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This paper is concerned with uniform approximation of eX on the interval 
[-1, + 1 ] by (m, n)-degree rationals, i.e., by rational functions whose 
numerator and denominator have degree m and n, respectively. Several years 
ago, Meinardus [ 1, p. 1681 conjectured that the norm of the error function 
for the best approximation is asymptotically 

m! n! 
2m+n(m + n)! (m + n + l)! 

as m+n-+ax 

Recently, Newman [3] has proved that the degree of approximation is 
indeed better than 8 times the conjectured value. Here we will establish a 
lower bound by applying de la Vallee-Poussin’s theorem to the rational 
function constructed in [3]. We will show that the error function oscillates 
n + m + 1 times by evaluating a winding number. 

Let 

p(z) = low t”(t + z)” e-’ df, q(z) = joa (t - z)” tmeC’ df. 

Then p/q is the (m, n)-degree PadC approximant to e’. Following the 
evaluation in [3, p. 2341 we get 

q(z) e= -p(z) = joa Q-Z)” tme-‘+’ df - joa t”(t + z)” e-’ df 

= 
i 
: (t -z)” tmez-t dt 

=z “l+n+l @ _ 1)” U”fe(l-U)Z due 
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Hence, for (z] < f, 

iq(z)e’ --p(z)1 > Iz/~+~+~ Re 
J 
1 (1 -u)” UrneC1-‘)’ du 

=IzI mtnt’ 
i 
d (1 - u)” nme(‘-U’Re’ cos[(l -u) Imz] du 

2IzI mtn+l 
J 
~(l-~)n~md~ee1~2 ~0s; 

> ie-‘/2 IZlm+ntl 
m! n! 

(m + n + l)! * (2) 

Observe that this is just 7/(8e) times the upper bound for (qe’ -pi given in 
131. 

Next, an upper bound for q(z). I z I < 4, is derived: 

I q(z)1 < loa (t + i)” tmevt dt 

.O” < e’12 
J 

(t + +)n+m e-t-1/2 dt 
-l/2 

= e”‘(m + n)!. (3) 

By combining (2) and (3) we get 

Given x E [--I, +l], put z = (x + iy)/2 with x2 +y2 = 1. Obviously, 
ex = eFeZ. The crucial point is Newman’s detection that R(x) = 
P(~~P(ZYW~ q(z)1 is an (m, n)-degree rational function in the variable x. 

Put a = e*, b =p(z)/q(z). Then the error ex -R(x) is just rfa - 6b. It will 
be treated by using the formula 

C--&b=2 Red(a-b)-la-b[‘, a, b E C. (5) 

From (4) we get the estimate for the first term 

IzI=$ (6) 
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Denote by arg w the argument of the complex number w. Then 

arg{e’[e’ -&)/dz)l I = arg{e-V -AzYq(z)l I 

= arg 
I 
-& [q(z) ez -Hz>1 1. (7) 

For short, let h(z) denote the function within the braces in (7). 
Since p/q is the PadC approximation, z = 0 is a zero of qe’ -p of 

multiplicity n + m + 1. Moreover, q(z) # 0 for ]z 1 < f is easily checked with 
the techniques in [3, p. 2351. Consequently, h has the winding number 
n + m + 1 for the circle 1 z] = $. Hence, when an entire circuit has been 
completed, arg(h(z)) is increased by (n + m + 1) 27~. The argument is 
increased by (n + m + 1)~ as z traverses the upper half of the circle, because 
h(x) is real for x on the real line. It follows by the same arguments as in [ 1, 
pp. 38-391 that h attains real values on n + m + 2 points zk = (xk + iyJ2 
with +l =x1 > x2 > ... > x,+,,,+* = -1 and that the sign changes between 
any pair of consecutive x’s The same is true for er[e’ -p/q]. Referring to 
(5) we have 

min 
I<k<n+m+2 

> ,pii2 2 I 4ez -p(z)ldz)lI - ,zy>;2 I eL -P(zYdz)12 

7 2-“-“m! n! const 
a- 8e3’* (m + n)! (m + n + l)! l 

l- 
2m+n(m + n + I)! I 

(8) 

From the theorem of de la Vallee-Poussin [1, p. 1471 it is known that the 
expression in (8) is a lower bound for the distance of eX from the (m, n)- 
degree rational functions. The gap between the upper bound in [2] and the 
lower bound is roughly a factor e”“/[(2 - e”‘) cos j] < 40. 

If m = n, one gets better estimates for the constants from the result in [2]. 
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