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Abstract, The first part of this paper recalls the notion of the domain derivative of a
functional. The existence and a characterization of the domain derivative of the far-
field pattern for a scattering problem with Dirichlet boundary condition is proved. The
second part uses this characterization for an efficient implementation of a Gauss-Newton
-method for solving the inverse obstacle scattering problem. The third part deals with
the sensitivity of the linearized obstacle problem.

1. Introduction

The inverse scattering problem for acoustic waves which we shall consider in this
paper is the problem of recovering the shape of a scatterer from the far-field pattern
of the scattered wave, Inverse problems of this type occur in various applications such
as remote sensing, ultrasound tomography and seismic imaging. They are difficult to
solve since they are ill-posed and nonlinear when formulated as an equation of the
kind F(I') = f. Here, f denotes the (measured) far-field pattern and F the far-
field operator which assigns to every suitable boundary I" the correspondmg far-field
pattern of the scattered wave (see section 2 for the exact definition).

This paper consists of three parts. In section 2 we rigorously derive a formulation
for the domain derivative of the far-field operator which is independent of the
parametrization of the boundary. The notion of a domain derivative is explained
in [24]. This section contains the main theoretical result of the paper.

Section 3 uses this result for the implementation of a Gauss—Newton method for
(a discretized version of) the equation F(I') = f. This method requires, at every
step, the solution of a direct scattering problem (for the evaluation of F(I')) and
several boundary value problems on the same region for the same Helmholtz equation
(for the evaluation of the derivative of F). Because the domain derivative is known
explicitly we could reduce the computation time considerably. Compared with the
methods proposed by Colton and Monk [3-5] or Kirsch and Kress [13, 14] which
also use Gauss-Newton methods in their second.steps we observed a more critical
dependence on the regularization parameter. Also, the initial curve for starting the
optimization procedure had to be chosen closer to the true one. On the other hand,
we observed fast convergence as one wouid expect from a Newton-type method. Also,
the numerical results are not very sensitive to noise in the data.

0266-5611/93/010081+16$07.50 © 1993 IOP Publishing Lid 81
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In section 4 we want, for the first time, study the ‘worst case error’ of the linearized
inverse scattering problem. The basic question is: given a known error ¢ in the far-
field pattern and some a priori information about the scatterer how large could the
error in the boundary be? In a recent paper Isakov [10] proves a stability estimate for
the full nonlinear inverse problem, giving (to the author’s opinion optimal but) rather
pessimistic estimates. In this paper we study the numerical aspects of this question
for a special class of boundaries, which arises as parametrizations in various inverse
scattering solvers. The numerical results are much better and reflect the observed
quality of the recovered objects. ’

2. The domain derivative

Let & > 0 be the (given and fixed) wavenumber, d € RV (N =2 or 3) with |d] = 1
the given direction of the incident plane wave, and

X c {I' € C?:30 ¢ R open, bounded and connected such that I' = 80}
P

some set of admissible boundaries. For I' € X and T = 89, set Q¢ = RV \ Q
consider the obstacle scattering problem: Find v € C%(Q°) N C(Q¢) with

Au+ kPu=0in Q° u=0onT (2.1)
and »°(z) 1= u(x) — exp(ikd Tz) satisfies the radiation condition}

Su*{x)
ar
r=izr] > oo uniformly in —

—iku’(z) = O(T(l'Nm)

le

It is well known that a unique solution of this problem exists (cf Colton and Kress [2]).
Certainly, « depends on T'. The radiation condition implies the following behaviour
at infinity:

exp(ikr - -
wie) = r)(?i’(:n/z ug (&) + o(ri1=N2) 2
T — 00 uniformly in & = =. .
|2
u,, IS uniquely determined by «* and is called the far-field pattern (or scattering
amplitude) of w®. It is an analytic function on the unit sphere S¥~! and admits the

following representation

w@ = [ (w0 gase it e s 20D 4y

9Kr

2.3
&g 5N-1 @3)

t d Tx means the inner product of the vectors d, z € BV,
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where R > 0 such that @ ¢ Ky := {y € RV : |y| < R}. Now we are able to
introduce the far-field operator F : X — C(S™~1) which assigns to every I' € X
the far-field pattern u,, of the corresponding solution of the scattering problem in
Q°. Recall that we fix the wavenumber % and the incident wave w*. Then F' is well
defined by the preceding remarks.

A derivative of F at I" can be defined as follows (cf Pironeau [24]): For any real
vector field a € C*(T;R™) we denote by T, the set

F,={z+a(z):zeT}

which is the C? boundary of a domain 2, provided ||af|., = max . |a(z)| is small
enough. Now we define the domain derivative of F' at T ‘in the direction’ « by

F/(T5a) = im 2 [F(T.) - F(T)] a4

where the limit should exist uniformly on $V-1, Then F'(T;.) : CHTZRYN) —
C(SN~1) is called domain derivative of F at T. The main theoretical result of this
paper is the following

Theorem 2.1. Letbe T € C?, a € C}(T;RY) and w® € HE (2¢) be the solution of
the scattering problem (2.1). Then the domain derivative F'(T';e) exists and is given
by the far-field pattern !, of u!, where u' € C*(02°) n C(T) solves the exterior
boundary value problem

A+ k' =0in Q°

aul
r— _ T i
u =—a no—on r . (2.9)
ou(z) ., i\ _ o (1-N)/2 : o X
5y —iku'{z)=o0fr ) r — oo uniformly in 2]

where n(z) denotes the outer unit normal vector at =z € .

Remark. Since 8u%/8n € C(T') (cf [2, theorem 3.21]) this is a classical exterjor
boundary value problem for the Helmhoitz equation.

Proof. We prove the assertion only for the case N = 3. The plan of the proof
is as follows: First we derive a variational equation in a region Qp = Kz NQ°
where R > 0 is chosen such that & C Kj s2- This variational formulation uses a
non-local boundary condition on the outer boundary 8 K and simplifies arguments
of the paper of Kress and Zinn [18]. We do this for all the regions outside I',. By a
change of variables we transform them into variational equations on a fixed reference
region and study the limit of the difference quotients for € — 0.

By Green’s theorem and the Helmholtz equation we conclude that the total field
1Y satisfies

0
f / (V3T Vul = k2u'%) dz = f 9 5 s (2.6)
K KR on
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for all v € HNQR) = {v e HY(NR) : v|p = 0).
By L: HY2(8Kg) - H™Y2(8K ) we denote the Dirichlet-to-Neumann map

L:grs Bw/dn

where w solves the exterior Dirfchlet problem for the Helmholtz equation in the
region {z € R*: |z| > R} with w|ax, = g- Denoting by Y™, |m[ € n, n € NU{0},
the spherical harmonics of order n, and by rD the spherical Hankel functions of

the first kind and order n (cf [21]) we can solve the exterior Dirichlet problem in
{# € R®: |x| > R} explicitly and, thus, derive the following expression for L:

kS (kR) ymis
(Lg)(R, ) = Z‘BIE on @

. 2.7
where g(R,#)= 3 gry,™(2).

a=0|m|gn

Let L, be the correspondmg operator for wavenumber & = 0 which i$ given by

(Log) (B, ) = —§ 300 Vimign(n + D gp Y™ (2) for ¢ as in (27). We see
directly from the orthogonahty of Y™ that — L, is strictly coecitive, ie.

— (Lo9,9) 2 cllglfipnar,y - for all g € HY?(8KpR)

where {-,-) denotes the dual bracket in (H-Y2(9Ky), HY?(8K z)). Furthermore,

from kR b (kR) /Y (kR) = —(n-+1)+0(1/n) for n — co (cf [21]) we conclude
that the difference operator L~ L is compact from HY2(8Ky) into H-/2(8Ky).
From (2.6) above we conclude that the solution u of the scattering problem

satisfies the sesquilinear equation (with u'(z) := exp(ikdz) being the incident
field)
S(ulv) = / (VoTVu® — k*u¥8) de — (Lu®,v) = f B (aai - Lu} ) ds (2.8)
n
S KR

for all v € H}(Stg). One splits S into S, 4 S, with strictly coercitive

Syl v) :=/ (V5TVu + du) dz — {Lyu, v)

and
S (wv) == —(k® + 1)// suds + f 5(Ly~ L)uds.
Qx 8Kn

By the theorem of Lax and Milgram there exists a unique isomorphism 7; from
H}(Qp) onto itself with

Sy(u;v) = (Tyu, v) g for all u,v € A}Qg).
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By the Riesz representation theorem there exists a bounded 0perat0r T, from
H}(Qpg) into itself and an element » € HJ(Qp) with

Si(u;v) = (Nu,v)m / D (%-u— — Lu')ds = (r,v)zn
8Kn n

for all u,v € H}(Qg)- Then equation (2.8) is equivalent to
LTI =T in HY(QpR). (2.9)

From the compactness of L — L, and the imbedding H}(Qp) C L¥(Qp) it is

easily shown that 7 is compact in H}(Qp). Therefore, the Fredholm alternative is

applicable to (2.9). By the uniqueness of the scattering problem u! € HY(Qg) is

the unique solution (2.9) and thus also of (2.8), and it depends continuously on the

right-hand side. Once the solution u? of equation (2.8) is found the far-field pattern
~ Can be expressed by equation (2.3), ie.

u (&) = f uﬂ%e-iki‘as~(LuS,efké')

/ (u — u*)%e-i“' ds — (L(u® - u?),e®*) (2.10)

for # € SN-L,

This formulation as a variational problem with a non-local boundary condition can
be done for each of the regions Q¢ exterior to l"E(1 Then the sesquilinear forms .S
depend on ¢ through its domain of “definition H{(KrnQe) Let u¢ be the solutions
of the scattering problems corresponding to the regions (¢. Then u* are the unique
solutions of the analogous variational equation on KN 92, ie

/ / (V3T Vus — k*us) dz — (Luf, v} = / 7 (% — Lut ) ds. (2.11)
K g2e dKn

Now, for given a € C%(T';R?) we choose an extension a € C¥(2°,R3) with a(z) =0
for [z| = R/2. Denote by ¢*: Q° — Q¢ the mapping ¢*(y) := y + €a(y), ¥y € O°.
For small € > 0 ¢¢ is a diffeomorphism which maps Qz onto Ky n Q7. Let
P Q% — ° be the inverse of ¢°. Making the change of variables 2z = ¢*(y) and
@€ = u o ¢° we get

(Vz‘:TVﬁE - kzﬁue)da:

Kgﬂn:'
= f/ ( > bgj%m - zﬁf(«ao.;sf)) det J,. dy

i,i=1

where J,. is the Jacobian matrix of ¢° and

s o ..
E Be, 3:::, .5 =1,2,3.
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We define S¢: H}(Qp) x H(Qg) = C by

du % -
S¢(u;v) _f/ ( Z bl.ja—yzgaj——k u-u) det J,. dy — (Lu, v}

ti=1
and see from (2.11) that %€ € H}(2z) is the unique solution of

S¢(u;v) = D -——6u —Lu' | ds for all v € H}(Rp).
on OAER
8Kr

Since, by (2.10)

Lo coa ANy Lo 00 _ieg._ [Llriee_ . oy oiks

E(um(m)—uw(m))— f E(u 'u)ane ds (eL(u u’),e
8Kr

for |#| = 1, we have 1o compute the derivative lim,_,, 1(@¢ — %) in H}(Qg).
For any v € H}(Q1 ) we have

s G (ac - u");v) = —2[s*(a0) - S(a5 )] @12)

and we have to show that the limit at the right-hand side of (2.9) exists for ¢ — 0+
and to compute its value. The right-hand side of (2.12) is

auc 8%
/f(Z(b det Ty — bi5) S 22 — kP (det Ty = 1) v)dy
i,j=1
with Kronecker symbol &;;. Since detJ,. = det(I +eJ,)=14+¢c+a+ O(€?) and
Jye = Jg} ot = I — eJ, + O(c?) uniformly in y € Qp we conclude that

1(det Jpe — 1) — +a (e = 04)

. da:
j i

uniformly in Q5 for 4,5 = 1,2,3.

Since #¢ converges to u? in H1(Qy) by the continuity arguments (cf [18]) we
conclude that the right-hand side of (2.12) tends to

>

(3&- da; 5+ )811. 8

+ k205 = a.]d
By; oy; Y

= ff [VoT (J, + JT —+a 1)V + k2" + o dy.
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Py

Thus 1(@¢ — u®) is convergent in H}(Qp), and we define & € H}(Qp) by
i = lim,_g, 1(@° - % in Qp. )

Extend 4 outside Qp by solving the exterior Dirichlet problem with boundary
data i on 8K . Then 4 satisfies

S(a;v) = /f [VeT(J, + JT — +a )Vu® + k?u% + o] dy
27

for all v € H}(25). Now we observe that, by well known regularity results (cf [7,
theorem 8.12]), v € AY(Qp) N H*(Qp) and use for v € Hj(Qg) N HY(Qy) the
formula

Vol (J, +J; —+a I}V’
=div [(a"Vu") V5 + (a7 V5)Vu! — (V5T Vu')a]
—(aTVuhAs - (aT_VE)Auu
in 25 and apply Gauss’ thecrem to the divergence term. This yieidé (since a = 0
near 8Kp)

S(#;v) = // [KPu's +a— (aTVu)AS - (a7 VE) ALY de
R

- f [(aTVu)Ve + (aT Vo) Vul — (V'i}TVuU)a]Tnds.
r

Now we use the homogeneous boundary conditions for v and «’, the Helmholtz
equation for A" and Green’s theorem for Av. This yields

S(d;v) = k? f/ = (uba)dz + // [Vv6TV(aTVu) — k25(aT Vu')] do
Sr ' Qr ’ -
ie. applying Gauss' theorem again
/j [V'L’:TV'& - K id]|de — (L4, v) = // [VoTV(a"Vu') = k*5(a’ Vu")] dz.
ﬂR 973

Since ¢ Vu' = 0 for |x| > R/2 this proves that (A + k2)(di—a"Vu®) =0 in Qg
weakly, (4 — " Vul)|p = <(aTn)8u’/8n and also dit/8n|, = Li = 81/0n|_
on I'g, ie. 4 — and thus »' — is C? in Q¢ This proves that v’ = @t — a' Vu" and
therefore

.1 .
Im}]-g(u‘ —ut) = in HY?(8Kg).
o —r

This, finally, proves
]mﬁ%(u&(f’) = e (#)) = uge () uniformly for |#| = 1.
€—+

This ends the proof.
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Remarks. (a) For the proof it is not essential that 8K 5 the boundary of a
sphere but can be the C?— boundary of any bounded domain containing 2 in its
interior. From this observation and Green’s representation theorem it follows that
lim,_ g, 1(u¢ — u%) = «' uniformly in every compact subset of 0°.

(b) By obvious modifications of the proof it can be shown that F'(I';a) is a kind
of Frechet derivative of F at T, Le.

;(F(I‘G) — F(T') — F'(T;a)) =0 uniformly on S*
lally,eo—0 |@]lg,co

where [|a||y o, 1= max ¢r la(e)| + max,p 35, [Grad a;(<)| with surface gradient

Grad a; of the jth component of a (cf [2] for a definition of the surface gradient).
(c) From this theorem we observe that the domain derivative can be extended to

a bounded operator F'(I';-) : C(T;RY) — C(SN-1} (or even to Sobolev spaces).

In order to deal with ‘non-degenerated’ surfaces we assume that ' n has only
finitely many zeros on ['. Then we can prove

Lemma 2.2. The operator F'(I';-} is one-to-one on the space
{a € C(T;RY) : a"n has only finitely many zeros on T'}.

Proof. Let be F'(I';a) = 0 in L% SM-!). Then the far-field pattern ul,
vanishes where u’ solves the exterior boundary value problem with boundary data
% = —(e"™n)8u’/8n on T. From Rellich’s theorem and analytic continuation '
vanishes outside of Q. Since du’/8n cannot vanish on any U NT for U being a
disk and it is continuous a Tn has to vanish on I". The assumption on « implies that
¢ = 0, which ends the proof.

Remark. In general it is not known if F itself is one-to-one, see [6] for a detajled
discussion of the problem of uniqueness of the inverse scattering problem.

3, An application to a Gauss—Newton method

This section describes the essential step of an algorithm for the following inverse
scattering problem which we formulate in two dimensions. Given the (measured) far-
field pattern f € L*(S!), the direction of the incident plane wave and the wave
number k > 0 compute a domain such that the scattered wave has the far-field
pattern f. There exist a large number of algorithms for this problem. Roughly
speaking, they fall into two classes of methods.

The algorithms of the first class all consist of two steps, the analytic continuation
step (which is linear but highly ill-posed) and a nonlinear step of finding a ‘level curve’
of a certain field (cf Imbriale and Mittra [9], Colton and Monk [3-5] and Kirsch and
Kress [13, 14]).

The algorithms of the second class are called ‘output least squares methods’ in
the parameter estimation community. As typical papers in this field we mention only
those by Roger [25] and Kristensson and Vogel [19]. The idea is to solve the equation
F(I) = f by a Newton-type method or minimize |[|F(I') — f|| by an optimization
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method. In any case the unknown boundary I' has to be parametrized. Without
loss of generality we represent (as also done by most of the authors, cf [3-5,13-
15, 18,19,25]) T in polar coordinates by

cost
z,(t) =7, () (sint) 0t 27
M
where 1, (1) = cp+ > _[ov; €08 §E + ajy gy Sin 51
i=1

with o = (e, - .-, 0, )" € R2M+! for some fixed number M € N. Let
Uy = {a eR™MH  p < r (t) < oy, tE [0,21r]} for some 0 < p; < py.

We can assign to each o« ¢ U,, the far-field patterns F(I')(#;) € C, { =
1,...,P, at a number P of given and fixed ‘Observation points’ £#; € S where
T denotes the boundary parameterized by z,(¢). This defines a (nonlinear) mapping
F . m2M+1 5y, — CF. For the following we fix M and P. A simple application
of theorem 2.1 shows .

Theorem 3.1. For a € intU,, i the mapping F is (totally) differentiable with
aﬁ;(a)/aa,. = ui o (&) fori=1,...,Pand j =0,...,2M. Here, u:,-,m is
the far-field pattern of u; € C}(Q*) N C(Q) which is the solution of the exterior
boundary value problem

Su’
A} + Ky = 0in Q° a"‘:j —iku} =o(r7M?)  r-ooo
and -
1)
e (1)) = — 7o
'LLJ( oe( )) \/T;[(f)z'!'f'a(t)z

3 cos jt . i=0...,M
X —u (2, (1)) . : '
én sin{7 — M)t i=M+1,...,2M

for t € [0,2x].

Proof. Letbeic{l,...,P}and j€{0,...,2MY} fixed, € > 0 and e/} be the jth
unit vector in R?M+1, Let T and [ be parametrized by

cost
st cost cost
ra+€e(5)(t) (sin t) = 7al?) (sin t) +er.n(?) (sin t)
cos 1

respectively. Thus ['* = T'__; in the notation of (2.4) with &’ (z, (1)} = r.x ({5 7).
Then

“[Fi(ot )~ ()] = £ [F(Teqs)(85) — F(T)(35)]

1 int T denotes the interior of the set U
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and this converges by theorem 2.1 to u} ,(&;), where u} solves the exterior Dirichlet
problem with boundary data —(n7 a/)9u%/8n. With

cos jf i=0,....M
sin(j — M)t i=M4+1,...2M

mO e ea0) = (:)ﬁ)r (t)z{

the assertion follows. This ends the proof.

The computation of one function value F(o) involves solving an exterior
boundary value problem for the Helmholtz equation in a region parametrized by
z,(t) and to evaluate the far-field pattern at P points. The computation of the
Jacobian of this mapping means solving 2M - 1 exterior boundary value problems
for the same Helmholtz equation in the same region with different boundary values.
After discretization this leads to a system of linear equations with 2 < 1 right-hand
sides which is not much more work than solving one boundary value problem (at least
if 2M + 1 is small compared to the number of discretization points). Therefore, the
advantage of theorem 3.1 is that one gets the Jacobian of F almost for free.

We will now show by some numerical examples how one can solve the system of
equations Fj(a) = f; := f(#;), i = 1,..., P, approximately. Since the equation
F(I') = f is highly ill-posed (cf [1]) we expect the system F(a) = f to be
ill-conditioned. Therefore, we regularize this equation and use, for convenience,
Tikhonov’s method (cf [8]). Thus we minimize

P
Y _|Fi(e) = £ +elled? 3-1)

i=1
for some regularisation parameter & > 0 and some (semi-)norm on «. Recalling the

M
meaning of « as the Fourier coefficients of r, we take [|a]2 = 3> m?(al +af  pr)
m=1
which is the H%(0,27) semi-norm of r,.
The minimization problem (3.1) can be written as the least squares problem

®,(a) = Fi(a) - F; i=1,...,P,
Minimize |[®(a)|3 where { ®p ;(a) =*Ve o i=1,..., M,
q:'1='+M-l-£(‘3‘)='*’:2 EQpre; i=1,..., M.

Certainly, this least squares problem can also be rewritten as a real valued problem.
We used a Levenberg-Marquardt routine from cMLIB (US National Bureau of
Standards collection of public domain software) which uses selected routines from
MINPACK [22]. For this routine one has to supply the function values ®;(a) and the
Jacobian of ® at a. We computed the solution «’ of the scattering problem by an
integral equation method based on the Green’s representation theorem (cf [16]). This
results in a boundary integral equation for the normal derivative 8u’/8n of the total
field. By theorem 2.1 u’/8n is also needed for the computation of the Jacobian.
For the solution of the boundary value problems for ) we use an integral equation
method based on the layer ansatz (cf [2]) to avoid computing the normal derivative
of the double layer potential. We solved the resulting boundary integral equations
with a Nystrom method with 2N = 64 knots. For a detailed discussion of Nystrom’s
method we refer the reader to Kress [17].
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Numerical examples. Let  be the ‘kite’ from [15], parametrized by z,(t) =
cos t + 0.65(cos(2t) — 1), z,(¢) = 1.5sint, ¢ € [0,27]. The wavenumber is k = 3,
the dimension of the ansatz space U, is 2M + 1 = 17, the number of observation
points is P = 32, and we used 32 equally spaced discretization points for the Nystrdm
method to solve the boundary integral equations for »? and w}; (cf [17] for detailed
discussion on Nystrdm’s method). We added 5% relative error (random noise) on
the observation points. ’ '

We observed very poor reconstruction properties when we probed the obstacle by
only one incident field. Therefore, and in order to compare the method with those
presented in [15] we chose two incident waves with directions 30° and 210°. Both
functionals are added, i.e. instead of (3.1) we minimized

P P
> FHa) ~ 1P+ D 1FH @) = 71 + el

t=1 i=1

where the superscripts 1 and 2 indicate the incident fields.

Figures 1-4 show the results where we have chosen two different initial circles
(radii 1.0 and 1.2) for the Levenberg-Marquardt algorithm and three different
regularization parameters (¢ = 10~%, 10~2, 10~3). We have plot the initial circle,
the best L2 approximation of the true curve (the kite) in the finite dimensional space
U,r and the reconstructed curve,

Figure 1. Results of numerical example. Radius of Figure 2 As figure 1, with radius of initial circle,
initial circle, 1.0; regularization parameter ¢, 10~2;  1.2; regularization parameter €,10~2; etror in f,
error in f, 0%; number of function calls, 20; 5%; number of function calls, 18; number of Jacobi
number of Jacobi matrices, 11; running time, 52. matrices, 16; running time, 65.

We clearly see the dependence on the proper choice of € and the initial curve.
We do not believe that the incorporation of constraints of the form r (f) > ny
in an Levenberg-Marquardt algorithm would improve the results in principle. The
numerical tests in [11] show that the curve will always touch the constraint. A certain
disadvantage, at least in principle, of these methods is the effort of computing u_
and v} . in every step. In two dimensions the Nystrém method is very fast, and the
computation time was not observed to be considerably higher than of other methods
(cf [12]). This is certainly different in three dimensions but implementations of
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Figure 3. As figure 1, with radius of initial circle, Fignre 4 As figure 1, with radius of initial circle,
1.2; regularization parameter e, 10~1; error in F,  1.2; regularization parameter 5,10—3; error in f,
5%; number of function calls, 20; number of Jacobi  5%; number of function calls, 20; number of Jacobi
matrices, 16; running time, 82. matrices, 14; running time, 74.

Newton-type methods are not known to the anthor. For a more detailed discussion
and comparison of different numerical methods for solving the inverse scattering
problem we refer the reader to [12].

4, An application to sensitivity

In this section we study the sensitivity of the linearized inverse scattering problem.
As before, let, in two dimensions

X c {T e C?:3Q c R? open and bounded such that I" = 89
pe

and F : X — C(S!) the far-field operator. Let T be the true obstacle. For every
(small) € > 0 we can define the ‘worst case error’ (cf Natterer [23] or Louis [20] for
the linear case)

sup{d(T,T): T € V, || F(T) = F(D)l|pz(sny € €}

where V' € X contains some a-priori information about I', and d(T',T") denotes
some measure of distance between I' and I

We restrict ' to be of the form T', for a € CXT;R?) with sufficiently small
||lall;,o. and define the linearized worst case error by

w = sup{|la]l: a € V, [|F(T;a))|p2(s1y < €}

where V' ¢ CY(I';R?) is some given subset and || - || some given semi-norm on a.
Since F'(T';-) is linear we can asume e = 1 without loss of generality.
The ili-posedness of the inverse problem is expressed by the following theorem:

Theorem 4.1. Let be V C C(T;R?) infinite dimensional, dense in L?(T;IR?) and
such that a"n admits only finitely many zeros on T'. Furthermore, let || - || be the
L}(T)- or C(T)~norm, or [l¢|| = |a(x)| for some fixed z € T'. Then w = co.
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Proof. Since F'([;.) : V — L%*(S') is compact and one-to-one by lemma 2.2 and
V is infinite dimensional a standard argument shows that F'(T;-)~! is unbounded
on the range of F”(T;-). This shows that w = co in the case of || - || being the L?—
or C—norm. For |je|| = |e(z)| simply choose a sequence (a;) C V with [Je;f|;2 < &
and |a;(x)| = j, where § is small enough such that || F'(T';a;}||z2s1) < 1. This ends
the proof.

We are especially interested in the case where I' is parametrized by z(#),
0 t<€2r, Vis given by

V= {aa € C(T;R?Y) : a (z(t)) = v (1) (:EIS:), tel0,2x], a € JRZM“}

for some fixed M € N, where

M
ro(t) = og+ Y (o, 08t + oy 5in2)
m=1
and [la|f is given by |a(z)| for some = € T or [[-| = || - llzyr) Since

|ao(2(8))] = r (%), we define the quantities

wy(1) = Sup{ry (1) : @ € BMH, | FU(Tya, )y <1} for t € [0,27]
wy = Sp{[Irgllpaony & € R¥MFL I/ (Tia,)|ogsny € 1}

First we note that the supremum is attained:

Lemma 4.2. There exists of € RPM+! (j = 1,2) with || F'(Tsa.)zaeny < L,
7ot (1) = wy (1) and [|7gef|pocg2m) = wo

Proof. 'We note that o +— F'(T';a,) is a bounded operator from RZM+! jnto £2(51)
which is also one-to-one by lemma 2.2. Since R?M+1 js finite dimensional there exist
¢ > O with

12 [F(Dsa)llpysy 2 cllall,  for all c € RPM¥! with |[F/(T; e, )l gogsty < 1.

From this 7, (%) < ¢; and ||| 2¢2r) < ¢ follows for all ¢ € [0,2x], o € RPMH1
with ||[F'(T;a,)llpys1y € 1 This shows that w; are the suprema of continuous
functions on a bounded and closed set in a finite dimensional space. This proves the
assertion.

Now we compute an approximation of w, () by solving for every fixed ¢ € [0,27]
the following quadratic programming problem (P,). Again, fj, i=1,...,P, are
given ‘observation points’, and F” is the Jacobian of ¥ from theorem 3.1

(P,) Maximize
M
o)1= o+ Y (0, COS t + @ty pg SiD )
m=1
subject to

E 2
olF ) <1
i=1
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With ¢; () := cos(jt), § = 0,..., M, ¢;,,(2) :=sin(jt), j = 1,..., M, this leads
to.the quadratic programming problem

(P,) Maximize
e(t)Te
subject to
a"(FY(Fagl

This problem can easily be solved by, e.g. the Lagrange multiplier rule.
Similarly, we compute an approximation of w, by solving (with the preceding
notations)

P Maximize
2
Irallzaozny = /., le(1)T odt

subject to
& (FY(Pagl.

Using the Lagrange multiplier rule this leads to the problem of computing the smallest
eigenvalue of D~1(F'y*(F), where D is a simple diagonal matrix.

Numerical excamples. We consider the same examples as in section 3. €2 is the kite,
parametrized by x,(%) = cost + 0.65(cos(2t) — 1), x5(t) = 1.5sint, ¢ € [0,2x], for
k we take 1 or 3, the angle of the incoming wave is 30°. Figures 5 and 6 show the
lite and w, () for these values of k. w; is plotted in polar coordinates where the
dotted circle denotes the zero level. In figures 7 and 8 we plot r_. against the dotted
zero level. :

Figure 5. The function wi(t} for ¢ € [0, 2], with  Figure 6. As figure 5, with k = 2.
E=1.
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Figure 7. The function r,2 for t & [0, 2w, with  Figure 8. As figure 7, with k = 3.
k=1
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