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Abstract. We introduce AMGe, an algebraic multigrid method for solving the discrete equations
that arise in Ritz-type finite element methods for partial differential equations. Assuming access to
the element stiffness matrices, we have that AMGe is based on the use of two local measures, which
are derived from global measures that appear in existing multigrid theory. These new measures are
used to determine local representations of algebraically “smooth” error components that provide the
basis for constructing effective interpolation and, hence, the coarsening process for AMG. Here, we
focus on the interpolation process; choice of the coarse “grids” based on these measures is the subject
of current research. We develop a theoretical foundation for AMGe and present numerical results
that demonstrate the efficacy of the method.
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1. Introduction. Computer simulations play an increasingly important role in
scientific investigations. Indeed, as experimentation becomes more expensive, imprac-
ticable, or even proscribed, scientists are turning more and more to numerical simula-
tion. Modern simulation packages are extremely complex, with components spanning
many disciplines (e.g., hydrodynamics, radiation transport, structures, thermody-
namics, chemistry, and electromagnetics). Also, the problems are frequently posed in
multimaterial regimes, with contact surfaces, interpenetrability constraints, and intri-
cate geometries. As a result, codes are being developed to solve complex multiphysics
problems on highly resolved, unstructured grids. Such large-grid simulations require
the efficient union of massively parallel computing with scalable numerical algorithms
such as multigrid (see, e.g., [2]).

An especially effective method for many of the problems that arise in these ap-
plications is algebraic multigrid (AMG) [5, 4, 6, 20, 17, 19, 18]. AMG is a method
for solving matrix equations that is based on multigrid concepts, but constructs the
coarsening process in an algebraic way that requires no explicit knowledge of the ge-
ometry. It examines the matrix entries to determine a sequence of smaller matrix
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problems that serve as coarse-level equations. AMG also determines associated inter-
level transfer operators (restriction and prolongation), then solves the original matrix
equation in a multigrid-like process based on these automatically constructed compo-
nents. AMG has been shown to be well suited for solving unstructured grid problems
and to work well over a wide variety of applications (see, e.g., [10]).

It has been applied successfully to M -matrix problems where the so-called
strength of connection is easily measured (this measure is used to determine which
variables are strongly representative of the errors left by relaxation, so that they can
be used to construct the coarse levels). It also applies well to scalar problems that
depart substantially from M -matrix discretizations. However, for problems where
strength of connection is not easily measured, AMG is not effective without certain
problem-specific modifications or careful parameter tuning. For such cases, there is
no systematic AMG approach that has proven effective in any kind of general context.
There are still other problems (e.g., thin-body elasticity on unstructured grids) for
which AMG and other iterative methods in general have failed to achieve full optimal-
ity (i.e., convergence factors bounded uniformly in the size of the problem). The goal
of our research is to develop a more robust AMG for solving these difficult problems.

This paper introduces an AMG method for solving partial differential equations
discretized by Ritz-type finite element methods. As a departure from standard AMG,
where only the operator matrix is required, this approach assumes access to element
stiffness matrices. We thus refer to it as AMGe (AMG henceforth refers to the stan-
dard scheme). This new approach is based on the use of either of two measures
(derived from global measures used in existing theory) to determine algebraically
“smooth” error and to construct effective interpolation. AMGe uses a minimization
principle based on the element interpolation scheme first introduced in [16]. Other
multigrid methods, using minimization principles for constructing energetically stable
intergrid transfer operators, have recently appeared in [23, 24, 12].

Some notation and the key ideas behind AMG are summarized in the next sec-
tion. (Nevertheless, we assume that the reader is familiar with AMG methods and
terminology. For more details, see [10] and [18].) In particular, we discuss the notion
of strength of dependence and its role in defining the basic AMG components. In
section 3, we define a heuristic based on two global measures and establish a corre-
sponding two-level convergence result. We “localize” these measures in section 4 and
describe how they can be used to compute the interpolation operator for AMGe. We
also discuss the relationship between the local and global measures in subsection 4.3.
Section 5 contains numerical results supporting the theory and demonstrating the
efficacy of the approach. Concluding remarks are made in section 6.

2. Preliminaries. We begin this section by describing notation. Capital italic
Roman letters (A,B, P,R) denote matrices and bold lowercase Roman and Greek
letters denote vectors (u,v, ε). The ith component of the vector q is denoted by
qi. Other lowercase letters denote scalars, while capital calligraphic letters denote
sets and spaces (C,F ,S), with the singular exception that A is used to denote finite
element stiffness matrices. We define the A-inner product by 〈·, ·〉A := 〈A·, ·〉, where
〈·, ·〉 is the standard Euclidean inner product, and the A-norm (also called the energy
norm) by ‖·‖A := 〈·, ·〉1/2A .

Assume that we are given an n×n symmetric positive definite matrix A expressed
as the sum of a given set of finite element stiffness matrices: A =

∑
α∈T Aα, where T

is the set of finite elements used to discretize the problem and each Aα is symmetric
positive semidefinite. We do not assume access to a spatial grid or the ability to create
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new finite element stiffness matrices.
We seek the solution u ∈ R

n to the linear system

Au = f(2.1)

for a given f ∈ R
n. Standard iterative schemes, like Gauss–Seidel and Krylov space

methods, tend to converge slowly for large-scale problems of this type that arise from
partial differential equations. The difficulty is that smooth error components are typi-
cally attenuated very slowly by these simple processes, because they are based on local
properties (i.e., local connections in A). Multigrid methods attempt to correct this
limitation by representing the smooth errors on increasingly coarser, and, therefore,
more global levels.

To describe how system (2.1) could be solved by a multilevel method, let P be an
n×nc interpolation or prolongation matrix that transfers level nc corrections to level
n, with nc < n. P could be determined geometrically by, say, linear interpolation
(cf. [7]) when R

nc and R
n represent grids whose nodal positions are accessible. P

could instead be determined algebraically by so-called operator interpolation (cf. [1]),
which is based on the entries of A. In any event, we choose PT as the restriction
matrix that transfers level n residuals to level nc. The two-grid method for solving
(2.1) is then defined as follows:

Relax ν1 times on Au = f .(2.2a)

Correct u← u+ P (PTAP )−1PT (f −Au).(2.2b)

Relax ν2 times on Au = f .(2.2c)

Note the use of PTAP in correction step (2.2b). This so-called Galerkin coarse-grid
operator, together with the use of PT as the restriction operator, amounts to a vari-
ational form of multigrid. When A is symmetric, the correction step minimizes the
energy norm of the fine-grid error over all possible corrections from the range of P
(cf. [7]). To solve (2.1) in practice, one would use a multilevel method that recur-
sively applies algorithm (2.2) to solve the linear system involving PTAP in correction
step (2.2b).

Further examination of (2.2) reveals that relaxation and coarse-grid correction
must be chosen to complement each other: An error not reduced by one must be
reduced by the other. In this paper, we fix the choice of relaxation, then determine
interpolation. The relaxation we choose is a simple pointwise method, like Richardson,
damped Jacobi, or Gauss–Seidel, that satisfies the following heuristic:

H1: Error in the direction of an eigenvector associated with a large eigen-
value is rapidly reduced by relaxation, while error in the direction
of an eigenvector associated with a small eigenvalue is reduced by a
factor that may approach 1 as the eigenvalue approaches 0.

An error that is not rapidly reduced by relaxation is called algebraically smooth. The
actual character of algebraically smooth error depends on the operator and the type
of relaxation, but it loosely means that the residual is small when compared with
the error itself (we will be more precise about this shortly). This does not mean
that the error is smooth in any geometric sense. Thus, an error at a point may
be very different from the errors at neighboring points, yet it might be difficult to
reduce the error by relaxation. Such is the case for anisotropic problems, where an
algebraically smooth error that pointwise Gauss–Seidel relaxation cannot effectively
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reduce can be geometrically oscillatory in the direction of small coefficients of the
differential equation. In any case, the interpolation matrix, P , must be defined so
that an algebraically smooth error is effectively eliminated in step (2.2b) and the
coarse-grid equations, which involve PTAP , are amenable to solution.

2.1. AMG. To define the multigrid components in AMG, we use the following
heuristic (cf. [5, ?, 18]) based on special properties of M -matrices:

H2: Smooth error varies slowest in the direction of strong dependence.

Here, we say that unknown i strongly depends on unknown j if

−ai,j ≥ θmax
k �=i

{−ai,k} for some fixed θ ∈ (0, 1).(2.3)

Thus, strong dependence is characterized by matrix coefficients that are large in the
sense of (2.3). A typical choice for parameter θ is 0.25.

Although AMG was developed with M -matrices in mind, in practice it is not
limited to this class of problems. However, the standard method does rely on H2,
and our sense of strong dependence may not be suitable for many important classes of
problems. For example, one simple problem with which standard AMG has difficulty
is the Poisson equation on a rectangular grid, discretized with bilinear quadrilateral
elements, where the fine-grid elements are stretched to a 10:1 aspect ratio. This yields
the coefficient stencil 

−1 −3.9 −1
1.9 8 1.9
−1 −3.9 −1


 .(2.4)

In (2.4), it is not readily apparent from the size of the off-diagonal entries that the
direction of strongest dependence is vertical. Since H2 is used to define all the AMG
components, and it requires a clear understanding of strong dependence, AMG can
exhibit degraded performance (see Table 5.2). For this simple case, slow convergence
of AMG can be ameliorated by simply tuning its parameters (e.g., setting θ = 0.5) or
by more elaborate algorithmic “fixes” (e.g., iterative weight interpolation [10] or geo-
metric/algebraic interpolation methods [11, 9, 8]). Another approach is to replaceH2
by a heuristic that leads to a more robust AMG algorithm. Exploring this possibility,
as we begin to do in the next section, is the primary aim of this paper.

3. Global measures and convergence bounds. This paper takes a slightly
different approach, using a heuristic based not onM -matrices, but on the eigenvectors
of A. In a two-grid scheme, coarse-grid correction will completely eliminate error in
Range (P ), the range of the interpolation operator. To complement the action of
relaxation, which satisfies H1, the interpolation matrix must satisfy the following
heuristic:

H3: Interpolation must be able to approximate an eigenvector with error
bound proportional to the size of the associated eigenvalue.

To make H3 more rigorous, define Q : R
n → R

n to be a convenient projection onto
Range (P ), that is,

Q = PR(3.1)

for some restriction operator R : R
n → R

nc such that RP = Ic, the identity on R
nc .

The specific form for Q (and, hence, R) will not become important until section 4.
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For any vector e ∈ Range (P ), we have Qe = e. Thus, I −Q can be used to measure
the defect of interpolation. With this in mind, we now define two measures of how
well H3 is satisfied:

M1(Q, e) :=
〈(I −Q)e, (I −Q)e〉

〈Ae, e〉 ,(3.2)

M2(Q, e) :=
〈A(I −Q)e, (I −Q)e〉

〈Ae, Ae〉 .(3.3)

Measure M2 was used in the early multigrid theory [15, 13, 14] to establish optimal
convergence of the V-cycle algorithm under full regularity assumptions on the associ-
ated partial differential equation. Measure M1 was introduced in [4] and used more
recently to establish convergence, independent of the coarse-grid size, of a two-level
method for linear elasticity [22]. It is also an essential ingredient of the regularity-free
multilevel theory found in [3]. We develop the relevant two-grid theory here for both
measures so that we can tailor the results to our needs.

It has not been our practice to use diagonal conditioning of A in standard AMG.
Such a scaling generally changes the nature of smooth errors. Since current schemes
at some point rely on a premise of how a smooth error behaves (e.g., that it is lo-
cally constant), then diagonal scaling can make it more difficult for AMG to handle.
However, no such premise of smoothness is made anywhere in AMGe. Thus, in the
remainder of this paper, we are free to assume for convenience that matrix A has been
scaled so that its diagonal is the identity. For a general symmetric positive-definite
matrix with diagonal D �= I, this can be assured by a diagonal scaling that replaces
A by D−1/2AD−1/2. Note that this transformation must be considered in the repre-
sentation of A as a sum of local stiffness matrices, but this is just a straightforward
rescaling of the variables. This scaling does, however, bear on the practicality of our
results because we analyze AMG based on Richardson iteration, which is not gener-
ally a good smoother for matrices that have widely varying diagonal entries. Thus,
if diagonal scaling is not used, then in general it would be wise to use a relaxation
scheme like damped Jacobi and adjust measures M1 and M2 accordingly.

Our theory assumes that either M1 or M2 is bounded uniformly in e ∈ R
n\{0}.

To see how this assumption relates to H3, suppose that e is an eigenvector of A
corresponding to a small eigenvalue. Then, for M1 or M2 to be bounded, since the
denominators of the two measures are small, the numerators must also be small. Thus,
Q must accurately interpolate eigenvectors belonging to small eigenvalues. On the
other hand, if e is an eigenvector of A corresponding to a large eigenvalue, then the
denominators of the two measures are large, so the numerators may be large. Thus,
Q need not accurately interpolate eigenvectors belonging to large eigenvalues.

We now prove convergence results based on M1 or M2 for two-level algorithm
(2.2).

Lemma 3.1. Let Q be any projection onto Range (P ). Assume that either of the
following two approximation properties are satisfied for some constant K:

M1(Q, e) ≤ K ∀e ∈ R
n\{0},(3.4)

M2(Q, e) ≤ K ∀e ∈ R
n\{0}.(3.5)

If e �= 0 is A-orthogonal to Range (P ), then
1

K
≤ ‖Ae‖2
〈Ae, e〉 ≤ ‖A‖ .(3.6)
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Proof. The upper bound in (3.6) follows easily from the definition of the matrix
norm. To prove the lower bound, note that Range (Q) = Range (P ). Hence, if e is
A-orthogonal to Range (P ), then

〈Ae, Qv〉 = 0 ∀v ∈ R
n.(3.7)

First, assume that (3.4) holds. From (3.7) and the Cauchy–Schwarz inequality,
we have

〈Ae, e〉 = 〈Ae, (I −Q)e〉
≤ ‖Ae‖ ‖(I −Q)e‖
≤ ‖Ae‖ 〈Ae, e〉1/2 K1/2.

The lower bound in (3.6) now follows by dividing through by 〈Ae, e〉K1/2 and squar-
ing the result.

Now, assume that (3.5) holds. From (3.7) and the Cauchy–Schwarz inequality,
we have

〈Ae, e〉 ≤ 〈Ae, e〉+ 〈AQe, Qe〉
= 〈Ae, e〉 − 〈Ae, Qe〉 − 〈AQe, e〉+ 〈AQe, Qe〉
= 〈A(I −Q)e, (I −Q)e〉
≤ ‖Ae‖2 K.

The lower bound in (3.6) now follows by dividing through by 〈Ae, e〉K.
Denote the A-orthogonal projection onto the Range (P ) by S. Thus,

S := P (PTAP )−1PTA.(3.8)

The error propagation matrix for the coarse-grid correction step (2.2b) is I − S. A
Richardson iteration with step-size parameter s = ω/ ‖A‖, ω ∈ (0, 2), has the error
propagation matrix G = I − sA. If we choose (ν1, ν2) = (0, 1) in (2.2), then the
associated error propagation matrix for this simple two-grid scheme is G(I − S).
The following theorem analyzes its convergence by bounding its error propagation
matrix in the A-norm. Convergence results for other values of (ν1, ν2) then follow
naturally [14].

Analogous multilevel results can be found in [15, 13, 14] for approximation prop-
erty (3.5), and in [3, 21] for (3.4) under the additional assumption of energetic stability
of interpolation, a sufficient condition for which is that ‖P (PTP )−1PT ‖A be bounded
uniformly on all levels.

Theorem 3.2. Assume that either approximation property (3.4) or (3.5) is sat-
isfied for some constant K. Then

‖G(I − S)‖A ≤
(
1− ω(2− ω)

K ‖A‖
)1/2

.(3.9)

Proof. First note that (3.6) implies K ≥ 1/ ‖A‖ ≥ ω(2 − ω)/ ‖A‖, so that (3.9)
makes sense. We have

〈AGe, Ge〉 = 〈Ae, e〉 − 2s 〈Ae, Ae〉+ s2
〈
A2e, Ae

〉
≤ 〈Ae, e〉 − ω(2− ω)

‖A‖ 〈Ae, Ae〉 .
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Replacing e with (I − S)e and applying the result in Lemma 3.1 yields

‖G(I − S)e‖2A ≤ 〈A(I − S)e, (I − S)e〉 − ω(2− ω)

‖A‖ ‖A(I − S)e‖2

≤
(
1− ω(2− ω)

K ‖A‖
)
‖e‖2A .

Notice that the bound on the convergence factor approaches 1 as K becomes
large. Conversely, smaller K yields a smaller bound on the convergence factor. Our
aim is to determine P so that, for some appropriate Q, either (3.4) or (3.5) is satisfied
for a reasonably small K.

We also remark that the above results can be generalized to apply when (2.1)
is a consistent system with symmetric positive semidefinite matrix A. Measures M1

and M2 must be restricted to e �∈ Null(A). A finite bound K in (3.4) or (3.5) then
implies that interpolation is exact for e ∈ Null(A), which in turn implies that the
correction step involves a consistent system. A zero initial guess and relaxation using
a polynomial method like Richardson iteration ensures that the approximate solution
remains orthogonal to Null(A).

4. Interpolation using local measures. Quantities M1 and M2 are global
measures of the quality of interpolation. Our intent is to use these measures to
determine an effective strategy for constructing interpolation in AMG, but it is not
practical to do this globally. In this section, we discuss an approach for localizing
these measures for linear systems (2.1) that arise from finite element discretizations.

Recall that A is given as the sum of finite element stiffness matrices: A =∑
α∈T Aα. Now, we do not assume access to an underlying spatial grid. However, we

can construct an artificial grid based on the graph associated with A, with vertices
G := {1, 2, . . . , n} and edges E := {(i, j) : aij �= 0 for i �= j}. Grid point (vertex)
i ∈ G is associated with unknown ui.

We first define the point set of an element:

Mα :=
{
j : εT

j Aαεj �= 0
}
,(4.1)

where εj is the canonical basis vector associated with unknown j. Next, define the
neighborhood of grid point i as the set of elements and set of points

Ti := {α ∈ T : εT
i Aαεi �= 0},(4.2)

Ni := ∪α∈Ti
Mα,(4.3)

respectively (see Figure 4.1). Define the local matrices on neighborhood i by

Ai =
∑
α∈Ti

Aα.(4.4)

We also assume that a coarse grid has been selected; that is, the points in G have
been partitioned into coarse-grid points C and fine-grid points F such that C ∪F = G
and C ∩ F = ∅. We now seek the n× nc interpolation matrix P , where nc = |C|, that
interpolates from the coarse-grid points C to the entire grid G.

Two conflicting goals drive the construction of P . The first is to minimize the
bound on measureM1 orM2, while the second is to control the sparsity of the coarse-
grid system involving PTAP . Focusing on the second goal first, we assume that
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i

Fig. 4.1. Local neighborhoods.

the coarse-grid points interpolate to themselves exactly; that is, P restricted to C is
the identity, while fine-grid points interpolate only from coarse-grid points in their
neighborhood, that is, from Ci := Ni ∩ C.

To make the construction more clear, suppose that the rows and columns of A
have been arranged so that the fine-grid points come first, followed by the coarse-grid
points. We may then write A in block form as follows:

A =

[
Aff Afc

Acf Acc

]
.(4.5)

In this context, the interpolation matrix has the block form

P =

[
Pfc

Ic

]
.(4.6)

Alternatively, we may define the projection

Q =

[
0 Pfc

0 Ic

]
,(4.7)

which implies the choice of R = [0, Ic] as the restriction in (3.1).
In what follows, we develop a strategy for constructing the rows of Pfc, that is,

the rows of Q corresponding to each point i ∈ F , which we denote
qTi := εT

i Q.(4.8)

Restricting interpolation to a neighborhood of coarse-grid points is equivalent to
choosing

qi ∈ Zi := {v ∈ R
n : vj = 0 for j �∈ Ci}.(4.9)

We now localize measures M1 and M2 by defining

Mi,1(Q, e) :=

〈
εiε

T
i (I −Q)e, εiε

T
i (I −Q)e

〉
〈Aie, e〉 ,(4.10)

Mi,2(Q, e) :=

〈
Aiεiε

T
i (I −Q)e, εiε

T
i (I −Q)e

〉
〈Aie, Aie〉(4.11)
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for any e �∈ Null(Ai). Notice for i ∈ C that Mi,1 = Mi,2 = 0, while for i ∈ F the
above measures depend only on the ith row of Q, which is to be chosen in Zi. To
emphasize this dependence, when the meaning is clear we write

Mi,1(qi, e) =

〈
(εi − qi)Te, (εi − qi)Te

〉
〈Aie, e〉 ,(4.12)

Mi,2(qi, e) =

〈
(εi − qi)Te, (εi − qi)Te

〉
〈Aie, Aie〉(4.13)

for qi ∈ Zi and e �∈ Null(Ai). (Recall that A has unit diagonal.)
Heuristic H3, as applied to these local measures, now relates interpolation ac-

curacy to local eigenvectors of Ai. This makes it practical to use Mi,1 and Mi,2 to
compute interpolation. Since we wish to make these local measures small, interpola-
tion is defined so that the qi in (4.8) is the argmin (that is, the argument that attains
the minimum) of one of the following min-max problems:

Ki,p := min
qi∈Zi

max
e �∈Null(Ai)

Mi,p(qi, e)(4.14)

for p = 1 or 2. Note that if there exists a qi ∈ Zi that yields Ki,p < ∞, then qi
satisfies the constraint

(εi − qi)Te = 0 ∀e ∈ Null(Ai).

Thus, min-max problem (4.14) can be restated as the constrained min-max problem

Ki,p = min
qi∈Zi

max
e⊥Null(Ai)

Mi,p(qi, e)

subject to (εi − qi)Te = 0 ∀e ∈ Null(Ai)(4.15)

for p = 1 or 2. The next two subsections focus on solving these min-max problems.
In section 4.3, we relate the local measures to the global measures.

4.1. Computing interpolation by fitting eigenvectors. One way to com-
pute the qi in (4.14) or (4.15) is to “fit” the eigenvectors of Ai, as quantified in the
following theorem.

Theorem 4.1. Suppose we have computed the eigendecomposition

AiVi = ViΛi, V T
i Vi = I.(4.16)

The columns of Vi are the orthonormalized eigenvectors of Ai, and Λi is the diagonal
matrix formed from the corresponding eigenvalues. Assume that this eigen-decomposi-
tion is ordered to distinguish between zero eigenvalues and positive eigenvalues (that
form the diagonal matrix Λi+):

Vi =
[
Vi0 Vi+

]
, Λi =

[
0 0
0 Λi+

]
.(4.17)

Then min-max problem (4.15) is equivalent to the following constrained least-squares
problem:

min
qi

∥∥∥Λ−p/2
i+ V T

i+(εi − qi)
∥∥∥2

subject to V T
i0 (εi − qi) = 0(4.18)

for p = 1 or 2.
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Proof. Note that the null-space constraint in (4.15) is equivalent to that in (4.18).
Assume first that qi satisfies (4.15) with p = 1. Since e ⊥ Null(Ai), we can write

e = Vi+Λ
−1/2
i+ w, which yields

min
qi∈Zi

max
e⊥Null(Ai)

Mi,1(qi, e) = min
qi∈Zi

max
w

∥∥∥(εi − qi)TVi+Λ
−1/2
i+ w

∥∥∥2

‖w‖2

= min
qi∈Zi

∥∥∥Λ−1/2
i+ V T

i+ (εi − qi)
∥∥∥2

.

Assume now that qi satisfies (4.15) with p = 2. Writing e = Vi+Λ
−1
i+w, we then have

min
qi∈Zi

max
e⊥Null(Ai)

Mi,2(qi, e) = min
qi∈Zi

max
w

∥∥(εi − qi)TVi+Λ
−1
i+w

∥∥2

‖w‖2

= min
qi∈Zi

∥∥Λ−1
i+ V

T
i+ (εi − qi)

∥∥2
.

Computing the interpolation weights qi using (4.18) requires eigendecomposition
(4.16), which is not the most efficient method. We introduce a simpler approach in
the next subsection. However, we include this notion of fitting eigenvectors because
it is useful for understanding the basic principles involved in selecting interpolation.

4.2. A more practical algorithm for computing interpolation. Here we
describe a practical algorithm for determining when (4.14) or (4.15) has a (unique)
solution for i ∈ F , and for computing Q when a solution does exist. One important
consequence of this characterization is its update property: Whenever the solution
with the current interpolatory set does not exist, we can add points to Ci and test
again for solvability without redoing all of the computation.

Assume first that grid point i ∈ F has a neighborhood, as depicted in Figure 4.1,
consisting of ni points in set Ni, with nf fine-grid points and nc coarse-grid points
in Ci. Next, order the unknowns and equations of matrix Ai so that unknown i is
first, followed by the other fine-grid points, with the coarse-grid points last. The
neighborhood matrix and its square can then be written as

Ai =

[
A

(1)
ff A

(1)
fc

A
(1)
cf A

(1)
cc

]
and A2

i =

[
A

(2)
ff A

(2)
fc

A
(2)
cf A

(2)
cc

]
,

respectively, and εi becomes ε1.
In the remainder of this subsection, we drop the subscript i whenever the meaning

is clear. Set Zi restricted to the neighborhood becomes

Z := {e ∈ R
ni : ej = 0 ∀j �∈ Ci} .

We can then interpret (4.15) with p = 1 or 2 as the problem of determining a vector
q ∈ Z that minimizes maxe �∈Null(Ai) Mi,p(q, e) subject to the constraint

(ε1 − q)Te = 0 ∀ e ∈ Null(Ai) = Null(A
2
i ).

That is, we require

ε1 − q ∈ Range (Ai) = Range
(
A2

i

)
.(4.19)
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Our first concern is the existence of such a vector q. For this, we let ε̂1 ∈ R
nf

denote the first canonical basis vector of length nf .
Lemma 4.2. There exists q ∈ Z such that ε1 − q ∈ Range (Ap

i ) if and only if

ε̂1 ∈ Range
(
A

(p)
ff

)
,

with p = 1 or 2.

Proof. Assume that ε̂1 ∈ Range
(
A

(p)
ff

)
so that

ε̂1 = A
(p)
ff δ̂1

for some δ̂1 ∈ R
nf . Then

Ap
i δ :=

[
A

(p)
ff A

(p)
fc

A
(p)
cf A

(p)
cc

](
δ̂1

0

)
= ε1 − q ∈ Range (Ap

i ) ,

and q ∈ Z.
Conversely, suppose there exists q ∈ Z such that ε1 − q ∈ Range (Ap

i ); that is,
there exists δ such that

ε1 − q = Ap
i δ.

This, in turn, implies that

ε̂1 =
[
A

(p)
ff , A

(p)
fc

]
δ ∈ Range

([
A

(p)
ff , A

(p)
fc

])
.

The proof will be completed by demonstrating that

Range
([
A

(p)
ff , A

(p)
fc

])
= Range

(
A

(p)
ff

)
.

This is certainly true if A
(p)
ff is nonsingular. Assume otherwise, and let δ̂ be a nonzero

vector in Null(A
(p)
ff ). Then〈[

A
(p)
ff A

(p)
fc

A
(p)
cf A

(p)
cc

](
δ̂
0

)
,

(
δ̂
0

)〉
= 0.

Since Ap
i is symmetric positive semidefinite, then 0 is an extreme value of 〈Ap

i e, e〉,
which implies that the vector (δ̂, 0)T is an eigenvector of Ap

i with eigenvalue 0. In

other words, (δ̂, 0)T ∈ Null(Ap
i ), which implies that

Null(A
(p)
ff ) = Null(A

(p)
cf ),

which, in turn, implies that

Range
(
A

(p)
ff

)
= Range

((
A

(p)
cf

)T
)
= Range

(
A

(p)
fc

)
,

and the lemma is proved.
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Rewriting (4.19), we want δ ∈ R
ni such that

ε1 − q = Ap
i δ

for some q ∈ Z. By the proof of Lemma 4.2, the set of all such δ is

Y (p) :=
{

δ ∈ R
ni :

[
A

(p)
ff , A

(p)
fc

]
δ = ε̂1

}
.

If Y (p) is empty, then the constraint in (4.15) cannot be satisfied and Ki,p = ∞. In
this case, more points must be added to Ci for (4.15) to have a solution. If Y

(p) is
not empty, then any δ ∈ Y (p) can be written as δ = δ∗ + γ, where δ∗ is a particular
element of Y (p) and γ ∈ Null([A(p)

ff , A
(p)
fc ]). From the proof of Lemma 4.2, we may

choose δ∗ = (δ̂1, 0)
T , where A

(p)
ff δ̂1 = ε̂1. We now show that

ε1 − q∗ = Ap
i δ

∗

yields the unique solution to (4.14) or (4.15).

Theorem 4.3. If ε̂1 �∈ Range (A
(p)
ff ), then Ki,p = ∞. If ε̂1 = A

(p)
ff δ̂1, then the

unique solution of (4.14) is given by

q∗ =

(
0

−A(p)
cf δ̂1

)
∈ Z,(4.20)

and Ki,p = 〈ε̂1, δ̂1〉 for p = 1 or 2.
Proof. The first statement follows from Lemma 4.2. To prove the second, let

δ∗ = (δ̂1, 0)
T . Using the substitution

ε1 − q = A(p)δ

with δ ∈ Y (p), we can rewrite (4.14) as

min
q∈Z

max
e/∈Null(Ap

i
)

〈
(ε1 − q)Te, (ε1 − q)Te

〉
〈Ap

i e, e〉
= min

δ∈Y (p)

〈Ap
i δ, δ〉

= min
γ∈Null([A

(p)

ff
, A

(p)

fc
])

〈Ap
i (δ

∗ + γ), (δ∗ + γ)〉 .(4.21)

Any solution of (4.21) is characterized by γ∗ ∈ Null([A(p)
ff , A

(p)
fc ]) such that

〈Ap
i (δ

∗ + γ∗), γ〉 = 0 ∀γ ∈ Null([A(p)
ff , A

(p)
fc ]);(4.22)

that is,

Ap
i (δ

∗ + γ∗) ∈ Range
([

A
(p)
ff

A
(p)
cf

])
.(4.23)

But γ∗ = 0 satisfies (4.22) by construction of δ∗, which proves that (4.20) solves (4.14).
To prove uniqueness, suppose there are two such solutions to (4.22), say, δ∗ and

β∗. Then

Ap
i (δ

∗ − β∗) =

[
A

(p)
ff

A
(p)
cf

]
ŵ
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for some ŵ ∈ R
nf . Since both δ∗ and β∗ are in Y (p), we have ŵ ∈ Null(A(p)

ff ). From

Lemma 4.2, we have Null(A
(p)
ff ) = Null(A

(p)
cf ), which implies that A

p
i (δ

∗ − β∗) = 0
and that q∗ is unique.

Finally, substituting δ∗ into (4.21) yields

Ki,p = 〈Ap
i δ

∗, δ∗〉 =
〈
ε̂1, δ̂1

〉
,

which completes the proof.
A practical algorithm for determining Q is as follows:
For p = 1, set

A
(1)
ff = Aff , A

(1)
cf = Acf .

For p = 2, set

A
(2)
ff = A2

ff +AfcAcf , A
(2)
cf = AcfAff +AccAcf .

Perform a QR factorization on A
(p)
ff using Householder reflections and column pivoting

to detect rank deficiency. If

A
(p)
ff δ̂1 = ε̂1

has a solution, then set

q∗ =

(
0

−A(p)
cf δ̂1

)

and Ki,p = 〈ε̂1, δ̂1〉; otherwise, set Ki,p =∞.
4.3. Local-global measure. This subsection shows that if Mi,1 or Mi,2 is

bounded for every i ∈ F , then the global measure M1 is also bounded.
Theorem 4.4. Let p = 1 or 2 and assume that the local approximation property

Mi,p(Q, e) ≤ Ki,p ∀e ∈ R
n(4.24)

holds for some Ki,p and all i ∈ F . Then global approximation property (3.4) is also
satisfied with

K = max
α∈T

∑
i∈Mα∩F

Ki,p ‖Ai‖p−1
.(4.25)

Proof. We have

〈(I −Q)e, (I −Q)e〉 =
∑
i∈F

〈
εiε

T
i (I −Q)e, εiε

T
i (I −Q)e

〉
≤
∑
i∈F

Ki,p 〈Ap
i e, e〉

≤
∑
i∈F

Ki,p ‖Ai‖p−1 〈Aie, e〉

=
∑
α∈T

〈Aαe, e〉
∑

i∈Mα∩F
Ki,p ‖Ai‖p−1

≤ K
∑
α∈T

〈Aαe, e〉

= K 〈Ae, e〉 .
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Straightforward application of the above techniques can be used to bound M2

in terms of Mi,2. However, the resulting bounds on M2 can be much larger than
the maximum value of Mi,2. While this may not be sharp, it is simple to construct
an example where M2 is much larger than the largest Mi,2 and, hence, much larger
than M1. In this case, using M2 to estimate convergence could lead to the erroneous
conclusion that the resulting two-level method is slow to converge.

The local measure bounds, Ki,p, can be used as a diagnostic tool: Theorem 4.4
shows that they contribute to the bound K used to establish convergence in Theorem
3.2. While neither measure provides a sharp bound when the algorithm exhibits a
small convergence factor, they can provide a warning: If Ki,p is large for some i, it
may be profitable to reexamine the choice of the coarse grid, perhaps adding more
grid points to C.

As an alternative to increasing the size of C, we could respond to large values of
Ki,p locally by increasing the size of the neighborhood. Define the set N (k)

i of kth

removed neighbors recursively by letting N (1)
i := Ni and

N (�+1)
i := ∪

j∈N (�)
i

Nj .(4.26)

Then interpolation could be allowed from the set Ci := N (k)
i ∩ C, which are the

coarse-grid points connected to point i by a path of length k in the graph of A.
While this would yield more accurate interpolation, the complexity of PTAP would
certainly increase.

5. Numerical results. We apply the element interpolation methods numeri-
cally to two illustrative examples: a Poisson equation discretized on stretched quadri-
laterals and a plane-stress cantilever beam. We compare our numerical results with
the bounds predicted by our theory and demonstrate the improved robustness of the
new methods over AMG.

For each problem, we first present results for AMG to show that our usual ap-
proach breaks down. For standard AMG, which we now refer to as AMG1, parameter
θ defining the cutoff for strong connections is set to 0.25. The interpolation formula
is that found in [18] (see (5.10) and (6.4) there). For the stretched grid problem, two
variants of AMG are presented that restore convergence (although these fixes will be
shown to be ineffective in the elasticity problem). The first, called AMG2, uses a more
restrictive definition of strong connections by taking θ = 0.50. The second variant
(AMG3) returns to θ = 0.25 but uses iterative weight interpolation [10].

For comparison, we also include a method presented in [9, 8], since they report
results for both anisotropic Poisson problems and 2D elasticity. In those articles two
basic methods are described, each with a user-specified parameter θ1. The one we
include (referred to in [8] as method II, with θ1 = 0, and called the Chang–Wong–Fu
(CWF) method here) appears to be the most robust of their methods overall. There
are two main differences between our standard AMG algorithm and theirs. The first
is that their strong connections are determined by absolute value, while we consider
only connections of the “right” sign (i.e., the opposite sign from that of the diago-
nal entry) to be strong. (As with standard AMG, they take θ = 0.25.) The second
difference is the use of a modified interpolation formula. As with standard AMG,
interpolation to a point i is derived by writing the corresponding residual equation in
terms of the error, making some approximations for those terms defined at points not
used in interpolation, and solving for ei to obtain the weights. Unlike standard AMG,
these approximations use weighted averages based on absolute values of the matrix
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entries and incorporate some geometric ideas based on the assumption that the size of
matrix entries diminishes with the distance between grid points. A seemingly minor
modification is that, for weak (small) connections j with no connection to set the
interpolation points, the approximation is made that ej = ei if sign(aij) = −sign(aii)
or ej = −ei if sign(aij) = sign(aii). Variants of their methods include modifications
to restriction and the definition of the coarse-grid operator. However, the algorithm
we test reduces to the standard Galerkin formulation. That is, restriction is defined
as the transpose of interpolation, and the coarse-grid operator is taken as the prod-
uct of restriction, the fine-grid matrix, and interpolation. The coarsening method
they describe is simply the Ruge–Stüben two-pass coarsening scheme [18] using the
modified definition of strong connections. For testing their method, we use our AMG
coarsening code with strong connections determined by absolute value.

The only difference here between AMGe and the AMG variants described above is
that we use the element interpolation method in AMGe to construct the interpolation
operators. Thus, the coarse grids are selected in the same way that they are in AMG.
The possibility of using the AMGe measures to determine coarsening is a topic of
current research. Three different definitions are considered for interpolation: AMG,
local measure 1 (AMGe1), and local measure 2 (AMGe2).

In the multilevel algorithm, we construct “coarse element stiffness matrices” Ac,α

as follows:

Ac,α = PTAαP.(5.1)

To reduce computational complexity and storage costs, we combine coarse elements
that operate on the same points by summing them. That is, we define

Mc,α :=
{
j : εT

j Ac,αεj �= 0
}

(5.2)

and, whenMc,α =Mc,β , we combine Ac,α and Ac,β to form a single coarse-element
stiffness matrix.

To conform to the theory, the linear systems for the AMGe tests are scaled so
that the diagonal is the identity. That is, we actually solve Âû = f̂ , where Â =
D−1/2AD−1/2, û = D1/2u, and f̂ = D−1/2f . Our initial experiments use V (0, 1)
cycles based on damped Jacobi with step size s = 1/2. In the examples below, ‖A‖ is
between 2.5 and 3.0 so that 1

‖A‖ ≤ s ≤ 2
‖A‖ . For AMG, we use the original unscaled

matrix A.
Equation (3.9) in Theorem 3.2 yields a bound on the convergence factor given by

ρ ≤ 1− 4− ‖A‖
4K

,(5.3)

where K is the bound on either M1 or M2. As we will see, this bound is very
pessimistic. Replacing K from (4.25) by Kp = maxiKi,p yields a somewhat more
realistic but still pessimistic estimate for the convergence factor. These estimates are
included in the numerical results below.

5.1. Stretched quadrilateral. Consider the stretched quadrilateral problem
introduced in section 2, which consists of a Poisson equation on a rectangular grid
discretized with nx×ny bilinear quadrilateral elements. The fine-grid elements have a
10:1 aspect ratio, yielding the stencil in (2.4). The boundary conditions are Dirichlet,
which are eliminated from the matrix during discretization.
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Table 5.1
Two-level and V-cycle asymptotic convergence factors for the stretched quadrilateral problem.

Two-Level Multilevel

Size AMG1 AMG2 AMG3 CWF AMG1 AMG2 AMG3 CWF

64× 64 0.80 0.12 0.09 0.91 0.81 0.14 0.09 0.91

128× 128 0.80 0.12 0.10 0.92 0.81 0.14 0.10 0.91

In Table 5.1, we present results of tests with AMG and its variants for the
stretched-grid Poisson problem. Both two-level and V-cycle results are given. In
all cases, (1,1) V-cycles are used, with C/F-ordered Gauss–Seidel relaxation. For
AMG1, convergence is much worse than the two-level factors of 0.06 and V-cycle
factors of 0.10 that we would get on unstretched grids. AMG2 and AMG3 both im-
prove convergence greatly, nearly restoring the results that would be obtained in the
uniform case.

The AMG variants each produced a semicoarsened grid for the first coarsening.
Away from boundaries, AMG1 used a six-point interpolation stencil of the form

PAMG =


0.084 0.332 0.084

∗
0.084 0.332 0.084


 .(5.4)

Both AMG2 and AMG3 produced two-point interpolation away from boundaries, so
that weights of 0.5 were obtained for the north and south points. Here, the difference
between these two methods lies in the interpolation stencils near boundaries.

In geometric multigrid, this anisotropic situation is often treated by semicoars-
ening, that is, by choosing coarse-grid points along each vertical line. Interpolation
is then performed only in the y direction. The typical interpolation weights used in
geometric semicoarsening do not involve corner points, so smaller weights intuitively
make more sense here. In fact, it can be shown that, for this problem, smaller corner
weights (up to a point) generally produce better two-level results. Since performance
is very sensitive to these weights, small changes in the algorithm can affect conver-
gence greatly. For example, in the code AMG1R5 that is widely available to the
public, in computing the interpolation operator, weak connections are treated in a
manner similar to strong connections. For this problem, this modification gives cor-
ner weights of 0.0052 and results in two-level and V-cycle factors of 0.33 and 0.54,
respectively.

Poor performance of the CWF method is primarily due to the grid chosen. Using
their modified definition of strong connections, all off diagonals in stencil (2.4) are
considered strong. This results in standard coarsening (coarsening by a factor of
2 in each grid direction), not semicoarsening. It is well known that such a coarse
grid cannot be used effectively for this problem without additional modifications to
the algorithm, such as line relaxation. It is interesting to note that, as the grid
becomes “unstretched,” the connections to the left and right become smaller, and
proper semicoarsening results. If semicoarsening were used in conjunction with the
CWF interpolation, two-level results of 0.33 would be obtained. This is still far from
the results reported for anisotropic problems in [8]. In that paper, however, simple
five-point finite difference stencils are used, so thatM -matrices result, and connections
to the east and west actually do become small as the grid is stretched. AMG and the
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variants used here would also have no problem with such discretizations. It should be
noted that the coarse grids we obtain may not be those that would be obtained with
the algorithm as they have implemented it, and in fact appear to be coarser in most
of their test problems, given the larger grid complexities they report. Nevertheless,
the grids chosen satisfy the criteria they present.

The point here is not that particular fixes exist for this specific problem. There
is no shortage of variations of the AMG algorithm: Each works well for some specific
cases but can break down for others. Our goal is instead to obtain robust AMG
methods that are much more difficult to break. This goal is the motive for the
development of AMGe.

In the AMGe tests, the AMG coarsening algorithm used for all three methods
again produces semicoarsened grids, and the interpolation formulas for AMGe1 and
AMGe2 are as follows:

PAMGe1 =


0.007 0.486 0.007

∗
0.007 0.486 0.007


 ,(5.5)

PAMGe2 =


0.003 0.494 0.003

∗
0.003 0.494 0.003


 .(5.6)

The stencils at boundaries are similar. Note that interpolation for these algorithms
also involve corner points, since these are considered strong connections, but the
associated weights for AMGe1 and AMGe2 are much smaller than for AMG. The
large element aspect ratio effectively decouples each vertical line of grid points from
the others.

The experimental results for AMG1, AMGe1, and AMGe2 are presented in Ta-
ble 5.2. Two grid sizes, 64×64 and 128×128, are used. For better comparison with the
theory, two changes were made to the solution method. First, we used (1,0) V-cycles,
as opposed to the (1,1) V-cycles reported in the previous table. In addition, relaxation
has been changed from C/F Gauss–Seidel to a Richardson iteration with a relaxation
parameter ω = 0.5. For each grid, we show asymptotic convergence factors for AMG1,
AMGe1, and AMGe2. Factors are shown for both two-level and multilevel cases. For
the two-level case, we show the bound on the convergence factor corresponding to us-
ing (4.25) in Theorem 3.2 forM1. This is computed using ‖A‖ = 2.97 and K1 = 2.68.
As expected, the bound is very pessimistic. We also show the convergence factor
(labeled “estimate”) that would result from substituting K1 = maxiKi,1 = 1.34 and
K2 = maxiKi,2 = 2.0 for (4.25) in Theorem 3.2. This provides a somewhat improved
but still very pessimistic value for the convergence factor. This behavior is typical of
most multigrid theory, where results often substantially exceed theoretical estimates.

The key observation to be made from the data in Table 5.2 is that both AMGe1
and AMGe2 produce substantial improvement over AMG for stretched quadrilaterals.
For this problem, AMG2 and AMG3 described above would produce results similar
to AMGe1 and AMGe2. Such techniques, however, tend to be somewhat ad hoc, and
are not based on theoretical considerations. As such, we cannot determine in advance
whether such treatments will be useful for a given problem. By contrast, we expect
AMGe1 and AMGe2 to perform well in more general problems involving high aspect
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Table 5.2
Asymptotic convergence factors, bound predicted by theory, and “improvement” of observed

over predicted for the stretched quadrilateral problem.

Two-Level Multilevel

Size AMG1 AMGe1 AMGe2 AMG AMGe1 AMGe2

64× 64 0.82 0.27 0.27 0.84 0.32 0.27

128× 128 0.82 0.28 0.28 0.84 0.31 0.28

Bound 0.97 0.90 – – – –

Estimate 0.81 0.87 – – –

ratios, so they should find wide applicability for problems based on unstructured grids
having thin domains or regions.

5.2. Plane-stress cantilever beam. Consider the 2D linear elasticity equa-
tions

uxx +
1− ν

2
uyy +

1 + ν

2
vxy = f1,

vyy +
1− ν

2
vxx +

1 + ν

2
uxy = f2,

where u and v are displacements in the x and y directions, respectively. We take
ν = 4/7 for the tests. The problem, depicted in Figure 5.1, has free boundaries,
except on the left where u = v = 0. We discretize with bilinear finite elements on a
uniform rectangular mesh with spacing h in both directions (square elements).

1

d

Fig. 5.1. Plane-stress cantilever beam problem.

Again, before testing the element-based methods, we present results for the
AMG1, AMG2, AMG3, and CWF methods of the previous section. AMG1, AMG2,
and AMG3 are applied in a separate fashion (the so-called unknown approach [18])
in which connections between u and v are completely ignored in the determination of
strong connections and computation of interpolation weights. Such an approach has
been shown to produce good results for the elasticity problem on the unit square when
full Dirichlet boundary conditions are used, although it degrades with the number of
free sides allowed (cf. [10]). As in [8], the CWF method does not differentiate between
the two unknowns. (It should be noted that, in comparison with the AMG1R5 code
in that paper, AMG was also applied in a “scalar” fashion. Not unexpectedly, it did
not perform well since AMG1R5 was designed for scalar problems and there is really
no local relationship between pointwise values of errors in u and errors in v, even
when these errors are smooth.)
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Table 5.3
Two-level and V-cycle asymptotic convergence factors for four methods for the plane-stress

problem.

Two-level Multilevel

d AMG1 AMG2 AMG3 CWF AMG1 AMG2 AMG3 CWF

1 0.33 0.31 0.31 0.73 0.58 0.62 0.58 0.96

3/4 0.33 0.31 0.29 0.79 0.72 0.65 0.64 0.95

1/2 0.34 0.32 0.29 0.89 0.80 0.76 0.81 0.96

1/4 0.58 0.57 0.51 0.98 0.97 0.95 0.98 0.98

1/8 0.90 0.90 0.87 0.99 0.99 0.98 0.99 0.99

1/16 0.98 0.98 0.98 0.99 0.98 0.98 0.99 0.99

1/32 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.98

1/64 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98

Results are presented in Table 5.3. Several different thicknesses are used for the
beam, ranging from a square cross section, d = 1, to a very thin beam, d = 1/64. As
before, (1,1) V-cycles were used with C/F Gauss–Seidel relaxation. The factors shown
were obtained after 100 cycles. (With such poor convergence factors, it generally takes
many iterations to reach the asymptotic state.) Note that there is little difference
between convergence factors for AMG1, AMG2, and AMG3, although AMG3 with
iterative weight interpolation shows a slight advantage. For this problem, the u − u
and v−v stencils each resemble the anisotropic stencils for the Poisson problem (with
the first stretched in x and the second in y), but with grids that are less stretched.
Thus, the “fixes” do not improve much on the basic algorithm, as they did for the
stretched-grid Poisson problem. Note that two-level factors are nearly constant until
d is reduced to below 1/2, at which convergence degrades sharply. V-cycle factors,
while somewhat acceptable for large d, degrade even more quickly than two-level
factors as the domain becomes thinner. With all three AMG variants, on the finest
grid, u is semicoarsened in x while v is semicoarsened in y for all d used. Thus,
for all d > 1/64, interpolation computed on the finest level does not change. This
indicates strongly that the problem is not that interpolation accuracy for smooth
components is affected, but that such smooth components must be interpolated more
accurately as d is reduced. In fact, it can be shown that the energy norm relative to
the Euclidean norm of the smoothest components decreases to zero with d, which by
standard variational multigrid theory (see section 3) suggests that interpolation must
become increasingly more accurate.

For this problem, the interpolation scheme in the CWF method gives very slow
convergence. Even two-level factors are large for d = 1, indicating that the local
interpolation accuracy is not sufficient. Since quite good results for the 2D elasticity
problem were presented in [8], some explanation for the behavior of the method here
is warranted. As noted earlier, the CWF method does not differentiate between u and
v, and, for example, u at a point can interpolate from a combination of u and v values
at surrounding points. With such interpolation, however, some minimal conditions
must be met before reasonable convergence could be expected. With discretizations
of scalar differential operators, away from Dirichlet boundaries, the matrix generally
has zero row sums, so that the constant is in the local null space of the operator. Since
the smoothest grid functions are locally constant, these must be interpolated exactly,
which in turn requires interpolation weights at each point to sum to 1. Similarly, in
the elasticity problem, away from fixed boundaries the u− u, u− v, v − u, and v − v
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Table 5.4
Asymptotic convergence factors, bound predicted by theory, and “improvement” of observed

over predicted for the plane-stress problem with h = 1/64.

Two-level Multilevel

d GMG AMGe1 AMGe2 GMG AMGe1 AMGe2

1 0.45 0.49 0.48 0.49 0.65 0.85

1/4 0.46 0.48 0.47 0.76 0.68 0.90

1/8 0.46 0.47 0.45 0.78 0.64 0.87

1/16 0.46 0.49 0.45 0.77 0.58 0.77

1/32 0.53 0.45 0.50 0.75 0.51 0.56

1/64 0.67 0.39 0.28 0.67 0.39 0.28

Bound – 0.97 – – – –

Estimate – 0.87 0.97 – – –

connections at each point also sum to zero, so that separate independent constants
in u and v are in the local null space of the operator. For these components to be
interpolated exactly, the u − u and v − v interpolation weights both must sum to 1,
while the u−v and v−u weights both must sum to zero. Loss of any of these conditions
can severely degrade convergence. Now, one thing to note is that the tests in [8] use
finite differences and full Dirichlet boundary conditions. In the finite difference case,
the u− v and v−u connections are smaller relative to the maximum connection, and
are considered weak, thus keeping interpolation completely separate for u and v, at
least on the finest grid. In the finite element case here, connections from u to v and
v to u are considered strong. By itself, this is not bad. In fact, when full Dirichlet
conditions are used with the finite element discretization, the CWF method gives a
two-level convergence factor of 0.33 for the d = 1 problem. Along free boundaries,
however, it was found that different geometric assumptions applied to positive and
negative cross connections resulted in a loss of one-row sum for the u−u interpolation
weights and zero-row sum for the u− v and v − u weights, resulting in the uniformly
poor convergence found.

In the AMGe tests, we use the geometric coarsening strategy of doubling the
element size in both directions until there is only one element in the y direction,
then doubling the element size in the x direction only. For the multilevel results, we
coarsen until hx = 2hy. Such a grid is not admissible with the other AMG algorithms
presented, so a direct comparison of the effect of using the different interpolation
formulas on the same grid is not practical here. (Actually, a modification of iterative
weight interpolation could be used and would yield results comparable with those
previously obtained.) However, it is instructive to include results of AMG where linear
interpolation is actually used on these uniform grids. This method then becomes a
geometric multigrid algorithm, which we call GMG.

Experimental results from three methods are shown in Table 5.4, using (0,1) V-
cycles based on Jacobi sweeps with relaxation parameter ω = 0.5. This should be
kept in mind when comparing results with the AMG tests of Table 5.3, since (1,1) V-
cycles were used there. The theoretical bounds and estimates suggest extremely slow
convergence for AMGe1 and AMGe2 (when applied to AMG, they do not indicate
that AMG will converge at all). In fact, however, both AMGe1 and AMGe2 achieve
substantial improvement, especially for the two-level algorithm, where they greatly
exceed predictions. The bound is based on ‖A‖ = 2.50 and K1 = 12.25, while the
predictions are based on maxiKi,1 = 2.84 and maxiKi,2 = 8.31.
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Note that the GMG method, which is basically the best that the AMG methods
using separate interpolation can aspire to, also shows the same type of degradation
as the AMG methods, although less severe. That is, two-level results are stable
until d becomes small, then worsen. V-cycle results degrade faster, although they
stabilize due to the artificial limitation on the coarsest grid used. This limitation
was not present in the AMG tests. In fact, coarser grids could have been used here,
which would result in much worse convergence factors if we were to continue with the
same interpolation and relaxation schemes. For further coarsening in the x direction,
smoothing of pointwise relaxation would suffer as the grid aspect ratios worsen, so
“group” relaxation (here equivalent to y-line relaxation) would be needed to maintain
efficiency. We did not consider this group relaxation option or its implications on our
theory because the focus here is on the interpolation process.

Two observations are significant: The two-level performance of AMGe1 and
AMGe2 is generally independent of the beam thickness until d = hx, where even
greater improvement occurs; and the multilevel performance of AMGe1 and AMGe2
improves steadily as the beam becomes thinner. This is in direct contrast to the AMG
and GMG results obtained, demonstrating the effectiveness of the new interpolation
methods.

While this paper concentrates on the effect of the new interpolation method, it
should be kept in mind that there are other techniques that may be applied to enhance
performance of the algorithm. For instance, the multilevel experiments shown here
focused on Jacobi relaxation and a (0,1) V-cycle. The relaxation method and its
parameters can be chosen differently. For example, the multilevel AMGe1 case with
d = 1/4 shows a convergence factor of 0.65 in Table 5.4. A Jacobi (1,1) V-cycle
improves this factor to 0.58, while a (1,1) F -cycle (see [14]) attains a convergence
factor of 0.31. Nearly identical results, 0.65 for V(0,1), 0.56 for V(1,1), and 0.33 for
F (1,1), are obtained if the Jacobi relaxation is replaced by nodal Gauss–Seidel with
symmetric CF relaxation, which sweeps over the C points followed by the F points
on the downward leg of the V-cycle, and over the F points followed by the C points
on the upward leg. Another possibility is the use of a single multigrid V(1,1) cycle
as a preconditioner for a conjugate gradient iteration. Applied to the plane-stress
problem using the nodal relaxation described above, this yields convergence factors
ranging from 0.16 to 0.26 per conjugate gradient iteration.

For both sets of experiments, AMGe interpolation achieves significant improve-
ment over conventional AMG performance. We believe that further improvement is
possible using more sophisticated coarse-grid selection. We observe that local mea-
sures Mi,1 and Mi,2 carry a great deal of information about the nature of the under-
lying problem and its discretization, and we should be able to exploit this information
to determine more effective coarse grids.

6. Conclusions. For any multigrid method to work, errors that remain after
relaxation must be well approximated by the range of interpolation. Since algebraic
multigrid does not rely on geometric information, its fundamental challenge is to
construct coarse grids and interpolation operators that approximate these errors. The
core of this challenge is to determine errors that cannot be effectively reduced by local
processing.

Two local measures were introduced here to quantify how well the coarsening
processes determine algebraically smooth error, and they were used to construct new
interpolation operators. Experimental data for two representative test problems con-
firm that these operators produce an AMGe algorithm whose convergence rates for
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these cases are substantially better than standard AMG.

Current research focuses on using these measures in AMGe also to assess the
ability of coarse-grid points to represent the necessary error components, that is, to
determine which points are best suited to be on the coarse grid. Combined with the
improved interpolation operator, this may lead to very efficient AMGe algorithms for
a much wider range of problems than is currently available.
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[12] J. Mandel, M. Brezina, and P. Vaněk, Energy optimization of algebraic multigrid bases,
Computing, 62 (1999), pp. 205–228.

[13] S. F. McCormick, Multigrid methods for variational problems: Further results, SIAM J. Nu-
mer. Anal., 21 (1984), pp. 255–263.

[14] S. F. McCormick,Multigrid methods for variational problems: General theory for the V-cycle,
SIAM J. Numer. Anal., 22 (1985), pp. 634–643.

[15] S. F. McCormick and J. W. Ruge, Multigrid methods for variational problems, SIAM J.
Numer. Anal., 19 (1982), pp. 924–929.

[16] J. Ruge, Element interpolation for algebraic multigrid (AMG), presented at the 4th Copper
Mountain Conference on Multigrid Methods, Copper Mountain, CO, 1989, unpublished.
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