory integrals began due to new results in the field of geometric integration. Suppose
we wish to solve the homogeneous matrix-valued linear ordinary differential equation

This has a solution of the form the form Y () = eM®)Y}, where M satisfies the differential

1



equation

M’ = A—C (M, A4 M, [M,A]]—éo[M, M, (M, M, A+, M(0) =0, (1.1.1)

cf. [46]. If the solution Y lies in the Lie group G and the matrix A(t) lies in the corresponding
Lie algebra g for all £, then Y evolves within G. Numerically solving the differential equation
for M, as opposed to the original differential equation for Y has the important property that
the approximation preserves this group structure. Though G can be nonlinear, g must be a
linear space, and any numerical solver that utilizes only linear operations will remain within
g. The Magnus expansion [69] gives us a solution to (1.1.1) in terms of only the matrix A:

M(t) = /OtA(:v) dz - ;/Ot /Oml [A2), Alz1)] dz day
T A A )] s 112

+112 /Ot /()J;1 /Oml [A([E?))’ [A(ZEQ), A(ZL’l)H d[L’g d{L’Q d;L‘l + e

Truncating this sum and employing a suitable quadrature scheme for approximating the
integrals gives us a powerful numerical method which preserves group structure [46].

We now turn our attention to highly oscillatory differential equations, where the matrix
A has eigenvalues with large imaginary parts and nonpositive real parts. Our interest in the
Magnus expansion stems not from its preservation of group structure, but rather another
important property: the solution is written in terms of integrals. A great deal of cancellation
occurs when integrating a highly oscillatory function, thus it stands to reason that the integral
will be small in magnitude. Thus the modified Magnus expansion [43] consists of rewriting
the original differential equation so that A itself encapsulates the oscillatory behaviour,
resulting in the integrals in (1.1.2) becoming small in magnitude.

Suppose we have time stepped to t, with step size h, to obtain an approximation y, of
the solution y(t,). Define the function v so that

y(t, +7) = eTA'v(T),

where A = A(t, + ah). Our approximation y, 1 of y(t,.1) would then be 4wy, where v
will be the approximation of v(h). We find that v satisfies the differential equation

v' = B(1)v, v(0) = yn, for  B(r)=eT4 {A(tn +7)— A} e

Because the imaginary parts of the eigenvalues of A are large, so are those of A, thus
the exponentials within the definition of B are oscillatory functions. Thus the integrals
in (1.1.2)—with B in place of A—are small, with higher dimensional integrals being even
smaller in magnitude (this phenomenon will be explained in more detail in later chapters
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of this thesis, though it follows from classical asymptotic theory). Furthermore, the more
oscillatory the solution the faster the integrals decay. It is thus sensible to truncate this sum,
and the accuracy of such a truncation amazingly improves as the frequency of oscillations
increases. We are, however, left with the problem of approximating the resulting oscillatory
integrals.

1.2. Acoustic integral equations

In the field of acoustics, the scattering of a sound wave off an object can be modelled
by the solution to the Helmholtz equation over a domain €2 with a Dirichlet, Neumann or
mixed boundary conditions, cf. [38]. In other words, we seek the solution to the equation

Au(z) + k*u(z) = 0

with
ou

x) =0, x € 089,

u(x) = f(x), x € 0 and 8?( )

where 0€2 = 0021 U0S2s. The solution to this partial differential equation can be written in
terms of integral equations over the boundary of the domain. In certain cases, the problem
can be reduced to solving integral equations of the form
3L e =yl o) ds, = u(@)
4 Joo

in R?, where H is the Hankel function [2], or

1 eikllz—yl 1
I /(,m m(l(m sy = u(x)

in R [38].

Since the kernel of these integral equations are oscillatory, collocation and other Galerkin
methods require solving oscillatory integrals, even when the basis itself is nonoscillatory.
Furthermore, the frequency of oscillations is known, and thus we know for an incoming wave

u'(xz) = ug(a:)eikgi(m) that the solution has the form
q(x) = qs(w)eikgi(x), x € 01,

where ¢ is asymptotically a nonoscillatory function [15]. The knowledge of how the solution
behaves asymptotically can be used in the construction of a collocation basis, giving us a
hybrid high frequency boundary element method [42]. Suppose we approximate g5 by

qe(T) = D_ cri(7),

3



where {11} is a set of linearly independent basis functions. We determine the constants ¢y
by collocating at the points @) = k(tx), where & : [0,1] — 0 is a parameterization of the
boundary. This requires solving integrals of the form (in two dimensions)

il A i
1 HED Uk l(ta) = n(m)ll) M D= SO () s (7)

Hankel functions can be expressed asymptotically in terms of complex exponential, so at
large frequencies this oscillatory integral behaves like an irregular Fourier oscillator. Thus
being able to approximate oscillatory integrals allows us to derive an approximation to the
solution of acoustic integral equations.

1.3. Special functions

Special functions play an extraordinarily important role in applied mathematics and
physics, and how to compute such functions efficiently is an active area of research. Many

special functions have integral representations that are oscillatory integrals. Some examples
are:

e Airy functions

1 oo t?
Ai(z) = ;/0 cos <3+xt> dt

e Bessel and Hankel functions

1 ™
Jn(z) = %/0 cos(nt — zsint) dt
Y, (x) = L sin(xsint — nt) dt — L= {e”t + (—1)”e_”t} e~ wsinht gy
o T Jo

HWV(2) = Jp(2) + 1Yy (2)
H’I(LQ) (x) = Jn@) - iYn(x)

e Error function (for complex z2)

£(z) = 2 / 2 gt
erf(z) =—= [ e
V7 Jo
e Incomplete Gamma function (for complex z)
> la-1
['(a, z) :/ tv et dt
z

4



e Sine, cosine and exponential integrals

o o
si(z) = —/x Sl?tdt
 cost
ci(z) = — —dt
x t
@ 2t
En( ):/1 m dt

e Hypergeometric functions

e Basic hypergeometric functions

Basic hypergeometric functions are found in [32], all other functions are found in [2].
As described in more detail in Chapter 2, this is the application which existing research
into approximating oscillatory functions has focused on most, especially with regards to
asymptotics. The fact that each integral has a very specific form facilitates computation,
particular when deforming the path of integration into the complex plane.

That being said, there is still room for improvement in the computation of special
functions. Most computational implementations use the asymptotic expansion whenever
it achieves the requested accuracy, whilst reverting to nonoscillatory methods otherwise.
Furthermore, different regions in the complex plane have different asymptotic expansions,
and—unless more sophisticated tools such as hyperasymptotics are utilized [10]—huge errors
can result when near the border between expansions.

1.4. Orthogonal series

The higher order basis functions of orthogonal series invariably are oscillatory. The
canonical example is the Fourier series, though polynomial orthogonal series also follow this
pattern. The standard Fourier series over the interval [—7, ], written in complex form, is

1 [e.9]

f(x) -~ % Z <f, eik.>eikx7

k=—o00

where (-, -) is the standard Ly complex inner product:

(f.9) = /_7; f(t)g(t) dt.

Thus the coefficients of the series are the oscillatory (for large k) integrals

<f7 eik-> _ /_7T f(t) efikt dt.
3



Of course, the coefficients of the series can be approximated in O(nlogn) operations via
the fast Fourier transform (FFT), which in fact interpolates f at the chosen sample points.
However, if interpolation is not required we can approximate the coefficients of this series
using the methods developed in Chapter 3 with a fixed number of operations per coefficient,
resulting in only O(n) complexity.

Other orthogonal series include the modified Fourier series of [51]. This series is con-
structed by replacing sin kz in the standard trigonometric Fourier series with sin(k — %)x,
so that

(&)) > . 1
f(x) ~ =+ > ¢pcoska + spsin(k — <)
2 e 2
This series converges at a faster rate than the standard Fourier series when f is not periodic.
It was proved by this author (a result that will not appear in this thesis) that the partial sum

of this series up to n approximates f € C3[—m, «1] with order O(n_z) in (—m,7) and with

order O(n’l) at the endpoints +7; indeed, when the function is smooth a full asymptotic

expansion can be found in terms of Lerch transcendent functions [9] and the derivatives
of f at the endpoints [79]. This compares to standard Fourier series’ convergence rate of

O(n‘l) in the interior and lack of convergence at the boundary. Higher convergence rates

can be achieved by using polyharmonic series [59], whose approximation properties were
investigated in [52]. Furthermore, these results can be generalized for function approximation
over multivariate domains [53]. In all of these cases the fast Fourier transform is not available,
hence we must resort to computing the coefficients of the series using oscillatory quadrature.

Of greater importance—it is hard to beat approximation by orthogonal polynomials in
the univariate case—is function approximation over multivariate domains. Suppose we are
given a domain 2 and a linear self-adjoint operator £. Then from standard spectral theory
we know that, subject to suitable boundary conditions, the eigenfunctions of £ form an
orthogonal series. In all but the most exceptional cases, the FFT algorithm is no longer
applicable, hence if we are to use an orthogonal system as a function approximation scheme,
we must resort to quadrature methods.

Related to this subject are Galerkin methods, or in particular spectral methods. Suppose
we wish to solve the linear differential equation

Llu] = f,

with some boundary condition imposed. A Galerkin method approximates a weak solution
to this equation by ensuring that the equality holds true on a subspace spanned by the basis

{t1,...,%n}. In other words, for some inner product (-, -), we approximate u by
n
V=Y
k=1

6



determining the coefficients ¢; by solving the system

<£[U],¢1> = <f7¢1>7"'7<['[v]7¢n> = <f7¢n>

If ¢);. does not have compact support (e.g., finite elements), then it is typically an orthogonal
series such as Fourier series. But then the inner products in the system become oscillatory
integrals.



Chapter 2

History

In this chapter we review existing research into oscillatory integrals and their quadra-
ture. Oscillatory quadrature’s development and foundation differs greatly from nonoscilla-
tory quadrature theory. Where traditional quadrature methods study the accuracy as the
step size decreases or the number of sample points increases, oscillatory quadrature has fo-
cused primarily on the asymptotics as the frequency w goes to infinity. Because of this,
asymptotic expansions, complex analysis, partial integration and collocation take a central
role, in place of the study of zeros of orthogonal polynomials and Taylor series.

In Section 2.1 we explain why approximating such integrals needs special attention: tra-
ditional quadrature methods are not accurate. We then turn our attention to a brief overview
of existing research related to oscillatory quadrature. This can be divided into two groups:
asymptotic theory and quadrature methods. The key difference between the two methodolo-
gies is that asymptotics is concerned with how the integrals behave as the frequency increases,
whereas quadrature takes a more practical view by investigating convergent approximations
for fixed frequencies. Section 2.2 derives the most basic asymptotic expansion via integration
by parts, Section 2.3 looks at the method of stationary phase and Section 2.4 investigates the
method of steepest descent, which deforms the path of integration into the complex plane
in order to turn an oscillating integrand into an exponentially decreasing integrand, whose
asymptotic expansion can then be determined. We then develop the counterpart for the
asymptotic expansion for integrals over multivariate domains in Section 2.6, after reviewing
multivariate integration theory in Section 2.5.

Oscillatory quadrature methods have not received as much attention as the asymptotic
theory of oscillatory integrals. Indeed, it took over 75 years from the construction of the
first of these methods—the Filon method [29]—until its asymptotic well-behavedness was
realized [44]. In Section 2.7 we describe how the Filon method was initially constructed,
forgoing its recent generalization until Chapter 3. This method is dependent on using the
standard Fourier oscillator ¢®, hence its generality is limited. In Section 2.8 we review the
Levin collocation method, which applies to general oscillators. Chung, Evans and Webster
extended the Levin collocation method to higher order oscillators, which is explained in
Section 2.9. In Section 2.10 we look at how the method of steepest descent can be used
as a quadrature method in addition to its use in asymptotics. Finally we give a very brief
overview of other oscillatory quadrature methods in Section 2.11.
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Remark:  If the results were presented in their full detail, this chapter alone could easily
span several volumes. So in the interest of brevity, we mostly forgo rigour in favour of
formal derivation and intuitive arguments. Many of the results presented here are classical,
and for those which are not we refer to other authors who have significantly more thorough
treatments.

2.1. Nonoscillatory quadrature

To understand why we need special methods for oscillatory integrals, it is important to
study where traditional quadrature methods fail. Most nonoscillatory quadrature methods
approximate an integral by a weighted sum sampling the integrand at n discrete points
{z1,...,2n}, and averaging the samples with suitable weights {wy, ..., wy,}:

/abw(m)f(m) dz ~ fj wif (@), (2.1.1)
k=1

where w is some nonnegative weight function. The first definition of an integral one typically
learns is the Riemann sum

[ 1)a x—ggrgoigf< (b—a)+ )

Thus if we take n large enough the sum will approximate the value of the integral, and indeed
falls into the framework of (2.1.1). This is equivalent to dividing the interval of integration
into panels of size 1/n and approximating the integral in each panel by a rectangle of the
same height as the function at the left endpoint. Though this does indeed work as an
approximation scheme, its speed of convergence is very slow and it is not useful in practice.

This is the simplest example of a composite Newton—Cotes formula. Newton—Cotes
formulee consist of approximating the integrand f by a polynomial of degree n, which matches
f at n evenly spaced points. A closed Newton—Cotes formula includes the endpoints of the
interval, otherwise it is an open Newton—Cotes formula. Newton—Cotes methods do not
necessarily converge as n goes to infinity [21], in particular convergence fails for the classic

1 1
[
12522 +1

Thus a composite rule must be used, where the interval of integration is divided into equally

Runge example

spaced panels and a Newton—Cotes method is used within each panel.

The next composite Newton-Cotes method is the trapezoidal rule, where the function
f is approximated by a trapezoid within each panel, or alternatively, f is approximated in
each panel by an affine function and the resulting piecewise affine function is integrated in

9



closed form. This is equivalent to the weighted sum, for h = (b — a)/n:

n—1

b h h
| f@)de ~ Sf(@) + b Y fla+kh) + SF0).

k=1

In place of affine functions we could use higher order polynomials in each panel. Using a
quadratic function results in Simpson’s rule:

/abf(:r)d:c% b_6a [f(a)+4f<a;rb> +f(b)1 _

This is particularly important for the history of oscillatory quadrature, since the original
Filon method is based on a composite Simpson’s rule.

Like Newton—Cotes, most other quadrature schemes consist of choosing the weights so
that (2.1.1) is exact when f is a polynomial of a certain degree, though not necessarily choos-
ing evenly spaced nodes. The idea is that, if f can be approximated well by a polynomial,
the quadrature error should be small. We can make the formula exact for polynomials of
degree n — 1 if we fix the nodes x; and determine the weights w; by solving the system

b n b n
/ w(z)de =Y wy . / w(x)z" de = > wkx}z—l. (2.1.2)
a k=1 a

k=1

The most often used method in practice is Gaussian quadrature. The idea behind Gaus-
sian quadrature is to choose the nodes and weights in order to to maximize the degree of
polynomials for which (2.1.1) is exact. In (2.1.1) there are 2n unknowns, hence it might be
possible to choose values for these unknowns so that polynomials up to degree 2n — 1 are
integrated exactly. It is well known that to achieve this goal, the sample points should be
placed at the zeros of the associated orthogonal polynomials, and the weights can then be
determined using (2.1.2), which is a linear system of equations.

Unless the integrand has a special form, the weight function is typically w(z) = 1.
The orthogonal polynomials with respect to a constant weight function are the well-known
Legendre polynomials, leading us to the Gauss—Legendre formule. The first few of these
polynomials are

1 1
Py(z) =1, Pi(x) =z, P(z) = 5(3:62 — 1), P3(x) = 5(5x3 —3z),....
The higher order polynomials can be computed via the recurrence relationship

(n + 1)Pn+1 = (2n + 1).%’Pn —nP,_1,

cf. [2]. The sample points {z1,...,z,} for an n point Gauss-Legendre rule are the zeros of
the polynomial P,, i.e.,
0=Py(z1) =" = Py(zn).

10
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Figure 2.1: The absolute error in approximating fol 2T dg by an n-point Gauss—Legendre
quadrature scheme, for n = 1, 10 and 25.

The weights are
2(1 — 22)

T P @)

cf. [21]. An efficient way of computing both the nodes and weights of a Gauss—Legendre rule
was presented in [36], based on computing the eigenvalues and eigenvectors of a symmetric
tridiagonal matrix.

The other Gaussian quadrature method of relevence to this thesis is Gauss-Laguerre
quadrature, where the integral has the form

/OOO e f(z)dz.

The associated orthogonal polynomials are the Laguerre polynomials.

Regardless of the particular method used, (2.1.1) fails as a quadrature scheme for high
frequency oscillation when w(z) = 1, unless n grows with w. To see this, consider the integral

b n
/ f(z)sinwzdz = Y wyf(zy) sinwzg,

k=1

where n, w; and xj, are all fixed for increasing w. Assuming that this sum is not identically
zero, it cannot decay as w increases. This can be seen in Figure 2.1, for the integral

1 .
/ 22e%” dx.
0

A simple application of integration by parts—which will be investigated further in the next

section—reveals that the integral itself decays like O(w‘l). Thus the error of any weighted

sum is O(1), which compares to an error of order O(w‘l) if we simply approximate the

integral by zero! It is safe to assume that a numerical method which is less accurate than
equating the integral to zero is of little practical use. On the other hand, letting n be pro-
portional to the frequency can result in considerable computational costs. This is magnified

11



significantly when we attempt to integrate over multivariate domains. Even nonoscillatory
quadrature is computationally difficult for multivariate integrals, and high oscillations would
only serve to further exasperate the situation. Thus we must look for alternative methods
to approximate such integrals.

2.2. Asymptotic expansion

Whereas standard quadrature schemes are inefficient, a straightforward alternative exists
in the form of asymptotic expansions. Unlike the preceding approximation, asymptotic ex-
pansions actually improve with accuracy as the frequency increases, and—assuming sufficient
differentiability of f and g—to arbitrarily high order. Furthermore the number of operations
required to produce such an expansion is independent of the frequency, and extraordinar-
ily small. Even more surprising is that this is all obtained by only requiring knowledge of
the function at the endpoints of the interval, as well as its derivatives at the endpoints if
higher asymptotic orders are required. There is, however, one critical flaw which impedes
their use as quadrature formulee: asymptotic expansions do not in general converge when
the frequency is fixed, hence their accuracy is limited.

Whenever g is free of stationary points—i.e., ¢’(x) # 0 within the interval of integration—
we can derive an asymptotic expansion in a very straightforward manner by repeatedly
applying integration by parts. The first term of the expansion is determined as follows:

I[f] _ /abf(x)eiwg(m) dr = - b f(z) 1wg(m) dx
_ i f(b) iwgb) 1wg(a‘| lf(x)‘| iwy(z) T
s o L)
The term
LSO ugr) _ SO wga
i [g'@e 70 221)

approximates the integral /[f] with an error

il e

using the fact that the integral decays like O(w‘l) [85]. Thus the more oscillatory the

integrand, the more accurately (2.2.1) can approximate the integral, with a relative accuracy

O(w‘1>. Moreover the error term is itself an oscillatory integral, thus we can integrate by

parts again to obtain an approximation with an absolute error (’)(w—3>. [terating this

procedure results in an asymptotic expansion:

12
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Figure 2.2:  The base-10 logarithm of the error in approximating fol Cosxelw(x +z) dz. The
left graph compares the one-term (solid line), three-term (dotted line) and ten-term (dashed line)

asymptotic expansions. The right graph shows the error in the s-term asymptotic expansion for
w = 20.

Theorem 2.2.1 Suppose that ¢’ # 0 in [a,b]. Then

S 1 1w wag a
I ~-% = {op(0)e“ M) — gy (a)ed)]
k=1
where
/
o1 =, O'k_|_1—zlf, k> 1.

We can find the error term for approximating I[f] by the first s terms of this expansion:

1

I[f] = - Zs: (i) {Uk(b)eiwg(b) _ Uk(a)eiwg(a)} n 1
k=1

(—iw)®

dtd

--3 —ilw)’“ {7k (0)e0 = o {a)et} (—ilw)sI [os19']

B

l
—
—

In Figure 2.2 we use the partial sums of the asymptotic expansion to approximate the
integral

1 .
/ cos x el‘”(m%“’”) dz.
0

We compare three partial sums of the asymptotic expansion in the left graph: s equal to
one, three and ten. This graph demonstrates that increasing the number of terms used in
the expansion does indeed increase the rate that the error in approximation goes to zero
for increasing w. However, at low frequencies adding terms to the expansion can actually
cause the approximation to become worse. Thus higher order asymptotic series are only
appropriate when the frequency is large enough. Furthermore for any given frequency the
expansion reaches an optimal error, after which adding terms to the expansion actually

13



Figure 2.3: Plot of cos 2022

increases the error. This is shown in the right graph for w fixed to be 20, in which case the
optimal expansion consists of five terms.

2.3. Method of stationary phase

In the asymptotic expansion from the previous section, it is interesting to note that
as the frequency increases, the behaviour of the integral is more and more dictated by the
behaviour of the integrand at the endpoints of the interval. In fact, the behaviour within
the interior of the interval is irrelevant as w — oo, and all integrals with the same boundary
data begin to behave the same as the frequency increases. Though at first counterintuitive,
this can be justified via a geometric argument. Consider for the moment the simple integral

1
/ coswzx dx.
-1

The integrand has extrema at the points

2
0,47 £2T 437
w w w

Furthermore, due to cancellation, the integral between adjacent extrema is equal to zero. It

thus follows that, if k£ is chosen to be the largest positive integer such that lfu—” <1, then

—k
1 1 —kn
coswrdxr = _coswx dx + coswx dx.
-1 = -1

k

w

As w becomes large, the intervals of integration become smaller, and the value of the in-
tegrand at the boundary becomes more significant. When we use a nontrivial amplitude
function and an oscillator without stationary points, the same sort of cancellation occurs,
albeit to a slightly lesser extent.
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On the other hand, this cancellation does not occur wherever the oscillator g has a
stationary point—a point & where ¢'(£) = 0. As can be seen in Figure 2.3, for the oscillator
g(x) = 22, the integrand becomes nonoscillatory in a small neighbourhood of the stationary
point. Thus the asymptotics depends also on the behaviour at the stationary points, in

addition to the behaviour at the endpoints of the interval.

We now determine how the stationary point contributes to the asymptotics of the inte-
gral, by utilizing the method of stationary phase. Consider for a moment the integral

/OO Flz)e“9®) dg,

where g(x) has a single stationary point of order r — 1 at zero:

0=g'(0)=---=g"10), g (0) £0 and g (r) # 0 whenever x # 0.

Assume that this integral converges and that f(z) is bounded. As w increases, the value
of the integral at the stationary point quickly dominates: the contribution from everywhere
away from the stationary point is largely cancelled due to oscillations. Near the stationary
point, g(x) behaves like g(0) + g,2", for some constant g,, and f(z) behaves like f(0). Thus
it stands to reason that

00 . . 0 . ir iwg(0)
/_OO f(x)el“’g(x) dx ~ f(())el‘”g(o)/ eIt dy = f(o)e%F(l) o T

o 4 " (grw)

The asymptotic behaviour when the integral is taken over a finite interval is the same,

since the contributions from the endpoints of the interval decay like O(w‘1>, whereas the

stationary points contribution decays like O(w’%). For a proper proof and error bounds

of this formula, see [74]. The stationary phase approximation can be extended to a full
asymptotic expansion. We however prefer to utilize a new alternative derivation of this
expansion developed in Chapter 4.

2.4. Method of steepest descent

Suppose that f and g are entire functions. In this case we can apply Cauchy’s theorem
and deform the integration path into the complex plane. The idea is to construct a path
of integration ((¢) so that the oscillations in the exponential kernel are removed. We then
expand this new Laplace-type integral into its asymptotic expansion. In Section 2.10, we
look at recent results that use the path of steepest descent to construct a quadrature scheme,
rather than simply as an asymptotic tool. In this chapter, we determine the path of steepest
descent for the specific oscillators g(z) = 2z and g(x) = 2% a la [38], referring the reader to
more comprehensive treatments [1,11, 74, 89] for more complicated oscillators.
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Figure 2.4: The path of steepest descent for the oscillator g(z) = 22,

Writing g(z) as Re g(z) + ilm g(z), we note that
eiwg(z) — elwRe g(z)e—w Im g(z)

Thus if Im g(z) > 0, then the oscillator decays exponentially as w — oo. There is still an

oscillatory component elwRe 9(2), unless the path is deformed so that Re g(z) = ¢. If we have
a Fourier integral

[ 1) a

this is equivalent to choosing the path (.(t) = ¢+ it, or in other words, the path of steepest
descent from any point is directly perpendicular to the real axis. Thus we can use Cauchy’s
theorem to deform the path from a to b by integrating along (, into the complex plane some
distance N, cross over to the path (3, then integrate along that path back to b:

/a b f(x)e® dz = ie™ /ON F(Ca(t))e ™ dte N /a ' F(t+iN)e™! dt—iew? /0 " F(G())et dt.

Assuming that f only has exponential growth in the complex plane, the middle integral goes
to zero when we let NV go to infinity:

b i i o0 . o)
/a fla)e™® dv = 1™ /0 F(Calt))e e dt — iel /O F(Gyl(t))e™" at.

We have thus converted the Fourier integral into two Laplace integrals, which can be ex-
panded into their asymptotic expansions. For the Fourier integral itself the method of
steepest descent will give the very same asymptotic expansion as if we had simply integrated
by parts, however with the extra requirement of analyticity and only exponential growth in
the complex plane. This is not to say it does not have its uses as a quadrature scheme, as
will be seen in Section 2.10.
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When the oscillator is more complicated—say, with stationary points—the method of
steepest descent is tremendously useful as an asymptotic tool. The method of stationary
phase only gives the first term in the asymptotic expansion, and the method of steepest
descent is needed to determine the higher order terms. The path of integration is now
significantly more complicated, and must go through the stationary point. Consider the

simplest oscillator with a stationary point: g(z) = z?. Making the real part constant results

in defining the path of steepest descent as ++/c2 + it, for 0 < ¢t < co. The choice in sign is
determined by the sign of c. For the path out of the two endpoints we obtain

(1) =—v1+it and  G(t) =V1+it

These two paths do not connect, hence Cauchy’s theorem is not yet applicable. To connect

the paths we must cross the real axis at some point. In this case, w?” oxhibits exponential
decay in the lower left and upper right quadrants, whilst it increases exponentially in the
remaining two quadrants. Thus we wish to pass through the saddle point at z = 0 to avoid
the areas of exponential increase. There are two paths through zero:

CE(t) = +V/it,
We must integrate along both of these curves for the contour path to connect.

Figure 2.4 draws the resulting path of steepest descent for this particular integral. This
corresponds to the following integral representation:

/_11 f(yc)ei“”g2 dz = (/1 —/0 —i—/c0+ —/1> f(x)ei“”c2 dz
= [T rca®e @ - [T i e e 24D
+ [T et e = e [T e G

Each of these integrals is a Laplace integral. Assuming that these integrals converge—
in other words, f cannot increase faster than the exponential decay along the contour of
integration—we can apply Watson’s lemma to determine the asymptotic expansion:

Theorem 2.4.1 [74] Suppose that q is analytic and

k4+A—p

o0
£~ Y agt © t— 0,

for Re A > 0. Then

00 k
/0 q —wtdt ZF( ‘}')\)(]];Ij_)\’ W — 00,

H w b
whenever the abscissa of convergence is not infinite.
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For the integrals along the paths (11 in (2.4.1), the integrand should be smooth at ¢ = 0, so
that A\, u = 1, and the contributions from the endpoints decay like (’)(u)_l). A singularity

is introduced because of Coi/, and each integrand behaves like % at zero. Thus p = 2, and

A =1, and the lemma predicts that these two integrals decay like (’)(w_%).

This technique of converting oscillatory integrals to Laplace integrals can be generalized
to other oscillators, including oscillators with higher order stationary points, see [11]. The
idea essentially remains the same: find the path of steepest descent, connecting disconnected
paths through the stationary point. Once the integral is converted to a sum of Laplace
integrals, Watson’s lemma gives the asymptotic expansion. We will not actually utilize these
asymptotic results extensively in this thesis: we will focus on methods which do not require
deformation into the complex plane. We do however utilize the path of steepest descent
again in Section 2.10, where a brief overview of a numerical quadrature scheme that obtains
asymptotically accurate results via contour integration is presented.

2.5. Multivariate integration

We now turn our attention to multivariate asymptotics. We utilized integration by parts
in the derivation of the univariate asymptotic expansion, which implicitly depended on the
fundamental theorem of calculus. Thus in the construction of the multivariate asymptotic
expansion, we need to use the multivariate version of the fundamental theorem of calculus:
Stokes’ theorem. In this section we restate this theorem, as well as defining key notation
that will be used throughout this thesis.

Let ds be the d-dimensional surface differential:
dzo A -+ A day
—dzy A dag A A day
ds = .
(=) day A A drg_q
The negative signs in the definition of this differential are chosen to simplify the notation of its

exterior derivative. Stokes’ theorem informs us, for some vector-valued function v : R? — RY
and piecewise smooth boundary €2, that

/mv~ds:/ﬁd(v«ds):/QV~vdV.

The definition of the derivative matriz of a vector-valued map T : R — R"™, with

component functions 71, ..., T, is simply the n X d matrix
Dy - DETY
T/ g . S .
De1 Tn R 'DedTn
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Note that Vg = ¢ when g is a scalar-valued function. The chain rule states that (g o
TY(x) = ¢/(T(x))T'(x). The Jacobian determinant Jp of a map T : R? — R? is the
determinant of its derivative matrix T”. For the case T : R* — R" with n > d we define the
Jacobian determinant of 7" for indices iy, ... ,i4 as J%l"”’id = Jj, where T = (Tiy, - ,Tid)T

Suppose we know that a function T maps Z C R onto Q2. Then the definition of the
integral of a differential form is

| f-ds= [ $(T@) - F(@)av,
where J%(x) is a vector of Jacobian determinants

2nd
@)
)

(_1)d—1J;7--~»d—1($)

In the univariate asymptotic expansion, we exploited integration by parts to write an
integral over an interval in terms of the integrands value at the endpoints of the interval
and a smaller integral over the whole interval. This is essentially a rewritten form of the
product rule for differentiation. For the multivariate case we proceed in the same manner:
use the product rule for Stokes’ theorem to rewrite the original integral as an integral along
the boundary of the domain and a smaller integral within the domain. The product rule for

a function w : R — R is:
/ wo - ds:/ V-(w’u)dV:/ [Vw v+ wV -v] dV.
o0 Q Q
Reordering the terms in this equation, we obtain a partial integration formula:

/Vw-vdV:/ wv-ds—/wV-vdV. (2.5.1)
Q o0 Q

2.6. Multivariate asymptotic expansion

With a firm concept of how to derive a univariate asymptotic expansion and the mul-
tivariate tools of the preceding section, we now find the asymptotic expansion of higher
dimensional integrals in the form

1] = l£.9) = [ f@)d=) av,

where the domain €2 has a piecewise smooth boundary. In this section we assume that the
nonresonance condition is satisfied, which is somewhat similar in spirit to the condition that
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¢’ is nonzero within the interval of integration. The nonresonance condition is satisfied if,
for every point @ on the boundary of €2, Vg(x) is not orthogonal to the boundary of € at
x. In addition, Vg # 0 in the closure of €2, i.e., there are no stationary points. Note that
the nonresonance condition does not hold true if g is linear and {2 has a completely smooth
boundary, such as a circle, since Vg must be orthogonal to at least one point in 0f).

Based on results from [89]—which were rediscovered in [49]—we derive the following
asymptotic expansion. We also use the notion of a vertex of €2, for which the definition may
not be immediately obvious. Specifically, we define the vertices of () as:

e If Q) consists of a single point in RY, then that point is a vertex of Q.

e Otherwise, let {Z;} be an enumeration of the smooth components of the boundary of
), where each Z; is of one dimension less than €2, and has a piecewise smooth boundary
itself. Then v € 012 is a vertex of Q if and only if v is a vertex of some Zj.

In other words, the vertices are the endpoints of all the smooth one-dimensional edges in the
boundary of €. In two-dimensions, these are the points where the boundary is not smooth.

Theorem 2.6.1 Suppose that () has a piecewise smooth boundary, and that the nonreso-
nance condition is satisfied. Then, for w — 00,

1,1/,9] ~ é O A,

where Oy, [f] depends on D™ f for > m < k, evaluated at the vertices of ).

Proof-
. . . iwg
In the partial integration formula (2.5.1), we choose w = — and
AY
v= 5.
Vgl

Because Vg # 0 within €2, this is well defined and nonsingular. It follows that

V-w=e“IVy,

thence
: 1
/ felwg dV = f 5
: iw Jo 7]

cwIVg . ds—,l/ V. [ VY ]eiwgdv
1w JQ

2
Vgl

[terating the process on the remainder term gives us the asymptotic expansion

s.o 1 . 1 .
LIf.Q ~ — 7/ “Ier . d : /v- wg qy, 2.6.1
g[f ] kgl (—IW)k 69 € U]C S + (—1(,())8 Q USe ( )
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for
Vg

2
Vgl

Vg

or=1f Ok— 5.
IVl

and Okp+1 =V -

We now prove the theorem by expressing each of these integrals over the boundary in
terms of its asymptotic expansion. Assume the theorem holds true for lower dimensions,
where the univariate case follows from Theorem 2.2.1. For each /¢, there exists a domain

Q€ R and a smooth map Ty : Qy — Z, that parameterizes the ¢th smooth boundary
component Z, by {2y, where every vertex of {2y corresponds to a vertex of Zy, and vice-versa.
We can thus rewrite each surface integral as a sum of standard integrals:

/ g, - ds = Z/ oy - ds =1y, [fi, ], (2.6.2)
o0 ¢ Zy /
where, for y € €,

foly) = on(Tu(y)) - JE(y)  and  go(y) = 9(Tu(y)).

It follows from the definition of the nonresonance condition that the function g, satisfies the
nonresonance condition in €2y. This follows since if gy has a stationary point at & then

0="Vg ' (&) =(90T0) (&) = Vy(Tu(£)) T¢(€),
or in other words ¢ is orthogonal to the boundary of Q at the point Ty(§).

Thus, by our assumption,

> 1

Iy, [fo, 2] ~ Z(:) m@' [fel,
where ©; [f;] depends on D™ f, for 3~ m < i applied at the vertices of ;. But D™ f; depends
on D™ [0}, o Ty] for > m < i applied at the vertices of {2y, which in turn depends on D™ f for
> m < i+ k, now evaluated at the vertices of Zy, which are also vertices of ). The theorem

follows from plugging these asymptotic expansions in place of the boundary integrals in
(2.6.1).

Q.E.D.

It is a significant challenge to find the coefficients of this asymptotic expansion explicitly,
hence we use this theorem primarily to state that the asymptotics of a multivariate integral
are dictated by the behaviour of f and its derivatives at the vertices of the domain of
integration.

2.7. Filon method

Though the importance of asymptotic methods cannot be overstated, the lack of con-
vergence forces us to look for alternative numerical schemes. In practice the frequency of

21



Figure 2.5: Louis Napoleon George Filon.

oscillations is fixed, and the fact that an approximation method is more accurate for higher
frequency is irrelevant; all that matters is that the error for the given integral is small. Thus,
though asymptotic expansions lie at the heart of oscillatory quadrature, they are not use-
ful in and of themselves unless the frequency is extremely large. In a nutshell, the basic
goal of this thesis, then, is to find and investigate methods which preserve the asymptotic
properties of an asymptotic expansion, whilst allowing for arbitrarily high accuracy for a
fixed frequency. Having been spoilt by the pleasures of asymptotic expansions, we also want
methods such that the order of operations is independent of w, and comparable in cost
to the evaluation of the expansion. Fortunately, methods have been developed with these
properties, in particular the Filon method and Levin collocation method.

The first known numerical quadrature scheme for oscillatory integrals was developed
in 1928 by Louis Napoleon George Filon [54]. Filon presented a method for efficiently
computing the Fourier integrals

/ab f(z)sinwz dx and /Ooo /() sinwz dz.

T

As originally constructed, the method consists of dividing the interval into 2n panels of size
h, and applying a modified Simpson’s rule on each panel. In other words, f is interpolated at
the endpoints and midpoint of each panel by a quadratic. In each panel the integral becomes
a polynomial multiplied by the oscillatory kernel sinwz, which can be integrated in closed

form. We determine the quadratic for the kth panel vy(x) = cx 0 + cp 10 + ck,2x2 by solving
the system:
vp(wr) = f(zr), ve(Trg1) = f(Trr1), Vg2 = f(Try2).

22



We thus sum up the approximation on each subinterval:

n—1

b Tok+2
/ f(z)sinwzde = ) / vg(z) sinwz dz. (2.7.1)

k=0 " "2k

The moments
p 1
/ z psinwzdx
a .CL'2

are all known trivially, thus we can compute (2.7.1) explicitly. The infinite integral was then
computed using a series transformation. This method was generalized in [68] by using higher
degree polynomials in each panel, again with evenly spaced nodes.

In the original paper by Filon, it is shown that the error of the Filon method is bounded

by
1
C’Sinh; (1—sechw>.

This suggests that h must shrink as w increases in order to maintain accuracy, a property
which we have stated we are trying to avoid. Furthermore, Tukey [87]—which is referenced
in Abramowitz and Stegun [2]—suggests that the Filon method cannot be accurate, due to
problems with aliasing. This argument is fundamentally flawed, as aliasing does not exist
when the number of sample points is allowed to increase. A related complaint was presented
by Clendenin in [19], which says that, due to the use of evenly spaced nodes, at certain
frequencies a nonzero integral is approximated by zero. Thus in order to achieve any relative
accuracy the step size must decrease as the frequency increases. An earlier review of the
Filon method [58], which Clendenin referenced, asserts that the error can not be worse than
the error in interpolation by piecewise quadratics. Thus Clendenin’s mistake was to focus
on relative error: the Filon method’s absolute error is still small at such frequencies.

What Filon failed to realize—and indeed apparently many other talented mathematicians
who have used the Filon method since its inception—is the most important property of the
Filon method: its accuracy actually improves as the frequency increases! Indeed, for a fixed

step size the error decays like O(w_Q). Thus h need not shrink as w increases, rather, if

anything, it should increase, thus reducing the required number of operations. This renders
the existence of problem frequencies a nonissue: when w is large, the issue Clendenin found
will only surface at step sizes significantly smaller than necessary. Moreover, in Section 3.1
we will investigate Filon-type methods which use higher order polynomials, and avoid the
problem of the integral vanishing completely.

Very little work on the Filon method was done for the remainder of the twentieth century,
mostly consisting of investigating specific kernels similar in form to the Fourier oscillator. A
Filon method for larger intervals is presented in [30], where a higher order rule is used for
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each panel. This paper again makes the mistake of investigating asymptotic behaviour as
hw — 0. The paper [17] generalized the Filon method for integrals of the form

b
/ f(z)e® cos kx dx.
a

More complicated methods based on the Filon method are explained in Section 2.11.

2.8. Levin collocation method

The computation of the Filon approximation rests on the ability to compute the moments
b .
/ 2Fel@? dg.
a

For this particular oscillator the moments are computable in closed form, either through
integration by parts or by the identity

b 1
/a 2Felwt 0 — W [P(l + k, —iwa) — F(l + k, —iwb)] ,

where T' is the incomplete Gamma function [2]. But often in applications we have irregular
oscillators, giving us integrals of the form

b .
/ fz)e“9® dz.

In this case knowledge of moments depends on the oscillator g. If we are fortunate, the
moments are still known, and the Filon method is applicable. This is true if g is a polynomial
of degree at most two or if g(x) = z". But we need not step too far outside the realm of these
simple examples before explicit moment calculation falls apart: moments are not even known
for g(x) = 23—z nor g(z) = cos x. Even when moments are known, they are typically known
in terms of special functions, such as the incomplete Gamma function or more generally the
hypergeometric function [2]. The former of these is efficiently computable [88]. The latter,
on the other hand, are significantly harder to compute for the invariably large parameters
needed, though some computational schemes exist [31,73,67]. Thus it is necessary that we
find an alternative to the Filon method.

In 1982, David Levin developed the Levin collocation method [60], which approximates
oscillatory integrals without using moments. A function F' such that d%g [F eiwg} = felvd

satisfies

I[f] = / b fed dx = / ' dd [Feiwg} dz = F(b)e“4?) — F(q)elvd®).

X

By expanding out the derivatives, we can rewrite this condition as L[F] = f for the operator
L[F]=F +iwg'F.
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Note that we do not impose boundary conditions: since we are integrating, any particular
solution to this differential equation is sufficient. If we can approximate the function F’,
then we can approximate I[f] easily. In order to do so, we use collocation with the operator
L. Let v =>}_; cp)y for some basis {11,...,¢,}. Given a sequence of collocation nodes

{z1,...,2,}, we determine the coefficents ¢; by solving the collocation system

Llv] (x1) = f(21),. -, L] (20) = f(20).

We can then define the approximation Q*[f] to be

QU1 = [ il = [ L [ocer] da = o(B)e0 — ofa)e)

Levin was the first to note the asymptotic properties of these quadrature schemes, as
well as the importance of endpoints in the collocation system. This method has an error

If]-QF[f] = (’)(w‘l) when the endpoints of the interval are not included in the collocation
nodes. When the endpoints are included, on the other hand, the asymptotic order increases

to I[f] — Q¥[f] = O(w”). Though Filon failed to notice it, this property holds true for the

Filon method as well, as discovered in [44]. This follows since the Levin collocation method
with a polynomial basis is equivalent to a Filon method, whenever g(x) = z. In Chapter 3,
we will see how this asymptotic behaviour relates to the asymptotic expansion, and exploit
this relation in order to improve the asymptotic order further.

A Levin collocation method was also constructed for oscillatory integrals over a square.
In this case a Levin differential operator was constructed by iterating the method for each
dimension. Though we do investigate multivariate Levin-type methods in Chapter 5, we will
not use this construction as it is limited to hypercubes.

Levin generalized his method for integrals whose vector-valued kernel satisfies a differ-
ential equation [61,62]. In other words, the method computes integrals of the form

such that

The function vy is oscillatory whenever A has eigenvalues with large imaginary components
and nonpositive real components. The Levin collocation method can be used whenever the
inverse of A and its derivatives are small. An example of such an integral is one involving
Bessel functions [2], where we have the kernel

v = (i) aw=("T 8)
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In this case
2

1
-1 _ —mx wx
AT (@) = w2z —m?2+m (—w:c2 (m—l)x)'

The entries of this matrix, and its derivatives, are all O(wil).

The collocation system is found in a similar manner as before. We wish to find a function

F such that (FTy)' = f"y. Expanding out derivatives gives us the new differential operator
Lv]=v + ATv.

Thus, given a vector-valued basis {1y}, we approximate F by v = >_1_; cx, where n = dv
for d equal to the dimension of the kernel y, and the coefficients ¢; are determined by solving
the system

Llv] (x1) = f(x1), .., L] (2) = f(2n).

We then obtain the Levin collocation method:

QUf] =v(0) y(b) —v(a) y(a).

Like the original Levin collocation method, the vector-valued version also improves with
accuracy as the frequency increases.

Theorem 2.8.1 [62] Let B(z) = wA~!(x) and assume that 1 = a and x,, = b. If B and its

derivatives are bounded uniformly for all w > «, then
(b—a)”
w

1) - QA < C

In Chapter 6 we will generalize this method to obtain higher asymptotic orders by deriving
a vector-valued asymptotic expansion.

2.9. Chung, Evans and Webster method

Often methods represented as weighted sums, as in Section 2.1, are preferred. Though
Filon and Levin collocation methods are extremely powerful, they do not fall into this frame-
work. In [26], Evans and Webster construct such a method for irregular exponential oscilla-
tors, based on the Levin collocation method. We want to choose weights w; and nodes x;
such that

1 , n
/ , o () d?) 4z = > widk(z)) (2.9.1)

=0

for some suitable basis ¢;. Unlike Gaussian quadrature, we do not choose ¢ to be polyno-
mials. Instead, we choose them based on the Levin differential equation:

qbk = ,C[Tk] = T]; + iwg’Tk,

26



where T}, are the Chebyshev polynomials. The moments with respect to ¢ are computable
in closed form:

1 ‘ . |
/ 1 Gr(2)e D) dx = Ty (1) 4N — T, (—1)eld 1),

We can thus determine suitable weights and nodes to maximize the number of functions ¢y,
such that (2.9.1) holds. As this is a Levin-type method, it preserves the asymptotic niceties
of the Levin collocation method.

This was generalized in [18, 24| for computation of the oscillatory integral

[ i ar

-1
where the oscillatory kernel y satisfies the differential equation
M(y) = pmy"™ + -+ poy = 0,

for some functions {po, ..., pm}. As before, we want to choose nodes, weights and a basis so
that

[} i) ar = 3 wyonte),
z

The adjoint of M is
ML) = (1" (pm2) "™ + (=)™ pm12) ™Y 4 = (p12) + oz
The Lagrange identity then states that
2Mly] —yM*[z] = (Z[y, z]), (2.9.2)

where Z is the bilinear concomitant

Zly, 21 =3 S (=1)F(prz) Ry,
r=1j+k=r—1

Integrating (2.9.2) and using the fact that M[y] = 0, we find that

/abM*[Z] yde = Zy, 2)(a) = Zy, 2)(b). (2.9.3)

We can thus choose our basis to be ¢ = M*[T}], in which case the moments are computable
using (2.9.3), hence the nodes and weights can be determined by solving an algebraic equa-
tion. Numerical results for approximating the integral

1
/1 e’ Jo(wcosx) dz

2

suggest that the method improves with accuracy as the frequency increases. Using the
method over infinite integration domains is explored in [25].

27



Remark:  Based on the asymptotic expansion and many results in this thesis, it seems
likely that imposing the condition

ro=a and Tp =0,

in the same vein as Gauss—Lobatto quadrature, should improve the asymptotic order of the
method. As far as I am aware, this idea has not yet been explored.

2.10. Numerical steepest descent

The method of steepest descent, described briefly in Section 2.4, has an important feature
that is neglected in its asymptotic form: the integrand along the path of integration does
not oscillate, and thus can be approximated by using the nonoscillatory quadrature methods
of Section 2.1. In this section we will give an overview of research based on this idea
for oscillatory quadrature methods. Traditionally these techniques have been used in the
computation of special functions, where f and g are fixed for any particular special function;
however, recent research has investigated utilizing this technique for general f and g.

As described in Section 1.3, special functions often have highly oscillatory integral repre-
sentations. Many methods for the computation of such special functions have been developed
based on these integral representations and the method of steepest descent. Where in Sec-
tion 2.4, the path of steepest descent was used merely to obtain the asymptotics of such
integrals, in computation it can be used as an integration path, with nonoscillatory quadra-
ture methods applied to the resulting integrals. Since the integral becomes exponentially
decreasing, these methods can be extremely accurate. They have been used to compute Airy
functions [34], Scorer functions [33] and an array of other special functions with integral rep-
resentations [35]. Unfortunately they depend on the knowledge or computation of the path
of steepest descent, which depends on the particular oscillator.

Contemporary with the work in this thesis is the investigation of numerical steepest
descent for the general case by Daan Huybrechs and Stefan Vandewalle. In [40], they inves-
tigated univariate integrals, including those with stationary points. By employing Gauss—
Laguerre quadrature along the path of steepest descent, high asymptotic order methods were
obtained. In the case with no stationary points, if n quadrature points are used for each

path (so 2n points total), the method has an error O(w’Q"’l), as w — 00. Furthermore, it
is shown that the path of steepest descent can be computed using Newton’s method. The
method was also generalized for multivariate integrals in [41].

Though these methods are incredibly powerful, we will instead focus on Filon and Levin
methods, due to several factors. The path of steepest descent goes to infinity and back again,
thus the numerical steepest descent methods require the integrand of the oscillatory integral
to be analytic throughout the entire complex plane, except perhaps at poles and branch
points. The poles and branch points add difficulty to the computation of the steepest descent
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path, as great care must be taken to stay on the same branch cut so that Cauchy’s theorem
remains valid. This is manageable for univariate integrals, but becomes an exhausting task
for multivariate integrals, where there can be complicated poles and branch points for each
variable. Furthermore, the amount of computation needed to obtain an approximation is
significantly greater, due to the need of computing the path of steepest descent. Finally, the
methods are less effective at low frequencies: an infinite integral with the kernel e™“* does
not decay quickly when w is close to zero.

An alternative complex plane method was used to solve the first problem of [12]. The
idea is that a deformation into the complex plane does not necessarily have to be along
the path of steepest descent. As long as it is deformed into the exponentially decreasing
quadrant, the exponential decay will take over and only a small, manageable number of
oscillations will remain, and standard quadrature methods become viable. Unfortunately,
such a method does not achieve higher asymptotic orders; the error only decays at the same
rate as the integral itself.

2.11. Other numerical methods

There are assorted other numerical methods developed for approximating oscillatory in-
tegrals, typically specializing on particular oscillators. We will not investigate these methods
in detail in this thesis, but they are mentioned here for completeness. Many methods exist
for the Fourier oscillator, which were reviewed in [27]. They all are based on the fact that
moments are computable, and hence are Filon-type methods. The Bakhvalov and Vasil’eva
method [8] interpolates f by Legendre polynomials Py, and uses the fact that the moments
of such polynomials are known explicitly:

21

1
1 ‘ 3
iwe _ :k
/4 Py(z)e“*dr =1 (w > J,H%(w), (2.11.1)

where Jj, is a Bessel function [2].

A method based on Clenshaw—Curtis quadrature was also devised, where f is interpolated
by Chebyshev polynomials T;.. We do not have simple formule for the resulting moments,
so the polynomials T}, are then expanded into Legendre polynomials and (2.11.1) is applied
[80,63]. An alternative from [3] is to express the moments in terms of the hypergeometric
function ¢F; [2]. Special functions can be avoided in both these methods by expanding the
Legendre or Chebyshev polynomials into the standard polynomial basis 2*, whose moments
can be found via partial integration [5]. This is not effective for large k due to significant
cancellation in the expansions [27].

Though it was not observed in any of these papers, all of these Filon-type methods—

methods based on interpolating f—have the same asymptotic behaviour as the Levin col-
location method. If the endpoints of the interval are included in the interpolation nodes,
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then error decays like O(wfz); otherwise the error decays at the same rate as the integrand

O(w_1>. This will be explored in more detail in the next chapter, as well as generalization in

order to achieve even higher asymptotic orders. The importance of this observation cannot
be over stressed: it means that high oscillation is beneficial, not a hindrance. Furthermore,
it also means that the number of interpolation points required should actually decrease as
the frequency of oscillations increases. Thus at high frequencies we never need to utilize
large order polynomials in order to obtain accurate results.

There are several other methods not mentioned in [27]. Longman had a series of related
papers [64,65,66] for integrals over infinite intervals, based on expressing the integral as
an infinite sum and applying the Euler transformation. A method for irregular oscillatory
integrals over infinite intervals based on series transformations is presented in [83]. In this
case the Euler transformation is again utilized, as well as Aitken’s A%-process [13], Wynn’s
e-algorithm [13] and Sidi’s W-transformation [84].

Piessens developed a Gaussian quadrature formula with respect to the weight function
sinx over the interval [—m, 7| [81]. It however relies on considering each period separately,
thus still requires a large number of function evaluations to obtain accurate approximations.
A similar method based on Gaussian quadrature was developed by Zamfirescu [92], and
described in [44] (the original paper is in Romanian). We can rewrite the sine Fourier
integral as

1

[ t@)sinwrdr = [ @) +sinwr)de [ fa)ar

The second of these integrals is nonoscillatory, so the methods of Section 2.1 can be used
to approximate its value. The first integral now has a nonnegative weight function, hence
we can approximate it by a weighted sum. Since the moments with respect to the weight
function are known, we can successfully compute the quadrature weights needed.

A very effective quadrature scheme is developed in [56] for the standard Fourier oscillator.
The paper uses a weighted sum of the value of the function f and its first derivative at evenly
spaced nodes, determining the weights so as to maximize the degree of polynomials integrated

exactly. It is noted that, for a method of N points, the error behaves like O(w*N ) This is

generalized to use higher order derivatives of f in [57], resulting in a significant decrease in
error.

A method based on a minimax algorithm for oscillatory integrals of the form

[ $@)ota) az

is presented in [70]. It proves that the method is optimal-by-order. It then demonstrates
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the method for the specific integrals

/ab () {sinwx d.

COSwWx

in which case the method consists of approximating f by a spline v and integrating

b sin wx
/ v(x){ dz
a COSWIT
explicitly. This is generalized to multivariate integrals over Cartesian products of intervals
in [72,71,93]. In these papers, explicit quadrature formulae are presented for the integrals

b rd sin wz sin wy
[ [ 1en da
a Je COS WT COS WY
In [6], local Fourier bases are used to approximate oscillatory integrals, with a general-
ization to multivariate rectangular domains in [7]. Unfortunately, though the resulting linear

system is sparse, these methods require that the number of bases functions grows with the
frequency, hence they are not competitive with other methods discussed in this thesis.

There is also a comparison of methods for irregular oscillators in [27]. In addition to
the Levin collocation method and the Chung, Evans and Webster method already discussed,
there is method developed by Evans in [22] where the transformation y = g(z) is used to
convert the irregular oscillator to a standard Fourier oscillator:

e f(g’l(y))eiw
I[f]—/g(a) 997 Hy)) "y (2.11.2)

Once the integral is in this form, a Filon-type method can be employed, in particular the
method based on Clenshaw—Curtis quadrature. This technique is successful whenever the
interval does not contain stationary points. Unfortunately it requires the computation of
the inverse of g, albeit only at the interpolation points.

Another method for irregular oscillators is proposed by Evans in [23]. Instead of inter-

polating f by polynomials, we can interpolate ;,((?) using a basis of the form

> ckt(g(x).

Then making the transformation y = g(z), as in (2.11.2), does not require the computation
of inverses of g. We must, however, be careful in the choice of the basis 1. A related idea
for integrals with stationary points will be presented in Chapter 4.

In [14], the problem of solving the acoustic equation of Section 1.2 was tackled. This
method required the computation of oscillatory integrals, for which a new quadrature scheme
was derived. As mentioned in Section 2.3, at high frequencies, univariate oscillatory integrals
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are dominated by the contribution from the stationary points and endpoints (multivariate
integrals are dominated by contributions from stationary points, resonance points and ver-
tices). Thus we can obtain a high accuracy approximation by numerically integrating near
these important points, and throwing away the contributions from the more oscillatory re-
gions. This is accomplished by utilizing smooth windowing functions that focus on e neigh-
bourhoods of these important points. The part of the integral which we throw away decays
exponentially fast as the frequency increases; though the error in the approximation only
decays at the same rate as the integral due to quadrature error in each € neighbourhood.
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Chapter 3

Univariate Highly Oscillatory Integrals

Having reviewed the existing literature, we now begin developing the Filon and Levin
collocation methods further. The basic idea is to put these two methods on the same
framework as the asymptotic expansion, which will allow us to generalize the methods for
higher asymptotic orders, whilst retaining their convergent properties. In this chapter we
focus on the univariate highly oscillatory integral

1) = [ 1)) aa.

Until Chapter 4 we assume that ¢’ does not vanish within [a, ], in other words there are
no stationary points. We also assume for simplicity that f and g are smooth, i.e., infinitely
differentiable. Generalization of the results presented here to the case where f,g € C"|a, D]
is straightforward.

The key observation is that the asymptotic expansion only depends on the value and
derivatives of f evaluated at the boundary points. Thus if we can write our approximation
scheme as a highly oscillatory integral I[v], then we can determine the asymptotic order of
the error of the approximation by comparing f and v at the endpoints. The two primary
numerical methods we investigated in the preceding chapter—the Filon method and Levin
collocation method—both satisfy this property.

We begin with the development of Filon-type methods in Section 3.1, which is based on
results in [48]. The idea is fairly straightforward: instead of dividing the interval into panels
and performing a piecewise quadratic interpolation as in the original Filon method, we use
Hermite interpolation over the entirety of the interval. This ensures that the derivatives
of the interpolant match those of f up to a given order, and the approximation achieves a
higher asymptotic order. Furthermore it retains the character of the original Filon method:
adding additional sample points reduces the error further.

These new Filon-type methods require moments, which in certain applications are un-
available. Thus in Section 3.2 we look again at the Levin collocation method, using the
ideas from the construction of Filon-type methods to derive Levin-type methods, which also
obtain higher asymptotic order. This is accomplished in much the same manner; we use
multiplicities in the collocation system. We also compare the Filon-type and Levin-type
methods numerically. In their initial development, we use a polynomial basis in Levin-type
methods. This is not strictly necessary, and in Section 3.3 we use information about f and
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g to develop a more suitable collocation basis, which is based on the asymptotic expansion.
This is exploited in Section 3.4, which investigates approximating integrals where f is badly
behaved, in particular the Runge example.

In their initial construction, Filon-type and Levin-type methods require derivatives of
f in order to achieve higher asymptotic orders. If f is at all complicated, computing its
derivatives is a nontrivial task. In Section 3.5 we use an idea developed in [47] to achieve
higher asymptotic orders without using derivatives, by choosing interpolation points that
behave like finite difference formulee as the frequency w increases. Finally, in Section 3.6 we
find some error bounds for a Filon-type method and a Filon—trapezoidal rule, where f is
approximated by a piecewise affine function v which is integrated exactly.

Remark:  Section 3.1 is based on results by Iserles and Ngrsett in [48]. Sections 3.2
through 3.4 contain original research, first presented in [75]. Section 3.5 is based on re-
sults again by Iserles and Ngrsett, from [47]. Section 3.6 consists of new research, derived
with Daan Huybrechs.

3.1. Filon-type methods

The following corollary will be used in the proof of the order of error for Filon-type and
Levin-type methods.

Corollary 3.1.1 Allowing f to depend on w, suppose for some n > 0 that f = O(w‘”),

where O(af") means that the L*°[a,b] norm of f and its derivatives are all O(w’"),

cf. Notation. Furthermore, suppose that

0=f(a)=f'(a) == "),
0=f()=f ()= =f10).

Then I[f] ~ O(w‘”_3_1>, for w — 0.

Proof:  Recall the asymptotic expansion from Section 2.2:

1=~ = (—iw)F {or(b)ed?) — gy (a)e o)} + (—M)Hl/a g osi0e9 d,
where
n=t =% k1
1 /7 k+1 g/ ) ~ 1.

Each o} depends on f and its first £ — 1 derivatives, in the sense that it is a sum of terms

independent of w, each multiplied by some function in the set { oo f (k—1) } Thus it follows
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that 0 = ox(a) = ox(b) for all k£ < s, and the first s terms of the asymptotic expansion are
identically zero. Thus we obtain

1 iw iwga 1 b iw
I[f] = _W {08+1(b)e g(b) - US+1(CL)€ g( )} + (—lw)s"’_l/a g/0'5+2e gdl‘.

From the properties of O(-) in Notation, we know that o511 = O(w*”). Thence o441(b)
and ogy1(a) are O(w‘”). Furthermore, the integral is also of order (’)(w‘”), and all three
terms are (’)(w‘”_s_l).
Q.E.D.
We could, of course, use the partial sums of the asymptotic expansion to approximate
I[f]. The accuracy of this approximation would improve as the frequency of oscillations w
increased. Unfortunately, the expansion will typically not converge for fixed w, thus there is
a limit to the accuracy of an asymptotic expansion. Hence we derive a Filon-type method,

a method which will provide convergent approximations whilst retaining the asymptotic

behaviour of the expansion. Given some sequence of nodes {x1,...,x,} and multiplicities

k-1

{m1,...,my}, the idea is to approximate f by a polynomial v = Y-}_; cxz" " using Hermite

interpolation, where n = Y myj. We thus determine the coefficients ¢; by solving the system

o(zy) = flxr), v/ (xr) = f'(xr) o™ D (@) = f D), k=1,...,0

We will assume for simplicity that z; = ¢ and z, = b. If the moments of €9 are available,
then we can calculate I[v] explicitly. We thus define a Filon-type method as

Qﬁﬂzﬂd=§5%ﬂﬁ*]
=1

Because the accuracy of QF[f] depends on the accuracy of v interpolating f, adding ad-
ditional sample points and multiplicities will typically decrease the error. If v converges

uniformly to f, then the approximation QF'[f] converges to the solution I[f]. We can easily
prove the asymptotic order of this method:

Theorem 3.1.2 [48] Let s = min {my, m,}. Then
111 = Q"[f] ~ O(w™").
Proof:  The order of error of this method follows immediately from Corollary 3.1.1:

I[f] — QF[f) = Ilf] — I[v] = I[f —v] ~ O(wfsfl)

as w — 00, since f — v and its first s — 1 derivatives are zero at the endpoints.
Q.E.D.
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Figure 3.6: The error scaled by w? of the asymptotic expansion (left graph, top), QY [f] with only
endpoints and multiplicities both two (left graph, bottom)/(right graph, top), and QF [f] with
nodes {0, %, 1} and multiplicities {2, 1,2} (right graph, bottom) for I[f] = fol cos z €% dz.

We will now compare Filon-type methods to the asymptotic expansion numerically to
show that we can indeed decrease the error by adding interpolation points. Consider the
fairly simple integral

1 :
I[f] :/0 cosx e’ dx.

In Figure 3.6 we compare several methods of order three: the two-term asymptotic ex-

pansion, QF'[f] with nodes {0,1} and multiplicities {2,2}, and Q¥ [f] with nodes {0, %, 1}
and multiplicities {2,1,2}. Even when sampling f only at the endpoints of the interval,
the Filon-type method represents a significant improvement over the asymptotic expansion,
having approximately one-twelfth the error, while using exactly the same information about
the function f. Adding an additional interpolation point results in an error indistinguishable

from zero in the graph. Adding additional node points continues to have a similar effect.

3.2. Univariate Levin-type methods

The major problem with using Filon-type methods is that they still require explicit
formulee for the moments [ {xk}, which are not known for general functions g. But we can
employ the same idea of using multiplicities for the Levin collocation method, to obtain a
Levin-type method. We still wish to find a particular solution to the differential equation

Lv]=f for Lv] = v +iwg'v.
For the given nodes {z1,...,x,} we associate a sequence of multiplicities {m1,...,m,}. We
then determine an approximate solution

n

=Y iy,

k=1
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where {¢1,...,1%,} is a given basis and n =3 my.

The unknown coefficients ¢ are determined by solving the system:

L] () = flar), L[] (21) = f/ (), LT () = f D), k=1,....v
(3.2.1)
The number of equations in this system is n, exactly the same as the number of unknowns
in v. If every multiplicity m; is one, then this is equivalent to the original Levin collocation
method. We will prove that, as in a Filon-type method, if the multiplicities at the endpoint
are greater than or equal to s, then I[f] — QF[f] ~ O(w_s_1>. Thus we obtain the same

asymptotic behaviour as a Filon-type method without requiring moments, and using exactly
the same information about f and g. In order to prove the order of error, we require that the
reqularity condition is satisfied, which states that the set of functions {¢} can interpolate
any function at the given nodes and multiplicities.

Theorem 3.2.1 Suppose that the regularity condition is satisfied, and that ¢’ # 0 within
la,b]. Then
I[f] = Q*f] ~ O(w™*7),

where s = min {my, m,} and

QU] = (b)) — (a)ed®).

Proof:  The error term of the approximation is I[f] — QT[f] = I[f — L£[v]]. In order to use
Corollary 3.1.1 we need to show that f — L[v] = O(1). Since f is independent of w, we need

only worry about L[v]. Using Cramer’s rule, we will show that each ¢ is of order O(w‘1>.
Define the operator P[f], written in partitioned form as

pilf] f (@)
Pifl=1{ =+ |, where plf]= :

pulf] FomD) ()
Basically, P[f] maps f to the value of it and its derivatives at every node in {xy,...,z,}

with multiplicities {m1,...,m,}. Note that the system (3.2.1) can be written as Ac = f,

T

for ¢ = (c1,--+,c,) and

A= (PLW) -, PILW) = (P[U]] +iwP[g'n] - Plo)] +iwP|gvn]) = P +iwG,
where
P=(Pli], - Pl]),  G=(Plgv].- Plgwa]) and  f="PIf].

Solving the system Ge = f is equivalent to interpolating f by {¢'ix} at the given nodes
and multiplicities. Thus the regularity condition ensures that det G # 0. It follows that
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Figure 3.7: The error scaled by w3 of the two-term asymptotic expansion (left graph, top), QL [f]
(left graph, bottom)/(right graph, top) and QF [f] (right graph, bottom) both with only endpoints
and multiplicities two for I[f] = fol cos z e@(@*+2) qg.

det A = (iw)"det G + O(w"‘1>, hence large enough w ensures that A is nonsingular and
(det A)~1 = (’)(w‘”). Furthermore det A;, = (’)(w”_l), for Aj defined as the matrix A

with the kth column replaced by f, since it has one less column of order O(w). Hence, by

Cramer’s rule,

It follows that v = (’)(w’l); thus L[v] = O(1), and the theorem follows.

Q.E.D.

Theorem 3.2.2 provides a simplified version of the regularity condition. It is especially
helpful as it ensures that the standard polynomial basis can be used with a Levin-type
method and any choice of nodes and multiplicities. Recall from [82] that a Chebyshev set is
a basis of n functions that spans a set M that satisfies the Haar condition; in other words,
that every function u € M has less than n + 1 roots to the equation u(x) = 0 in the interval

la,b]. Equivalently, the basis can interpolate at any given sequence of n nodes.

Theorem 3.2.2 Suppose that the basis {1, ...,¢,} is a Chebyshev set. Then the regu-
larity condition is satisfied for all choices of nodes and multiplicities.

Figure 3.7 will demonstrate the effectiveness of this method. Consider the integral

Jo cos(x)ei”(x2+x) dz, in other words f(z) = cosx and g(z) = 22 + . We have no sta-
tionary points and moments are computable, hence all the methods discussed so far are
applicable. We compare the asymptotic expansion with a Filon-type method and a Levin-
type method, each with nodes {0, 1} and multiplicities both two. For this choice of f and g,
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Figure 3.8: The error scaled by w3 of Q¥[f] (left graph, top) and Q¥ [f] (left graph, bottom) both
with only endpoints and multiplicities two compared to Q[ f] (left graph, middle) and Q¥ [f] (right

graph) both with nodes {0, i, %, 1} and multiplicities {2,2, 1,2} for I[f] = fol cos z €@ +7) dg.

the Levin-type method is a significant improvement over the asymptotic expansion, whilst
the Filon-type method is even more accurate.

Figure 3.8 compares the Levin-type method and the Filon-type method with the addition
of two sample points. This graph helps emphasize the effectiveness of adding node points
within the interval of integration. With just two additional node points, only one of which
has multiplicity greater than one, the error of Q¥[f] is less than a sixth of what it was. In
fact it is fairly close to the former Q*'[f] while still not requiring the knowledge of moments.
On the other hand, adding the same node points and multiplicities to Q¥ [f] results in an

error significantly smaller than the original Q*[f]. It should be emphasized that even Q[f]
with only endpoints is still a very effective method, as all the values in this graph are divided
by w3 > 2003 = 8 - 10°.

3.3. Asymptotic basis

For a Levin-type method we do not have to use polynomials for the collocation basis
{tr}. Not only can we greatly improve the accuracy of the approximation by choosing
the basis wisely, but surprisingly we can even obtain higher asymptotic orders. The idea
is to choose {11} so that L[v] is qualitatively similar in shape to f within the interval of
integration. We know the asymptotic expansion is very accurate at high frequencies, however
it diverges in general, and is not very accurate in the low frequency regime. In this section
we use the terms of the asymptotic expansion, however we throw away the coefficients of the
expansion, determining them via a Levin collocation system. It turns out that we retain the
asymptotic order of the expansion, whilst improving the accuracy significantly.

39



Theorem 3.3.1 Define QP[f] as a Levin-type method with the basis

_ _ U
w]_ = and ¢k+1 =
g
If the regularity condition is satisfied then

QPN — 11 = 0w ),

where s is again the minimum endpoint multiplicity s = min {mq,m, }.

Proof: ~ We postpone a detailed proof of this theorem until Theorem 5.3.2, since it is a
special case of the multivariate version. We however present a very brief sketch of the proof.
Note that

LWl = f = elln] — £ = o (Vh +iwg've) — f
k=1

k=1

= ok gk +iwg'vi) — gt

k=1

:g, [(iwcl - 1)¢1 + Z(Ck—l + iwck)wk + Cnl/}n+1:|
k=2

/

=3 g T [(iw det A} — det A)y; + Z (det Ap_1 + iw det Ay )by + det An¢n+1} )
et k=2

where A is again the matrix associated with the Levin collocation system and Aj is the
matrix A with the kth row replaced by f = P[f], as in Theorem 3.2.1. It is possible to
show via determinant manipulations that each of the constants within the bracket are O(1),

whilst we have already seen in the proof of Theorem 3.2.1 that (det A)~! = O(w‘”). Thus

L] - f=0(w™),
and the proof follows from Corollary 3.1.1.
Q.E.D.

In the examples that follow, we include the constant function ¢ (x) = 1 in our collocation
basis, in addition to the terms of the asymptotic basis. This does not affect the proof of the

preceding theorem, other than that the error is now O(w*”*‘s).

Consider the integral fol log(x + 1) e“¥dx. In Figure 3.9, we compare methods of or-
der O(w‘4). This includes the three-term asymptotic exansion, Q¥[f] (which is equivalent

to QL[ f] with a polynomial basis) with nodes {0, 1} and multiplicities both three, and QP[f]
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Figure 3.9: The error scaled by w? of the three-term asymptotic expansion (left graph, top),
QF [f] with endpoints for nodes and multiplicities three (left graph, bottom), and QB [f] in with

nodes {0, %, 1} and multiplicities one (right graph) for I[f] = fol log(z + 1) e da.
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Figure 3.10: The base-10 logarithm of the error of the s-term asymptotic expansion (top), QF [f]
with endpoints for nodes and multiplicities s (middle), and QP[f] with nodes {k/ (s — 1) 2;})
and multiplicities all one (bottom) for I[f] = fol log(x + 1)e“* dz.

using nodes {O, %, 1} and multiplicities all one. The results are decent, with QF [f] being

slightly more accurate than Q'[f] on average, though with a smaller collocation system.

The problem with the asymptotic expansion and Q[f] with endpoints for nodes and
multiplicities both s is that, in general, as s — oo these methods diverge. Hence another
worthwhile comparison is to see how QP[f] compares to these two methods for fixed w and
increasing asymptotic order. Thus fix w = 50, chosen purposely relatively small since the
larger w, the longer it takes for increasing the asymptotic order to cause the approximations
to diverge. This choice results in Figure 3.10, where we take the base-10 logarithm of the
errors. This figure clearly shows the benefit of using Q”[f] for this particular case. Though
at lower orders the errors of Q¥'[f] and QP[f] are very simil