Seminar in Spring Semester 2013

Shape Calculus

Supervisors	: Prof. R. Hiptmair
Venue	: HG G 5
Time	: Tue 15-17
Language	: English
First session	: Tue, Mar 19, 2013
Prep meeting	: Tue, Feb 19, 2013, 15:15, HG G 5
Contact	: R. Hiptmair, hiptmair@sam.math.ethz.ch
Prerequisites	: Knowledge of analysis and functional analysis; knowledge of PDEs is an advantage and so is some familiarity with numerical methods for PDEs
Audience	: MSc Students of Mathematics, RW/CSE

Description:

Shape calculus studies the dependence of solutions of partial differential equations on deformations of the domain and/or interfaces. It is the foundation of gradient methods for shape optimization. The seminar will study several sections of monographs and research papers dealing with analytical and numerical aspects of shape calculus.

Presentations:

Quizz:

Participants of the seminar will be asked questions about the previous presentations at the beginning of each session.

Available topics:

- 1. The velocity method and Eulerian shape derivatives, [SZ92, Sect. 2.8-2.11]
- 2. Material derivatives and shape derivatives [SZ92, Sect. 2.25-2.30]
- 3. Shape derivatives for linear PDEs [SZ92, Sect. 3.1–3.3]
- 4. The shape Hessian [BZ97]
- 5. Velocity method and Lagrangian formulation for the computation of the shape Hessian, [DZ91]
- 6. Elements of shape calculus [DZ11, Ch. 9, Sects. 3.4,4.5.7]
- 7. PDE constrained shape calculus [DZ11, Ch. 9, Sect. 5]
- 8. Shape derivatives in differential forms [HL12]
- 9. Second derivatives and sufficient optimality conditions for shape functionals [Epp00a]
- 10. Shape calculus for acoustic scattering [FMOP01, FOP04]
- 11. Boundary integral representations of shape derivatives [Epp00b]

Speakers and dates for presentations:

Date	Speaker	Topic #
26.3.2013	D. Schwarz	1
9.4.2013	T. Welti	2
16.4.2013	C. Zingg	3
23.4.2013	A. Paganini	5
30.4.2013	R. Hiptmair	7
7.5.2013	L. Scarabosio	9
21.5.2013	S. Sargheini	10
28.5.2013	E. Spindler	11

References

[BZ97] Dorin Bucur and Jean-Paul Zolsio. Anatomy of the shape hessian via lie brackets. Annali di Matematica Pura ed Applicata, 173:127–143, 1997. 10.1007/BF01783465.

- [CLL12a] Martin Costabel and Frédérique Le Louër. Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: Shape differentiability of pseudohomogeneous boundary integral operators. *Integral Equations Operator Theory*, 72(4):509–535, 2012.
- [CLL12b] Martin Costabel and Frédérique Le Louër. Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: Application to scattering by a homogeneous dielectric obstacle. *Integral Equations Operator Theory*, 73(1):17– 48, 2012.
- [DZ91] Michel C. Delfour and Jean-Paul Zolésio. Velocity method and Lagrangian formulation for the computation of the shape Hessian. *SIAM J. Control Optim.*, 29(6):1414–1442, 1991.
- [DZ11] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2011. Metrics, analysis, differential calculus, and optimization.
- [EHS07] Karsten Eppler, Helmut Harbrecht, and Reinhold Schneider. On convergence in elliptic shape optimization. *SIAM J. Control Optim.*, 46(1):61–83 (electronic), 2007.
- [Epp00a] K. Eppler. Second derivatives and sufficient optimality conditions for shape functionals. Control Cybernet., 29(2):485–511, 2000.
- [Epp00b] Karsten Eppler. Boundary integral representations of second derivatives in shape optimization. Discuss. Math. Differ. Incl. Control Optim., 20(1):63–78, 2000. German-Polish Conference on Optimization—Methods and Applications (Zagań, 1999).
- [FMOP01] G.R. Feijóo, M. Malhotra, A.A. Oberai, and P.M. Pinsky. Shape sensitivity calculations for exterior acoustics problems. *Engineering Computation*, 18(3/4):376–391, 2001.
- [FOP04] G.R. Feijóo, A.A. Oberai, and P.M. Pinsky. An application of shape optimization in the solution of inverse acoustic scattering problems. *Inverse Problems*, 20:199–228, 2004.
- [HL12] Ralf Hiptmair and Jingzhi Li. Shape derivatives in differential forms I: an intrinsic perspective. Annali di Matematica Pura ed Applicata, pages 1–22, 2012. DOI: 10.1007/s10231-012-0259-9.
- [Kir93] A. Kirsch. The domain derivative and two applications in inverse scattering theory. *Inverse Problems*, 9(1):81–96, 1993.
- [Pot94] Roland Potthast. Fréchet differentiability of boundary integral operators in inverse acoustic scattering. *Inverse Problems*, 10(2):431–447, 1994.
- [Pot96a] Roland Potthast. Domain derivatives in electromagnetic scattering. Math. Methods Appl. Sci., 19(15):1157–1175, 1996.

- [Pot96b] Roland Potthast. Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain. J. Inverse III-Posed Probl., 4(1):67– 84, 1996.
- [Sch12] V. Schulz. A riemannian view on shape optimization. Technical Report 1203.1493v1 [math.OC], arXiv, 2012.
- [SMSY11] Ganesh Sundaramoorthi, Andrea Mennucci, Stefano Soatto, and Anthony J. Yezzi. A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM J. Imaging Sciences, 4(1):109–145, 2011.
- [SZ92] J. Sokolowski and J.-P. Zolesio. *Introduction to shape optimization*, volume 16 of *Springer Series in Computational Mathematics*. Springer, Berlin, 1992.
- [Zol84] J.-P. Zolésio. Numerical algorithms and existence result for a Bernoulli-like steady free boundary problem. *Large Scale Systems*, 6(3):263–278, 1984.