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VECTOR FITTING FOR MATRIX-VALUED RATIONAL
APPROXIMATION∗

Z. DRMAČ† , S. GUGERCIN‡ , AND C. BEATTIE‡

Abstract. Vector Fitting (VF) is a popular method of constructing rational approximants that
provides a least squares fit to frequency response measurements. In an earlier work, we provided
an analysis of VF for scalar-valued rational functions and established a connection with optimal
H2 approximation. We build on this work and extend the previous framework to include the con-
struction of effective rational approximations to matrix-valued functions, a problem which presents
significant challenges that do not appear in the scalar case. Transfer functions associated with multi-
input/multioutput (MIMO) dynamical systems typify the class of functions that we consider here.
Others have also considered extensions of VF to matrix-valued functions and related numerical im-
plementations are readily available. However, to the best of our knowledge, a detailed analysis of
numerical issues that arise does not yet exist. We offer such an analysis including critical imple-
mentation details here. One important issue that arises for VF on matrix-valued functions that has
remained largely unaddressed is the control of the McMillan degree of the resulting rational approx-
imant; the McMillan degree can grow very high in the case of large input/output dimensions. We
introduce two new mechanisms for controlling the McMillan degree of the final approximant, one
based on alternating least-squares minimization and one based on ancillary system-theoretic reduc-
tion methods. Motivated in part by our earlier work on the scalar VF problem as well as by recent
innovations for computing optimal H2 approximation, we establish a connection with optimal H2

approximation, and are able to improve significantly the fidelity of VF through numerical quadrature,
with virtually no increase in cost or complexity. We provide several numerical examples to support
the theoretical discussion and proposed algorithms.
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1. Introduction. Rational functions provide significant advantages over other
classes of approximating functions, such as polynomials or trigonometric functions,
that are important in the approximation of functions that occur in engineering and
scientific applications. Matrix-valued rational functions offer substantial additional
flexibility and broaden the domain of applicability by providing the potential for the
interpolation and approximation of parameterized families of multidimensional obser-
vations. For example, in a variety of engineering applications, the dynamics arising
from multi-input/multioutput (MIMO) dynamical systems may be inaccessible to di-
rect modeling, yet input-output relationships often may be observed as a function of
frequency, yielding an enormous amount of data. In such cases, one may wish to de-
duce an empirical dynamical system model, nominally represented as a matrix-valued
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greb, Croatia (drmac@math.hr). The work of the first author was supported by the grant HRZZ-9345
from the Croatian Science Foundation.

‡Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061-0123 (gugercin@math.vt.edu, beattie@vt.edu). The work of these authors was supported
in part by NSF through grant DMS-1217156.

A2346

D
ow

nl
oa

de
d 

09
/0

1/
22

 to
 1

95
.1

76
.1

13
.1

45
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

http://www.siam.org/journals/sisc/37-5/M101077.html
mailto:drmac@math.hr
mailto:gugercin@math.vt.edu
mailto:beattie@vt.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VF FOR MATRIX-VALUED RATIONAL APPROXIMATION A2347

rational function, that fits the measured frequency response data. This derived model
may then be used as a surrogate in order to predict system behavior or to determine
suitable control strategies. See [2, 8, 55] for examples of rational approximation in
action.

The McMillan degree of a matrix-valued rational function, H(s), is the sum of
pole multiplicities over the (extended) complex plane, or, equivalently, the dimension
of the state space in a minimal realization of H(s). It is convenient to think of H(s) as
a transfer function matrix associated with a stable MIMO linear time-invariant system
having m inputs and p outputs (although this interpretation is not necessary for what
follows); McMillan degree is a useful proxy for the level of complexity associated
with H(s). Let r > 0 be an integer denoting the desired McMillan degree for our
approximant: Hr(s) = N(s)/d(s), where N(s) is a p × m matrix having elements
that are polynomials in s of order r − 1 or less, and d(s) is a (scalar) polynomial
function having exact order r. Denote by Rr the set of matrix-valued functions of
this form. Note that Rr consists of matrix-valued functions having entries that are
strictly proper rational functions of order r; the McMillan degree of Hr ∈ Rr could
range as high as r · min(m, p), which could be significantly larger than our target,
r. We assume that observations (evaluations) of H(s) are available at predetermined
points in the complex plane, s = ξ1, . . . , ξ�. Only observed values at these points:
H(ξj), for j = 1, . . . , �, will be necessary in order to derive our approximations. We
proceed by seeking a solution to

(1.1) min
Hr∈Rr

�∑
i=1

ρi ‖Hr(ξi)−H(ξi)‖2F .

Sanathanan and Koerner [54] proposed an approach to solving (1.1) that pro-

duces a sequence of rational matrix approximants H
(k)
r (s) having the form H

(k)
r (s) =

N(k)(s)/d(k)(s), where N(k)(s) is a p × m matrix of polynomials of degree r − 1 or
less and d(k)(s) is a (scalar-valued) polynomial of degree r. For each k, the coeffi-
cients of N(k) and d(k) are adjusted by solving a weighted linear least squares problem
with a weight determined by d(k−1). An important reformulation of the Sanathanan–
Koerner (SK) iteration was introduced by Gustavsen and Semlyen [38], which became
known under the name Vector Fitting (VF). The term “vector fitting” is appropriate
in light of the interpretation of the Frobenius norm, ‖ · ‖F , that appears in (1.1) as a
standard Euclidean vector norm, ‖ ·‖2, of an “unraveled” matrix listed columnwise as
a vector in Cmp. The Gustavsen–Semlyen VF method produces a similar sequence of

rational approximants H
(k)
r (s) = N(k)(s)/d(k)(s) but now with N(k) and d(k) defined

as rational functions represented in barycentric form. Making central use of a clever
change of representation at each step, the Gustavsen–Semlyen VF method achieves
greater numerically stability and efficiency than the original SK iteration.

We describe both the SK and VF iterations in section 2 and make some obser-
vations that contribute to our analysis of it in section 3. In particular, we note that
the change of representation implicit in the VF iteration can be related to a change
of representation from barycentric to pole–residue form. This change of representa-
tion is made explicit in section 2.2, where we provide formulas that appear to be
new. These formulas can be useful at any step of either the SK or VF iteration in
order to estimate the contribution that each pole makes to the current approximation.
This, in turn, is useful in determining whether, r, the initial estimate of McMillan
degree, is unnecessarily large relative to the information contained in the observed
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data. We note that many authors have applied, modified, and analyzed VF; see, e.g.,
[36, 40, 21, 20, 23, 22, 24]. A MATLAB implementation vecfit3 is provided at [56] and
is widely used. When applied to MIMO problems, high fidelity rational approxima-
tions are sought and generally achieved at the expense of a relatively high McMillan
degree for the final approximant. By way of contrast, the approaches we develop here
are capable of providing systematic estimates to the McMillan degree of the original
function, H(s), and can produce high fidelity rational approximations of any desired
McMillan degree, to the extent possible.

In section 3, we analyze VF within a numerical linear algebra framework and
discuss several important issues that are essential for a numerically sound implemen-
tation of the method. Although VF is based on successive solution of least squares
(LS) problems, which is a well understood procedure, subtleties enter in the VF con-
text. We review commonly used numerical LS solution procedures in section 3.1 and
point out some details that become significant in the VF setting. In section 3.2, we
argue and illustrate by way of example that, as iterations proceed, the VF coefficient
matrices in the pole identification phase tend to become noisy with a significant drop
in column norms that can also coincide with a reduction in numerical rank. This
prompts us to advise caution when rescaling columns in order to improve the con-
dition number, since rescaling columns that have been computed through massive
cancellations will preclude inferring an accurate numerical rank.

Ill-conditioning is intrinsic to rational approximation and manifested through the
potentially high condition numbers of Cauchy matrices that naturally arise. We intro-
duce in section 3.4.2 another approach toward curbing ill-conditioning. Using recent
results on high accuracy matrix computations, we show that successful computation
is possibly independent of the condition number of the underlying Cauchy matrix,
and we open possibilities for application of Tichonov regularization and the Morozov
discrepancy principle, which provide additional useful tools when working with noisy
data. In section 3.5, we offer some suggestions for efficient software implementation
and provide some algorithmic details that reduce computational cost. For the sake
of brevity, we omit discussion of the algorithmic details that allow computation to
proceed using only real arithmetic.

Typically, the weights in (1.1) are ρi = 1 and the sample points, ξi, are either
uniformly or logarithmically spaced according to sampling expedience. We do consider
this case in detail, but also propose, in section 4, an alternate strategy for choosing
ρi and ξi that is guided by numerical quadrature. This connects the “vector fitting”
process with optimal H2 approximation and follows up on our recent work, [27].
Indeed, with proper choice of the nodes ξi and the weights ρi, we can interpret the
weighted LS approximation of (1.1) as rational approximation in a discretizedH2 norm
in the Hardy space of matrix functions that are analytic in the open right half-plane.
This leads to a significant improvement in the performance of the VF approximation
and also sets the stage for a new postprocessing stage proposed in section 5, where we
address the question of computing an approximation having predetermined McMillan
degree.

Rational data fitting has a long history (going back at least to Kalman [44]) and
continues to be studied in a variety of settings: For example, Gonnet, Pachón, and
Trefethen [32] recently provided a robust approach to rational approximation through
linearized LS problems on the unit disk. Hokanson in [42] presented a detailed study
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of exponential fitting, which is closely related to rational approximation. Berljafa and
Güttel [10] recently proposed rational Krylov approximations for solving more general
rational least-squares problems. The Loewner framework developed by Mayo and
Antoulas [48] and Lefteriu and Antoulas [46] is an effective and numerically efficient
method to construct rational interpolants directly from measurements. This approach
also has been extended successfully to parametric [6, 43] and weakly nonlinear [3,
4] problems. In this paper, we focus solely on matrix-valued rational least-squares
approximation by VF.

2. Background and problem setting. The VF iteration is built upon the
Sanathanan–Koerner (SK) procedure [54], which we describe briefly as follows: A

sequence of approximations having the formH
(k)
r = N(k)(s)/d(k)(s) ∈ Rr is developed

by taking d(0)(s) ≡ 1, and then solving successively for N(k+1) and d(k+1) via the
weighted linear least squares problem:
(2.1)

ε(k) =
�∑

i=1

ρi
|d(k)(ξi)|2

∥∥∥N(k+1)(ξi)− d(k+1)(ξi)H(ξi)
∥∥∥2

F
−→ min for k = 0, 1, 2, . . . .

Since N(k) and d(k) have a presumed affine dependence on parameters, (2.1) does
indeed define a linear least squares problem with respect to those parameters. Notice
also that once N(k+1)(s) and d(k+1)(s) have been computed, only d(k+1)(s) is used in
the next iteration as a new weighting function. Although convergence of this process
remains an open question, if the iterations do converge at least in the sense that, at
some k∗, d(k∗+1)(s) “is close to” d(k∗)(s) at the sample points ξi, the process is halted
and we take Hr(s) = N(k∗+1)(s)/d(k∗+1)(s). Note also that before this last step (i.e.,
for k < k∗), any effort to compute the value of N(k+1) is wasted.

The error in (2.1) may be rewritten as ε(k∗) =
∑�

i=1 ρi
∣∣d(k∗+1)(ξi)/d

(k∗)(ξi)
∣∣2

‖Hr(ξi)−H(ξi)‖2F , which corresponds to (1.1) up to an error that depends on the
deviation of |d(k∗+1)/d(k∗)| from 1. This deviation becomes small as convergence
occurs and can be associated with stopping criteria that we introduce in section
3.4.3. If the iteration is halted prematurely, then the last step leaves d(k) unchanged
and redefines N(k+1) as the solution to the LS problem

∑�
i=1 ρi‖N(k+1)(ξi)/d

(k)(ξi)−
H(ξi)‖2F → min. The implementation of this procedure depends on specific choices for

the parameterization of N(k)(s) and d(k)(s) used in representing H
(k)
r (s); barycentric

representations will offer clear advantage.

2.1. VF = SK+barycentric representation. Suppose that at the kth iter-
ation step we choose a set of r mutually distinct (but otherwise arbitrary) nodes,

{λ(k)
j }rj=1. Consider a barycentric representation for H

(k)
r (s):

(2.2)

H(k)
r (s) =

N(k)(s)

d(k)(s)
≡

∑r
j=1 Φ

(k)
j /(s− λ

(k)
j )

1 +
∑r

j=1 ϕ
(k)
j /(s− λ

(k)
j )

, Φ
(k)
j ∈ C

p×m, ϕ
(k)
j , λ

(k)
j ∈ C.

Observe that if ϕ
(k)
j �= 0, H

(k)
r (λ

(k)
j ) = Φ

(k)
j /ϕ

(k)
j . On the other hand, if ϕ

(k)
j = 0,

then H
(k)
r (s) has a simple pole at λ

(k)
j with an associated residue given explicitly in

(2.9) of Proposition 2.1.D
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A new approximant is sought having the form

H(k+1)
r (s) =

∑r
j=1 Φ̂

(k+1)

j /(s− λ
(k)
j )

1 +
∑r

j=1 ϕ̂
(k+1)
j /(s− λ

(k)
j )

, Φ̂
(k+1)

j ∈ C
p×m, ϕ̂

(k+1)
j ∈ C.

The weighted least squares error as described in (2.1) is written explicitly as

(2.3) ε(k) =
�∑

i=1

ρi
|d(k)(ξi)|2

∥∥∥∥∥∥
r∑

j=1

Φ̂
(k+1)

j

ξi − λ
(k)
j

−H(ξi)

⎛⎝1 +
r∑

j=1

ϕ̂
(k+1)
j

ξi − λ
(k)
j

⎞⎠∥∥∥∥∥∥
2

F

.

One of the distinguishing features of the Gustavsen–Semlyen VF method [38]
emerges at this point: the explicit weighting factors 1/|d(k)(ξi)|2 are eliminated through
“pole relocation”, i.e., the nodes in the barycentric representation are changed in such

a way so as to absorb the weighting factors. Note that if {λ(k+1)
j } are the zeros of

d(k)(s), then we can write d(k)(s) =
∏r

q=1
(s− λ(k+1)

q )/
∏r

q=1
(s− λ(k)

q ), and then

�∑
i=1

ρi

∣∣∣∣∣∣∣∣∣∣

r∏
q=1

(ξi − λ(k)
q )

r∏
q=1

(ξi − λ(k+1)
q )

∣∣∣∣∣∣∣∣∣∣

2 ∥∥∥∥∥∥∥∥∥
r∑

j=1

∏
q �=j

(ξi − λ(k)
q )Φ̂

(k+1)

j∏r
q=1(ξi − λ

(k)
q )

−H(ξi)

r∏
q=1

(ξi − λ(k)
q ) +

r∑
j=1

ϕ̂
(k+1)
j

∏
q �=j

(ξi − λ(k)
q )

∏r
q=1(ξi − λ

(k)
q )

∥∥∥∥∥∥∥∥∥∥

2

F

=

�∑
i=1

ρi

∥∥∥∥∥∥∥∥∥
r∑

j=1

∏
q �=j

(ξi − λ(k)
q )Φ̂

(k+1)

j∏r
q=1(ξi − λ

(k+1)
q )

−H(ξi)

r∏
q=1

(ξi − λ(k)
q ) +

r∑
j=1

ϕ̂
(k+1)
j

∏
q �=j

(ξi − λ(k)
q )

∏r
q=1(ξi − λ

(k+1)
q )

∥∥∥∥∥∥∥∥∥∥

2

F

≡ ε(k).(2.4)

The next iterate, H
(k+1)
r , will be represented in barycentric form using nodes λ

(k+1)
q ,

q = 1, . . . , r. We assume simple zeros for simplicity. We introduce new variables,

ϕ
(k+1)
j , so that

r∏
q=1

(s− λ(k)
q ) +

r∑
j=1

ϕ̂
(k+1)
j

∏
q �=j

(s− λ(k)
q )

∏r
q=1(s− λ

(k+1)
q )

= 1 +

r∑
j=1

ϕ
(k+1)
j

s− λ
(k+1)
j

.
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In the same way, we introduce new unknowns, Φ
(k+1)
j , so that

(2.5)

r∑
j=1

∏
q �=j

(s− λ(k)
q )Φ̂

(k+1)

j∏r
q=1(s− λ

(k+1)
q )

=

r∑
j=1

Φ
(k+1)
j

s− λ
(k+1)
j

.

After this change of variables, the LS objective function from (2.3) appears as

(2.6) ε(k) =

�∑
i=1

ρi

∥∥∥∥∥∥
r∑

j=1

Φ
(k+1)
j

ξi − λ
(k+1)
j

−H(ξi)

⎛⎝1 +

r∑
j=1

ϕ
(k+1)
j

ξi − λ
(k+1)
j

⎞⎠∥∥∥∥∥∥
2

F

.

Now, the values for {Φ(k+1)
j }rj=1 and {ϕ(k+1)

j }rj=1 that minimize ε(k) in (2.6) will

determine the next iterate H
(k+1)
r (s). The iteration continues by defining d(k+1)(s) =

1 +
∑r

j=1 ϕ
(k+1)
j /(s− λ

(k+1)
j ) and new poles λ

(k+2)
j will be the computed zeros of

d(k+1)(s).
Numerical convergence is declared and the iteration terminates at an index k∗

when maxj |ϕ(k∗)
j | is “small enough.” The zeros of d(k∗)(s) are extracted as the

eigenvalues of the matrix diag(λ
(k∗)
j )rj=1 + (1, . . . , 1)T (ϕ

(k∗)
1 , . . . , ϕ

(k∗)
r ) and assigned

to {λ(k∗+1)
j }rj=1. The denominator d(k∗)(s) is set to the constant 1 indicating numer-

ical pole–zero cancellation, and the LS problem (2.6) is solved for Φ
(k∗)
j (assigning

k + 1 = k∗) with all ϕ
(k∗)
j terms replaced with zeros. The resulting VF approximant

is

(2.7) Hr(s) =
r∑

j=1

Φ
(k∗)
j

s− λ
(k∗+1)
j

.

It is usually reported that numerical convergence takes place within a few iterations,
provided that initial poles are well chosen. However, in difficult cases, numerical
convergence may not be achieved, and the iterate described in (2.2) may have a de-
nominator that is far from constant. Even if the stopping criterion is not satisfied, the
above procedure that yields (2.7) will be valid at any k, and may be interpreted as
taking the last computed barycentric nodes, viewing them as poles, and then comput-
ing a best least-squares rational approximation in pole-residue form. We discuss this
closing step of the iteration further at the end of section 2.3. The stopping criterion
will be discussed in section 3.4.3.

2.2. Pole-residue form of barycentric approximant. The barycentric rep-
resentation offers many advantages for both the VF iteration and the SK iteration
(i.e., with the explicit weighting by 1/|d(k)(ξi)|2 as in (2.3)). Nonetheless, the pole-
residue representation is more convenient for analysis and further usage. For example,
a pole-residue representation of a (rational) transfer function leads immediately to a
state space realization of the underlying dynamical system. Furthermore, we may
wish to inspect, in the course of iterations, an approximant (2.2) with the goal of
estimating the importance of the contribution of certain of its poles and the possible
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effect of discarding them. Hence, it would be useful in general to have an efficient
procedure to transform a barycentric representation of a function into a pole-residue
representation. Toward that end, consider a p×m matrix rational function

G(s) =

∑r
j=1

Φj

s−λj

1 +
∑r

j=1
ϕj

s−λj

, Φj ∈ C
p×m, ϕj , λj ∈ C, and |ϕj |+ ‖Φj‖F > 0.(2.8)

Assume that the barycentric nodes, λ1, . . . , λr are distinct and closed under conjuga-
tion (nonreal values appear in complex conjugate pairs), and that the corresponding
ϕjs and Φjs have a compatible conjugation symmetry (ϕj , Φj real if λj real, ϕi = ϕj ,
Φi = Φj if λi = λj). Define complementary index sets:

J0 = {j : ϕj = 0} and J1 = {j : ϕj �= 0}.

Then {λj : j ∈ Jk}, {ϕj : j ∈ Jk} are closed under complex conjugation for
k = 0, 1. Note that {λj : j ∈ J0} are among the poles of G(s). The remaining poles

can be indexed as {λ̂j : j ∈ J1}.
Proposition 2.1. Assume, in addition to the above, that all poles of G(s) in

( 2.8) are simple.1 Then,

G(s) =
∑
j∈J1

R̂j

s− λ̂j

+
∑
j∈J0

Rj

s− λj
,

where the residues can be efficiently calculated as
(2.9)

Rj =
Φj

1 +
∑

i∈J1
ϕi/(λj − λi)

, j ∈ J0; R̂j =

∏
i∈J1

(λ̂j − λi)∏
i�=j(λ̂j − λ̂i)

r∑
i=1

Φi

λ̂j − λi

, j ∈ J1.

Proof. The proof immediately follows from a calculation of residues, e.g., for
j ∈ J0, Rj = lims→λj (s− λj)G(s).

The first formula in (2.9) (for j ∈ J0) is a special case of the second one, which
is actually given in (2.5). This reflects the fact that the change of variables (2.5) in
the transition from SK to VF iterations implicitly seeks a pole-residue representation.

2.3. Computing Φ
(k+1)
j and ϕ

(k+1)
j . Measurements are naturally kept in a

tensor S ∈ Cp×m×� with S(:, :, i) = S(i) = H(ξi) + E(i) ∈ Cp×m. S(i) denotes
a sampling of the transfer function at the node ξi, allowing also for measurement
errors to be represented through E(i). Notice that the mode-3 fiber S(u, v, :) =

(S
(1)
uv , S

(2)
uv , . . . , S

(�−1)
uv , S

(�)
uv )T ∈ C�, represents connections between input v and output

u over all frequency samples.

The expression for ε(k) can be matricized in several natural ways. The one followed
in the VF literature is derived from a pointwise matching of input-output relations

1The general case of multiple poles is just more technical and it follows by standard residue
calculus.
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over all measurements. This is natural as it decouples the problem into p ·m rational
function approximations having a common set of poles. In terms of the matrix entries,
the least squares error (2.6) can be written as

ε(k) =

�∑
i=1

ρi

p∑
u=1

m∑
v=1

∣∣∣∣∣∣
r∑

j=1

(
(Φ

(k+1)
j )uv

ξi − λ
(k+1)
j

− S(i)
uv

ϕ
(k+1)
j

ξi − λ
(k+1)
j

)
− S(i)

uv

∣∣∣∣∣∣
2

=

m∑
v=1

p∑
u=1

∥∥∥∥Dρ

(
C (k+1), −D(uv)C (k+1)

)(Φ(k+1)(u, v, :)

ϕ(k+1)

)
−DρS(u, v, :)

∥∥∥∥2

2

,(2.10)

where Dρ = diag(
√
ρi), D

(uv) = diag(S
(i)
uv )�i=1, ϕ

(k+1) = (ϕ
(k+1)
1 , . . . , ϕ

(k+1)
r )T , and

(2.11)

C (k+1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

ξ1−λ
(k+1)
1

1

ξ1−λ
(k+1)
2

··· 1

ξ1−λ
(k+1)
r

1

ξ2−λ
(k+1)
1

1

ξ2−λ
(k+1)
2

··· 1

ξ2−λ
(k+1)
r

...
...

...
...

1

ξ�−1−λ
(k+1)
1

1

ξ�−1−λ
(k+1)
2

··· 1

ξ�−1−λ
(k+1)
r

1

ξ�−λ
(k+1)
1

1

ξ�−λ
(k+1)
2

··· 1

ξ�−λ
(k+1)
r

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Φ(k+1)(u, v, :) =

⎛⎜⎜⎜⎜⎝
(Φ

(k+1)
1 )uv

(Φ
(k+1)
2 )uv

...
(Φ

(k+1)
r−1 )uv

(Φ(k+1)
r )uv

⎞⎟⎟⎟⎟⎠ .

To minimize (2.10), it is convenient to introduce the QR factorizations for 1 ≤ u ≤ p,
1 ≤ v ≤ m:

Dρ

(
C (k+1),−D(uv)C (k+1)

)
=

⎛⎜⎝
÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

⎞⎟⎠= Q(k+1)
uv

⎛⎜⎝(R(k+1))11 (R
(k+1)
uv )12

0 (R
(k+1)
uv )22

0 0

⎞⎟⎠
(2.12)

=
(
(Q(k+1))1 (Q

(k+1)
uv )2 (Q

(k+1)
uv )3

)⎛⎜⎝
∗ ∗ ∗ × × ×
0 ∗ ∗ × × ×
0 0 ∗ × × ×
0 0 0 � � �
0 0 0 0 � �
0 0 0 0 0 �
0 0 0 0 0 0

⎞⎟⎠,(2.13)

where the unitary matrix Q
(k+1)
uv has been partitioned as

Q(k+1)
uv =

(
(Q(k+1))1 (Q

(k+1)
uv )2 (Q

(k+1)
uv )3

)
,

with block columns of sizes � × r, � × r, � × (� − 2r), respectively. The leading r
columns of (2.12) are independent of (u, v) hence the initial part of the factorization,
(Q(k+1))1 (R

(k+1))11 = DρC (k+1), need only be done once.

The LS residual norm may be decomposed as ε(k) = ε
(k)
1 + ε

(k)
2 + ε

(k)
3 , where

(2.14)

ε
(k)
1 =

m∑

v=1

p∑

u=1

∥∥∥(R(k+1))11Φ
(k+1)(u, v, :) + (R(k+1)

uv )12ϕ
(k+1) − (Q(k+1))∗1DρS(u, v, :)

∥∥∥
2

2
,

ε
(k)
2 =

m∑

v=1

p∑

u=1

∥∥∥(R(k+1)
uv )22ϕ

(k+1) − (Q(k+1)
uv )∗2DρS(u, v, :)

∥∥∥
2

2
, and

ε
(k)
3 =

m∑

v=1

p∑

u=1

∥∥∥(Q(k+1)
uv )∗3DρS(u, v, :)

∥∥∥
2

2
,
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where we have used M∗ to denote the conjugate transpose of a matrix M . Here, ε
(k)
3

is a part of the residual that is beyond the reach of the unknowns Φ
(k+1)
j , ϕ

(k+1)
j –

it corresponds to the component in the data that is orthogonal to the subspace of
rational functions available with the current barycentric nodes. Only a set of new
(better) barycentric nodes will incline this subspace toward the data in such a way as
to reduce this component of the error. Extracting optimal information from a given
subspace associated with the current barycentric nodes is achieved by minimizing

ε
(k)
1 + ε

(k)
2 .

To that end, first note that we can assume that (R(k+1))11 is nonsingular since it
participates in a QR factorization of DρC (k+1), which in turn must have full column

rank since {λ(k)
j }rj=1 are presumed distinct and we (tacitly) assume that ξi �= λ

(k)
j

throughout the iteration. Thus, we can make ε
(k)
1 exactly zero for any choice of

ϕ(k+1) by taking, concurrently for all input-output pairs (u, v), with 1 ≤ u ≤ p and
1 ≤ v ≤ m,

(2.15) Φ(k+1)(u, v, :) = (R(k+1))−1
11

(
(Q(k+1))∗1DρS(u, v, :)− (R(k+1)

uv )12ϕ
(k+1)

)
.

When the poles of the approximant are assigned to the barycentric nodes, {λ(k+1)
j }rj=1,

then the residues in (2.7) may be found by solving (2.15) with ϕ(k+1) = 0. For other

cases, the optimal ϕ(k+1) will be found by minimizing ε
(2)
k , and this process is uncou-

pled from any information about Φ(k+1). However, determining ϕ(k+1) does involve a
coupled minimization across all input-to-output (u, v) pairs. The computation (2.15)
is skipped if we choose to proceed with the SK iterations.

Once the maximal number of iterations is reached without reducing ϕ(k) enough
to be neglected, then ϕ(k+1) in (2.15) also cannot be neglected without losing in-

formation. That is why the approximant defined in (2.7) uses the poles λ
(k∗+1)
j .

It follows from section 2.2 that this is equivalent to solving (2.15) with ϕ(k∗) in-
cluded in the right-hand sides and transforming the computed rational approximant
from barycentric into pole-residue form. This is another elegant feature built into the
Gustavsen–Semlyen VF framework. (If we use the original SK iterations with diagonal
scalings and fixed poles, then the barycentric form can be transformed to pole-residue
representation using Proposition 2.1.)

2.4. Global structure. This procedure can be represented as ‖A(k+1)x−b‖2 →
min, in the usual form, as follows. First, we specify that the indices (u, v) in the p×m
array will be vectorized in a column-by-column fashion, (u, v)� ιuv = p(v − 1) + u.
Define A(k+1) to be a block matrix, with pm× (pm+1) block structure, each block of
dimensions �× r. Only 2pm out of pm(pm+ 1) blocks are a priori nonzero. Initially,
set A(k+1) to zero and update it as follows: in the block row ιuv set the diagonal
block to DρC (k+1) and the last block in the row to −DρD

(uv)C (k+1). The right-hand
side is the vector b with the pm × 1 block structure, where the ιuvth block is set
to DρS(u, v, :). The concurrent QR factorizations (2.12) can be then represented by
premultiplying A(k+1) with unitary block-diagonal matrix (Q(k+1))∗, with the ιuvth

diagonal block set to (Q
(k+1)
uv )∗. It is easily seen that the rows of (Q(k+1))∗A(k+1) can

be permuted to obtain the structure illustrated in (2.16):2

2Elements not displayed are zeros.
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(2.16) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

÷ ÷ ÷ � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

A(k+1),�=7,r=3,p=m=2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ × × ×
0 ∗ ∗ × × ×
0 0 ∗ × × ×
0 0 0 � � �
0 0 0 0 � �
0 0 0 0 0 �
0 0 0 0 0 0∗ ∗ ∗ × × ×

0 ∗ ∗ × × ×
0 0 ∗ × × ×
0 0 0 � � �
0 0 0 0 � �
0 0 0 0 0 �
0 0 0 0 0 0∗ ∗ ∗ × × ×

0 ∗ ∗ × × ×
0 0 ∗ × × ×
0 0 0 � � �
0 0 0 0 � �
0 0 0 0 0 �
0 0 0 0 0 0∗ ∗ ∗ × × ×

0 ∗ ∗ × × ×
0 0 ∗ × × ×
0 0 0 � � �
0 0 0 0 � �
0 0 0 0 0 �
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

(Q(k+1))∗A(k+1)

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ × × ×
0 ∗ ∗ × × ×
0 0 ∗ × × ×

∗ ∗ ∗ × × ×
0 ∗ ∗ × × ×
0 0 ∗ × × ×

∗ ∗ ∗ × × ×
0 ∗ ∗ × × ×
0 0 ∗ × × ×

∗ ∗ ∗ × × ×
0 ∗ ∗ × × ×
0 0 ∗ × × ×

� � �
0 � �
0 0 �
� � �
0 � �
0 0 �
� � �
0 � �
0 0 �
� � �
0 � �
0 0 �
0 0 0
0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸
(Q(k+1))∗A(k+1), row permuted

.

Of course, the above matrices will not be used as an actual data structure in a com-
putational routine. But, this global view of the LS problem is useful for conceptual

considerations. For instance, the ε
(k)
3 part of the residual corresponds to the zero

rows of (Q(k+1))∗A(k+1) – they build the block of zero rows at the bottom of the row-
permuted Π(Q(k+1))∗A(k+1); see (2.16). The corresponding entries in the transformed

right-hand side amount to ε
(k)
3 in the Euclidean norm.

The LS problem with the block upper triangular permuted B(k+1) = Π(Q(k+1))∗

A(k+1) and the corresponding partitioned right-hand side s(k+1) = Π(Q(k+1))∗b can
be written as, see (2.16),

(2.17)

⎛⎜⎝B
(k+1)
[11] B

(k+1)
[12]

0 B
(k+1)
[22]

0 0

⎞⎟⎠(
Φ(k+1)

ϕ(k+1)

)
�

⎛⎜⎝s
(k+1)
1

s
(k+1)
2

s
(k+1)
3

⎞⎟⎠ .
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Algorithm 1 Vector Fitting–Basic Iterations.

1: Given: The sampling data H(ξi) for i = 1, . . . , �; maximal number of iterations
kmax.

2: Set k ← 0 and make an initial pole selection λ(k+1) ∈ Cr.
3: while { stopping criterion not satisfied and k ≤ kmax } do
4: Form A(k+1) and b.
5: Compute B(k+1) = Π(Q(k+1))∗A(k+1) and s(k+1) = Π(Q(k+1))∗b and partition

as in (2.17).

6: Solve ‖B(k+1)
[22] ϕ(k+1) − s

(k+1)
2 ‖2 −→ min for ϕ(k+1).

7: Set k ← k + 1 and compute λ(k+1) = zeros(1 +
∑r

j=1 ϕ
(k)
j /(s− λ

(k)
j )).

8: end while
9: Φ = (B

(k)
[11])

−1s
(k)
1 .

Remark 2.1. Observe that the iteration on ϕ(k) proceeds independently of Φ
and, upon convergence (ϕ(k) → 0), Φ is obtained only in the final step, line 9 of
Algorithm 1, which accomplishes the simultaneous determination of residues by min-
imizing ‖Dρ

(
C (k+1)Φ(k+1)(u, v, :)− S(u, v, :)

) ‖2, for u = 1, . . . , p, v = 1, . . . ,m. This
observation was first exploited in [23]. This may be implemented as a solution of
an LS problem with multiple right-hand sides, and additional measures can be taken
to compute more accurate residues, see section 3.4.2. Stopping criteria (line 3 of
Algorithm 1) will be discussed in section 3.4.3.

3. Numerical issues that arise in standard VF. The key variables in VF are
computed as solutions of LS problems, where the coefficient matrices are built from
Cauchy and diagonally scaled Cauchy matrices, thus potentially highly ill-conditioned.
Further, as we hope to capture the data by reducing the residual, we also expect
cancellation to take place. These issues pose tough challenges to numerical analyst
during the finite precision implementation of the algorithm. In this section, we discuss
several important details that are at the core of a robust implementation of VF.

3.1. Least squares solution and rank revealing QR factorization. To
fully understand the global behavior of VF iterations in finite precision arithmetic, it
is crucial to investigate all the details of an LS solver used in a robust software imple-
mentation. For example, consider line 6 in Algorithm 1, i.e., consider the LS problem
‖B[22]ϕ− s‖2 → min where we now drop all superfluous indices to ease notation. In
a MATLAB implementation, the solution is obtained using the backslash operator,
i.e., ϕ = B[22]\s, or using the pseudoinverse, i.e., ϕ = pinv(B[22])s, computed using
the SVD and an appropriate threshold for determining numerical rank. The state
of the art LAPACK library [1] provides driver routines xgelsy, based on a complete
orthogonal decomposition, and xgelss, xgelsd, based on the SVD decomposition.

We briefly describe the decomposition approach. In the first step, the column
pivoted QR factorization is computed and written in partitioned form:
(3.1)

B[22]P = WT =
(
W1 W2

)(
T[11] T[12]

0 T[22]

)
, W ∗W = I, ‖T[22]‖F ≤ ε‖T[11]‖F ,
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where ε is a threshold value, e.g., ε = nε, with ε denoting the machine round-off unit.
As a consequence of the Businger–Golub pivoting [12],

(3.2) |Tii| ≥
√√√√ k∑

j=i

|Tjk|2, 1 ≤ i ≤ k ≤ r.

In the case of differently weighted rows of B[22], numerical stability can be enhanced
by using Powell–Reid complete pivoting [52] or by presorting the rows in order of
decreasing∞-norm [16]. The actual size of T[11] may be determined by an incremental
condition number estimator, or by inspecting for gaps in the sequence |T11| ≥ |T22| ≥
· · · ≥ |Tnn|. If no such partition is possible, then T = T[11] and the block T[22] is
void. In ill-conditioned cases, as we could have in Algorithm 1, such a partition
is likely to be visible; see, e.g., Figure 1. Then, T[22] is deemed negligible noise
and set to zero. This is justified by backward error analysis: there exists a small
perturbation of the initial matrix B[22] such that this part of the triangular factor is
exactly zero. Then, an additional orthogonal reduction transformation Z (similar to
QR factorization, see, e.g., LAPACK routine xtzrzf) is deployed from the right leading
to a URV decomposition:

(3.3) B[22]P ≈W

(
T̂[11] 0
0 0

)
Z and the solution ϕ = PZ∗

(
T̂−1
[11]W

∗
1 s

0

)
.

The vector ϕ in (3.3) is the minimal Euclidean norm solution of a nearby (backward
perturbed) problem. However, in the rank deficient case, other particular choices from
the solution manifold might be of interest. For instance, once we set T[22] in (3.1) to
zero, we can use

(3.4) B[22]P ≈W

(
T[11] T[12]

0 0

)
and the solution ϕ(0) = P

(
T−1
[11]W

∗
1 s

0

)
,

with the same residual norm as ϕ in (3.3). Note that while the MATLAB command
B[22]\s computes ϕ(0), the SVD based pinv(B[22])s and the LAPACK routines return
the minimal norm solution ϕ. These details may also significantly impact the com-
putation in line 9 of Algorithm 1 (cf. Remark 2.1). Numerical rank deficiency will
trigger truncation and in the case of the solution method in (3.4), some of the residues
in (2.7) will be computed as p×m zero matrices, thus effectively removing the corre-
sponding poles from Hr(s). We discuss this residue computation step in more detail
in section 3.4.2.

Determining the numerical rank is a delicate procedure and it should be tailored
to a particular application, based on all available information and interpretation of
the solution. For instance, what is a sensible choice for the threshold ε in (3.1) and
how do we decide whether to prefer the solution of minimal Euclidean length or the
solution with most zero entries? What can we infer from the numerical rank of B[22]?
These issues are further discussed in section 3.2.

3.2. Convergence introduces noise. In this section, we analyze and illustrate
that as VF proceeds, the coefficient matrices in the pole identification phase tend to
become noisy with a significant drop in column norms that may coincide also with
a reduction in numerical rank. This prompts us to advise caution when rescaling
columns in order to improve the condition number, since rescaling columns that have
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been computed through massive cancellations will preclude inferring an accurate nu-
merical rank. Since VF simultaneously fits all input-output pairs using a common set
of poles, it suffices to focus our analysis on only one fixed input-output pair (u, v).
For simplicity of notation, we drop the iteration index k, and take unit weights, i.e.,
Dρ = I�. If r is large enough and the poles have settled, then, with some small error,

S(u, v, 1 : �) ≈ Cx+ error = (Q)1(R)11x+ error,

where x = Φ(u, v, 1 : r); see Remark 2.1. Here we used the QR factorization (2.12).
Now, the right-hand side in the error contribution ε2 in (2.14) that corresponds to
the pair (u, v) is

(3.5) (Quv)
∗
2S(u, v, 1 : �) = (Quv)

∗
2(Q)1(R)11x+ (Quv)

∗
2error = (Quv)

∗
2error.

The vectors of the structure (3.5) are building the vector s2 in (2.17). Furthermore,
using (2.12),

(Ruv)22 = (Quv)
∗
2 diag(S(u, v, 1 : �))︸ ︷︷ ︸

�×�

C = (Quv)
∗
2

{[
(C x+ error)

(
1 . . . 1

)] ◦ C
}
,

where ◦ denotes the Hadamard product. Hence, a jth column of (Ruv)22 reads

(Ruv)22(:, j) = (Quv)
∗
2

{
[(Q)1(R)11x+ error] ◦

(
1/(ξ1−λj)

...
1/(ξ�−λj)

)}
,

which means that (Ruv)22(:, j) could also be small, depending on the position of λj

relative to the ξis. The LS coefficient matrix B[22] in line 6 of Algorithm 1 is assembled
from the matrices (Ruv)22, and we can expect that it will have many small entries
that are (when computed in floating point arithmetic) mostly contaminated by the
roundoff noise. We illustrate this on an example.

Example 3.1. We use the one-dimensional heat diffusion equation model [14],

obtained by spatial discretization of ∂
∂tT (x, t) = α ∂2

∂x2T (x, t)+u(x, t), 0 < x < 1, t > 0
with the zero boundary and initial conditions. The discretized system is of order
n = 197. We generate � = 1000 samples and set r = 80. The structures of B[22] and
its column pivoted triangular factor are given in Figure 1. The column norms of B[22]

in the first step are so particularly ordered due to the ordering of the initial poles
λj = αj ± ı̇ıβj , where the βjs are logarithmically spaced between the minimal and the
maximal sampling frequency and αj = −βj . Note the sharp drop in the column norms
in the second iteration, after the relocated poles induced better approximation.

3.3. The quandary of column scaling. In the VF literature, it is often rec-
ommended to scale the columns of the LS coefficient matrix in line 6 of Algorithm 1,
to make them all of the same Euclidean length, before deploying the backslash solver,
and then to rescale the solution; see, e.g., [35]. One desirable effect of this column
equilibration step is to reduce the effective condition number of LS coefficient matrix
(see, e.g., [45, 57]). While this can be beneficial, nonetheless this tactic also may have
a variety of deleterious effects and, in our opinion, must be considered with caution.
Of foremost concern, following the discussion from section 3.2, is that scaling noisy
matrix columns effectively increases the influence of noise, and allows these noisy
columns to participate in the column pivoting process of the QR factorization, with a
possibility that some of them become drafted and taken upfront as important. This,
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10-6

10-5

10-4

10-3

10-2

10-1

100
Column norms of B

[22]
 and pivoted T
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10-5

100

105
Column norms of B
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 and pivoted T

Fig. 1. The structure of the matrix B[22] and its column pivoted triangular factor in line 6 of
Algorithm 1. during the first two iterations in Algorithm 1. In the first plot, showing the data in
the first iteration, the column norms of B[22] are marked with (red) ·− and the column norms its
triangular factor in the Businger–Golub pivoted QR factorization are marked with (blue) ◦−. The
second plot shows the same information, but in the second iteration.

in turn, interferes with the rank revealing process and possibly precludes truncation
based on a partition as in (3.1). For illuminating discussions related to this issue we
refer to [31, 30, 58]. In the following two examples we illustrate the potentially baleful
effects of column scaling in the particular context of VF iteration.

Example 3.2. We continue using the heat model from Example 3.1. In Figure 2
we show, for the first two iterations, the moduli of the diagonal entries (|Tii|) of
the triangular factors of B[22] (appearing in line 6 of Algorithm 1) without and with
column equilibration. Note that, due to the diagonal dominance (3.2), the distribution
of |Tii| is decisive for numerical rank revealing.

We now illustrate how the numerical rank deficiency may be manifested during the
VF iterations. We solve the LS problems for the ϕ(k)s using only a simple modification
of MATLAB’s backslash operator: first reorder the equations so that the rows of
the coefficient matrix have decreasing �∞ norms, and then apply backslash.3 This
stabilizes the LS solution process in much the same way as does Powell–Reid complete
pivoting (see [16, 41]). We use 1000 frequencies and r = 80. The samples are matched
perfectly with both our implementation of VF and vectfit3 [56] (up to relative errors of
the order of 10−13). The first plot in Figure 3 shows the structure of the denominators
ϕ(k) throughout ten iterations. Each ϕ(k) is represented by the sorted vector of
log10(|ϕ(k)|/‖ϕ(k)‖1), and the zero entries of ϕ(k) are not shown. For k = 1, . . . , 10,
the values of sum(|ϕ(k)|/‖ϕ(k)‖∞ > ε) are, respectively, 53, 43, 38, 30, 44, 44, 44,
40, 42, 44. (If we restart the approximation with r = 53, the number of nonzero
coefficients throughout the iterations are 40, 36, 38, 41, 41, 42, 41, 41, 39, 41.) To
interpret these numbers, we compute the Hankel singular values σ1 ≥ · · · ≥ σ197 and
superimpose them on the graph as log10(σi/σ1)—those values marked by �. Since the
σis are forming a “devil’s staircase” and there is no clear cutoff index. For instance,
σ30/σ1 ≈ 1.28e− 11, σ36/σ1 ≈ 2.17e− 13, σ44/σ1 ≈ 1.12e− 16, σ53/σ1 ≈ 9.00e− 17.

3Recall the discussion in section 3.1. In a LAPACK implemetation, instead of backslash, one
uses xgelsy, which calls xgeqp3 to compute the QR decomposition (3.1), (3.2) and then determines
the partition (3.1) based on estimated condition numbers of the leading submatrices of T .
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[22]

QR of original B
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QR of scaled B
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Fig. 2. (Example 3.1 cont.) The structure of the pivoted triangular factors (cf. (3.2)) of B[22]

in the first two iterations in Algorithm 1. The plot shows the values |Tii| of the unscaled B[22]

(marked with (red) ·−) and of the column equilibrated B[22] (marked with (blue) ×−).

(If we use the backslash without the initial row pivoting, the numbers of nonzero
coefficients throughout the iterations are 53, 44, 37, 42, 50, 50, 50, 49, 49, 50.)

Recall from Proposition 2.1 that the barycentric nodes corresponding to ϕ
(k)
j = 0

are the poles of the current approximant H
(k)
r and that the corresponding residues are

accessible by an explicit formula (2.9), thus allowing an estimate of the contribution
of the pole and perhaps discarding it and reducing r. The matching of the number of
the untruncated entries in the LS solutions ϕ(k) with the number of significant Hankel
singular values is striking and may offer machinery to readjust the order of the ap-
proximant, r, during the iterations. This matching cannot be guaranteed in general,
in particular for systems whose Hankel singular values show no significant decay—in
that case the problem of finding good approximation of lower order is intrinsically
difficult. The right-hand side plot in Figure 3 also shows log10(|ϕ(k)|/‖ϕ(k)‖1), but
with the column scaling of the least squares coefficient matrix and rescaling the solu-
tion, as in vectfit3. Note that, once the scaling is applied, connection to the Hankel
singular values decay is lost; supporting our discussion on the undesirable effects of
column scaling in VF.

Full understanding of the potential of VF for determining the order of the under-
lying system and its connection with the Loewner framework [48] remains an impor-
tant open problem. To illustrate this connection, consider the SISO case and choose
λj = ξj , Φj = ϕjH(ξj) j = 1, . . . , r, which ensures Hr(ξj) = H(ξj). If we require
that LS fit to the remaining data (indexed by i = r+1, . . . , �), then the LS coefficient
matrix has a Loewner structure.

3.4. mimoVF: Putting the pieces together. In this section, based on our
preceding analysis of VF for matrix-valued rational approximation problem, we start
testing our new implementation of VF. We will call the new implementation and
the corresponding MATLAB toolbox mimoVF. This section will provide examples for
verification and validation of mimoVF. We will compare our implementation with
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Fig. 3. (Example 3.2.) History of the first ten iterations, k = 1, . . . , 10. Plots show

log10(|ϕ(k)
j |//‖ϕ(k)‖1) versus j; only nonzero coefficients are shown. Normalized Hankel singular

values are represented as diamonds.

the original vectfit3 [56]4 and show that our proposed modifications based on the
theoretical analysis can substantially improve the results. While on average vectfit3
performs well, in the ill-conditioned cases, it has difficulties with numerical issues
addressed in this paper.

For the resulting rational approximation Hr, define the tensor Sr(:, :, i) = Hr(ξi),
i = 1, . . . , �, and the relative LS error as γ = ‖S − Sr‖F /‖S‖F . Recall that S(:
, :, i) = H(ξi) ∈ Cp×m, i = 1, . . . , �, contains the original samples that are either
measurements, or computed from a state space realization of the underlying LTI
dynamical system.

3.4.1. A stress test. We consider a model for the ISS 1R module [14] with
m = p = 3. The underlying dynamical system has dimension n = 270. This example
presents a difficult test case with rather vivid dynamics. The model is very hard
to approximate and presents significant challenges to model reduction; see [33]. To
that end, we choose r = 50 and take � = 300 samples. The initial barycentric
nodes are chosen as the eigenvalues of a pseudorandom real stable r × r matrix, a
potentially poor initialization. Using these initial nodes, two iteration steps are taken
both in vecfit3 and mimoVF. The goal of this example is to illustrate that once the
computations in each iteration step are made more robust (following our preceding
analysis), high-fidelity rational approximants can still be achieved even with a small
number iteration count or even in the cases of poorly initial choices of barycentric
nodes. The results of vectfit3 and mimoVF are shown on Figure 4 where we depict the
amplitude frequency response plots for the data and for the rational approximants.
Note that this model hasm = 3 inputs and p = 3 outputs, there are nine input/output
channels corresponding to the different lines in Figure 4. This figure clearly illustrates
the mimoVF performs significantly better than vecfit3 for this example. Recall that
both functions are given the same set of initial poles. Despite this unfavorable choice
of initial poles, a restricted number of iterations, and ill-conditioned LS matrices,
mimoVF succeeds to compute a model with relative LS error below γ ≈ 6.45 · 10−3.

4The options used deploy the “relaxed vector fitting” technique [36].
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Fig. 4. (Example of section 3.4.1.) Comparison of mimoVF and the vectfit3 on the ISS 1R
module with initial poles set as the eigenvalues of a pseudorandom stable real matrix, � = 300, and
r = 50. (The frequency response magnitudes of each of the possible nine input/output pairings is
plotted in solid blue; the corresponding frequency response magnitudes from rational approximations
provided by vectfit3 and mimoVF appear as dashed red lines.) The purpose of the experiment is to
check the robustness of the numerical implementation in the case of unpropitious distribution of the
barycentric nodes. The first plot shows the output of vectfit3 (with the relative error γ > 10), and
the second of mimoVF (γ < 10−2), both after two iterations.

On the other hand, the relative error due to vectfit3 is γ ≈ 10.41; a significantly
higher value than the error due to mimoVF. It is possible that allowing vectfit3 to
iterate further might realign the poles better, leading to a smaller LS error and an
accurate approximate. But, of course, this comes with additional costs since every
step of the iteration requires solving a potentially large-scale LS problem; especially
when m and p are large. Therefore, any reduction in the iteration count is a gain in
terms of computational efficiency.

3.4.2. How to compute the residues in the final step. One of the ad-
vantages of the barycentric implementation of the SK iterations over the original
approach using polynomial representations is in the avoidance of high powers of ξi
(which may cause overflow and underflow in finite precision arithmetic) as producing
ill-conditioned Vandermonde matrices. The additional scalings by 1/|d(k)(ξi)|2, which
is another potential source of ill-conditioning, has been elegantly removed by the VF

formulation and compensated by reallocating the barycentric nodes λ
(k)
j . However,

once the VF iterations are completed, one needs to solve for the final residues Φ in line
9 of Algorithm 1 for the converged poles. This step needs to be performed carefully as
the coefficient matrix that determines the residues for a given set of poles is a Cauchy
matrix, which, together with Vandermonde matrices, is among the most notoriously
ill-conditioned matrices. To illustrate, the spectral condition number of an arbitrary
100× 100 real Vandermomde matrix is larger than 3 · 1028, and the condition number
of the 100 × 100 Hilbert (Cauchy) matrix is more than 10150. The column norms of
the latter are between 0.07 and 1.3, thus no column scaling can substantially reduce
the condition number. Furthermore, the additional weightings ρi (whose values may
spread many orders of magnitude) may further worsen the conditioning of the least
squares coefficient matrix. All of this is a menace to the final computed residues, in
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particular when the order r is sufficiently high and in cases of unfavorably distributed
nodes. This issue has to be addressed if the method is to be applied to truly chal-
lenging problems with complex dynamics and of high orders, for instance, for m, p, r
in hundreds. In this section we focus our attention to the very last step—given poles
of a rational approximant, how to best numerically extract the residues.

Example 3.3. We continue using the ISS 1R example from section 3.4.1. However,
in this case, we choose good initial poles of the form λj = αj±ı̇ıβj , where the (positive)
βjs are log-spaced over the frequency sample interval and αj = −βj < 0 as often
recommended in the VF literature for good initial pole selection. We take � = 500
and choose r = 100. Recall that the underlying system has dimension n = 270 with
p = m = 3; therefore, with r = 100 and � = 500 samples, one expects to obtain a very
good approximation even after one iteration. The amplitude frequency response plots
are depicted in the first row of Figure 5 for both vecfit3 and mimoVF; the relative
LS errors due to mimoVF and vecfit3 are, respectively, 4.23 · 10−2 and 4.90 · 10−3.
(Interestingly, the relative errors in the system H2 norm (4.1) were 2.80 · 10−2 for
mimoVF and 2.19 · 101 for vectfit3.) In the next experiment, we use the initial poles
with αj = −βj/100 < 0, and linearly spaced βj ’s, as suggested in [38, relations (9),
(10)], [37], and allow both procedures to run two iterations. The results are shown in
the second row of Figure 5, once again illustrating that mimoVF outperforms vecfit3.

In this case, vecfit3 suffers from the numerical ill-conditioning of the final residue
computation. Thus, this example shows that even a plenty of good initial barycentric
nodes, one does not necessarily guarantee a good approximation due to the numerical
issues arising in the residue computation step.

A regularization approach for residue extraction. Even though mimoVF
performed relatively well in Example 3.3, some of the less-dominant input/output
pairs were not captured as accurately as one would prefer; see Figure 5. In this section,
we consider a regularization technique to further improve the final residue extraction
step inmimoVF. Recall line 9 of Algorithm 1 to compute the final residues: solvingΦ =
B−1

[11]s1. As noted in Remark 2.1, this corresponds to the simultaneous determination

of the residue matrices by solving ‖Dρ

(
C (k+1)Φ(k+1)(u, v, :)− S(u, v, :)

) ‖2 −→ min,
u = 1, . . . , p, v = 1, . . . ,m. To simplify the notation, denote this LS problem by
‖DρCx − h‖2 −→ min, where C = Cξ,λ is a Cauchy matrix as in (2.11), h is the
corresponding scaled right-hand side, λ is closed under conjugation, and the solution
vector should also be closed under conjugation. Such a constrained problem can be
replaced by an equivalent unconstrained LS problem

(3.6)

∥∥∥∥(DρCξ,λ

DρCξ,λ

)
x−

(
h

h

)∥∥∥∥
2

≡ ‖Ĉx− ĥ‖2 −→ min

with the coefficient matrix again of the diagonally scaled Cauchy structure, Ĉ =
(Dρ ⊕Dρ)C(ξ,ξ),λ.

The SVD of Ĉ can be computed to high relative accuracy based on the pivoted
LU decomposition Π1ĈΠ2 = LDU , where each entry (including the tiniest ones)

of the computed factors L̃, D̃, Ũ is computed to high relative accuracy, and L̃, Ũ
are well conditioned. The ill-conditioning of Ĉ is revealed in the diagonal matrix
D̃. This decomposition can be used immediately in an LS solver [13], or it can be
used to compute an accurate SVD [19, 17, 28, 29] which is then used to compute an

approximate LS solution. Ĉ can be severely ill-conditioned so that small changes of
ξis and λjs can cause significant perturbation of the SVD. However, we can consider
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Fig. 5. (Example 3.3.) Comparison of mimoVF and the vectfit3 on an ISS example. First row:
The initial poles λj = αj ± ı̇ıβj set with imaginary parts βj > 0 log-spaced over the frequency range,
αj = −βj. The first plot shows the output of vectfit3 (with the relative error γ ≈ 4.23 · 10−2), and
the second of mimoVF (γ ≈ 4.90 · 10−3) after one iteration. Second row: Following [38], the βj’s
are linearly spaced and αj = −βj/100. The relative errors after two iterations are γ ≈ 1.60 · 10−1

(vectfit3) and γ ≈ 7.00 · 10−2 (mimoVF). Since the order of the underlying system is n = 270 and
p = m = 3, r = 100 should provide good approximation.

the values of ξis and λjs, as stored in the machine memory, as exact and attempting
to compute accurate SVD is justified.

Let Ĉ = WΣV ∗ be the SVD and let the unique5 LS solution be x = V Σ†W ∗ =∑r
i=1 vi(w

∗
i ĥ)/σi. Unfortunately, an accurate SVD is not enough to have the LS so-

lution computed to high relative accuracy, and additional regularization techniques
must be deployed. This is, in particular, important if the right-hand side is contami-
nated by noise. In the Tichonov regularization, we choose μ ≥ 0 and use the solution
of ‖Ĉx− ĥ‖22 + μ2‖x‖22 → min, explicitly computable as

(3.7) xμ =

r∑
i=1

σi

σ2
i + μ2

(w∗
i ĥ)vi.

5Since all nodes are distinct and the poles are assumed simple, the matrix is of full column rank.
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Fig. 6. Comparison of mimoVF and the vectfit3 on an ISS example with initial poles set as
log-spaced (imaginary parts log-spaced over the frequency range). In this example, � = 500 and
r = 100. The first plot shows the output of vectfit3 after two iterations (with the relative error
γ ≈ 7.95 · 10−4 and the H2 error 1.05 · 10−1), and the second of mimoVF (γ ≈ 4.90 · 10−3 and the
H2 error 2.81 · 10−2) after one iteration.

The parameter μ can be further adjusted using the Morozov discrepancy principle
[50], i.e., to achieve ‖Ĉxμ − ĥ‖2 ≈ ν, where ν is the estimated level of noise δĥ in the

right-hand side, ν ≈ ‖δĥ‖2.
Example 3.4. Here we continue Example 3.3, use the same data, and apply vecfit3

and mimoVF where we use the preceding regularization approach in the final residue
computation step. Using accurate SVD of Ĉ we compute xμ as in (3.7) with an ad
hoc choice of μ = 10−3. The result after one iteration of mimoVF, shown in the right
plot in Figure 6, when compared to the right plot in the first row of Figure 5 indicates
an improvement in approximation of nondominant input-output pairs, with nearly
the same LS error γ ≈ 4.90 · 10−3. Running two iterations of vectfit3, as shown in the
left plot of Figure 6, reduces the error to γ ≈ 7.95 · 10−4, and the H2 error drops to
1.05 · 10−1, which is still larger than the corresponding H2 error from one iteration of
mimoVF (2.81 · 10−2).

It should also be noted that, for both vectfit3 and mimoVF, the quality of VF
approximations usually rapidly improves throughout the iteration, in particular due
to a procedure introduced by Gustavsen [36].6 However, our goal in this section is to
show that a more robust implementation may reduce the total number of iterations
needed to reach satisfactory approximation. The numerical issues discussed here are
crucial when the dimensions n, r,m, p are so large that the ill-conditioning of the
underlying matrices impedes the convergence of VF to a good approximation.

Remark 3.1. The LDU decomposition, which is the initial step of the accurate
SVD, can also be used in the pole identification phase to compute accurate QR fac-
torization of Cauchy matrices at all stages of the computation. We have not included
those modifications for the sake of brevity of the presentation. Interested readers can
find the details of such an approach in [25].

6Full mathematical explanation of this procedure is an important challenging problem.
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3.4.3. Stopping criterion. It should be noted that the stopping criterion in
the VF framework is rather vaguely specified. To the best of our knowledge, the
VF literature does not provide a precise and numerically justified strategy of halting
the iterations. For instance, vectfit3 allows only running for a given fixed number of
iterations.

Following our recent analysis [27], we propose to declare the |ϕ(k+1)
j |s “small

enough” if

(3.8)

r∑
j=1

|ϕ(k+1)
j |

|�e(λ(k+1)
j )|

≡ θ(k+1) ≤ ε, where ε is a suitable threshold.

This seems appropriate because maxs∈ı̇ıR |d(k+1)(s)− 1| ≤ θ(k+1), and in (2.6) we can
write

S(i)

⎛⎝1 +

r∑
j=1

ϕ
(k+1)
j

ξi − λ
(k+1)
j

⎞⎠ = S(i) +ΔS(i), ‖ΔS(i)‖F ≤ θ(k+1)‖S(i)‖F ,

thus interpreting this as introducing backward perturbation into the data. In fact,
this interpretation can be a guidance for choosing the threshold value ε by following
a discrepancy principle, i.e., so that this backward error matches the estimated size
of the noise level on the input.

3.5. Guidelines for efficient implementation. We now further discuss imple-
mentation details that are relevant for an efficient software implementation of mimoVF
or Algorithm 1 in general. Recall that VF for MIMO systems with m input and p in-
puts will require p ·m QR factorizations (2.12) of size �×(2r) before advancing toward

finding ϕ
(k+1)
j . It is clear that this is a demanding computational challenge even for

moderate m and p; e.g., in the case m = p = 100, it will require p ·m = 10000 QR fac-
torizations of size �×(2r). Since these factorizations are independent, they can be very
efficiently parallelized and the whole computation can be optimized for a multicore
computing machinery. This has been nicely described by Chinea and Grivet-Talocia
[15], who showed a nearly ideal speedup on a four quad-core architecture.

3.5.1. Efficient computation of B[22]. It was pointed out earlier that the QR

factorizations in (2.12) are independent of (u, v) in the first r columns and (R(k+1))11
from (2.15) can be computed by a single QR factorization, optionally with column
pivoting, of DρC (k+1), i.e., DρC (k+1)Π = V (k+1)

(
T (k+1)

0

)
. Further, the introduction

of rank-revealing column pivoting Π in this factorization incurs a negligible overhead,
while preserving the structure (2.16). We discussed in section 3.1 that this pivoting
is very important for numerical robustness of the LS solution as well. In an LAPACK-
style implementation, the matrix V (k+1) can be computed and stored in the form
of r Householder vectors (using Xgeqp3), and then, using Xormqr, (V (k+1))∗ can be
concurrently applied to all −DρD

(uv)C (k+1), u = 1, . . . , p, v = 1, . . . ,m. Then, it
only remains to compute the QR factorizations of the (r+1 : �, r+1 : 2r) submatrices
of −(V (k+1))∗DρD

(uv)C (k+1). One should note that in a blocked QR factorization a
similar computation is done anyway in the process of computing the QR factorizations
(2.12). The computed triangular r× r factors are the (2, 2) blocks in (2.12) that build

the matrix B
(k+1)
[22] . Hence, the saving of this modified approach is equivalent to the

cost of (pm− 1) QR factorizations of size �× r, or, approximately, const · (pm− 1)�r2.
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The total work on the QR factorizations (2.12) without this modification is 4 · const ·
pm�r2.

Further, when we are solving only for the ϕ
(k)
j during the VF iterations, the

elements of Q∗A, denoted by × in (2.13) and (2.16) are not used in the pole iden-

tification phase, but they are computed as (R
(k+1)
uv )12 parts of the QR factorizations

(2.12). On the other hand, once the poles are fixed, the LS problem is solved with
the approximant of the form (2.2), but with the unit denominator, d(k)(s) ≡ 1, or,

equivalently, with ϕ
(k+1)
j = 0, j = 1, . . . , r. This means that, for computing (2.7) by

Algorithm 1, we do not compute the matrices (R
(k+1)
uv )12, which further reduces the

complexity. Our implementation of this more efficient approach is based on adapting
the LAPACK’s functions Xormqr, Xlarft, and Xlarfb.

3.5.2. Locally pivoted factorization. In the presence of ill-conditioning and
noise, pivoting is essential when using the QR factorization. Hence, we propose in-
cluding pivoting in the procedure outlined in section 3.5.1. More precisely, the QR
factorization of DρC (k+1) is computed with column pivoting, i.e., DρC (k+1)Π(k+1) =
V (k+1)

(
T (k+1)

0

)
. This enhances the accuracy of the computed residues in line 9 of

Algorithm 1. In a software implementation, line 9 is reshaped into the LS problem
with the coefficient matrix T (k+1) and with m ·p right-hand sides, for all input-output
pairs. Optionally, one can use the truncation discussed in section 3.1, or the accurate
SVD as explained in section 3.4.2.

Further, we also advocate the use of pivoting when computing the QR factor-
izations of the (r + 1 : �, r + 1 : 2r) submatrices of −(V (k+1))∗DρD

(uv)C (k+1). This

increases the accuracy of the computed matrix B
(k+1)
[22] in line 6 of Algorithm 1. For

details how pivoting influences the accuracy of the rows of the computed triangular
QR factor, we refer to [26]. Furthermore, this may allow (in the cases of numerical
rank deficiency, as revealed by the pivoted QR factorization and discussed in section

3.1) one set certain numbers of rows of (R
(k+1)
uv )22 to zero and thus increase the num-

ber of zero rows in B
(k+1)
[22] and reduce the complexity of line 6 in Algorithm 1, where,

as described in section 3.1, the LS solver starts with the QR factorization with column
pivoting.

The pivoted QR factorization of the tall and skinny matrix B
(k+1)
[22] can be com-

puted by, e.g., first computing the QR without pivoting using the techniques of [9],
and then computing the pivoted QR factorization of the computed r × r triangular
factor, or, e.g., as in [18]. These approaches become particularly attractive if p · m
and r are large.

Remark 3.2. Interestingly, we do not need to compute the (R
(k+1)
uv )22s. In-

stead, we can build the matrix B
(k+1)
[22] from the (r + 1 : �, r + 1 : 2r) submatrices of

−(V (k+1))∗DρD
(uv)C (k+1). This will lead to increased number of rows in B

(k+1)
[22] , but

overall it reduces the complexity with potential gain increased if the QR factorization

of B
(k+1)
[22] is computed using the strategies of [9, 18].

4. Numerical quadrature in mimoVF for discretized H2 approximation.
The framework for mimoVF is based on the algebraic least squares (LS) error min-
imization (1.1) where one usually chooses the weights ρj = 1 and the nodes ξj are
usually selected heuristically. In [27], for SISO systems, we have shown that with
the underlying dynamical system in mind, reformulating the discrete LS problem as
discretization of an underlying continuos H2 error measure and then choosing the
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nodes and weights by an appropriate numerical quadrature improves the performance
of VF significantly. The same conclusion holds in the MIMO case as well since, once
the common set of poles has been determined, mimoVF works separately on each
input–to-output pair. We illustrate these considerations briefly in this section.

4.1. H2 approximation and numerical quadrature. The algebraic least
squares error is closely related to the H2 system norm. More precisely, consider the
space Hp×m

2,+ of p × m matrix functions M(s), analytic in the open right half-plane

C+ = {s ∈ C : �(s) > 0}, such that supx>0

∫∞
∞ ‖M(x + ı̇ıy)‖2Fdy < ∞. The space

Hp×m
2,+ is a Hilbert space with the associated inner product and norm defined by

〈M1,M2〉H2 =
1

2π

∫ ∞

−∞
Trace

(
M1(ı̇ıω)M2(ı̇ıω)

T
)
dω,

‖M‖H2 =

(
1

2π

∫ ∞

−∞
‖M(ı̇ıω)‖2F dω

)1/2

.(4.1)

The H2 approximation problem is, then, to find a degree-r rational approximant,
Hr(s), that minimizes the H2 error norm ‖H − H̃r‖H2 over all degree-r rational

function H̃r(s). Such an optimal rational approximant must satisfy certain Hermite
tangential interpolation conditions; for details we refer to [5, 34]. The Iterative Ratio-
nal Krylov Algorithm (IRKA) of Gugercin, Antoulas, and Beattie [34] is a numerically
effective iterative algorithm that constructs degree-r rational approximatants satisfy-
ing the H2-optimality conditions.

Our goal in this section is to repeat the success of [27] for SISO systems, i.e.,
improve the performance of mimoVF by formulating the discrete LS measure as dis-
cretization of the continuous H2 error. Towards this goal, approximate the H2 error
with a quadrature role to obtain∫ +∞

−∞
‖H(ı̇ıω)−Hr(ı̇ıω)‖2Fdω ≈

�∑
j=1

ρ2j‖H(ξj)−Hr(ξj)‖2F

+ρ2+ M+[|H−Hr|2] + ρ2− M−[|H−Hr|2],(4.2)

where M±[G] are linear functionals of G that capture information about asymptotic
behavior of G at ±∞. Note that the usual VF formulation correspond to ρ+ = ρ− = 0,
with all other ρj = 1, and choosing sampling nodes ξj to be equidistant and in complex
conjugate pairs. Thus, the usual VF objective function is as a composite trapezoid
quadrature rule for the integral in (4.2) approximating the H2 error. As we discussed
in [27], more effective quadrature options may be considered, e.g., Gauss–Legendre,
Gauss–Kronrod, and Gauss–Hermite quadrature rules. We do not go into the details
of what quadrature method to choose here; since our main point is just to illustrate
that mimoVF can perform much better once formulated as a discretized H2 measure.

4.2. A numerical example. Here, with a simple example, we illustrate the
effect of choosing the sampling points and the weights using numerical quadrature.
We use the Clenshaw–Curtis type quadrature rule developed by Boyd [11]. We use
the ISS 1R module [33] with m = 3 inputs and p = 3 outputs. We use only 100
function evaluations (� = 200) and apply mimoVF to this data set for different r
values. Resulting relative H2 errors are shown in Table 1 below. The quadrature-
based selection yields the smallest error in each case; for r = 20 and r = 30, it leads
to one order of magnitude improvements.
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Table 1

Effect of quadrature nodes and weights on mimoVF.

Method r = 10 r = 20 r = 30 r = 40

mimoVF without quadrature 3.4104 × 10−1 3.1775× 10−1 1.2778 × 10−1 5.0257 × 10−2

mimoVF with quadrature 2.5209 × 10−1 4.6074× 10−2 3.3226 × 10−2 2.1436 × 10−2

5. Controlling the McMillan degree. Let {Φj}r1 ⊂ Cp×m and {λj}r1 ⊂ C

denote the final set of matrix residues and poles, respectively, resulting from mimoVF.
To ease notational clutter, we drop the iteration index k. The associated rational
matrix approximant can be represented as

Hr(s) =

r∑
j=1

Φj

s− λj
= ( Ip ... Ip )

⎛⎜⎝
Ip

s−λ1

. . .
Ip

s−λr

⎞⎟⎠(
Φ1

...
Φr

)
(5.1)

= (Φ1 ... Φr )

⎛⎝ Im
s−λ1

. . .
Im

s−λr

⎞⎠(
Im

...
Im

)
.

If Hr(s) has simple poles, then Hr(s) has nominal McMillan degree deg(Hr(s)) =∑r
j=1 rank(Φj). Evidently, r ≤ deg(Hr(s)) ≤ rmin(p,m). Note that deg(Hr(s))

will be strictly larger than r unless the residues, Φj , all have rank 1, and indeed,
deg(Hr(s)) can be potentially much larger than r if either the input space or output
space has significant dimension. McMillan degree is a proxy for the complexity in-
volved in evaluating an approximant; therefore, it is generally desirable and sometimes
necessary to reduce the McMillan degree of a rational approximant to the target value
of r, while retaining its approximating quality as much as possible. One straightfor-
ward method to accomplish this is to use truncation as suggested in [39]: For each
j = 1, . . . , r, find the best rank-one approximation of Φj ≈ cj b

T
j , where cj ∈ Cp and

bj ∈ Cm. However, it is often the case that the residues Φj are not close to rank-one
matrices and so, truncation to rank-one residues can substantially increase the LS er-
ror. Reference [39] suggested using the SVD to determine the numerical ranks of the
Φjs and truncating them to their respective best low-rank (not necessarily rank-one)
approximations; [39] also proposed Gauss–Newton correction, but no details on how
to proceed in this direction were provided.

We propose here two different approaches toward retaining rank-one residues,
allowing us to achieve a true McMillan degree of r while keeping the approximation
quality as high as possible. The first approach, presented in section 5.1, is based
on a nonlinear least-squares minimization, the second one, presented in section 5.2,
combines mimoVF with well-established optimal systems-theoretic model reduction
methodologies.

5.1. Rank-one residue correction via alternating least squares. We seek
an optimal rational approximant, Ĥr(s), having the same poles, {λj}r1, as the mimoVF
approximant, but taking the form
(5.2)

Ĥr(s) =

r∑
j=1

cjb
T
j

s− λj
≡ C(sI−Λ)−1BT , where Λ = diag(λj)

r
j=1,

C =
(
c1 . . . cr

)
B =

(
b1 . . . br

)
.

D
ow

nl
oa

de
d 

09
/0

1/
22

 to
 1

95
.1

76
.1

13
.1

45
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Optimality here will mean that C and B are chosen so that Ĥr(s) satisfies

(5.3) min
C, B

�∑
i=1

∥∥∥∥∥∥∥
r∑

j=1

cjb
T
j

ξi − λj
−H(ξi)

∥∥∥∥∥∥∥2
F = min

C, B

∥∥∥∥∥∥∥ (C ⊗ Ip)︸ ︷︷ ︸
M

⎛⎜⎝c1b
T
1
...

crb
T
r

⎞⎟⎠−
⎛⎜⎝H(ξ1)

...
H(ξ�)

⎞⎟⎠
∥∥∥∥∥∥∥
2

F

.

A weighting factor ρi > 0 can also be attached to each sample; yet for simplicity
of presentation, we take all ρi = 1. In (5.3), C ∈ C

�×r denotes the Cauchy matrix

Cij = 1/(ξi − λj). In many applications, Ĥr(s) should be real-valued for real-valued
s. In that case, a constraint is added that the poles λj and the residues cjb

T
j must

be closed under conjugation: all nonreal poles appear in complex conjugate pairs, say
λj , λj+1 = λj ; cj , bj are real if λj is real, otherwise cj+1 = cj, bj+1 = bj.

The nonlinearity of the LS error (5.3) with respect to the variables, B and C, can
be evaded by reformulating the problem in terms of alternating least squares (ALS):
if B (alternatively, C) is fixed, then (5.3) becomes a linear least squares problem in
terms of C (alternatively, B). So, we minimize alternately with respect to C (holding
B fixed) and then with respect to B (holding C fixed), repeating the cycle until con-
vergence. We provide some algorithmic details below and illustrate the effectiveness
of ALS iteration with an example. An analogous approach has been used for “residue
correction” in realization-independent (data-driven) approaches to optimal H2 model
reduction [7].

Correction of C. Assume B is fixed and seek an updated C (with conforming
conjugation symmetry) that will minimize the LS error (5.3). To that end, we vectorize
the error matrix columnwise and write the kth column (k = 1, . . . ,m) of the residual
matrix in (5.3) as

M

⎛⎜⎝(b1)kI
. . .

(br)kI

⎞⎟⎠
⎛⎜⎝c1

...
cr

⎞⎟⎠−
⎛⎜⎝H(ξ1)ek

...
H(ξ�)ek

⎞⎟⎠(5.4)

=M(diag(B(k, :))⊗ Ip)

⎛⎜⎝c1
...
cr

⎞⎟⎠−
⎛⎜⎝H(ξ1)ek

...
H(ξ�)ek

⎞⎟⎠ .

Stacking all columns together, the problem becomes: minimize the Euclidean norm
of the residual
(5.5)

⎛⎜⎝M(Δ1 ⊗ Ip)
...

M(Δm ⊗ Ip)

⎞⎟⎠
⎛⎜⎝c1

...
cr

⎞⎟⎠−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(ξ1)e1
...

H(ξ�)e1
...

H(ξ1)em
...

H(ξ�)em

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, where Δi = diag(B(i, :)), i = 1, . . . ,m,

with conjugation symmetry constraints: cj is real if λj is real and ck = cj , if λk = λj .
Note that the number of rows above is � ·m · p, and the number of unknowns is p · r.
In practice, � is much larger than m, p, r, and it is always assumed that � ≥ 2r.
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Let C = Q (R0 ) = Q̂R be the QR factorization, where Q = (Q̂Q̆), Q̂ = Q(:, 1 : r).
ThenM = (Q⊗ Ip)((R

0 )⊗ Ip) is the QR factorization ofM. Multiplying the blocks
in the residual (5.5) by (Q∗ ⊗ Ip) and using the block-partitioned structure of Q, we
obtain an equivalent LS problem:

(5.6)

∥∥∥∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎜⎜⎝
(R ⊗ Ip)(Δ1 ⊗ Ip)

0
...

(R⊗ Ip)(Δm ⊗ Ip)
0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎝c1

...
cr

⎞⎟⎠−
⎛⎜⎜⎜⎜⎜⎜⎝

(Q̂∗ ⊗ Ip)vec(S(:, 1, :))

(Q̆∗ ⊗ Ip)vec(S(:, 1, :))
...

(Q̂∗ ⊗ Ip)vec(S(:,m, :))

(Q̆∗ ⊗ Ip)vec(S(:,m, :))

⎞⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥
F

−→ min .

The blocks (Q̆∗ ⊗ Ip)vec(S(:, i, :)), i = 1, . . . ,m, in the right-hand side constitute
a part of the residual that cannot be influenced with any choice of the cjs and the
corresponding (�−r)·p·m equations (with the corresponding zero rows in the coefficient

matrix) are dropped, i.e., only the thin QR factorization C = Q̂R is needed. This
reduces the row dimension of the problem from � ·p ·m to r ·p ·m. Using the properties
of the Kronecker product, we can further simplify it to

(5.7)

∥∥∥∥∥∥∥
⎡⎢⎣
⎛⎜⎝RΔ1

...
RΔm

⎞⎟⎠⊗ Ip

⎤⎥⎦
⎛⎜⎝c1

...
cr

⎞⎟⎠−
⎛⎜⎝ (Q̂∗ ⊗ Ip)vec(S(:, 1, :))

...

(Q̂∗ ⊗ Ip)vec(S(:,m, :))

⎞⎟⎠
∥∥∥∥∥∥∥
F

−→ min .

To solve (5.7) we compute the QR factorizations
(5.8)

R� = U

(
T
0

)
, R�⊗ Ip = (U ⊗ Ip)

((
T
0

)
⊗ Ip

)
, where R� =

⎛⎜⎝RΔ1

...
RΔm

⎞⎟⎠ ∈ C
m·r×r,

and, using the partition U = (Û Ŭ), we reduce the problem to solving the triangular
system

(5.9) (T ⊗ Ip)

⎛⎜⎝c1
...
cr

⎞⎟⎠ = (Û∗ ⊗ Ip)

⎛⎜⎝ (Q̂∗ ⊗ Ip)vec(S(:, 1, :))
...

(Q̂∗ ⊗ Ip)vec(S(:,m, :))

⎞⎟⎠ .

Note that only the thin QR factorization R� = ÛT is needed. Folding the un-
knowns back into the structure of C we obtain, using that (Q̂∗ ⊗ Ip)vec(S(:, i, :)) =

vec(S(:, i, :)Q̂∗T ),

vec(CT T ) = (Û∗ ⊗ Ip)

⎛⎜⎝ vec(S(:, 1, :)Q̂∗T )
...

vec(S(:,m, :)Q̂∗T )

⎞⎟⎠(5.10)

= (Û∗ ⊗ Ip)vec
((

S(:, 1, :)Q̂∗T . . . S(:,m, :)Q̂∗T
))

= vec
((

S(:, 1, :)Q̂∗T . . . S(:,m, :)Q̂∗T
)
Û∗T

)
.
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Frequency [rad/sec]
10-2 10-1 100 101 102 103

10-12

10-10

10-8

10-6

10-4

10-2

100
mimoVF

Data
mimoVF (truncated)

Frequency [rad/sec]
10-2 10-1 100 101 102 103

10-12

10-10

10-8

10-6

10-4

10-2

100
mimoVF

Data
mimoVF: truncated + ALS correction

Fig. 7. (Example 5.1.) Illustration of the truncation of mimoVF and the ALS correction.
(Truncation applied to the mimoVF output shown on the right graph on Figure 4. Only one ALS

iteration is used.) The relative H2 error of ̂Hr is χ ≈ 1.50e− 01.

As an alternative to solving (5.9), C can be computed efficiently as the solution of

a triangular matrix equation. The formula C = (S(:, 1, :)Q̂∗T . . . S(:,m, :)Q̂∗T )
Û∗TT−T is rich in BLAS 3 operations and can be highly optimized. Finally, we note
that the QR factorizations involved can be done with pivoting, but we omit details
for the sake of simplicity.

Correction of B. If the matrix C is fixed and we want to update B, we use the
preceding procedure, with a few simple modifications. First, transpose the residuals

at each ξi to get
∑r

j=1

bjc
T
j

ξi−λj
−H(ξi)

T . As a consequence, swap the roles of the cjs

and the bjs, and use S(i, :, :) instead of S(:, i, :). The rest follows mutatis mutandis.
A numerical example. We illustrate the usefulness of the ALS correction pro-

cess in building a final approximant Ĥr that has exact McMillan degree r. We use
the data of Example 3.4.1, and the output of mimoVF after the second iteration. The
simple truncation of the residue matrices causes the LS error jump from γ ≈ 6.45·10−3

to γ ≈ 2.72, and one step of ALS correction reduces it down to γ ≈ 1.41 · 10−2. This
improvement is evident in Figure 7.

5.2. Rank-one residue correction via H2/H∞ model reduction
approaches. The ALS iteration described above is built purely upon algebraic least
squares error minimization. However, if the underlying context relates the ratio-
nal approximants to dynamical systems, then it may be advantageous to perform
this reduction using well-developed systems-theoretic reduction tools. Recasting our
rank-one residue correction problem into this setting, we consider constructing an
rth order system Ĥr that closely approximates the VF computed model Hr in some
appropriate system norm.

The H2 norm discussed in section 4 is the most natural choice and the first one
we consider. This approach is compelling when weights and nodes in mimoVF are
chosen using an appropriate quadrature as in section 4 and the algebraic LS measure
is viewed as a discretized H2 measure. In this case, the complete procedure; both
mimoVF step and reduction to true McMillan degree-r will be performed with the
H2 system norm in mind. To achieve this goal, i.e., to minimize ‖Hr − Ĥr‖H2 over
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all stable rth order Ĥr, we will apply the optimal H2 approximation method IRKA
of [34] as modified in [7] for a realization independent procedure.7 Note that the
output of mimoVF, Hr(s), has the McMillan degree up to rmin(p,m); thus Hr(s)
can have a modest state-space dimension. If, for example, r = 80 and m = p = 50,
Hr can have degree as high as 4000. Thus, it is important to perform this second
reduction step effectively. A particularly attractive aspect of the IRKA framework of
[7] is that it needs only function and derivative evaluations at dynamically generated
points. This works perfectly in our setting since the explicit state-space form of the
mimoVF output in (5.1) makes these computations trivial. This approach can be
viewed as a data driven implementation of the IRKA—the measurements are fed into
mimoVF to produce an intermediate model, a surrogate of the order r̃ ≥ r, based on
measurements, and then this intermediate model is reduced by IRKA to its locally
best rth order approximant.

The H∞ norm is another commonly used system norm. For a stable dynamical
system with transfer function H(s), the H∞ norm is defined as ‖H‖H∞ = supω∈R ‖
H(ı̇ıω)‖2. For details, we refer the reader to [59]. The commonly used approach to
model reduction towards obtaining a small H∞ error measure is Balanced Truncation
(BT) [49, 51]. Even though BT requires solving two Lyapunov equations, once again
particular state space realization in (5.1) allows straightforward solution of the Lya-
punov equations and makes the BT related computations cheap. Thus, we may also
employ BT in reduction to true McMillan degree-r without much additional compu-
tational cost.

5.3. An aggregate procedure: mimoFIT. Our overall approach to adapting
VF to matrix-valued rational approximation consists first of the mimoVF process (de-
scribed in detail in sections 2 and 3), followed by a postprocessing step that performs
the reduction to true McMillan degree-r with minimal loss of fidelity. This post-
processing stage can be performed either by the ALS correction of section 5.1 or by
systems-theoretic approaches such as IRKA or BT as described in section 5.2. We will
refer to this two-step process as mimoFIT.

Numerical examples. Here, we illustrate the performance of mimoFIT with
four numerical examples. In each case, we investigate the effect of the methodology
employed in the postprocessing stage on the overall approximation quality. We also
compare the final models produced by mimoFIT with the optimal-H2 approximations
obtained by IRKA.

5.3.1. Heat model. We consider the Heat Model from the NICONET Bench-
mark collection [14]; the model has m = 2 inputs and p = 2 outputs. We use only 20
function evaluations (� = 40 samples due to complex conjugacy) and obtain rational
approximations of order r = 6 and r = 10. Table 2 lists the resulting relativeH2 errors
due to different approaches. The first row is the error due to the output of mimoVF.
Note that this approximation has order r × m = 2r since it has full-rank residues.
This is not our final approximation and is included here as a reference point. We ob-
tain a true degree-r approximant using four different approaches: (i) simple rank-one
truncation of the residues by SVD, (ii) ALS correction of section 5.1, (iii) IRKA on the
degree-2r output of mimoVF to reduce it to degree-r, (iv) BT on the degree-2r output
of mimoVF to reduce it to degree-r. These four methods are labeled, respectively,
as mimoFIT-(Trnct), mimoFIT-(ALS), mimoFIT-(IRKA), and mimoFIT-(BT). The first

7It is not required that the underlying transfer function is rational.
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Table 2

The relative H2 errors due to mimoVF, mimoFIT, and IRKA. Twenty function evaluations.

Method r = 6 r = 10

mimoVF (degree: 2r) 1.6530 × 10−2 1.0759 × 10−3

mimoFIT-(Trnct) 3.7022 × 10−2 2.6137 × 10−2

mimoFIT-(ALS) 1.8218 × 10−2 2.8774 × 10−3

mimoFIT-(IRKA) 1.7359 × 10−2 1.1686 × 10−3

mimoFIT-(BT) 3.0604 × 10−2 1.1591 × 10−3

IRKA 8.5566 × 10−3 1.0925 × 10−3

Table 3

The relative H2 errors due to mimoVF, mimoFIT, and IRKA. One hundred function evaluations.

Method r = 20 r = 30

mimoVF (degree: 3r) 4.6074 × 10−2 3.3226 × 10−2

mimoFIT-(Trnct) 1.2904 × 10−1 1.2508 × 10−1

mimoFIT-(ALS) 1.2558 × 10−1 1.2223 × 10−1

mimoFIT-(IRKA) 7.7305 × 10−2 4.4757 × 10−2

mimoFIT-(BT) 7.7457 × 10−2 3.3483 × 10−2

IRKA 6.7779 × 10−2 1.1423 × 10−2

observation is that the simple rank-one truncation of the residues by SVD leads to
a high loss of accuracy compared to the ALS correction; this is most apparent in
the r = 10 case where mimoFIT-(Trnct) has one order of magnitude higher error
than mimoFIT-(ALS). For both cases, mimoFIT-(IRKA) and mimoFIT-(BT) perform
extremely well (especially mimoFIT-(IRKA)) and even with a true degree-r approxi-
mant, they almost match the accuracy of the degree-2r mimoVF approximant; i.e.,
reduction from 2r to r causes a negligible loss of accuracy. The last row indicates the
relative H2 error associated with the optimal approximant from IRKA. As expected,
IRKA yields smaller error; we do not anticipate beating the continuous optimal ap-
proximation via a discretized least-square measure. However, it is important to note
that mimoFIT-(IRKA) and mimoFIT-(BT) with only 20 function evaluation yield re-
sults close to those obtained by IRKA; this is especially true for r = 10.

5.3.2. ISS-1R module. We repeat the above studies for the ISS 1R module
[33] with m = 3 inputs and p = 3 outputs. We use 100 function evaluations (� = 200
samples) and obtain rational approximations of order r = 20 and r = 30. Table 3
depicts the resulting relativeH2 error values for the same methods used in the previous
example in section 5.3.1. As in the previous example, both mimoFIT-(IRKA) and
mimoFIT-(BT) yield very accurate results and show negligible loss of accuracy in
reduction from the intermediate 3r approximant to the final degree-r approximant;
the order of the mimoVF approximant is reduced three-fold yet not much accuracy is
lost. mimoFIT-(IRKA) and mimoFIT-(BT) again yield approximation errors close to
that of IRKA. The main difference from the previous case is that in this case even the
ALS correction suffers from the loss of accuracy as the simple truncation approach.

5.3.3. ISS-12A module. We now investigate the larger ISS 12A module [33]
with m = 3 inputs and p = 3 outputs. We focus on this problem since the underlying
system of degree n = 1412 is very hard to approximate with a lower order system; it
presents significant challenges to model reduction, not necessarily from a computation
perspective but from an approximation quality perspective. As illustrated in [33],
the Hankel singular values decay rather slowly, so to obtain a reduced model with
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Table 4

The relative H2 errors due to mimoVF, mimoFIT, and IRKA. Two hundred and fifty function
evaluations.

Method r = 80

mimoVF (degree: 3r) 1.4678× 10−1

mimoFIT-(Trnct) 2.4549× 10−1

mimoFIT-(ALS) 2.2075× 10−1

mimoFIT-(IRKA) 1.5116× 10−1

mimoFIT-(BT) 1.5130× 10−1

IRKA 1.1317× 10−1

a relative error tolerance of 10−3, one needs a reduced model of order at least 226
even using balanced truncation. We use 250 function evaluations, obtain rational
approximations of order r = 80 using mimoFIT, and compare the result with the
continuous optimal approximation IRKA. Table 4 depicts the resulting relative H2

error values. As before, both mimoFIT-(IRKA) and mimoFIT-(BT) show negligible loss
of accuracy in reduction from the intermediate 3r approximant to the final degree-r
approximant and have approximation errors close to that of IRKA. mimoFIT-(Trnct)
and mimoFIT-(ALS) perform reasonably well as well in this case with mimoFIT-(Trnct)
having the largest error among the four.

5.3.4. A power system example with large input/output space. This ex-
ample results from small-signal stability studies for large power systems. The specific
model we consider here is one of the models from the Brazilian Interconnect Power
System (BIPS); refer to [47]8 for details.

The underlying dynamical system has dimension n = 13250 with m = 46 inputs
and p = 46 outputs. We apply mimoFIT-(BT) to obtain our rational approximant.
We use � = 200 frequency samples. The mimoVF (first step of mimoFIT) is applied
with r = 40. Due to m = p = 46, the output of mimoVF has an effective McMillan
degree of r ×m = 1840. Note that this is only marginally a reduced model, having a
McMillan degree roughly 14% of the originally system order. The decay of the leading
Hankel singular values of the intermediate model is shown in the upper plot of Figure
8. Note the slow decay; even after the 300th one, the normalized Hankel singular
values are still above the threshold of 10−4. This system is difficult to reduce. Indeed,
in earlier works, even for simpler versions of the model having a smaller number of
input and outputs (such as m = p = 28), a reduced model of degree 291 was used; see
[53]. We choose the final degree to be a point at which the normalized Hankel singular
values have decayed below 2×10−4, leading to a final McMillan degree of 253 (around
2% of the original). The sigma plots, i.e., ‖H(ı̇ıω)‖2 versus ω ∈ R, for the full model
and the final mimoFITapproximant are shown in the lower plot of Figure 8. As the
figure illustrates, the mimoFIT approximant does an excellent job in approximating
the underlying dynamics.

6. Conclusions. The VF method, as originated by Gustavsen and Semlyen, has
been and continues to be an important tool for rational approximation and many
authors have applied, modified, and analyzed this approach. Although their method
is based on a successive solution of linear LS problems, which are well understood
problems in of themselves, we find that subtleties enter that can degrade both the

8This model can be downloaded from https://sites.google.com/site/rommes/software.
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Fig. 8. (Example 5.3.4.) Large-scale power system example. Left plot: Decay of the Hankel
singular values. Right plot: The sigma plots of the full and reduced model.

performance and accuracy of current VF approaches, especially for matrix-valued
rational approximation of modest dimension which often produce extremely poorly
conditioned problems. These issues include

(1) balancing the potential conflict between rank revealing pivoting in QR factor-
izations used in LS solvers and column-scaling used to improve conditioning;

(2) avoiding redundant computation within the multiple subproblems solved as
part of the large LS problem that arises;

(3) the need for rigorous termination criteria and the efficient recovery of the
best possible rational approximant in case the iteration must be terminated
prematurely;

(4) the use of regularized least squares and the discrepancy principle, both im-
plemented using high accuracy linear algebra methods; and

(5) control of the McMillan degree of the resulting rational approximant.

In this paper, we have considered these issues carefully, together with other more
minor ones. We have integrated these developments into a robust, efficient implemen-
tation of VF for matrix-valued rational approximation, called mimoVF, that appears to
be both faster and more accurate than currently available implementations. Further,
we have connected the underlying discrete LS approximation problem to a continuous
optimal H2 approximation problem through numerical quadrature, which motivated
a reformulation of the original VF objective as a weighted LS problem. For essentially
the same cost as mimoVF, we were then able to use this reformulation to significantly
improve the quality of the approximation. Finally, we have offered here an aggregate
procedure, calledmimoFIT, that combinesmimoVF withH2/H∞-based approximation
methods that yield high-fidelity rational approximants with low McMillan degree.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra,

J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen, LA-
PACK Users’ Guide, 3rd ed., SIAM, Philadelphia, 1999.

[2] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6,
SIAM, Philadelphia, 2005.

D
ow

nl
oa

de
d 

09
/0

1/
22

 to
 1

95
.1

76
.1

13
.1

45
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VF FOR MATRIX-VALUED RATIONAL APPROXIMATION A2377

[3] A. C. Antoulas, Model reduction of nonlinear systems in the Loewner framework, in Pro-
ceedings of the 21st International Symposium on Mathematical Theory of Networks and
Systems, Groningen, The Netherlands, 2014.

[4] A. C. Antoulas, Data-driven model reduction for weakly nonlinear systems: A summary,
in Proceedings of the 8th Vienna International Conference on Mathematical Modeling,
Vienna, Austria, 2015.

[5] A. C. Antoulas, C. A. Beattie, and S. Gugercin, Interpolatory Model Reduction of Large-
Scale Dynamical Systems, in Efficient Modeling and Control of Large-Scale Systems, J. Mo-
hammadpour and K. Grigoriadis, eds., Springer-Verlag, New York, 2010, pp. 3–58.

[6] A. C. Antoulas, A. C. Ionita, and S. Lefteriu, On two-variable rational interpolation,
Linear Algebra Appl., 436 (2012), pp. 2889–2915.

[7] C. Beattie and S. Gugercin, Realization–independent H2 approximation, in Proceedings of
the 51st IEEE Conference on Decision & Control, IEEE, Piscataway, NJ, 2012, pp. 4953–
4958.

[8] P. Benner, S. Gugercin, and K. Willcox, A Survey of Model Reduction Methods for Para-
metric Systems, Technical report MPIMD/13-14, Max Planck Institute, Magdeburg, Aus-
tria, 2013.

[9] A. R. Benson, D. F. Gleich, and J. Demmel, Direct QR factorizations for tall-and-skinny
matrices in mapreduce architectures, CoRR, abs/1301.1071, 2013.
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