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Frechet differentiability of the solution to
the acoustic Neumann scattering problem
with respect to the domain
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Abstract — Using integral equation methods to solve the time harmonic acoustic scattering
problem with Neumann boundary condition it is possible to reduce the solution of the scattering
problem to the solution of a boundary integral equation of the second kind. We show the
Frechet differentiability of the boundary integral operators which occur. They are considered in
dependence of the boundary as integral operators in the spaces of continuous functions. Then
we use this to prove the Frechet differentiability of the scattered fields. Finally we characterize
the Frechet derivatives of the scattered fields by a suitable boundary value problem.

1. INTRODUCTION
In this paper we deal with time-harmonic acoustic scattering problem by a bounded
obstacle with Neumann boundary condition. The problem is one of the standard problems
of mathematical physics. Different methods have been developed to solve the problem.
Here we refer to the integral equation approach wich can be found in [3].

Especially in the framework of inverse problems it is interesting to study the solutions
to the scattering problems in dependence of the domain of the scatterer. By we denote
the boundary of a suitable domain D C H3. We consider the solution to the scattering
problem on a set M C 1R3 \ D . Let the operator R map the boundary onto the solution
US\M of the direct scattering problem for a fixed entire incident field u*, i.e. we have

u'\M = R(T). (1.1)

The inverse scattering problem consists of looking for a solution of (1.1) given us on the
exterior set or looking for given the farfield u°° of us, respectively. R is nonlinear
and equation (1.1) is ill-posed, which makes it in general difficult to solve.

Using boundary integral equation methods to solve the scattering problem following
Colton and Kress [3] it is possible to derive a representation of R consisting of acoustic
single and double layer potentials and weakly singular boundary integral operators. We
briefly recall this method in Section 2. Section 3 we use to establish some facts about the
Frechet derivative of integral operators. In Section 4 we prove the Frechet differentiability
in dependence of the domain and calculate the Frechet derivative of the integral operators
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68 R. PoUhast

used in 2, considered as operators in the spaces of continuous functions on Γ. Using the
well known properties of the Frechet derivative it is now possible to obtain the Frechet
differentiability and the Frechet derivative of the scattering operator R. In Section 5 we
give a characterization of the derivative of u* as a solution to a boundary value problem
with Neumann boundary condition.

The differentiability properties of the integral operators considered as operators in the
spaces of continuous functions have been studied for the case of the obstacle scattering
problem with Dirichlet boundary condition in [12]. For the scattering problem with the
Dirichlet boundary condition the characterization of the derivative of the scattered field
has been done by Kirsch [4], [5], [6] using variational methods and by Potthast [12] within
the framework of integral equation methods.

The great potential of the integral equation approach to study the dependence of the
domain has also been shown in [13] - where the author studied the Frechet differentiabil-
ity of the integral operators in the spaces of holdercontinuously differentiable functions,
extended the results to higher derivatives and applied the method also to the electromag-
netic scattering problem for a perfect conductor. Kress applied the approach in [8] to the
inverse scattering problem from an open arc.

The results open the possibility to use Newton's method or Newton-type methods to
solve the inverse scattering problem. For the application of Newton's method to solve in-
verse scattering problems we refer to the standard literature concerning Newton's method
in Banach spaces and to [14], [8], [9], [6], [10], [11], [16] and [17].

2. THE SCATTERING MAPS R AND THE INVERSE SCATTERING
PROBLEM

By L WG denote the Ball with radius L in R3. Let D C Ωχ, C IR3 be a bounded domain
with boundary 3D of class C2, B D Ωχ, an open set. A function w £ C1(JR3\n/ /) satisfies
the Sommerfeld radiation condition if there holds

|| - (grad w)(x) - ikw(x) = ο , |x| -> oo (2.1)

uniformly on Ω = {χ := χ/ \x\, χ € R3 \ {0}}. By

- where we assume AC > 0 for the wave number AC - we denote the fundamental solution
of the Helmholtz equation

Φ(·,τ/) solves the Helmholtz equation in R3 \ {y} and satisfies the Sommerfeld radiation
condition uniformly for y G Ω/, C R3. For φ G C(dD) the acoustic single layer potential

u(x) := / Φ(χ, yMy) ds(y), χ 6 E3 \ dD (2.3)
JdD

and the acoustic double layer potential

^yjdifo), *6R 3 \ D (2.4)
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Frechet differentiability 69

are solutions to the Helmholtz equation in R3 \ 3D and satisfy the Sommerfeld radiation
condition. Consider the Neumann obstacle scattering problem: For a given solution u* G
Cl(B) to the Helmholtz equation find ajunction u3 E C2(IR3 \ ~D) Π C(IR3 \ D), which
satisfies the Helmholtz equation in R3 \ D and the Sommerfeld radiation condition, such
that for the normal derivative of the total field we have du/di/ = d{ul + us] /dv = 0
on 3D. Following Colton and Kress [3] we look for a solution to the Neumann obstacle
scattering problem using a modified single and double layer potential

*ZK?\dD (2.5)

η G IR, where 50 denotes the operator 5 defined by (2.7) in the potential theoretic case
/c = 0. Using the classical jump relations for the single and double layer potential [2]
the potential (2.5) solves the Neumann scattering problem if the density φ £ C(dD) is a
solution to the boundary integral equation

. (2.6)

Here the operators

(3φ)(χ) :=2/gD *(x, »MlO ds(y), * € 6D (2.7)

and

!,)) χ 6 dD (2.8)

are linear, they have weakly singular kernels and are therefore compact operators C(dD)
-+ C(dD). S is bounded from C(dD) into C°'a(dD) and from &a(dD) into
The operator

is bounded from C1|0f(OjD) into C0'a(9D). Existence and boundedness of the inverse of the
operator I + K — ΊηΤ8$ can be obtained using the Riesz-Fredholm theory for equations
of the second kind with compact operators [7].

To keep our analysis as simple as possible we want to use another form of equation
(2.6). With the help of the jump relations and Green's theorem Colton and Kress derive
in [3], equation (3.13), the relation

T S = /Γ2 - /. (2.10)

With (2.10) and Τ := Τ - T0, where T0 denotes the operator T in the potential theoretic
case, the equation (2.6) takes the form

= 2^. (2.11)

Proceeding in this way we can avoid the examination of the strongly singular operator Τ
and we can restrict our analysis to weakly singular operators in the spaces of continuous
functions. The analysis for the operators Τ and S in Holder spaces - their Frechet
differentiability in dependence of the domain - can be found in [13].
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70 R. Potthast

We are interested in the values of the scattered field on a set M C 1R3\.D. Therefore we
combine the potential (2.5) with the restriction u* H-» U*\M to a linear bounded mapping
P : C(dD) -* C(M). Using the operator

N : Cl(B) -> C(dD), Nu*(x) := ̂ y"'», * G 3D

we can write the solution of the Neumann scattering problem in the form

us = 2 P(/ - AT* - i77(tf*2 -/-f TSiOSo""1^''. (2.12)

The inverse Neumann scattering problem consists of looking for a domain D, which for
a given number of incident fields u* with corresponding scattered fields us satisfies (2.12).
In order to use Newton-type methods to solve the inverse scattering problem we have to
study the differentiability properties of the mapping defined -by equation (2.12).

First we want to transform the operators onto a fixed reference boundary. Similar to
[11], [4], [5], [6], [12], [13] or [15] we use the mapping φτ : dD -> dDr : χ π-> χ + φ)
where r G C2(dD) is a two times continuously differentiable vector field and dDr is
defined by dDr :— {x-fr(x) ,x G dD}. For sufficiently small p > 0 depending on dD
each dDr with IHIc2(dD) — P *s aSain a boundary of class C2 of a domain Dr. We use
£2 :== {r £ c2(9£))) ||r|| < p}. By i/(r, x) we denote the exterior unit normal vector to the
boundary 9Z)r at the point xr := χ + r(z). We use i/(x) := i/(0,x).

By Β(Λ", Κ) we denote the space of all bounded linear operators mapping a normed
space X into a normed space Y. Now for each r G C2, we transform functions φ (E C(dDr)
into functions φ G C(9D) using φ(χ] := ^(a;r). Analogously we transform operators / :
C(dDr) -> 0(3.0Γ) into operators / : C(dD) -> C(9D). Since in this way the space C(dD)
is isomorphic to C(dDr) and B(C(dD), C(dD)) is isomorphic to B(C(dDr), C(dDr)) usu-
ally we just write φ — φ and 1 = 1.

3. SOME REMARKS TO FRECHET DIFFERENTIABILITY
OF INTEGRAL OPERATORS

For the well-known properties of the Frechet derivative of a nonlinear mapping we refer
to [1]; here we just give a summary of our notation.

Let Υ be a normed space, A" be a Banach space and let U C Υ be an open set. A
mapping A : U —> X is called Frechet differentiable in r0 G /7, if there is a bounded linear
mapping dA/dr G B(Y,X), a neighborhood V of 0 in Υ and a mapping AI : V -> X for
which holds

dA
A(r0 + A) = A(r0) + - ( f t ) + AI(A), Λ G V, (3.1)

The mapping dA/dr is called the Frechet derivative of A in r0. If A is Frechet differentiate
in U the Frechet derivative can be considered as a mapping U — > #(y, X), r — ̂  3A(r, )/9r.
If this mapping is again Frechet differentiable, we speak of the second derivative of A.
We have d2A/dr2 G B(Y,B(Y,X)) and we use 02A(r, h)/dr2 := d*A(r,h,h)/dr2. The
c/iam rule and the product rule are valid analogously to the finite dimensional case. As
a consequence of Taylor's theorem for twice continuously Frechet differentiable functions
we obtain:
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Frechet differentiability 71

Theorem 3.1. Let Y be a normed space, let X be a Banach space and let U C Y be an
open set. Assume that f : U —> X is a twice continuously differentiate function on U and
let the second derivative be bounded, i.e. there exists c > 0 such that \\d2f(r\ -)/dr2\\ < c
on U. If r + th G U for all t 6 [0,1] we have the equality

f(r + A) = f ( r ) + ^(r, A) + Λ(Γ, h) (3.2)

with some function f\ satisfying

l l / i(r ,A)|<sup (3-3)

Proof. An application of Taylor's theorem [1] yields

(3.4)

Since we have ||<92/(-)/9r2|| < c on U the statement of the theorem is a direct consequence
of the inequality

G

In order to show the Frechet differentiability of (/ + K* - \η(Ι<£ - I + f 50)S0)~1 we
need the following theorem.

Theorem 3.2. Let Y be a normed space, U C Y an open set and X a Banach algebra
with neutral element e. Let A : U —* X be Frechet differentiate in τ/0 Ε U. Assume there
is a neighborhood W of yo such that for all y (E W the element A(y) is invertible in X
and the mapping y H+ (A(y))~l is continuous in yo. Then A"1(y) is Frechet differentiate
in yQ with Frechet derivative

(A~l)'(y0, h) = —A~l(yQ) I -~-(ί/ο> h) l A~l(yQ) (3.6)
\ /

Proof. We follow [3]. Define

-i -i -i 9A -i

We have to show 2(7/0, Λ) = o(||A||). For this we multiply from the left and from the right
by Α(τ/ο) and use the continuous invertibility and the Frechet differentiability of A. We
obtain A(yo)z(yo, h)A(yo) = o(\\h\\) and therefore the statement of the theorem. G

We want to show the Frechet differentiability of integral operators of the form

(A(r)V)(x) := / /(r, χ, ν)φ(ν) ds(y), χ € G, r ζ V. (3.7)
J ου

Here D C 3R3 is a bounded domain with boundary of class C2, G is an arbitrary subset
of H3 and V C Y is a subset of a normed space Y. We want to treat integral operators
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72 R. Poithast

which have for fixed r weakly singular kernels f ( x , y, r). Then for fixed r G V the operator
Λ is a bounded linear operator C(dD) —» C(G). We consider Λ as a mapping

V-+B(c(dD),C(G)).
In the next theorem we will show that, for suitable properties of the kernel /, the dif-
ferentiation of (3.7) can be reduced to the differentiation of the kernel / and that the
derivative of A is given by the operator

(A(r, *)¥>)(*):=/ ?f(r,h,X,y)v(y)dS(y), χ 6 G, r ζ V, he Y. (3.8)x ' JdD UT

This includes the classical theorem concerning the differentiation of an integral depending
on a parameter. We use Δσ := ί(ζ,2/), χ — y, χ G G, y G dD\.

Theorem 3.3. Consider a bounded domain D C IR,3 with boundary of class C2, an
arbitrary subset G of R3 and an open convex subset V C Υ of a Banach space Y. Let
f : V χ ((G x dD) \ ΔΟ) —* C be a continuous function with the following properties:

• for all fixed χ G G,y G ΟΖ),£ ^ τ/ the function /(- ,z,y) : V —> C is two times
continuously Frechet differentiate,

• there is a weakly singular function g : (G x dD) \ Δσ —> H suc/2 that for j = 0,1,2
and for all x G G, y G 3-D, x ^ y we have the estimate

uniformly for ail r G V, h G Y with \\h\\ < l.

Then, considered as a mapping V —> B(C(dD),C(G)J, r H-» .A(r) the operator A is
Frechet differentiate and the derivative of A is given by (dA/dr)(r,h) = A(r,h), where
A is given by (3.8).

Remark. The theorem covers the case G = dD and weakly singular / as well as
G Π dD = 0 and continuous / . Therefore it can be applied to the operators 5, K* and
P. The theorem in this form can be used to prove the existence of higher derivatives by
induction (see [13]). Q

Proof. We consider a point r0 in V. For all sufficiently small h we have r0 + h G V
and the convexity of V yields r0 H- th G V for all t G [0,1]. Then, as in Theorem 3.1, there
holds the decomposition

a/
/(ΓΟ -f A,x ,y) = /(r0,z,y) -h -Β~~(ΓΟ> A,z ,y) -f /Ι(ΓΟ, A ,z ,y ) (3.9)or

and we have

<sup —(
rev or2

Because of 92L,
dr*(
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Frechet differentiability 73

we find
av
<9r2

Therefore we obtain integrability of f\ and the inequality

~o~^\'ι'·<*·>y > ^. y\-iiu>·> r € V.

JaD\fi(r0,h,x,y)\aa(y) < J^ sup (r, ·,*,

We now know that all terms in equation (3.9) are integrable on dD and can use the
linearity of the integral to obtain

/(r0, x, y}v(y] ds(y) + (r0, A, *,

+ / fi(rO,h,JdD

= (A(roV)(x) + (A(r0,

where the operator A\ satisfies

with some constant c. Therefore A is Frechet different! able in TO considered as a mapping
V -> (c( jD), CCG1)) with the derivative given by dA/dr = A. G

4. FRECHET DIFFERENTIABILITY OF SPECIAL OPERATORS
As an application of Theorem 3.3 we want to show the Frechet differentiability of the
operators occuring in Section 2. First we deal with 5 and K*. Using the transformations
described in Section 2 the operators can be brought into the form

») (4-1)

(Κ'(Γ)φ)(χ) = I' Mr,x),yr-xr)\h2(lXr ^
JdD ( \Xr-yr\ |«,-»,|a

xJT(r,y)f(y)dS(y). (4.2)

where the functions /ii, hi and ^3 are analytic complex valued functions, and where Jr(r> y)
denotes the Jacobian of the transformation φΓ in y G dD. The operator T can be handled
in the same manner. For a suitable decomposition of its kernel we refer to [2], equation
(2.57).
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74 R. Potthast

Theorem 4.4. Tie integral operators 5, K* andf = T-T0 are Frechet differentiable
in Cp, considered as mappings

C2
f->B(c(dD),C(dD)).

The Frechet derivative is obtained by differentiation of the kernels according to Theo-
rem 3.3.

We base the proof of the theorem on the following lemma.

Lemma 4.1. The kernels of the integral operators given by (4.1), (4.2) and the kernel
of f = T - To ([2], equation (2.57)) are for all fixed x,y e dD with χ φ y two times
continuously Frechet differentiable as mappings C* — » C. The kernels and their first two
derivatives are bounded by

x,y£dD (4-3)\χ ~~ y\
with some constant C > 0 uniformly for (r, h) £ C* x C\ .

Proof of Theorem 4.4. We establish the assumptions made in Theorem 3.3.
Lemma 4.1 states the Frechet differentiability of the kernels of 5 and K* and also gives
estimates for their singularity and those of their derivatives: there is a weakly singular
majorante g and therefore they are weakly singular. Now by standard arguments 5 and
K* and the operators which are built by integration of the derivatives of the kernels are
well defined bounded linear operators C(dD) — » C(dD). Thus we apply Theorem 3.3 to
obtain Theorem 4.4.

Proof of Lemma 4.1. We verify the Frechet differentiability of the kernels by four
elementary steps. We will use the letter c to denote a generic constant.

I. The mapping gXtV : C2
p — > R3 defined by

9xtV(r) := XT - yr = (x + r(x)) - (y -f r(y))

is the sum of a constant and a linear mapping and therefore, for all fixed x,y £ 9Z), it is
Frechet differentiable with derivative

The derivative does not depend on r £ C* and therefore it is continuous. Since for χ -φ y we
have xr — yT ^ 0 for all r £ C%, using the chain rule, we obtain the Frechet differentiability
of the mapping

9\M :Cj -+ R, r ι-> \xr - yr\
for all r G C^x ^ τ/, x,y G dD. The Frechet derivative is given by

(xr-yr,h(x)-h(y)), h € ^(dD). (4.4)
\XT — yT

dD to obtain the estimates
We use the mean value theorem for the differentiable vector fields r E C2

p on the manifold

(4.5)
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Frechet differentiability 75

\xr-yr\<n\x-y\ (4.6)
uniformly on C2, where 71 and 72 are constants depending on p and dD. Again with the
help of the mean value theorem - this time applied to h - we derive from (4.5) and (4.6)
the inequalities

ξ^Μ) \\C2(dD) \x-y\ (4.7)

with some constant c. Proceeding as for <7i,x,y we obtain the Frechet differentiability of
the mapping

R,
the derivative

and the estimate

dr \xr-y-, in+2

- 2/r

(xr-yr,h(x)-h(y))

dr**(r;A) < C 7

(4.8)

(4.9)

(4.10)

with some constant c. We also want to compute the second derivatives of the terms and
give similar estimates. To do so we have to consider the first derivatives as mappings
Cp —> J3(C2( Z)), R). Using the same arguments as above we obtain

\Xr -
(h(x)-h(y),h(x)-h(y)) (4.11)

Or

-„Jn+1 dr2 v '

and the estimates

l,x,y / τ \-T^(r;A) <c\

and

dr2
1

r6C.2 ,

(4.12)

(4.13)

(4.14)

The estimates show that the degree of the singularity in \x — y\ of the functions under
consideration does not increase when we differentiate. We also want to prove this for the
other components of the kernels.

II. Consider the term (z/(r, x),x r — yr) and use local coordinates (u,v). With χ =
x(ui,vi) and y = 7/(u2 ,v2) we have the estimate 71 | (w 1 ? v i ) — (^2,^2)! ^ 1^ — 2/1 5:
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76 R. Potthast

72 |(MI, t>i) - (ΐί2,υ2)| for χ G t^(y), where £/(y) is a neighborhood of y and fa and 72
are constants [2]. In U(y) we can write

,,^_fc) ι /(*»+*&) x (Α\vdu2 9u2 y \ t;2
with

(4.15)

The function ^3>ν is Frechet differentiable in C* and there exist constants c\ and c2 with
Ο < Ci < <73,y < c2 and 0 < c\ < dg^y/dr < c2 Vr E C,. Therefore 1/#3,ν is also Frechet
different i able in C2

p and the derivative is bounded. Using the chain rule, clearly the other
terms of (4.15) are Frechet differentiable. For the derivative

dy dr(y)
,x-+r(x)--(y-r(y))\}(r,h)

we want to show that
(4.16)

(4.17)
uniformly for r G C2

p and h G KI C C2(dD). The estimate (4.17) is a direct consequence
of Taylor's theorem applied to the twice continuously differentiate function / : K, — »
IR, if we are able to show that grad (ui fvi)/ |ui=w2 .vi=u2 = ^· ^n^s can De verified by a
straightforward but lengthy calculation. Now collecting all terms and using the product
rule for the differentiation of (4.15) we obtain the estimate

(4.18)

(4.19)

for all r 6 C2. For the second derivative we obtain the analogous result

dr*
{„r(X).(xT-yr)}(r;h) < c\\h\\l*tdD)\x - y\

for all r € C}.
III. We obtain the differentiability of J?(r, y) using the representation

d d
~—V X ~z—^

which is valid in local coordinates y — y(ui,ii2). The derivatives of J? are uniformly
bounded for r G C^y € 9D.
IV. The statement of Lemma 4.1 can now be verified using the estimates of I., II. and
III., the chain and product rule.

Corollary 4.1. The operator (I-K* -Ίη(Κ^-Ι-\-Τ50)80)-1 is Frechet differentiable
considered as a mapping C2

p — > B(C(dD), C(dD)) and the Frechet derivative is given by

, Ν-ι
= (/ _ /Γ - IT?« - / 4- T5o)50)

(4.20)
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Frechet differentiability 77

Proof. The statement follows by combining Theorems 3.2 and 4.4. Ο
We transform the operator Ρ onto the reference surface dD:

(4.21)

and establish the following result.

Theorem 4.5. Tie integral operator P : C} -> (c(dD),C(M)} is Frechet differen-
tiate and the derivative can be computed by differentiation of the kernel of P.

Analogously to the proof of Theorem 4.4 we base the proof on the following lemma
which can be shown analogously to Lemma 4.1. It is actually more simple since the kernels
have no singularities.

Lemma 4.2. Tie kernel of the operator P given by (4.21) is two times continuously
Frechet differentiate as a mapping C* —> C for fixed x (E M, y € dD. The derivatives are
continuous on C* χ Μ χ dD and bounded by a constant C G H.

Proof of Theorem 4.5. We verify the assumptions of Theorem 3.3. The differen-
tiability of the kernels and their continuity is stated in Lemma 4.2. Therefore P and the
operators which are built by integration of the derivatives of the kernel are well defined
bounded linear operators C(dD) —> C(M). Now Theorem 3.3 can be applied to obtain
the statement of Theorem 4.5.

Now consider the operator TV. We can write

(N(ry)(x) = (i/(r, z), grad u''(*r)> , x G dD.

Theorem 4.6. Tie operator N : C} -> Β (θ2''(Β), C(d£>)) is Freciet differentiate
with derivative

1 = ( Λ~(Γ> Λ)> (grad *"')(*'·) / + Σ) Μχ) Λ—Λ~(Χ)^'(Χ)> χ G dD'\°r I k,j

Proof. The proof is a simple application of the chain and the product rule. D
We now obtain the central statement as a corollary.

Corollary 4.2. The nonlinear mapping R : C% —> C(M),r H+ U*\M is Frechet differ-
ent iable and the derivative is given by
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+2P(7 - /Γ - i77(#0
w - / + Γ5ο)Α))"

χ (/ - 1C - Ίη(Κ? - Ι + ί5o)50)~17Vut'
dN

+2P(/ - " - i77(#o*2 - / + Ϊ Ή Ο & Γ 1 - ' ' . (4.22)

5. CHARACTERIZATION OF THE DERIVATIVES

The actual numerical evaluation of dR/dr using corollary 4.2 is rather lengthy. Therefore
we characterize the derivative of R as the solution of a Neumann boundary value problem
analogous to the characterization in the Dirichlet case ([4], [5], [12], [13]). In the case
of the Neumann boundary condition we need more regularity of the boundary 3D of
the domain D than in the Dirichlet case, since we have to compute the second spatial
derivatives of the scattered fields on the boundary.

Theorem 5.7. Let D be a bounded domain with boundary of class C2'a· The Frechet
derivative dR/dr(Q,h) of the operator R at the point r = 0 is given by the solution to
the exterior Neumann problem for the domain D with boundary values

(x), χ e do (5.1)

where u denotes the solution to the original scattering problem.

Proof. We show that 9#(0, h)/dr given by Corollary 4.2 is a solution to the exterior
Neumann problem with boundary values given by (5.1). 9/2(0, h)/dr solves the Helmholtz
equation in IR3 \ Dr and satisfies the Sommerfeld radiation condition which can be seen
from (4.22). We have to compute the normal derivative on the boundary.

We want to apply the techniques which are used in [2] to compute the boundary
values of the single and double layer potential. There the singularity of the kernel of the
integrals is reduced by adding a suitable term, such that the sum of the original and the
added term is continuous on the boundary. Since we have to substract the added term it
should be chosen in such a way that its boundary values exist. In the case of the Potential
9P(0, h)ldry> one possible term is given by the Frechet derivative of (Ρ(τ)φ)(τ, h, xr

q) with
respect to the function q E C2(<9D,IR3) in the point q = 0, where xr

q is given by

xr
q:=x + q(x) + v(q,x).T. (5.2)

We write χτ for XQ. Differentiating instead of P(r) the whole expression

(P(r)<p)(r,xl) (5.3)

with respect to r using the chain rule exactly the right term is added. These observations
are used in equation (5.6). In addition we will observe: the limit
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Frechet differentiability 79

of the Frechet derivative of (5.3) vor r —> 0 is given by

+ I + v-

Choosing the density φ — 2^7 — K* — Ίη(Κ*2 — I -f TSo)So) Nul these are exactly the
boundary values of the second term of (4.22). Since the signs differ this terms compensate
each other and in the following proof the boundary values of the first two terms are given
by the boundary values of the Frechet derivative of (P(r)<^>)(r, A,xJ) with respect to q.

We consider a small strip of parallel surfaces to the boundary dD of the domain D. For
T < To, TQ sufficiently small, the strip Dr° := |x G IR3,miny€aD \x — y\ < TO} is bijectively
mapped onto the set {(χ,τ),χ G 3D, — TO < τ < TQ}. For brevity we again use equation
(2.10) and write TS* instead of (K*2 - I + TSQ)S0.
I. We compute the normal derivative of P (I - K* - ΊηΤ8ΐ)~ιΘΝ/δηί\ i.e. the last term
of (4.22). The jump relations yield

2NP = -(/ - /Γ - \ηΤ5ΐ). (5.4)

Therefore we obtain

2 - dN

II. We want to show that for the normal derivative of the first two terms in (4.22) at the
point r = 0 there holds

2 i t f ( 0 , *)(/ -K·- iiTSSr'NtA (i)

x (/ - A"* - iT/TS^)-1^«'' (x)

(0,M),(grad ^)(x))-EM^)^$^^), ^e . (5.5)
/7 / ^ j UX^UXj

For a function u; G C^R3 \ D) we have

We are interested in the function w = dP(Q,h)/dr(I - Κ*ΊηΤ!%)-ιΝι?. Define φ :=
(I — K* — ir/T^o)"1 Nu* where the operators are considered at the point r = 0. Thus they
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80 R. Potthast

are independent of r. Using the chain rule as mentioned at the beginning of the proof we
derive

(5.6)

Since we have a boundary dD of class C2'a we have u3 £ 02'Λ(Ιτ13 \ D) for the solution to
the scattering problem (see [13]). Now for the last term of (5.6) we obtain

), h(x) + (0, h,

^ · OXkOXj
(5.7)

for r — > 0, where we have used u3 = 2P</?. Because of (5.6) and (5.7) in order to show
(5.5) it remains to verify

For the sake of simplicity we will write this down only for the potential theoretic case
k = 0. The case k ^ 0 can be handled in the same manner. We split the potential P
into two parts: the single layer potential PI with density φ and ίη times the double layer
potential PI with density 5$φ.
III. First we show

O. (5.9)

We derive

= ~ {JgD W(x;,yr)JT(r, t/My) ds(y)} (0, A)

,h) (5.10)

and

^(0, Η)φ\ (χ) = 2-jt [jdo (v(r, χ), (grad ,9)(xT,yr)) <?(y)JT(r, y) ds(y)} (0, A)

(5.11)
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Frechet differentiability 81

X G D.

In order to show (5.9) we have to verify the continuity of (5.10) at τ = 0. We use the
decomposition

/ Hr> *)> (Srad *$)(*> 2/r)> <?(y)JT(r, y) ds(y)
J du

= φ(χ) i {i/(r, x), (grad χΦ)(χ, t/r)> Jr(r,./5£>

+ ( {„(r, ζ), (grad ,Φ)(ι, yr)) [*>(») - Y> Wr(r, y) di (y). (5.12)
«/σι/

We define

11 I T l ·— / [}J\T Τ Ι ι trrsn Φ 1 1 7* II l \ Γ ( Λ ι 7 / I — (Οι 7* il 7τ>ιΤ* 1 / 1 r l c i l / Ι 7* £1 TRu r ^ x y . — I \ t / ^ / , xj , ^gld.U. x^f )\·£') yr )l lY\y) Ψ\^ )\^Τ\' ^y ) ^-^\y )i X t JTv .
C7.D

The continuity of 9ur(x^)(0, h)/dr for τ —> 0 can be shown analogously to Lemma 3 of
[12]. The proof is literally the same. For the first term of the right-hand side of (5.12) we
use ([2], page 52)

I ( 7 / 1 Τ* Τ ι Ι ΟΤΛΓι Φ 1 1 7* II ι ) IT·(Τ 7 / 1 Π Q l 7/ 1 ~~ (1J\T T\ JJ l Τ l \ -i- 11J\ Τ Τ I "\f I 7* l \ T ^ TR/ \ \ . ' / ' \ O o*vl 3 j > « r n i Z / j yr 11 c ' x \ ' ) y / ^*-^\y/ ~~ \ \ > / > T " \ / / ^̂  \ v ) / 5 r \ . / / ) w t Jiv

where

UT(x): = -I (Grad^)(x,y r)Jr(r,y)da(y)
^/9D

and
K(X) = ~

By H(r,y) we denote the mean curvature of the surface 9Z)r which is defined in [2]. The
continuity of J^ {{i/(r, x), i/rOO)} (ri ^) for r — > 0 can be proved analogously to the con-
tinuity of the Frechet derivative of the single layer potential (Theorem 7 of [12]). In order
to prove the continuity of J^ {{^(r, x), VT(xr

r)}} (r, ft) for r — > 0 we use the decomposition

The continuity of the Frechet derivative of the first term of (5.14) for τ — » 0 can be shown
by an application of Lemma 3 of [12]. For the second term we use

to conclude that the derivative vanishes identically. Now collecting all terms we obtain
the equation (5.9).
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IV. Now we show

We derive

xr
r)}(0,h) - |-{(T50V)(x)}(0, A)} = 0. (5.15)

= ^{{i/(r,i),(gradWr)«)>}(0, ) (5-16)

where we use

€ IRR3.tv(x) := / Mr, y), (grad ,Φ)(χ, yr)> -/r(r, y)(50V)(y) dafo), χ
«/9£)

According to Theorem 2.23 of [2] we have

(grad *,)(<) = * 2Φ«^Γ)ΐ'(Γ> ν )Λ-(Γ^)(52^)( ν)α3(ν) (5.17)

, ' ,r)d3(y)

where Grad ̂  denotes the surface gradient of φ with respect to the surface dDJr- For the
second term of (5.15) we obtain with the help of the same theorem

(T50V)(x) = v(r,x),k*

jfD(grad ,9)(xr,yr)i>(r,y) X (Grad (50

xJT(y,r)ds(y)}, χ £ 8D.

We define
Mr.*).2(gradt;r)(z;)), r0 > τ > 0

(,).
We have to verify the continuity of d/dr {^r(^r)} (r' ̂ ) ^or r — *· 0. For the firsst integral
of wr we proceed as in the case of the single layer potential. For the second inntegral we
use the relations

Γ > 2 / 0 x b(y)JT(r,y)ds(y)J

(grad χΦ(χ^τ/Γ)) .6jb(y)Jr(v X J

(grad *Φ«^Γ))^[&*(ν) ~ ^(^)]«/τ(^2/) dds(y)

JQD (grad ^(x;,yr))^. JT(r,y)d5(y)

where Cij^ denotes the total antisymmetric tensor of rank 3,

fi(r,x)eitjtkbk(x) f (grad x$(xT
r,yr)} JT(x,y)ds(x)

JdD ^ ' 3

Brought to you by | ETH Zürich
Authenticated | 129.132.210.63
Download Date | 2/7/13 6:21 PM



Frechet differentiability 83

r(r ,y)ds(y)
J LJ ' uu\y)

and
f Λώ

»y)d^ (y )

r, y) ds(y)

and the antisymmetry of Cjj,* to derive the continuity. This can be done analogously
to III. α
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