On the Conjecture of Meinardus on Rational Approximaton of e^{x}

Dietrich Braess
Institut für Mathematik, Ruhr-Universität Bochum, 463 Bochum, West Germany

Communicated by Carl de Boor
Received June 16, 1980

This paper is concerned with uniform approximation of e^{x} on the interval $[-1,+1]$ by (m, n)-degree rationals, i.e., by rational functions whose numerator and denominator have degree m and n, respectively. Several years ago, Meinardus [1, p. 168] conjectured that the norm of the error function for the best approximation is asymptotically

$$
\begin{equation*}
\frac{m!n!}{2^{m+n}(m+n)!(m+n+1)!} \quad \text { as } \quad m+n \rightarrow \infty \tag{1}
\end{equation*}
$$

Recently, Newman [3] has proved that the degree of approximation is indeed better than 8 times the conjectured value. Here we will establish a lower bound by applying de la Vallee-Poussin's theorem to the rational function constructed in [3]. We will show that the error function oscillates $n+m+1$ times by evaluating a winding number.

Let

$$
p(z)=\int_{0}^{\infty} t^{n}(t+z)^{m} e^{-t} d t, \quad q(z)=\int_{0}^{\infty}(t-z)^{n} t^{m} e^{-t} d t
$$

Then p / q is the (m, n)-degree Pade approximant to e^{2}. Following the evaluation in [3, p. 234] we get

$$
\begin{aligned}
q(z) e^{z}-p(z) & =\int_{0}^{\infty}(t-z)^{n} t^{m} e^{-t+z} d t-\int_{0}^{\infty} t^{n}(t+z)^{m} e^{-t} d t \\
& =\int_{0}^{z}(t-z)^{n} t^{m} e^{z-t} d t \\
& =z^{m+n+1} \int_{0}^{1}(u-1)^{n} u^{m} e^{(1-u) z} d u .
\end{aligned}
$$

Hence, for $|z| \leqslant \frac{1}{2}$,

$$
\begin{align*}
\left|q(z) e^{z}-p(z)\right| & \geqslant|z|^{m+n+1} \operatorname{Re} \int_{0}^{1}(1-u)^{n} u^{m} e^{(1-u) z} d u \\
& =|z|^{m+n+1} \int_{0}^{1}(1-u)^{n} u^{m} e^{(1-u) \operatorname{Re} z} \cos [(1-u) \operatorname{Im} z] d u \\
& \geqslant|z|^{m+n+1} \int_{0}^{1}(1-u)^{n} u^{m} d u e^{-1 / 2} \cos \frac{1}{2} \\
& \geqslant \frac{7}{8} e^{-1 / 2}|z|^{m+n+1} \frac{m!n!}{(m+n+1)!} \tag{2}
\end{align*}
$$

Observe that this is just $7 /(8 e)$ times the upper bound for $\left|q e^{z}-p\right|$ given in [3].

Next, an upper bound for $q(z) .|z| \leqslant \frac{1}{2}$, is derived:

$$
\begin{align*}
|q(z)| & \leqslant \int_{0}^{\infty}\left(t+\frac{1}{2}\right)^{n} t^{m} e^{-t} d t \\
& \leqslant e^{1 / 2} \int_{-1 / 2}^{\infty}\left(t+\frac{1}{2}\right)^{n+m} e^{-t-1 / 2} d t \\
& =e^{1 / 2}(m+n)! \tag{3}
\end{align*}
$$

By combining (2) and (3) we get

$$
\begin{equation*}
\left|e^{z}-p(z) / q(z)\right| \geqslant \frac{7}{16 e} \frac{2^{-m-n} m!n!}{(m+n)!(m+n+1)!}, \quad|z|=\frac{1}{2} \tag{4}
\end{equation*}
$$

Given $x \in[-1,+1]$, put $z=(x+i y) / 2$ with $x^{2}+y^{2}=1$. Obviously, $e^{x}=e^{\bar{z}} e^{z}$. The crucial point is Newman's detection that $R(x)=$ $p(\bar{z}) p(z) /[q(\bar{z}) q(z)]$ is an (m, n)-degree rational function in the variable x.

Put $a=e^{z}, b=p(z) / q(z)$. Then the error $e^{x}-R(x)$ is just $\bar{a} a-\bar{b} b$. It will be treated by using the formula

$$
\begin{equation*}
\bar{a} a-\bar{b} b=2 \operatorname{Re} \bar{a}(a-b)-|a-b|^{2}, \quad a, b \in \mathbb{C} \tag{5}
\end{equation*}
$$

From (4) we get the estimate for the first term

$$
\begin{equation*}
\left|e^{\bar{z}}\left[e^{z}-p / q\right]\right| \geqslant \frac{7}{16 e^{3 / 2}} \frac{2^{-m-n} m!n!}{(m+n)!(m+n+1)!}, \quad|z|=\frac{1}{2} \tag{6}
\end{equation*}
$$

Denote by $\arg w$ the argument of the complex number w. Then

$$
\begin{align*}
\arg \left\{e^{\bar{z}}\left[e^{z}-p(z) / q(z)\right]\right\} & =\arg \left\{e^{-z}\left[e^{z}-p(z) / q(z)\right]\right\} \\
& =\arg \left\{\frac{e^{-z}}{q(z)}\left[q(z) e^{z}-p(z)\right]\right\} \tag{7}
\end{align*}
$$

For short, let $h(z)$ denote the function within the braces in (7).
Since p / q is the Pade approximation, $z=0$ is a zero of $q e^{z}-p$ of multiplicity $n+m+1$. Moreover, $q(z) \neq 0$ for $|z| \leqslant \frac{1}{2}$ is easily checked with the techniques in $[3, \mathrm{p} .235]$. Consequently, h has the winding number $n+m+1$ for the circle $|z|=\frac{1}{2}$. Hence, when an entire circuit has been completed, $\arg (h(z))$ is increased by $(n+m+1) 2 \pi$. The argument is increased by $(n+m+1) \pi$ as z traverses the upper half of the circle, because $h(x)$ is real for x on the real line. It follows by the same arguments as in [1, pp. 38-39] that h attains real values on $n+m+2$ points $z_{k}=\left(x_{k}+i y_{k}\right) / 2$ with $+1=x_{1}>x_{2}>\cdots>x_{n+m+2}=-1$ and that the sign changes between any pair of consecutive x 's. The same is true for $e^{\bar{z}}\left[e^{z}-p / q\right]$. Referring to (5) we have

$$
\begin{align*}
& \min _{1 \leqslant k \leqslant n+m+2}\left|e^{\overline{z_{k}}} e^{z_{k}}-\frac{p\left(\bar{z}_{k}\right) p\left(z_{k}\right)}{p\left(\bar{z}_{k}\right) q\left(z_{k}\right)}\right| \\
& \quad \geqslant \min _{|z|=1 / 2} 2\left|e^{\bar{z}}\left[e^{z}-p(z) / q(z)\right]\right|-\max _{|z|=1 / 2}\left|e^{z}-p(z) / q(z)\right|^{2} \\
& \quad \geqslant \frac{7}{8 e^{3 / 2}} \frac{2^{-m-n} m!n!}{(m+n)!(m+n+1)!}\left\{1-\frac{\text { const }}{2^{m+n}(m+n+1)!}\right\} \tag{8}
\end{align*}
$$

From the theorem of de la Vallee-Poussin [1, p. 147] it is known that the expression in (8) is a lower bound for the distance of e^{x} from the (m, n)degree rational functions. The gap between the upper bound in [2] and the lower bound is roughly a factor $e^{5 / 2} /\left[\left(2-e^{1 / 2}\right) \cos \frac{1}{2}\right]<40$.

If $m=n$, one gets better estimates for the constants from the result in [2].

Acknowledgments

[^0]
References

1. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods." Springer Co., New York, 1967.
2. G. Németh, Relative rational approximation of the function e^{x}. Math. Notes 21 (1977), 325-328.
3. D. J. Newman, Rational approximation to e^{x}. J. Approx. Theory 27 (1979), 234-235.

[^0]: The author is indebted to Z. Ziegler and A. Pinkus for their hospitality during the Workshop on Approximation Theory at the Technion, Haifa.

