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The domain derivative and two applications in inverse 
scattering theory 
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Germany. 
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Abstract. The fint part of this paper recalls the notion of the domain derivative of a 
funclional. The existence and a characterization of the domain derivative of the far- 
field pattem far a scallering pmblem with Dirichiet bmndaly mndition is proved. The 
xcond part uses this characterization for an efficient implementation of a Gaus-Newton 
method for solving the inverse obstacle scattering problem. The third part deals with 
the sensitivity of the linearized obstade problem. 

1. Introduction 

The inveee scattering problem for acoustic waves which we shall consider in this 
paper is the problem of recovering the shape of a scatterer from the far-field pattem 
of the scattered wave. Inverse problems of this type occur in various applications such 
as remote sensing, ultrasound tomography and seismic imaging. They are diilicult to 
solve since they are ill-posed and nonlinear when formulated as an equation of the 
kind F ( r )  = f. Here, f denotes the (measured) far-field pattern and F the far- 
field operator which assigns to every suitable boundary r the corresponding far-field 
pattern of the scattered wave (see section 2 for the exact definition). 

This paper consists of three parts. In section 2 we rigorously derive a formulation 
for the domain derivative of the far-field operator which is independent of the 
parametrization of the boundary. The notion of a domain derivative is explained 
in [24]. This section contains the main theoretical result of the paper. 

Section 3 uses this result for the implementation of a Gauss-Newton method for 
(a discretized version of) the equation F ( r )  = f. This method requires, at every 
step, the solution of a direct scattering problem (for the evaluation of F ( r ) )  and 
several boundary value problems on the same region for the same Helmholtz equation 
(for the evaluation of the derivative of F). Because the domain derivative is known 
explicitly we could reduce the computation time considerably. Compared with the 
methods proposed by Colton and Monk 13-51 or Kirsch and Kress [13,14] which 
also use Gauss-Newton methods in their second.steps we observed a more critical 
dependence on the regularization parameter. Also, the initial curve for starting the 
optimization procedure had to be chosen closer to the true one. On the other hand, 
we observed fast convergence as one would expect from a Newton-type method. Also, 
the numerical results are not very sensitive to noise in the data. 
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In section 4 we want, for the litst time, study the 'worst case error' of the linearized 
inverse scattering problem. The basic question is: given a h o w  error E in the far- 
field pattern and some a priori information about the scatterer how large could the 
error in the boundaly be? In a recent paper Jsakov [lo] proves a stability estimate far 
the full nonlinear inverse problem, giving (to the author's opinion optimal but) rather 
pessimistic estimates. In this paper we study the numerical aspects of this question 
for a special class of boundaries, which arises as parametrizations in various inverse 
scattering solvers. The numerical results are much better and reflect the observed 
quality of the recavered objects. 

2. The domain derivative 

Let k > 0 be the (given and fixed) wavenumber, d E RN ( N  = 2 or 3) with 121 = 1 
the given direction of the incident plane wave, and 

X c {I? E Cz : 32 c RN open, bounded and connected such that I? = an} 

some set of admissible boundaries. For r E X and I? = an, set ne := RN \ 
consider the obstacle scattering problem: Find U E Cz(ne) n C ( F )  with 

A u +  kZu = 0 in R e  u = O o n r  (2.1) 

and us(+) := U(%) - exp(ikiTx) satisfies the radiation condition! 

X r = 1x1 +CO uniformly in -. 
1x1 

It is well known that a unique solution of this problem exists (cf Colton and Kress [2]). 
Certainly, U depends on r. The radiation condition implies the following behaviour 
at infinity: 

(2.2) . ,  X r+co uniformly in 2 := - 
1x1' 

U, is uniquely determined by us and is called the far-field pattern (or scattering 
amplitude) of U'. It is an analytic function on the unit sphere 5"-' and admits the 
following representation 

t drz means the inner product of the M C ~ O ~ S  d, z E BN. 
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.where R > 0 such that c KR := {y E RN : IyI < R}. Now we are able to 
introduce the far-field operator F : X - C(SN- ' )  which assigns to every r E X 
the far-field pattern U ,  of the corresponding solution of the scattering problem in 
fie. Recall that we fix the wavenumber k and thc incident wave U:. Then F is well 
defined by the preceding remarks. 

vector field a E C Z ( r ; R N )  we denote by ra the set 

r, := { Z  + a(.) : x E r} 

A derivative of F at r can be defined as follows (cf Pironeau [24]): For any real 

which is the C? boundary of a domain 
enough. Now we define the domain derivative of F at r 'in the direction' a by 

provided Ila[lm := max,,,la(~)l is small 

(2.4) 
1 Fyr; a )  := lim -[~(r, ,)  - ~ ( r ) ]  

e\u E 

where the limit should exist uniformly on SN-'. Then F'(r;.) : C2(T;RN)  + 

C(SN- ' )  is called domain derivative of F at r. The main theoretical result of this 
paper is the following 

Zkmm 2.1. Let be r E Cz, a E CZ(T;IWN) and U" E Hf,,(C2e) be the solution of 
the scattering problem (2.1). Then the domain derivative F ' ( r ; a )  exists and is given 
by the far-field pattern U ;  of U', where U' E C2(ne) n C ( 3 )  solves the exterior 
boundary value problem 

where n(x) denotes the outer unit normal vector at z E r. 
Remark. Since d z l " / a n  E C(r) (cf [2, theorem 3.211) this is a classical exterior 
boundary value problem for the Helmholtz equation. 

Proof. We prove the assertion only for the case N = 3. The plan of the proof 
is as follows: First we derive a variational equation in a region nR := ICR n ne 
where R > 0 is chosen such that E C ICRlT This variational formulation uses a 
non-local boundary condition on the outer boundary aKR and simplifies arguments 
of the paper of Kress and Zinn 1181. We do this for all the regions outside re. By a 
change of variables we transform them into variational equations on a k e d  reference 
region and study the limit of the difference quotients for E + 0. 

By Green's theorem and the Helmholtz equation we conclude that the total field 
U" satisfies 
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for all v E R,j(nR) := {v E H1(RR) :vi r  = 0). 
By L : H1/Z(aKR) + H - l / Z ( a K R )  we denote the Dirichlet-to-Neumann map 

L : g Y awlan 
where w solves the exterior Dirichlet problem for the Helmholtz equation in the 
region {s E R3 : Is1 > R} with wlaKR = g. Denoting by Y,", Iml 6 n, n E NU{O), 
the spherical harmonics of order n, and by h?) the spherical Hankel functions of 
the first kind and order n (cf [21]) we can solve the exterior Dirichlet problem in 
{s E Iw3 : Is1 > R} explicitly and, thus, derive the following expression for L: 

m .. 

where g(R,$) = g,"Y,"(2). 
rr=Ulml<n 

Let L, be the corresponding operator for wavenumber k = 0 which is given by 
(Lug)(&*) = -$~~=,&++(n + l)gpY,"(?) for g as in (2.7). We see 
directly from the orthogonality of Y," that - L, is strictly coecitive, i.e. 

for a11 g E H1lz(aKR) Z - (Lng,g) > C 1 l ~ I I w / y a ~ R ~  

where (., .) denotes the dual bracket in ( H - l / z ( E I K n ) ,  H1/z(aKR)). Furthermore, 
from k R h ? ) ' ( k R ) / h ~ ) ( k R )  = -(n+l)+O(l/n) for n i 00 (cf [21]) we conclude 
that the difference operator L- L, is compact from H1/z(SKR) into H-l/z(EIKR). 

From (2.6) above we conclude that the solution U" of the scattering problem 
satisfies the sesquihear equation (with U'(.) := exp(ikJTr)  being the incident 
field) 

S(u"; v )  := (VVTVuU - kzu"8) d s  - (Lu",v) = / C (E - Lu') ds (28) 
aKn 

/ I  0, 

for all w E fI:(aR). One splits S in to  So + S, with strictly coercitive 

So(u;v)  := / / (VVTVu+Vu)dr-(LUu,v)  
R R  

and 

S1(u;v) := -(k2 + 1) J /  Cuds + V (Lo - L)uds .  
RR 8KR 

By the theorem of Lax and Milgram there exists a unique isomorphism Tu from 
&;(aR) onto itself with 

S,(u;v) = ( T , u , ~ ) ~ ,  for all u,v E &(aR). 
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By the Riesz representation theorem there exists a bounded operator TI from 
f i k ( C I R )  into itself and an element T E R;(aR) with 

for all U,  v E I?:(CIR)- Then equation (28) is equivalent to 

U" -t T;'T1u" = T['T in I?;(aE). (2.9) 

From the compactness of L - Lo and the imbedding fii(CIR) c L2(ClR) it is 
easily shown that T1 is compact in fii(CIR). Therefore, the Fredholm alternative is 
applicable to (2.9). By the uniqueness of the scattering problem U" E &(OR) is 
the unique solution (2.9) and thus also of (28), and it depends continuously on the 
tight-hand side. Once the solution U" of equation (2.8) is found the far-field pattern 
U, can be expressed by equation (2.3), i.e. 

.,(i.)= J usGe a - ik+ ds - (Lus,eik*.') 

BKR 

(2.10) ' a -ik*. = / (U" - d)-e  ds - (L(u" - ui),eikB') 
an 

a K n  

for e E SN-1. 
This formulation as a variational problem with a non-local boundary condition can 

be done for each of the regions exterior to rea. Then the sesquilinear forms S 
depend on E through its domain of definition fi:( K R  n Cl:). Let uLL be the solutions 
of the scattering problems corresponding to the regions Cl;. Then uf are the unique 
solutions of the analogous variational equation on ICR n a:, i.e. 

Now, for given a E C2(r;R3) we choose an extension a E Cz(Clc,JR3) with a(.) = 0 
for 1x1 2 R/2.  Denote by #f : .Qe i Cl: the mapping #'(y) := y t ea(y), y E W. 
For small e > 0 #' is a diffeomorphism which maps aR onto ICB n Cl:. Let 
$€ : Cl: + .Qe be the inverse of &. Making the change of variables z = &(y) and 
iiE = U' o @ we get 

1 1 (VGTVuf - k%u')dz 
Knnn: 

where Jp is the Jacobian matrix of @ and 
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We define S : HA(n,) x Hi( f lR)  -+ C by 

and see from (211) that Gf E &(a,) is the unique solution of 

Since, by (2.10) 

for 121 = 1, we have to compute the derivative lime-w f(G' -U') in @ ( Q R ) .  
For any w E Hi(CZR) we have 

(2.12) 

and we have to show that the limit at the right-hand side of (2.9) exists for E i O+ 
and to compute its value. The right-hand side of (2.12) is 

with Kronecker symbol 6 j j .  Since det J,. = de t ( l+  eJ,) = 1 + E i a f 
J4< = JQ;' o .ILf = I - E J ~  + O ( E ~ )  uniformly in y E f i R  we conclude that 

and 

(€-+O+) 
1 -(det J p  - 1) + +U 
E 

uniformlyin a, for i , j  =~1,2,3.  

conclude that the right-hand side of (2.12) tends to 
Since 2 converges to U' in H 1 ( n R )  by the continuity arguments (cf [IS]) we 
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Thus +(Of - U") is convergent in & ( Q R ) ,  and we define O E Bi(ilR) by 

Extend Q outside O R  by solving the exterior Dirichlet problem with boundary 

S(O;v) =// [ V C T ( J a + J , ' - t a I ) V ~ U + k z ~ u ~  + u ] d y  

O := lime+&+ ;(Of - U") in i lR.  

data O on aKR. Then O satisfies 

n R  

for all v E Rt(QR). Now we observe that, by well known regularity results (cf p, 
theorem 8.12]), U" E B;(Q,) n H Z ( O R )  and use for U E &:(OR) n H 2 ( i l R )  the 
formula 

VGT(J, + J,' - +U 1)VU" 
= div [(aTVu")VC + (UTVC)VU" - (VCTVu")a] 

- (uTVu")A6 - (aTVC)AuU 

in Q R  and apply Gauss' theorem to the divergence term. This yields (since a = 0 
near aKB) 

S(O;v) = // [k%"C i a - (aTVu")AC - (aTVC)Auu] d s  
n R  

- / [(aTVu")VC + (aTV6)VuU - ( V C T V ~ U ) a ] T n d s .  

Now we use the homogeneous boundary conditions for v and U", the Helmholtz 
equation for A d  and Green's theorem for AV. This yields 

r 

S ( O ; w )  = k2//+(uuCu)diL.+ [VCTV(aTVuU)- ICZir(aTV~")]ds 
n, n, 

i.e. applying Gauss' theorem again 

[VCTVO - kz$G]dz - (LO, v) = // [ V 6 T V ( a T V ~ U )  - k2G(aTVuu)] d s .  
nR n, 

Since aTVuU = 0 for Is1 > R/2 this proves that (A + k2)(& - aTVuU) = 0 in Q R  
weakly, ( a  - aTVu")I, = -(aTn)au"/& and also aO/anl+ = LO = aO/bnl- 
on rR, Le. O - and thus U' - is C2 in 0'. This proves that U' = O - a T V d  and 
therefore 

in H " ~ ( ~ K , ) .  
1 lim -(U( - U") = U' 

e-U E 

This, finally, proves 

1 
lim -(U;(?) - U,(?)) = uL(2)  uniformly for l ? l =  1. 
e-" E 

This ends the proof. 
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Remarks. (a) For the proof it is not essential that aKR is the boundary of a 
sphere but can be the c- boundary of any bounded domain containing in its 
interior. From this observation and Green's representation theorem it follows that 
lime+,+ $ ( U €  - U") = U' uniformly in every compact subset of W. 

@) By obvious modifications of the proof it can be shown that F'( r; U) is a kind 
of Frechet derivative of F at r, i.e. 

where Ilalll,m := m a z E r  Ia(z)I + max,,,CS=l lGradaj(z)l with surface gradient 
Grad ai of the j th  component of a (cf 12.1 for a definition of the surface gradient). 

(c) From this theorem we observe that the domain derivative can be extended to 
a bounded operator F'(r;.)  : C(r;lWN) -t C(SN-l )  (or even to Sobolev spaces). 

In order to deal with 'nondegenerated' surfaces we assume that uTn has only 
finitely many zeros on r. Then we can prove 

Lemma 22. The operator P(r;  .) is one-to-one on the space 

{U E C(r;lWN) : aTn has only finitely many zeros on r}. 
Proof. Let be F'(r ;a)  = 0 in L2(SN-'). Then the far-field pattern ub, 
vanishes where U' solves the exterior boundary value problem with boundary data 
U' = - (aTn)~uo /Bn  on r. From Rellich's theorem and analytic continuation U' 
vanishes outside of S I .  Since auo/an cannot vanish on any U fl l7 for U being a 
disk and it is continuous aTn has to vanish on r. The assumption on a implies that 
a = 0, which ends the proof. 

Remark. In general it is not known if F itself is one-to-one, see 161 for a detailed 
discussion of the problem of uniqueness of the inverse scattering problem. 

3. An application to a Gauss-Newton method 

This section describes the essential step of an algorithm for the following inverse 
scatteringproblem which we formulate in two dimensions. Given the (measured) far- 
field pattern f E Lz(S1), the direction of the incident plane wave and the wave 
number k > 0 compute a domain such that the scattered wave has the far-field 
pattern f. There exist a large number of algorithms for this problem. Roughly 
speaking, they fall into two classes of methods. 

The algorithms of the first class all consist of two steps, the analytic continuation 
step (which is linear but highly ill-posed) and a nonlinear step of fmding a 'level curve' 
of a certain field (cf Imbriale and Mittra [9], Colton and Monk 13-51 and Kirsch and 
Kress 113,141). 

The algorithms of the second class are called 'output least squares methods' in 
the parameter estimation community. As typical papers in this field we mention only 
those by Roger [U] and Kristensson and Vogel[19]. The idea is to solve the equation 
F ( r )  = f by a Newton-type method or minimize IIF(I') - f l l  by an optimization 
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method. In any m e  the unknown boundary r has to be parametrized. Without 
loss of generality we represent (as also done by most of the authors, cf [3-5,1> 
15, IS, 19, U]) r in polar coordinates by 

M 
where r,(t) = a,+C[ajcosjt+aj+,sinjt] 

j=1 

with a = (au,. . . 
U, := {a E RP+' : p ,  < r,(t) < p z ,  t E [ 0 , 2 ~ ] }  

We can assign to each a E U, the far-field patterns F ( r ) ( 0 ; )  E'  C, i = 
1,. . . , P, at a number P of given and &xed 'observation points' 0, E S' where 
r denotes the boundary parameterized by r,(t). This defines a (nonlinear) mapping 
fi : RZM+l 2 U ,  -+ Cp. For the following we fix M and P. A simple application 
of theorem 21 shows 

17leorem 3.1. For CY E intU,f the mapping P is (totally) differentiable with 
aP,(a) /aa,  = u ; , ~ ( & )  for i = 1 ,..., P and j = 0 ,..., 2M. Here, is 
the far-field pattern of U$ E C2(ne) n C(n") which is the solution of the exterior 
boundary value problem 

E PizM+' for some fored number M E N. Let 

for some 0 < p1 < p,. 

aU$ 
A d .  + k'uj = 0 in ne _-  iku: = o(r-"') r -+ a5 

I ar 
and 

a cos j t  j = O,.. . , M 

for t E [0,27r]. 

BmJ Let be i E (1 ,..., P} a n d j  E (0 ,..., 2 M )  ked, E >Oand e ( j )  be thejth 
unit vector in Pim+I. Let l? and rc be parametrized by 

respectively. 
Then 

= r,., in the notation of (24) with 

t mt U denotes the interior of the set U 
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and this converges by theorem 21 to ~(i ,~(?;) ,  where U: solves the exterior Dirichlet 
problem with boundary data -(nTaj)au"/an. With 

c o s j t  j = 0,. . . , M 
sin(j-M)t  j =  M+1,  ... 2M 

n(t)Ta'(i,(t)) = 

the assertion follows. This ends the proof. 
The computation of one function value P(a) involves solving an exterior 

boundary value problem for the Helmholtz equation in a region parametrized by 
z,(t) and to evaluate the far-field pattern at P points. The computation of the 
Jacobian of this mapping means solving 2M + 1 exterior boundary value problems 
for the same Helmholtz equation in the same region with different boundary values. 
After discretization this leads to a system of linear equations with 2M + 1 right-hand 
sides which is not much more work than solving one boundary value problem (at least 
if 2M + 1 is small compared to the number of discretization points). Therefore, the 
advantage of theorem 3.1 is that one gets the Jacobian of 

We will now show by some numerical examples how one can solve the system of 
equations E(a)  = f ; .  := f ( & i ) ,  i = I , .  . . , P, approximately. Since. the quation 
F ( r )  = f is highly ill-posed (cf 111) we expect the system P(a) = f to be 
ill-conditioned. Therefore, we regularize this equation and use, for convenience, 
Tikhonov's method (cf [SI). Thus we minimize 

almost for free. 

for some regularisation parameter e > 0 and some (semi-)norm on a. Recalling the 

meaning of a as the Fourier coefficients of r, we take lla]12 = n ~ ~ ( a k + a k + ~ )  
which is the HZ(0,27r) semi-norm of r,. 

M 

m=1 

The minimization problem (3.1) can be written as the least squares problem 

@;(a) = Pi(a)  - fi i = l ,  ..., P, 
Minimize ll@(a)ll~ where @p+i  (a) = iZJEa; i = 1,. . . , M ,  { @P+,+i(Or) = i2J;aM+i i = 1,. . . , M .  

Cerkinly, this least squares problem a n  also be rewritten as a real valued problem. 
We used a Levenberg-Marquardt routine from CMLIB (US National Bureau of 
Standards collection of public domain software) which uses selected routines from 
MINPACK [22]. For this routine one has to supply the function values @;(a) and the 
Jacobian of @ at a. We computed the solution U" of the scattering problem by an 
integral equation method based on the Green's representation theorem (cf [16]). This 
results in a boundary integral equation for the normal derivative au"/an of the total 
field. By theorem 2.1 &"/an is also needed for the computation of the Jacobian. 
For the solution of the boundary value problem for U: we use an integral equation 
method based on the layer ansatz (cf 121) to avoid computing the normal derivative 
of the double layer potential. We solved the resulting boundary integral equations 
with a Nystrom method with 2N = 64 knots. For a detailed discussion of Nystrom's 
method we refer the reader to Kress [lv. 
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Numerical examples. Let R be the kite' from [U], parametrized by q ( t )  = 
cost + 0.65(cos(2t) - l), q ( t )  = M s i n t ,  t E [0,2?r]. The wavenumber is k = 3, 
the dimension of the ansatz space U, is 2M + 1 = 17, the number of observation 
points is P = 32, and we used 32 equally spaced discretization points for the Nystriim 
method to solve the boundary integral equations for u0 and U; (cf 1171 for detailed 
discussion on Nystrom's method). We added 5% relative error (random noise) on 
the observation points. 

We observed very p r  reconstruction properties when we probed the obstacle by 
only one incident field. Therefore, and in order to compare the method with those 
presented in [15] we chose two incident waves with directions 30" and 2 1 0 O .  Both 
functionals are added, ie. instead of (3.1) we m i n i i e d  

P P 

where the superscripts 1 and 2 indicate the incident fields. 
Figures 1-4 show the results where we have chosen two different initial circles 

(radii 1.0 and 1.2) for the Levenberg-Marquardt algorithm and three different 
regularization parameters (E = loM1, lo-', We have plot the initial circle, 
the best L2 approximation of the true curve (the kite) in the finite dimensional space 
U, and the reconstructed curve. 

Figure I Results of numerical example. Radius of Figure 2 As figure 1, wilh mdius of initial circle, 
initial circle, 1.0; regularization parameter e, 1.2 regubrization parameter e ,  10-2; error in f, 
enor m f ,  0 %  number of hnclion calls, 20; 5 %  number of function calls, 18; number of Jambi 
number of Jacobi matrices, 11; running time, 52. matrices, 16; running time, 65. 

We clearly see the dependence on the proper choice of E and the initial curve. 
We do not believe that the incorporation of constraints of the form r,(t) 2 v0 
in an Levenberg-Marquardt algorithm would improve the results in principle. The 
numerical tests in [U] show that the curve will always touch the constraint A certain 
disadvantage, at least in principle, of these methods is the effort of computing U, 

and U:,, in every step. In two dimensions the Nystrom method is very fast, and the 
computation time was not observed to be considerably higher than of other methods 
(cf [12]). This is certainly different in three dimensions but implementations of 
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I I I 

Pigum 3. As figure 1, with radius of initial circle, 
1.2; reguialization parameter 6,IO-l; ermr in f, 
5 %  number of function calls, ZO; number of Jambi 
matrices, 16; " i n g  time, 8 2  

I I I 

Pigum 4 As @pure 1, wilh radius of initial circle, 
1.2; reguhrization parameter e,10-3; error in fs 
5 %  number of function slls ,  20; number of Jambi 
matrices, 14; mnning time, 74. 

Newton-type methods are not hown to the author. For a more detailed discussion 
and comparison of different numerical methods for solving the inverse scattering 
problem we refer the reader to [12]. 

4. An application to sensitivity 

In this section we study the sensitiviity of the linearized inverse scattering problem. 
As before, let, in two dimensions 

X c {r E C2 : 3 2  c Rz open and bounded such that r = 80) 

and F : X --t C( SI) the far-field operator. Let r be the true obstacle. For every 
(small) E > 0 we can define the 'worst case error' (cf Natterer [23] or Louis [20] for 
the linear case) 

supCw,  f )  : f; E V ,  I I m  - F ( F ) I I ~ ~ ( ~ ~ ~  < €1 

where V c X contains some a-priori information about I', and d(l' ,p) denotes 
some measure of distance between r and I?. 

We restrict I; to be of the form ra for a E @(r;WZ) with sufficiently small 
and define the linearized worst case error by 

:= ~u~{llall  : a E V, llF'(Ra))Ilp(s~~ < €1 
where V c C1(r;BZ) is some given subset and 11 .[I some given semi-norm on a. 
Since F'(r; .) is linear we can asume E = 1 without loss of generality. 

The ill-pmedness of the inverse problem is expressed by the following theorem: 

Theorem 4.1. Let be V c C(T;Rz) infinite dimensional, dense in Lz(r;Rz) and 
such that aTn admits only linitely many zeros on r. Furthermore, let 11.11 be the 
L 2 ( r ) -  or C(r)-norm, or lla]l = la(z)l for some fixed z ~ r .  Then w = 00. 



Domain derivative 93 

proof. Since F'( I?; .) : V i Lz( S') is compact and one-to-one by lemma 2.2 and 
V is infinite dimensional a standard argument shows that F'(T;.)-' is unbounded 
on the range of F'(r; . ) .  This shows that w = CO in the case of 1 1 . 1 1  being the Lz- 
or C-norm. For \lull = I U ( I ) I  simply choose a sequence ( a j )  c V with IlajllF~ < 6 
and laj(z)I = j ,  where 6 is small enough such that 4 1. Thls ends 
the proof. 

We are especially interested in the case where r is parametrized by ~ ( t ) ,  
0 < t < 27r, V is given by 

1 v:= u , E c ( ~ ; I w ~ ) : u , ( I ( ~ ) ) = ~ , ( ~ )  sint , tE[o,2n] ,  , E I W ~ ~ + '  { ("" 
for some k e d  A4 E N, where 

M 

re($) = 01" + (am cos t + am+M sin t) 
m = l  

and [[all is given by la(.)[ for some I E r or I[ . I[ = [ [  . I I L ~ ( r v  
l a , ( z ( t ) ) [  = r,(t), we define the quantities 

w l ( t )  := sup{.,(t) : a E I R ~ + ' ,  ~ ~ ~ ' ( ~ ; a , ) [ ~ L z ~ s t )  < 1) 

Since 

for t E , [ o , ~ T ]  

w2 := ~~Ptll~,llLy",Zr) . . a E PM+', iiF'(r;a,)i[Lz(s,) < 1). 

First we note. that the supremum is attained 

Lemma 4.2. There exkts aj E illzM+' (j = 1,2) with [ ~ F ' ( ~ a , j ) ~ ~ L z ( s , )  4 1, 

Bmf. We note that a Y F'( c a,) is a bounded operator from RZM" into Lz( S') 
which is also one-to-one by lemma 2.2. Since RZMt1 is finite dimensional there exist 
.c > 0 with 

.,l(t) = W l ( t )  and l l ~ a 4 L y " , 2 x )  = w2. 

12 iiF(r;~,)~~L2(s,) 2 cllall2 with IIF'(r;a,)llLz(sl, 4 I. 

From this r,(t) < c1 and ~ ~ T , ~ ~ ~ ~ ( ~ , ~ ~ )  < 9 follows for all t E [0,2rr], a E IWzM+' 
with ~ ~ F ' ( ~ ; U , ) ~ ~ ~ ~ ( ~ , ~  < 1. This shows that w j  are the suprema of continuous 
functions on a bounded and closed set in a finite dimensional space. This proves the 
assertion. 

Now we compute an approximation of w l ( t )  by solving for every fixed t E [0,2n] 
the following quadratic programming problem ( Pt). Again, fj, j = 1,. . . , P, are 
given 'observation points', and P' is the Jacobian of P from theorem 3.1 

(PJ Maximize 

for all a E I W ~ ~ + ~  

M 

r,(t) := a" + (am cos t + amtM sin t) 
m=l 

subject to 
P 

2 
/(P'a)jl < 1. 

j=1 
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With cj(t) := cos ( j t ) ,  j = O,.. . , M, cj+M(t) := sin(jt), j = 1,. . . , M ,  this leads 
to the quadratic programming problem 

( Pt)  Mavimize 

subject to 
C(t)TO 

aT(P’)*(P)a < 1. 

This problem can easily be solved by, e.g. the Lagrange multiplier rule. 

notations) 

P Maximize 

Similarly, we compute an approximation of w2 by solving (with the preceding 

l l ~ m l l L y o , 2 x )  = 6”” Ic(t)TalZdt 

subject to 
aT(P’)’(P)a < 1. 

Using the Lagrange multiplier rule this leads to the problem of computing the smallest 
eigenvalue of D-I(P’)*(P) ,  where D is a simple diagonal matrix. 

Numerical mmples. We consider the same examples as in section 3. 0 is the kite, 
parametrized by q ( t )  = cnst +0.65(m(Zt) - l), zz(t )  = 1.5sint, t E [O,Z?r], for 
k we take 1 or 3, the angle of the incoming wave is 30°. Figures 5 and 6 show the 
kite and w l ( t )  for these values of k. w1 is plotted in polar coordinates where the 
dotted circle denotes the zero level. In figures 7 and 8 we plot T~~ against the dotted 
zero level. 

Figure 5. The function w l ( t )  fort E [0, 7.~1, with 
k = 1. 

Fwre 6. As figure 5, with k = 2 
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F@re 7. The function r,z for t E 10, 2 4 ,  with 
k = 1. 

Figure 8. As figure 7, with k 3. 
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