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A b s t r a c t .  It is discussed how network modeling of lumped-parameter physical 
systems naturally leads to a geometrically defined class of systems, called port- 
controlled Hamiltonian systems (with dissipation). The structural properties of these 
systems are investigated, in particular the existence of Casimir functions and their 
implications for stability. It is shown how the power-conserving interconnection 
with a controller system which is also a port-controlled Hamiltonian system de- 
fines a closed-loop port-controlled Hamiltonian system; and how this may be used 
for control by shaping tile internal energy. Finally, extensions to implicit system 
descriptions (constraints, no a priori input-output structure) are discussed. 

1 I n t r o d u c t i o n  

Nonlinear systems and control theory has witnessed tremendous develop- 
ments over the last three decades, see for example the textbooks [12,25]. Es- 
pecially the introduction of geometric tools like Lie brackets of vector fields 
on manifolds has greatly advanced the theory, and has enabled the proper 
generalization of many fundamental concepts known for linear control sys- 
tems to the nonlinear world. While the emphasis in the eighties has been 
primarily on the structural analysis of smooth nonlinear dynamical control 
systems, in the nineties this has been combined with analytic techniques for 
stability, stabilization and robust control, leading e.g. to backstepping tech- 
niques and nonlinear H ~ -  control. Moreover, in the last decade the theory of 
passive systems, and its implications for regulation and tracking, has under- 
gone a remarkable revival. This last development was also spurred by work 
in robotics on the possibilities of shaping by feedback the physical energy in 
such a way that  it can be used as a suitable Lyapunov function for the control 
purpose at hand, see e.g. the influential paper [42]. This has led to what is 
called passivity-based control, see e.g. [26,32,13]. 

In this lecture we want to stress the importance of modelling for nonlinear 
control. Of course, this is well-known for (nonlinear) control applications, but 

* This paper is an adapted and expanded version of [33]. Part of this material can 
be also found in [32]. 
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in our opinion also the development of nonlinear control theory for physical 
systems should be integrated with a theoretical framework for modelling. We 
discuss how network modelling of (lumped-parameter) physical systems nat- 
urally leads to a geometrically defined class of systems, called port-controlled 
Hamiltonian systems with dissipation (PCHD systems). This provides a uni- 
fied mathematical framework for the description of physical systems stem- 
ming from different physical domains, such as mechanical, electrical, thermal, 
as well as mixtures of them. 

Historically, the Hamiltonian approach has its roots in analytical me- 
chanics and starts from the principle of least action, via the Euler-Lagrange 
equations and the Legendre transform, towards the Hamiltonian equations of 
motion. On the other hand, the network approach stems from electrical engi- 
neering, and constitutes a cornerstone of systems theory. While most of the 
analysis of physical systems has been performed within the Lagrangian and 
Hamiltonian framework, the network modelling point of view is prevailing 
in modelling and simulation of (complex) physical systems. The framework 
of PCHD systems combines both points of view, by associating with the 
interconnection structure ("generalized junction structure" in bond graph 
terminology) of the network model a geometric structure given by a Poisson 
structure, or more generally a Dirac structure. The Hamiltonian dynamics is 
then defined with respect to this Poisson (or Dirac) structure and the Hamil- 
tonian given by the total stored energy, as well as the energy-dissipating 
elements and the ports of the system. 

Dirac structures encompass the "canonical" structures which are classi- 
cally being used in the geometrization of mechanics, since they also allow to 
describe the geometric structure of systems with constraints as arising from 
the interconnection of sub-systems. Furthermore, Dirac structures allow to 
extend the Hamiltonian description of distributed parameter systems to in- 
clude variable boundary conditions, leading to port-controlled distributed 
parameter Hamiltonian systems with boundary ports, see [17]. 

The structural properties of PCHD systems can be investigated through 
geometric tools stemming from the theory of Hamiltonian systems.We shall 
indicate how the interconnection of PCHD systems leads to another PCHD 
system, and how this may be exploited for control and design. In particular, 
we investigate the existence of Casimir functions for the feedback intercon- 
nection of a plant PCHD system and a controller PCHD system, leading to 
a reduced PCHD system on invariant manifolds with shaped energy. We thus 
provide an interpretation of passivity-based control from an interconnection 
point of view. This point of view can be further extended to what has been re- 
cently called Interconnection-Damping Assignment Passivity-Based Control 
(IDA-PBC). 
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2 Port-control led Hamil tonian  systems 

2.1 From the  Euler-Lagrange and H a m i l t o n i a n  equat ions  to 
port -contro l led  Hami l ton ian  s y s t e m s  

Let us briefly recall the standard Euler-Lagrange and Hamiltonian equations 
of motion. The standard Euler-Lagrange equations are given as 

d-t -0-~(q, 4) - ~-q(q,4) = T, (1) 

where q = (ql,.. .  ,qk) T a r e  generalized configuration coordinates for the 
system with k degrees of freedom, the Lagrangian L equals the difference K - 
P between kinetic energy K and potential  energy P,  and T = (T1,. . .  , ~%)T 

OL is the vector of generalized forces acting on the system. Furthermore,  ~-~ 

denotes the column-vector of partial derivatives of L(q, O) with respect to the 
generalized velocities 0x,. �9 , Ok, and similarly for OL �9 ~q. In s tandard mechanical 
systems the kinetic energy K is of the form 

K(q, (7) = ~(tT M(q)O (2) 

where the k x k inertia (generalized mass) matr ix M(q) is symmetric and 
positive definite for all q. In this case the vector of generalized momenta 

OL is simply given P = ( P l , . . .  ,Pk) T, defined for any Lagrangian L as p = o--~, 
by 

p=M(q)q ,  (3) 

and by defining the state vector ( q l , . . .  , qk,Pl,. . .  ,Pk) T the k second-order 
equations (1) transform into 2k first-order equations 

O= OH M-1 -b-~(q,P) (= (q)P) 

[9 ~ OH ---~q (q,p) + 7 
(4) 

where 

H(q,p)= ~pTM-l(q)p+ P(q) (= ~OTM(q)gt+ P(q) ) (5) 

is the total energy of the system. The equations (4) are called the Hamiltonian 
equations of motion, and H is called the Hamiltonian. The following eneryy 
balance immediately follows from (4): 

d H _ OTH(q,p)g t + OTH OTH 
a t  - o--q- = (6)  
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expressing that  the increase in energy of the system is equal to the supplied 
work (conservation of energy). 

If the potential  energy is bounded from below, tha t  is 3C > - o c  such tha t  
P(q) > C, then it follows that  (4) with inputs u = T and outputs  y = 
is a passive (in fact, a lossless) s ta te  space system with storage function 
H(q,p)  - C >_ 0 (see e.g. [43,11,32] for the general theory of passive and 
dissipative systems). Since the energy is only defined up to a constant,  we 
may as well take as potential  energy the function P(q) - C >_ 0, in which case 
the total  energy H(q,p)  becomes nonnegative and thus itself is the storage 
function. 

System (4) is an example of a Hamiltonian system with collocated inputs 
and outputs,  which more generally is given in the following form 

OH 
(t = -~v (q,P), (q,P) = (q l , . . .  , qk ,P l , . . .  ,Pk) 

~) = q,p) + B(q)u,  u C 1R m , (7) 

= BT(q)-O~p(q,p) (-- BT(q)(l), y e N m, Y 

Here B(q) is the input force matr ix ,  with B(q)u  denoting the generalized 
forces resulting from the control inputs u E N "~. The s tate  space of (7) with 
local coordinates (q,p) is usually called the phase space. Normally m < k, in 
which case we speak of an underactuated system. 

Because of the form of the output  equations y = BT(q)O we again obtain 
the energy balance 

d H  
dt (q(t) ,p(t))  = ur ( t ) y ( t )  (8) 

and if H is bounded from below, any Hamil tonian system (7) is a lossless 
state space system. For a system-theoret ic  t rea tment  of Hamil tonian systems 
(7), we refer to e.g. [4,29,30,6,25]. 

A major  generalization of the class of Hamil tonian systems (7) is to con- 
sider systems which are described in local coordinates as 

= x , u  e x 

(9) 
y : g T ( x  ) OH (X'~ ~ j, y C I~ "~ 

Here J(x)  is an n x n matr ix  with entries depending smoothly  on x, which 
is assumed to be skew-symmetric 

J (x )  = - S ( x ) ,  (10) 

and x = ( x l , . . . ,  x~) are local coordinates for an n-dimensional s ta te  space 
manifold X. Because of (10) we easily recover the energy-balance ~ ( x ( t ) )  = 
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uT(t)y( t ) ,  showing that  (9) is lossless if H > 0. We call (9) with J satisfying 
(10) a port-controlled Hamiltonian (PCH) system with structure matrix J(x)  
and Hamiltonian H ([21,16,15]). 

As an important  mathematical  note, we remark that  in many examples 
the structure matrix J will satisfy the "integrability" conditions 

f i  [Jlj( ) O]ik , OJkj Jlk(X)~(x)] 0 
I=1 x ~x t  (x) + J u ( x ) ~ x l  (x) + = 

i , j , k  = 1 , . . . , n  (11) 

In this case we may find, by Darboux's  theorem (see e.g. [14]) around any 
point x0 where the rank of the matr ix  J(x)  is constant, local coordinates 
5: = (q,p,s)  = ( q l , . . . , q k , P l , .  ,.,Pk,Sl,...Sl), with 2k the rank of 2 and 
n = 2k + l, such that  J in these coordinates takes the form 

J = o (12) 
0 

The coordinates (q,p,s)  are called canonical coordinates, and J satisfying 
(10) and (11) is called a Poisson structure matrix. In such canonical coor- 
dinates the equations (9) are very close to the standard Hamiltonian form 
(7). 

PCH systems arise systematically from network-type models of physical 
systems as formalized within the (generalized) bond graph language ([28,3]). 
Indeed, the structure matr ix J(x )  and the input matrix g(x) may be directly 
associated with the network interconnection structure given by the bond 
graph, while the Hamiltonian H is just the sum of the energies of all the 
energy-storing elements; see our papers [16,21,18,22,35,36,23,31]. This is most 
easily exemplified by electrical circuits. 

E x a m p l e  1 ( L C T G  c i r cu i t s )  Consider a controlled LC-circuit consisting 
of two parallel inductors with magnetic energies H1 (~1), H2(~2) (~1 and ~2 
being the magnetic flux linkages), in parallel with a capacitor with electric 
energy H3 (Q) (Q being the charge). I f  the elements are linear then Ha (~1) = 

1 ~2 z Q'z ~ ,  H2(ps)  = ~ 2 and Ha(Q) = Furthermore let V = u denote 2E,~ ~ " 

a voltage source in series with the first inductor. Using Kirehhoff's laws one 
immediately arrives at the dynamical equations 

~ - 1  0 OH = 10 ~ + u 

o LO.j 
Y 

OH 

(13) 

(= current through first inductor) Y -  aqo1 
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with H(Q, ~al, ~2) := Hl(~al) + H2(~2) + H3(Q) the total energy. Clearly the 
matrix J is skew-symmetric, and since J is constant it trivially satisfies (11). 
In [22] it has been shown that in this way every LC-circuit with independent 
elements can be modelled as a port-controlled Hamiltonian system, with the 
constant skew-symmetric matrix J being solely determined by the network 
topology (i.e., Kirehhoff's laws). Furthermore, also any LCTG-circuit with 
independent elements can be modelled as a PCH system, with J determined 
by Kirchhoff's laws and the constitutive relations of the transformers T and 
gyrators G. [] 

Another important  class of PCH systems are mechanical systems as arising 
from reduction by a symmetry group, such as Euler's equations for a rigid 
body. 

2.2 Bas i c  p r o p e r t i e s  o f  p o r t - c o n t r o l l e d  H a m i l t o n i a n  s y s t e m s  

Recall that  a port-controlled Hamiltonian system is defined by a state space 
manifold X endowed with a triple ( J ,g ,H) .  The pair ( J ( x ) , g ( x ) ) , x  E 2(, 
captures the interconnection structure of the system, with g(x) modeling in 
particular the ports of the system. Independently from the interconnection 
structure, the function H : ~( --~ ~ defines the total stored energy of the 
system. 

PCH systems are intrinsically modular in the sense that  any power- 
conserving intereonnection of a number of PCH systems again defines a PCH 
system, with its overall interconnection structure determined by the intercon- 
neetion structures of the composing individual PCH systems together with 
their power-conserving interconnection, and the Hamiltonian just the sum of 
the individual Hamiltonians (see [36,31,7]). The only thing which needs to be 
taken into account is the fact that  a general power-conserving interconnection 
of PCH systems not always leads to a PCH system with respect to a Poisson 
structure J(x)  and input matr ix g(x) as above, since the interconnection may 
introduce algebraic constraints between the state variables of the individual 
sub-systems. Nevertheless, also in this case the resulting system still can be 
seen as a PCH system, which now, however, is defined with respect to a Dirac 
structure, generalizing the notion of a Poisson structure. The resulting class 
of implicit PCH systems, see e.g. [36,31,7], will be discussed in Section 4. 

From the structure matr ix  J(x)  of a port-controlled Hamiltonian system 
one can directly extract  useful information about  the dynamical properties 
of the system. Since the structure matr ix is directly related to the modeling 
of the system (capturing the interconnection structure) this information usu- 
ally has a direct physical interpretation. A very impor tant  property is the 
possible existence of dynamical invariants independent of the Hamiltonian 
H.  Consider the set of p.d.e.'s 

OTc 
Ox (x)J(x)  = O, x E X,  (14) 
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in the unknown (smooth) function C : 2( -+ R. If (14) has a solution C then 
it follows that  the time-derivative of C along the port-controlled Hamiltonian 
system (9) satisfies 

d e  c~Tc ( x ~ j ( x  ~ OH (x  ~ 
dt -- ~ ~ J , J-5~ , J § ~ - ( x ) g ( x ) u  (15) 

Hence, for the input u = 0, or for arbitrary input functions if additionally 
o T c  ox (x)g(x) = 0, the function C(x)  remains constant along the trajectories 
of the port-controlled Hamiltonian system, irrespective of the precise form of 
the Hamiltonian H. A function C : 2( -+ ~ satisfying (14) is called a Casimir 
function (of the structure matr ix J(x)) .  

It follows that  the level sets L c  := {x C 2(IC(x) = c}, c E II~, of a Casimir 
function C are invariant sets for the autonomous Hamiltonian system ~ = 
j(x~ OH j-b-~-~ (X), while the dynamics restricted to any level set L c  is given as the 
reduced Hamiltonian dynamics 

�9 OHc 
x c  = Jc (xc ) - -~x  (XC) (16) 

with Hc  and Jc  the restriction of H, respectively J, to Lc .  The existence 
of Casimir functions has immediate consequences for stability analysis of (9) 
for u = 0. Indeed, if C1, " , .  C~ are Casimirs, then by (14) not only ~-=0dg 
for u = 0, but 

d ( g  + g~(c~ ,  C~)) (x(t)) = 0 (17) 
dt 

for any function H~ : ]t( ~ -+ ~. Hence, if H is not positive definite at an equi- 
librium x* C X, then H + H~(C1, . . .  , C~) may be rendered positive definite 
at x* by a proper choice of Ha, and thus may serve as a Lyapunov function. 
This method for stability analysis is called the Ene~yy-Casimir method, see 
e.g. [14]. 

E x a m p l e  2 ( E x a m p l e  1 c o n t i n u e d )  The quantity r + r is a Casimir 
function. 

2.3 P o r t - c o n t r o l l e d  H a m i l t o n i a n  s y s t e m s  w i t h  d i s s i p a t i o n  

Energy-dissipation is included in the framework of port-controlled Hamil- 
tonian systems (9) by terminating some of the ports by resistive elements. 
In the sequel we concentrate on PCH systems with linear resistive elements 
uR = - S y n  for some positive semi-definite symmetric matric S = S T ~ 0, 

where un and YR are the power variables at the resistive ports. This leads to 
models of the form 

OH (x ~ = [ J ( x ) - R ( x ) ]  o ~  J + g ( x ) u  
(lS) 

y : gT(x ) OH 
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where R(x)  is a positive semi-definite symmetric matrix, depending smoothly 
on x. In this case the energy-balancing property (7) takes the form 

dH cgT H ~ x  
dt (x(t)) = uT(t)y( t )  -- ~ -x  (X( t ) )R(x( t ) )  (x(t)) 

<_ uT(t)y(t) .  (19) 

showing passivity if the Hamiltonian H is bounded from below. We call (18) 
a port-controlled Hamiltonian system with dissipation (PCHD system). Note 
that  in this case two geometric structures play a role: the internal power- 
conserving interconnection structure given by Y(x),  and an additional resis- 
tive structure given by R(x) .  

F 

C 

R E 

Fig. 1. Capacitor microphone 

E x a m p l e  3 ([24]) Consider the capacitor microphone depicted in Figure 1. 
Here the capacitance C(q) of the capacitor is varying as a function of the 
displacement q of the right plate (with mass m) ,  which is attached to a spring 
(with spring constant k > 0 ) and a damper (with constant c > 0 ), and 
affected by a mechanical force F (air pressure arising from sound). Further- 
more, E is a voltage source. The dynamical equations of motion can be written 
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as the PCHD system 

1 [:] [o] [if ([~ [i~176 0 0 _- - 0  - c 0  + " §  E 

0 0 O ~  

OH 
- -  - 4 (20) Yl -- Op 

1 OH 
Y2 -- - I R OQ 

with p the momentum,  R the resistance of the resistor, I the current through 
the voltage source, and the Hamiltonian H being the total energy 

1 2 1 1 2 
H ( q , p , Q )  = ~m p + ~ k ( q - ( 1 )  2 + 2--c-~Q , (21) 

with (t denoting the equilibrium position of the spring. Note. that F(t is the 
mechanical power, and E I  the electrical power applied to the system. In the 
application as a microphone the voltage over the resistor will be used (after 
amplification) as a measure for the mechanical force F.  

A rich class of examples of PCHD systems is provided by electro-mechanical 
systems such as induction motors, see e.g. [27]. In some examples the in- 
terconnection structure J(x)  is actually varying, depending on the mode of 
operation of the system, as is the case for power converters (see e.g. [9]) or 
for mechanical systems with variable constraints. 

3 Control of port-controlled Hamiltonian systems with 
dissipation 

The aim of this section is to discuss a general methodology for controlling 
PCH or PCHD systems which exploits their Hamiltonian properties in an 
intrinsic way. Since this exposition is based on ongoing recent research (see 
e.g. [19,39,20,27,32]) we only t ry  to indicate its potential. An expected benefit 
of such a methodology is that  it leads to physically interpretable controllers, 
which possess inherent robustness properties. Future research is aimed at 
corroborating these claims. 

We have already seen that  PCH or PCHD systems are passive if the 
Hamiltonian H is bounded from below. Hence in this case we can use all the 
results from the theory of passive systems, such as asymptotic stabilization 
by the insertion of damping by negative output  feedback, see e.g. [32]. The 
emphasis in this section is however on the somewhat complementary aspect 
of shaping the energy of the system, which directly involves the Hamittonian 
structure of the system, as opposed to the more general passivity structure. 
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3.1 Control  by i n t e r c o n n e c t i o n  

Consider a port-controlled Hamiltonian system with dissipation (18) regarded 
as a plant system to be controlled. Recall the well-known result that  the 
standard feedback interconnection of two passive systems again is a passive 
system; a basic fact which can be used for various stability and control pur- 
poses ([11,26,32]). In the same vein we consider the interconnection of the 
plant (18) with another port-controlled Hamiltonian system with dissipation 

= [Jc (~)  - R c ( ~ ) ] ~ ( ~ )  + g c ( ~ ) ~ c  
C :  c e A'c (22) 

= 

regarded as the controller system, via the s tandard feedback interconnection 

u = - Y c  + e (23) 
u c  = y -t- e c  

with e, ec  external signals inserted in the feedback loop. The closed-loop 
system takes the form 

r ,,x, [R ] r ,x,7 

which again is a port-controlled Hamiltonian system with dissipation, with 
state space given by the product  space A" x A'c, total  Hamiltonian H(x )  + 
H c ( ( ) ,  inputs (e, ec)  and outputs (y, Yc).  Hence the feedback interconnection 
of any two PCHD systems results in another  PCHD system; just  as in the 
case of passivity. This is a special case of a theorem ([32]), which says that  any 
regular power-conserving interconnection of PCHD systems defines another 
PCHD system. 

It is of interest to investigate the Casimir functions of the closed-loop 
system, especially those relating the state variables ~ of the controller system 
to the state variables x of the plant system. Indeed, from a control point 
of view the Hamiltonian H is given while H c  can be assigned. Thus if we 
can find Casimir functions Ci(~, x), i = 1 , . . .  , r, relating ~ to x then by the 
Energy-Casimir method the Hamiltonian H + H c  of the closed-loop system 
may be replaced by the Hamiltonian H + H c  + H a ( C 1 , . . .  , Cr), thus creating 
the possibility of obtaining a suitable Lyapunov function for the closed-loop 
system. 
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Example  4 [38] Consider the "plant" system 

= -- OH -~- ,1, 

o .  (25) 
Y:[~  ]oH 

with q the position and p being the momen tum of the mass m,  in feedback 
interconnection (u = - Y c  + e, u c  = y) with the controller sys tem (see Figure 
2) 

kC 

Fig. 2. Controlled mass 

i c]= 
L Aq 

OHc. 
Y C  = OZlq 

[o IZ] 
- 1  -b  
0 -1  

0He1 
OAqc ] 

OHz_ l 

O H c l  
Oz2q J 

/ tC 

where Aqc is the displacement of the spring kc, Aq  is the displacement of the 
spring k, and Pc is the momen tum of the mass inc. The plant Hamiltonian is 
H(p)  = 1 2 ~-~p , and the cont~vller Hamiltonian is given as H c  (z2qc,p~, Aq) = 

!( P--~= + k( Aq) 2 + kc( Aqc)2). The variable b > 0 is the damping constant, and 2 
e is an external force. The closed-loop system possesses the Casimir function 

C(q, Aqc, Aq) = Aq - (q - Aq~), (26) 

implying that along the solutions of the closed-loop system 

Aq = q - Aqc + c (27) 

with c a constant depending on the initial conditions. With the help of LaSalle's 
Invariance principle it can be shown that restricted to the invariant manifolds 
(27) the system is asymptotically stable for  the equilibria q = Aqc = p = Pc = 
O. [] 
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As a special case (see [32] for a more general discussion) let us consider 
Casimir functions for (24) of the form 

~ i - G i ( x )  , i = l , . . . , d i m X c = n c  (28) 

Tha t  means tha t  we are looking for solutions of the p.d.e. 's (with ei denoting 
the i - th  basis vector) 

[ J(x) - R(x) -g(x)g~(~) ] 
OTGi 0 

(x) eT] gc( )gr(x) Jc( )-Rc( lJ 
for i = 1 , . . .  , nc, relating all the controller s tate  variables ~1,... , ~nc to the 
plant s tate variables x. Denoting G = (G1 , . . .  , Gnc)T  this means ([32]) tha t  
G should satisfy 

(x)J(x) x (X) = ac 

R(x) oa ~ ( x )  = 0 = Rc([) (29) 

(x )J(x)  = gc gT 

In this case the reduced dynamics on any multi-level set 

Lc = {(x,~)]~i = Ci(x)+ci , i  = 1 , . . . n c }  (30) 

can be immediately recognized ([32]) as the PCHD system 

OHs 
= [J(x) - R(x)] ~ (x), (31) 

with the same interconnection and dissipation s t ructure  as before, but  with 
shaped Hamiltonian Hs given by 

g~(x) = g (x )  + Hc(G(x) + c). (32) 

In the context of actuated mechanical systems this amounts  to the shaping 
of the potential energy as in the classical paper  [42], see [32]. 

A direct interpretat ion of the shaped Hamil tonian Hs in te rms of energy- 
balancing is obtained as follows. Since Rc(~) = 0 by (29) the controller 
Hamil tonian Hc satisfies ~ T dt : ucYc.  Hence along any multi-level set Lc 
given by (30) dI~,dt = dHd_.y + ~dt -- dHdt uTy, since u = --YC and uc = y. 
Therefore, up to a constant,  

H~(x(t)) = H(x(t)) - uT(T)y(?-)d% (33) 

and the shaped Hamiltonian Hs is the original Hamil tonian H minus the 
energy supplied to the plant system (18) by the controller system (22). From 
a stability analysis point of view (33) can be regarded as an effective way of 
generating candidate Lyapunov functions H~ from the Hamil tonian H .  
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3.2 P a s s i v i t y - b a s e d  c o n t r o l  o f  p o r t - c o n t r o l l e d  H a m i l t o n i a n  
s y s t e m s  w i t h  d i s s i p a t i o n  

In the previous section we have seen how under certain conditions the feed- 
back interconnection of a PCHD system having Hamiltonian H (the "plant") 
with another PCHD system with Hamiltonian He (the "controller") leads to 
a reduced dynamics given by (31) for the shaped Hamiltonian //8. From a 
state feedback point of view the dynamics (31) could have been directly ob- 
tained by a state feedback u = c~(x) such that  

OHc(G(x) + c) (34) 
9(x).(x) = [ J ( ~ )  - R(~) ]  0 x  

Indeed, such an (~(x) is given in explicit form as 

OHc 
~(x) = -g~(a (x )  + c)--5-(-(C(x) + c) (35) 

The state feedback u = a(x) is customarily called a passivity-based control 
law, since it is based on the passivity properties of the original plant system 
(18) and transforms (18) into another passive system with shaped storage 
function (in this case Hs). 
Seen from this perspective we have shown in the previous section that  the 
passivity-based state feedback u = a(x) satisfying (34) can be derived from 
the interconnection of the PCHD plant system (18) with a PCHD controller 
system (22). This fact has some favorable consequences. Indeed, it implies 
that  the passivity-based control law defined by (34) can be equivalently gen- 
crated as the feedback interconnection of the passive system (18) with another 
passive system (22). In particular, this implies an inherent invariance prop- 
erty of the controlled system: tile plant system (18), the controller system 
(32), as well as any other passive system interconnected to (18) in a power- 
conserving fashion, may change in any way as long as they remain passive, 
and for any per turbat ion of this kind the controlled system will remain stable. 
For a further discussion of passivity-based control from this point of view we 
refer to [27]. 

3.3 I n t e r c o n n e e t i o n  a n d  d a m p i n g  a s s i g n m e n t  p a s s i v i t y - b a s e d  
c o n t r o l  

A further generalization of the previous subsection is to use state feedback in 
order to change the interconnection structure and the resistive structure of 
the plant system, and thereby to create more flexibility to shape the storage 
function for the (modified) port-controlled Hamiltonian system to a desired 
form. This methodology has been called Interconnection-Damping Assign- 
ment Passivity-Based Control (IDA-PBC) in [27], and has been succesfully 
applied to a number of applications. The method is especially attractive if 
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the newly assigned interconnection and resistive structures are judiciously 
chosen on the basis of physical considerations, and represent some "ideal" in- 
terconnection and resistive structures for the physical plant. For an extensive 
treatment of IDA-PBC we refer to [27]. 

4 P h y s i c a l  s y s t e m s  w i t h  a l g e b r a i c  c o n s t r a i n t s  

From a general modeling point of view physical systems are, at least in first 
instance, often described by DAE's, tha t  is, a mixed set of differential and 
algebraic equations. This stems from the fact tha t  in many modelling ap- 
proaches the system under consideration is natural ly regarded as obtained 
from interconnecting simpler sub-systems. These interconnections in general, 
give rise to algebraic constraints between the state space variables of the 
sub-systems; thus leading to implicit systems. While in the linear case one 
may argue that  it is often relatively straightforward to eliminate the alge- 
braic constraints, and thus to reduce the system to an explicit form without 
constraints, in the nonlinear case such a conversion from implicit to explicit 
form is usually fraught with difficulties. Indeed, if the algebraic constraints 
are nonlinear then they need not be analytically solvable (locally or glob- 
ally). More importantly perhaps, even if they are analytically solvable, then 
often one would prefer not to eliminate the algebraic constraints, because of 
the complicated and physically not easily interpretable expressions for the 
reduced system which may arise. 

4 .1  P o w e r - c o n s e r v i n g  i n t e r c o n n e c t i o n s  

In order to geometrically describe network models of physical systems we 
first consider the notion of a Dirac structure, formalizing the concept of a 
power-conserving interconnection. Let ~ be an g-dimensional linear space, 
and denote its dual (the space of linear functions on .T) by iT*. The  product  
space F x ~* is considered to be the space of power variables, with power 
intrinsically defined by 

P = <  f * l f  >, (f,f*)E:'• (36) 

where < f * ] f  > denotes the duality product ,  that  is, the linear function 
f* E jr* acting on f E ~ .  Often we call ~ the space of flows f ,  and )~* the 
space of efforts e, with the power of an element (f ,  e) C ~ • )~* denoted as 

< el f  >. 

R e m a r k  1 f f  jr is endowed with an inner product structure <, >,  then jr* 
can be naturally identified with S in such a way that < e l f  > = <  e, f >, f C 
S ,  e E J:* " Y:. 
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E x a m p l e  5 Let Jr be the space of generalized velocities, and jr .  be the space 
ol generalized forces, then < e l f  > is mechanical power. Similarly, let jc 
be the space of currents, and jr .  be the space of voltages, then < e i f  > is 
electrical power. 

There exists on 9 c x S'* a canonically defined symmetr ic  bilinear form 

< ( f l , e l ) , ( f 2 , e 2 )  >~•  eli f2 > + < e2ifl > (37) 

for fi  E 5 r ,  ei E }-*,i = 1,2. Now consider a linear subspace S C 5 r x ~ r .  
and its or thogonal  complement  with respect  to the bilinear form <,  > j : •  
on F x 9 c*, denoted as S • C }" x 9 r*. Clearly, if S has dimension d, then the 
subspace S • has dimension 2 ~ -  d. (Since dim (~-x  j r . )  = 2~, and <,  > y •  
is a non-degenerate  form.) 

D e f i n i t i o n  1 [5,8,7] A constant Dirac structure on ~ is a linear subspace 
l)  C Y: x jr .  such that 

79 = 79• (38) 

It  immediately follows tha t  the dimension of any Dirac s t ructure  79 on an 
g-dimensional linear space is equal to e. Furthermore,  let (f ,  e) C 79 = 79• 
Then by (37) 

0 = <  ( f , e ) ,  ( f , e )  >j=• 2 < el f  > .  (39) 

Thus for all (f ,  e) e 79 we obtain < e l f  > =  0; and hence any Dirac s t ructure  
79 on 5 r defines a power-conserving relation between the power variables 
( I ,  e) e Y • f * .  

R e m a r k  2 The property dim 19 = dim J: is intimately related to the usually 
expressed statement that a physical interconnection can not determine at the 
same time both the flow and effort (e.g. current and voltage, or velocity and 
force), 

Constant  Dirac structures admit  different matrix representations. Here we 
just list three of them, without giving proofs and algori thms to convert  one 
representat ion into another,  see e.g. [7]. 
Let 79 C S x /T*,  with dim ~r = g, be a constant  Dirac structure.  Then l)  
can be represented as 

1. (Kernel and Image representation, [7,35]). 

79 = { ( f , e )  E ~ x 9 r* lFf  + Ee  = 0} (40) 

for g x e matrices F and E satisfying 

(i) E F  T + F E  T = 0  
(41) 

(ii) rank [FIE] = e 
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Equivalently, 

D = {(f ,e)  C F x iT*if = ETA, e = FT)~, ;~ C X l} (42) 

2. (Constrained input-output representation, [7]). 

D = {(f ,e)  e F • F ' i f  = - J e + G ) ~ ,  GTe = 0} (43) 

for an g x g skew-symmetric matrix J ,  and a matrix G such that ImG = 
{f i ( f ,  0) e 79}. Furthermore, KerJ = {ei(0, e ) e 79}. 

3. (Canonical coordinate representation, [5]). 
There exist linear coordinates (q, p, r, s) for F such that  in these coordi- 
nates and dual coordinates for F*,  (f, e) = (fq, fp, fr,  fs, eq, ep, er, es) E 
D if and only if 

: ep, : - e q  
(44) 

f r = 0 ,  es = 0 

E x a m p l e  6 Kirchhoff's laws are a special case of (40). By taking F the space 
of currents and F* the space of voltages, Kirchhoff's current laws determine 
a subspace V of F ,  while Kirchhoff's voltage laws determine the orthogonal 
subspace youth of F*. Hence, the Dirac structure determined by Kirchhoff's 
laws is given as Y x ~)orth C ~" X •*, with kernel representation of the form 

D = {(f ,e)  e iT x F ' I F  f = O, Ee = 0}, (45) 

for suitable matrices F and E (consisting only of elements +1, - 1  and 0), 
such that Ker F = 12 and Ker E = 12 ~ In this case the defining property 
D = D • of the Dirac structure amounts to Tellegen's theorem. 

E x a m p l e  7 Any skew-symmetric map J : F* --+ F defines the Dirac struc- 
ture 

D = {(f ,e)  E F • F ' I f  = - J e } ,  (46) 

as a special case of (43). Furthermore, any interconnection structure (J,g) 
with J skew-symmetric defines a Dirac structure given in hybrid input-output 
representation as 

[ef;] = [ g J  ~ ]  [ f ; ]  (47) 

Given a Dirac structure D on F,  the following subspaces of F ,  respectively 
F*, will shown to be of importance in the next section 

~1 : =  {f  E F I 3e c F* s.t. (f, e) E D} 
(48) 

P1 := {e �9 J:* 1 3 I  �9 J: s.t. ( f ,  e) �9 

The subspace G1 expresses the set of admissible flows, and P1 the set of 
admissible efforts. In the image representation (42) they are given as 

G1 = I m E  T, P I =  I m F  r .  (49) 
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4.2 I m p l i c i t  p o r t - c o n t r o l l e d  H a m i l t o n i a n  s y s t e m s  

From a network modeling perspective,  see e.g. [28,3], a ( lumped-parameter )  
physical sys tem is directly described by a set of (possibly multi-dimensional) 
energy-storing elements, a set of energy-dissipating or resistive elements, 
and a set of ports (by which interaction with the environment  can take 
place), interconnected to each other by a power-conserving interconnection, 
see Figure 3. Associated with the energy-storing elements are energy-variables 

ports 

Fig. 3. Network model of physical systems 

x l , -  �9 - , xn, being coordinates for some n-dimensional s ta te  space manifold A', 
and a total  energy H : A' --+ I~. The power-conserving interconnection also 
includes power-conserving elements like (in the electrical domain) t ransform- 
ers, gyrators,  or (in the mechanical domain) t ransformers ,  kinematic  pairs 
and kinematic constraints.  In first instance (see later on for the non-constant  
case) the power-conserving interconnection will be formalized by a constant  
Dirac s t ructure  on a finite-dimensional linear space ) r  := ) r  s x .Tn x $rp, with 
~ s  denoting the space of flows f s  connected to the energy-storing elements, 
/7-n denoting the space of flows fn  connected to the dissipative (resistive) 
elements, and F p  the space of external  flows fp  which can be connected to 
the environment.  Dually, we write ;r* = ~'} x 2"~ x ~c~, with es  C 2-} the 
efforts connected to the energy-storing elements, e R E  F ~  the efforts con- 
nected to the resistive elements, and ep E ~ the efforts to be connected to 
the environment of the system. 

In kernel representation, the Dirac s t ructure  on 3 r = 3rs x ) r  n x F p  is 
given as 

D = { ( f s ,  fR, fp, s, eR, eP) J 

F s f s  q- Eses q- FRfR --k .EReR -P Fp fp  q- Epep = 0} 
(50) 
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for certain matrices Fs, Es, FR, ER, Fp, Ep satisfying 

(i) EsF[ + FsE~ + EnF~ + FnE~ + EpF~ + F.E~ = 0 

(ii) rank [Fs[Fn[FpiEs]ER[Ep] = d i m 5  c 
[ J 

(51) 

The flow variables of the energy-storing elements are given as 9 (t) = dx ~r(t), t e 
I~, and the effort variables of the energy-storing elements as ~ ( x ( t ) )  (im- 

plying tha t  < -~(x(t)) tx(t  ) > =  ~t(x(t))  is the increase in energy). In order 
to have a consistent sign convention for energy flow we put  

f8 = - x  

OH eS : ~ ( x )  
(52) 

Restricting to linear resistive elements, the flow and effort variables connected 
to the resistive elements are related as 

f n  = - S e E  (53) 

for some mat r ix  S = S T k O. Substi tut ion of (52) and (53) into (50) yields 

OH 
-Fsic(t) + E s ~ x  (X(t)) - FnSen + Enen + FpIp + Epep = 0 (54) 

with Fs, Es,  Fn, Em Fp, Ep satisfying (51). We call (54) an implicit port- 
controlled Hamiltonian system with dissipation, defined with respect to the 
constant Dirac s tructure ~D, the Hamil tonian H ,  and the resistive s t ructure  
S. 

Actually, for many  purposes this definition of an implicit P C H D  sys tem is 
not general enough, since often the Dirac s t ructure  is not constant,  but  modu- 
lated by the s tate  variables x. In this case the matrices Fs, Es,  Fn, En, Fp, Ep 
depend (smoothly) on x, leading to the implicit PCHD system 

-Fs(x(t))2(t)  + Es(x(t)) OH -5~(z(t)) - Fn(x(t))Sen(t) 

+En(x(t))en(t) + FR(x(t))fp(t) + Eg(x(t))ep(t) = O, t 6 

with 

Es(x)FT(x)  + Fs(x)EX(x) + En(x)FT(x)  + Fn(x)ET(x) 

+ S . ( x ) F f ( x )  + F p ( x ) E ~ ( x )  = O, Vx e X 

rank [Fs(x)iFR(x)iFp(x)iEs(x)iEn(x)iEp(x)] : dim~-  

(55) 

(56) 
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R e m a r k  3 Strictly speaking the flow and effort variables k(t)  = - f s ( t ) ,  
respectively OH ~-x(x(t)) = es(t) ,  are not living in the constant linear space 
Jzs, respectively J:~, but instead in the tangent spaces Tx(t)X, respectively co- 
tangent spaces Tx*(t)X , to the state space manifold X.  This is formalized in 
the definition of a non-constant Dirac structure on a manifolc~ see [5,8,7',32]. 

By the power-conservation property of a Dirac structure (cf. (39)) it follows 
directly that  any implicit PCHD system satisfies the energy-inequality 

dH , , :, = < -~ (x(t))12(t) > =  

= - -eT( t )Sen( t )+  eT( t ) fg ( t )  < eT( t ) fp( t ) ,  
(57) 

showing passivity if H > 0. The algebraic constraints that  are present in the 
implicit system (55) are expressed by the subspace P1, and the Hamiltonian 
H.  In fact, since the Dirac structure / )  is modulated by the x-variables, 
also the subspace P1 is modulated by the x-variables, and thus the effort 
variables es , en  and e p  necessarily satisfy (es,eR,  ep) �9 Pl(X), x �9 2(, and 
thus, because of (49), 

es �9 Im FT(x) ,  en � 9  FT(x), ep �9 Im FpT(X). (58) 

The second and third inclusions entail the expression of en and ep in terms 
OH (X" ~ of the other variables, while the first inclusion determines, since es = o~ ~ :, 

the following algebraic constraints on the state variables 

OH 
(x) �9 Im F~(x) .  

0x 
(59) 

The Casimir functions C : 2( -+ l~ of the implicit system (55) are deter- 
mined by the subspace Gl(X). Indeed, necessarily ( f s ,  fR, fP) �9 Gl(X), and 
thus by (49) 

fs�9 I m E T ( x ) , f n  �9 I m E T ( x ) , f p  �9 I m E T ( x ) .  (60) 

Since f s  = -x ( t ) ,  the first inclusion yields the flow constraints it(t) C 
Im ET(x( t ) ) ,  t e ~. Thus C :  X -+ If( is a Casimir function if ~t (x ( t ) )  = 

OTC o~ (x(t))ic(t) = 0 for all x(t) E Im ET(x( t ) ) .  Hence C : X -+ l~ is a Casimir 
of the implicit PCHD system (54) if it satisfies the set of p.d.e.'s 

0C 
Ox (x) C Ker Es(x )  (61) 

R e m a r k  4 Note that C : 2( -+ ~ satisfying (61) is a Casimir function of 
(53) in a strong sense: it is a dynamical invariant (~-((x(t)) -= O) for every 
port behavior and every resistive relation (53). 
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E x a m p l e  8 [7,36,35] Consider a mechanical system with k degrees of free- 
dom, locally described by k configuration variables q = ( q a , . . . , q k ) .  Sup- 
pose that there are constraints on the generalized velocities (1, described as 
AT(q)(1 = O, with A(q) a r • k matrix of rank r everywhere (that is, there are 
r independent kinematic constraints). This leads to the following constrained 
Hamiltonian equations 

(t = ~ p ( q , P )  

ib = ~ a  (q' p) + A(q)A + B(q)u  

y = BT(q)~-~D(q,p ) (62) 

0 = A T ( q ) ~ p ( q , p )  

where B(q)u  are the external forces (controls) applied to the system, for some 
k z m matrix B(q),  while A(q)/k are the constraint forces. The Lagrange mul- 
tipliers /k(t) are uniquely determined by the requirement that the constraints 
AT(q(t))(t(t) = 0 have to be satisfied for all t. One way of proceeding with 
these equations is to eliminate the constraint forces, and to reduce the equa- 
tions of motion to the constrained state space Xc = {(q,p)  I AT(q)~p (q,P) = 
0}~ thereby obtaining an (explicit) port-controlled Harailtonian system; see 
[34]. An alternative, and more direct, approach is to view the constrained 
Hamiltonian equations (62) as an implicit port-controlled Hamiltonian sys- 
tern with respect to the Dirac structure D, given in constrained input-output 
representation (43) by 

T) = { ( f s ,  fP, es, ep)[0 = AT(q)es ,  ep = BT(q)es ,  

(63) [oI ] [o I [o t - f s =  --Ik 0 e s +  A(q) /k+ B(q) fP '  / k E R r }  

In this case, the algebraic constraints on the state variables (q, p) are given 
~ T ~  ~ O H  as ~i (q)-~p (q,p) = O, while the Casimir functions C are determined by the 

equations 

OTC 
O-q--(q)(1 = 0, for all (1 satisfying AT(q)(1 = 0. (64) 

Hence, finding Casimir functions amounts to integratin 9 the kinematic con- 
straints AT(q)(1 = O. 

R e m a r k  5 For a pwper  notion of inte9rability of non-constant Dirac struc- 
tures, generalizing the Jacobi identity for the structure matrix J(x) ,  we refer 
e.g. to [7]. For example, the Dirae structure (63) is integrable if and only if 
the kinematic constraints are holonomic.  
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In principle, the theory presented in Section 3 for stabilization of explicit port- 
controlled Hamiltonian systems can be directly extended, mutat is  mutandis, 
to implicit port-controlled Hamiltonian system. In particular, the standard 
feedback interconnection of an implicit port-controlled Hamiltonian system P 
with port variables fg ,  eg (the "plant") with another implicit port-controlled 
Hamiltonian system with port variables fC,epC (the "controller"), via the 
interconnection relations 

fp  = - e ~  + fex t  
(65) 

fC = ep + e ext 

is readily seen to result in a closed-loop implicit port-controlled Hamiltonian 
system with port variables fex t ,  eext. Furthermore, as in the explicit case, the 
Hamiltonian of this closed-loop system is just the sum of the Hamiltonian of 
the plant PCHD system and the Hamiltonian of the controller PCHD system. 
Finally, the Casimir analysis for the closed-loop system can be performed 
along the same lines as before. 

5 C o n c l u s i o n s  a n d  f u t u r e  r e s e a r c h  

We have shown how network modelling of (lumped-parameter) physical sys- 
tems, e.g. using bond graphs, leads to a mathematically well-defined class 
of open dynamical systems, which are called port-controlled Hamiltonian 
systems (with dissipation). Furthermore, we have tried to emphasize that  
this definition is completely modular, in the sense that  any power-conserving 
interconnection of these systems defines a system in the same class, with 
overall interconnection structure defined by the individual interconnection 
structures, together with the power-conserving interconnection. 

Clearly, the theory presented in this paper opens up the way for many 
other control and design problems than the stabilization problem as briefly 
discussed in the present paper. Its potential for set-point regulation has al- 
ready received some attention (see [19,20,27,32]), while the extension to track- 
in 9 problems is wide open. In this context we also like to refer to some recent 
work concerned with the shaping of the Lagrangian, see e.g. [2]. Also, the 
control of mechanical systems with nonholonomic kinematic constraints can 
be fruitfully approached from this point of view, see e.g. [10], as well as 
the modelling and control of multi-body systems, see [18,23,40]. The frame- 
work of PCHD systems seems perfectly suited to theoretical investigations 
on the topic of impedance control; see already [38] for some initial results 
in this direction. Also the connection with multi-modal (hybrid) systems, 
corresponding to PCHD systems with varying interconnection structure [9], 
needs further investigations. Finally, our current research is concerned with 
the formulation of distributed parameter systems as port-controlled Hamilto- 
nian systems, see [17], and applications in tele-manipulation [41] and smart 
structures [37]. 
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