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SPECTRAL AMGE (ρAMGe)
T. CHARTIER∗, R. D. FALGOUT† , V. E. HENSON† , J. JONES† ,

T. MANTEUFFEL‡ , S. MCCORMICK‡ , J. RUGE‡ , AND P. S. VASSILEVSKI†

Abstract. We introduce spectral AMGe (ρAMGe), a new algebraic multigrid method for solving systems of
algebraic equations that arise in Ritz-type finite element discretizations of partial differential equations. The method
requires access to the element stiffness matrices, which enables accurate approximation of algebraically “smooth” vectors
(i.e., error components that relaxation cannot effectively eliminate). Most other algebraic multigrid methods are based
in some manner on predefined concepts of smoothness. Coarse-grid selection and prolongation, for example, are often
defined assuming that smooth errors vary slowly in the direction of “strong” connections (relatively large coefficients in
the operator matrix). One aim of ρAMGe is to broaden the range of problems to which the method can be successfully
applied by avoiding any implicit premise about the nature of the smooth error. ρAMGe uses the spectral decomposition of
small collections of element stiffness matrices to determine local representations of algebraically smooth error components.
This provides a foundation for generating the coarse level and for defining effective interpolation. This paper presents a
theoretical foundation for ρAMGe along with numerical experiments demonstrating its robustness.

1. Introduction. Computational investigation is a vital tool for today’s scientists and engineers.
Modern computer simulation methods demand increasingly greater speed and accuracy, and are being
applied to extraordinarily large systems of equations, with tens or hundreds of millions of unknowns.
To solve these systems with the accuracy and speed required, massively parallel computers, and algo-
rithms that effectively exploit their power, are essential. As problems grow larger, algorithms whose
performance scales linearly with the problem size are necessary. Unfortunately, many of today’s com-
putational simulations use algorithms that do not scale in this sense.

Multigrid methods are scalable for many regular-grid problems. However, they can be extremely
difficult to devise for the large unstructured grids that many simulations require. Algebraic Multigrid
(AMG) overcomes this difficulty by abstracting, in an algebraic sense, the properties that make geo-
metric multigrid methods effective. Ideally, this results in a method that is automatic and robust. The
classical formulation of AMG grew from the efforts of Brandt, McCormick, Ruge, and Stüben in the
1980’s. (For details, see [2, 1, 17].) Interest in AMG methods is growing rapidly, both in academia and
in industry, because these methods have great potential for solving the large-scale problems common
to many modern applications.

AMG has proved to be effective on a large class of problems (see, e.g., [8, 17]), especially scalar
elliptic partial differential equations posed on unstructured grids. However, important applications,
such as thin-body elasticity posed on unstructured grids, are not well handled by AMG, or, for that
matter, most other general iterative methods.

It was shown recently [3, 13, 14] that by using some “extra” information beyond just the operator
matrix, AMG methods can be extended effectively to a broader class of problems than previously
possible. In particular, information carried in the individual element stiffness matrices enables the so-
called element-based algebraic multigrid (AMGe) method to be effective in some cases. However, for
certain important applications, such as thin-body elasticity on unstructured grids, robust and efficient
solution methods remain problematic.

In this paper we introduce spectral AMGe, denoted ρAMGe (see also [6]), with the premise that no
assumptions are to be pre-imposed on the nature of “smooth” error components (i.e., components that
cannot be efficiently reduced by relaxation). Many AMG methods are founded, implicitly or overtly, on
some pre-defined concept of smoothness. For example, coarse-grid selection and prolongation may be
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defined assuming that smooth errors vary slowly in the direction of “strong” connections; alternatively,
it is sometimes presumed that certain vectors in the null-space (or near null-space) of the operator
are known and form a basis for the smooth error components. One aim of ρAMGe is to avoid any
such implicit or explicit premise. Instead, ρAMGe assumes that the fundamental characteristics of
smooth error, for whatever specific operator is at hand, is carried implicitly in the spectra of the
individual finite element stiffness matrices. On coarse grids this implies that local stiffness matrices
can be constructed for the agglomerated coarse elements. Hence, ρAMGe bases its intergrid transfer
operators on the eigenvectors of these local matrices, which are “patched” together in an appropriate
way to form the columns of the prolongation operator.

The use of spectral decompositions of local stiffness matrices in an AMG context is not new: the
methods developed in [9, 11] form the columns of interpolation from eigenvectors of stiffness matrices
corresponding to local aggregates. These methods, extended to indefinite systems in [10] and further
expounded in [15], are similar in spirit to the work presented here. Their methods differ, however, in
that the aggregates they use do not in general partition the domain, so smoothing of the prolongation
operator is required for efficient general multilevel performance. This may be contrasted to the method
we present here, in which we compute an adequate interpolation operator directly. Another approach
based on ideas similar to those presented here is given in [4]. The primary difference between this latter
method and ρAMGe lies in the way the coarse-grid basis functions are constructed and in the way we
define the interpolation formulas for the different agglomerates (the “arbitration” we describe in Section
3). Eigenvectors of agglomerate stiffness matrices are also used in [16], where arbitration similar to
ours, utilizing diagonal matrices based on partition-of-unity, is employed in Neumann-Neumann type
domain decomposition methods.

As the numerical results of Section 4 show, a primary benefit to our approach is in its robustness.
Our research has the goal of broadening the range of problems to which AMG or AMGe can be
successfully applied. By basing the method on inherent characteristics of the operator, as determined
through the spectra of the element stiffness matrices, we avoid relying on predetermined assumptions
on the nature of smooth error. In the next section we begin with a brief discussion of AMGe to
motivate and lay the foundation for the development of ρAMGe in Section 3. We conclude with
numerical results in Section 4 and additional comments in Section 5.

2. AMGe and the need for ρAMGe. AMG methods seek the solution, u ∈ �n, to the linear
system

Au = f , (2.1)

where A is a n×n symmetric positive definite (SPD) global stiffness matrix. (Existing AMG algorithms
are often applied successfully in more general cases, but we make the SPD assumption here because it
simplifies discussion.) In general, AMG methods solve (2.1) using only the information contained in
the coefficients of the operator matrix without requiring access to the spatial grid. AMGe, however,
uses somewhat more information by requiring knowledge of the set of finite element stiffness matrices
(and, therefore, the set of associated finite elements, E) that arise in Ritz-type finite element methods
for partial differential equations. Specifically, AMGe assumes access to a decomposition

A =
∑
α∈E

Aα,

where, for each element α, Aα is symmetric nonnegative definite. AMGe does not, however, assume
that finite elements and associated stiffness matrices exist for coarse-grid levels. Instead, it requires that
some algorithm for algebraically constructing coarse-grid elements and stiffness matrices be available
(for example, see [14]).

Standard AMG methods generally do not include diagonal scaling of the matrix, because such
scaling may reduce the accuracy of interpolation, confuse the definition of strong connections, and, in
general, alter the nature of smooth errors. Since common AMG schemes rely for their construction on
some premise of how smooth error behaves (e.g., that it is “locally” constant), diagonal scaling can

2



cause significant degradation in performance. However, AMGe makes no predefined characterization
of “local” smoothness and diagonal scaling may used without concern. Such scaling simplifies the
discussion and methodology. For example, if the matrix is scaled so that its diagonal D = I, then
Richardson relaxation becomes a good choice for the smoother. (Otherwise, the diagonal entries of A
should be taken into account in relaxation, as in the Jacobi and Gauss-Seidel methods.) Hence, for
the remainder of the theoretical discussion in this paper, we are free to assume for convenience that
matrix A has been scaled so that its diagonal is the identity, and that the relaxation we choose is
simple Richardson. For a general SPD matrix with diagonal D �= I, such scaling can be assured by a
diagonal scaling that replaces A by D−1/2AD−1/2. If diagonal scaling is not used, then in general it
would be wise to use a relaxation scheme such as damped Jacobi and adjust the following discussion
accordingly.

2.1. The measure of interpolation quality in AMGe. To avoid relying on any assumptions
about the specific nature of smooth errors, consider the following basic AMGe heuristic:

H: Interpolation must approximate an eigenvector with error proportional to the size of
the associated eigenvalue.

To make heuristic H more precise, define the index set P := {1, 2, . . . , n}. We refer to the elements, p,
of P as grid points so that the coordinates in �n represent the fine-grid variables. Similarly, if nc < n is
the number of coarse-grid points, then the coordinates in �nc represent the coarse-grid variables. Let
P : �nc → �n denote an interpolation operator (that has not yet been chosen) and let R : �n → �nc

be some restriction operator. Define Q : �n → �n to be any convenient linear projection operator
onto Range(P ):

Q = PR,

for which RP = Ic, the identity on �nc . A specific form for Q (and, hence, R) is given in Section 2.2.
Note that for any vector e ∈ Range(P ), we have Qe = e. Thus, I − Q can be used to measure the
defect of interpolation for any Q.

A measure that shows how well Heuristic H is satisfied and that can be used to define an effective
interpolation process [3] is

M(Q, e) :=
〈(I − Q)e, (I − Q)e〉 ‖A‖

〈Ae, e〉 , (2.2)

where 〈·, ·〉 denotes the Euclidean inner product on �n×�n and ‖·‖ denotes both the Euclidean vector
norm and its induced matrix norm. (Any other practical inner product could be used here provided
A remains self-adjoint with respect to it.) We call (2.2) the measure of interpolation quality.

Measure M is appropriate when a Richardson-like relaxation process is used in the multigrid
scheme. As we see in Section 3, this leads us to base the coarsening process in ρAMGe on local
eigenvectors of A. In general, coarsening should be based on eigenvectors of the error propagation
matrix of the relaxation. We opt here to employ Richardson relaxation in the theoretical development
because doing so simplifies the discussion. Since measure M can be readily modified to suit most
common relaxation methods, developing theory based on other schemes should not pose any additional
difficulty.

For H to be satisfied, M should have a small bound for all e ∈ �n \ {0}. A relation between a
bound on M and convergence was established in [3]: if there exists K ≥ 1 such that M ≤ K for all e,
then the two-level convergence factor κ is bounded by

κ ≤
√

1 − 1
K

. (2.3)

Hence, the smaller the bound is on M , the better the bound is on the convergence factor. In AMGe
measure M essentially defines algebraically smooth error, and is used in the construction of the grids
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Fig. 2.1. Shaded elements are members of the element neighborhood Ti; their stiffness matrices are summed to
form the neighborhood stiffness matrix Bi. Solid black circles denote nodes belonging to the point neighborhood Vi.

and operators, but no additional assumptions on the character of smooth errors are made. This
should make AMGe more general than many other methods, because it does not restrict itself to cases
where algebraically smooth errors are slowly varying along “strong” connections (as classical AMG
assumes) or that the smooth errors are represented well by local partitions of supplied near-null-space
components (as smooth aggregation methods assume).

Measure M is not explicitly used in ρAMGe in practice, but it provides the essential foundation
for the method, as we shall show in Section 3.

2.2. Localizing the measure of interpolation quality. We now indicate how measure M
allows us to algebraically define interpolation weights for accurate coarse-grid correction. As a practical
matter, we wish to keep the value of M as small as possible. The main difficulty with this aim is
that M is a global measure and evaluation of M requires knowledge of Q, which in turn requires
knowledge of the coarse grid and interpolation weights. The problem is that we want to use this
measure to construct components locally for coarse-grid correction, so a global measure is impractical.
Straightforward localization of M using information only in A does not provide the robustness we seek.

AMGe instead uses the element stiffness matrices to localize measure M and to determine local
representations of algebraically smooth error components. These representations are then used to
define the coarse grid and determine a local interpolation operator, which is in turn incorporated into
global operator P . Before showing how this is done, we need some notation.

Let Mα be the set of points belonging to an element α:

Mα :=
{
j ∈ P : εT

j Aαεj �= 0
}

, (2.4)

where εj is the canonical basis vector associated with point j ∈ P. Next, define the element neighbor-
hood of a point i ∈ P to be the set of elements

Ti :=
{
α ∈ E : εT

i Aαεi �= 0
}

, (2.5)

and define the point neighborhood of a point i to be the associated point set

Vi :=
⋃

α∈Ti

Mα.

The neighborhood stiffness matrix in the element neighborhood of i is defined by

Bi :=
∑
α∈Ti

Aα. (2.6)

Figure 2.1 shows a typical case, where a point i is shown along with its element neighborhood and
point neighborhood.

With the notation in place, measure M can now be “localized.” The definition of M in (2.2)
suggests that appropriate local versions of Q and A should be used in this localization. Neighborhood

4



stiffness matrices Bi defined in (2.6) suffice for replacing A in (2.2). To localize Q, suppose P is
partitioned into coarse-grid points, C, and fine-grid points, F : P = C ∪ F and C ∩ F = ∅. The
row of Q corresponding to point i ∈ F is given by qT

i := εT
i Q. Assume that interpolation to i ∈

F uses only values from the coarse-point neighborhood of i defined by Ci := Vi ∩ C. Let Zi :=
{v ∈ �n : vj = 0, for j �∈ Ci} the set of vectors having nonzero values only at points in the coarse-
point neighborhood of i. Hence, Q is constructed so that qi ∈ Zi.

We localize M over a neighborhood of a point i ∈ F by defining

Mi(qi, e) :=

〈
(εi − qi)T e, (εi − qi)T e

〉
‖Bi‖

〈Bie, e〉 , (2.7)

where qi ∈ Zi and e �∈ Null(Bi), the null space of matrix Bi.
Letting e in (2.7) be an eigenvector of neighborhood stiffness matrix Bi (called the local eigenvec-

tors), the localized measure of interpolation quality can be used to develop a local sense of algebraic
smoothness. Hence, it is practical to apply heuristic H to (2.7) and to attempt to bound Mi in the
process of determining a suitable coarse grid and interpolation scheme. These local measures should be
small, so “ideal interpolation” would be defined such that qi is the arg min of the following constrained
min-max problem:

Ki := min
qi∈Zi

max
e⊥Null(Bi)

Mi(qi, e), subject to (εi − qi)T e = 0, ∀ e ∈ Null(Bi). (2.8)

Heuristic H is best satisfied locally by solving (2.8). Selecting the rows of the interpolation operator
in this fashion is called element interpolation. For a given coarse grid, a global bound may be obtained
by solving (2.8) for all i ∈ F . From (2.3), we recall that bounding M bounds the global convergence
factor. A rigorous relation between the local and global measures of interpolation quality is given in
[3]: if Mi ≤ Ki, ∀ i ∈ F , then

M ≤ K = max
α∈E

∑
i∈F∩Mα

Ki.

That is, bounding all local measures of interpolation quality Mi yields a bound on global measure M
and a bound on convergence factor κ is obtained.

In [3], solving (2.8) was found to provide better convergence results than traditional AMG on
several important problems such as 2D linear elasticity, by virtue of the element interpolation process.
For those experiments, coarse grids were chosen geometrically. However, the ability to select coarse
grids algebraically is a fundamental component of any AMG algorithm. Indeed, the fundamental
requirement of AMGe, as stated above, is that the index set P be partitioned into C and F “points,”
and thus implies that the grids be conforming and that the degrees of freedom be associated with
physical locations. Although the latter is frequently true, the former need not be, and is, in fact, a
serious limitation. Instead, we wish to devise a method in which the coarse degrees of freedom are
associated with particular agglomerates of elements, but not with any specific location in the domain.

Moreover, AMGe requires that coarse grids permit effective element interpolation from still coarser
grids. Many coarse-grid selection strategies can be devised that utilize measures Mi; for example, Mi

can be used to compare the quality of one potential coarse grid versus another. Unfortunately, be-
cause of the large number of possibilities, no practical coarse-grid selection algorithm can compare
the measures of all potential coarse grids, even when such decisions are localized to small collec-
tions of neighboring elements. Addressing this difficulty has led to a new concept that bypasses the
usual coarse-grid selection process entirely, and instead defines interpolation that satisfies basic AMGe
heuristic H in a much more direct way. This new approach, called spectral AMGe, is described in the
next section, and its advantages over more standard “grid-based” coarsening algorithms are explored.

3. ρAMGe. We seek the solution, u ∈ �n, of the linear system in (2.1). Like its predecessor
AMGe, ρAMGe does not rely on the usual AMG idea that strength of connection is determined by
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the relative size of matrix entries, nor does it incorporate the implicit assumption that the constant
function is smooth. Therefore, we are free to assume for convenience that matrix A is diagonally scaled
so that its diagonal part is the identity. We continue to assume that A is SPD and that the element
stiffness matrices, Aα, are available, are symmetric nonnegative definite, and satisfy A =

∑
α∈E Aα.

(Note that diagonal scaling of A implies a scaling for each Aα, but the diagonal of the scaled Aα is
generally not the identity.)

The concept of an agglomerate is central to this work. An agglomerate is defined simply as a set
of elements. We observe that a point on the grid may lie in the interior of an agglomerate in the sense
that it does not appear in any other agglomerate, or it may lie on the boundary of the agglomerate in
the sense that it is shared by two or more agglomerates. Now, if τ is an agglomerate, then we extend
our notation so that Aτ is the sum of the associated element stiffness matrices. Note that Aτ is of
dimension n× n, the same as A, so that it is filled with zeros except in the block of rows and columns
corresponding to points belonging to elements in τ . We need the local version of this matrix, so we
define a “localization” operator, Loc(·), that takes a matrix as its operand and discards the zero rows
and columns corresponding to points not in the agglomerate. For convenience, we denote Loc(Aτ ) by
Aτ ; the superscript τ is used to indicate that the matrix is a local agglomerate stiffness matrix.

The motivation for ρAMGe comes from an attempt to choose, in some sense, the “best” subspace
to serve as the coarse-grid space. Consider measure M(Q, e) in (2.2), where Q is the best projection
(i.e., the Euclidean projection) onto Range(P ) ⊂ �n. Ideally, we would choose Range(P ) ⊂ �n of
dimension nc so that supe �=0 M(Q, e) is minimized. It is easy to see then that the best choice for
Range(P ) is the subspace of eigenvectors of A belonging to its nc smallest eigenvalues. It would be
prohibitively expensive to do this globally, however. Instead, in ρAMGe we attempt to achieve the
objective by choosing local eigenvectors, in analogy to what is done in the spectral element method
for discretizing partial differential equations.

The basic idea is to partition the set of elements into agglomerates, then to assemble their corre-
sponding stiffness matrices. Eigenvectors belonging to the small eigenvalues of the local agglomerate
matrices are used directly as columns of the interpolation matrix (with some modifications noted be-
low). Conceptually, this is a very attractive idea, and has several advantages over the “grid-based”
methods of standard AMG and AMGe. Such grid-based methods, in which the coarse grid is taken as
a subset of the finer grid, are very natural, but place rather severe requirements on the actual grids
and sets of interpolation points chosen. However, the choice of agglomerates appears to be far less
critical. It is tempting to try to mimic standard AMG methods by agglomerating elements in the
direction of strong connection, although it is not clear, in an element setting, how to define such a
direction. Fortunately, results seem to indicate that this is unnecessary, at least for the cases we have
thus far tested. It is the choice of the eigenvectors of the local agglomerate matrices, rather than the
choice of the agglomerates themselves, that must permit representation of functions that are smooth
in any particular direction. A more subtle restriction imposed in grid-based coarsening is on the type
of smooth functions that can actually be represented in terms of their values at a few grid points. A
good example of this is the Helmholtz problem, ∆u+k2u = f . For suitable wave number k, the global
null space comprises waves with a fixed wavelength but arbitrary direction. This subspace can be very
difficult to represent by standard grid-based coarsening methods, but can conceivably be accurately
approximated directly in terms of general local functions (although we leave that particular problem
for future study).

3.1. A two-level algorithm. As is often done when defining a multilevel algorithm, we proceed
by first defining and analyzing a two-level method, then extend it to the multiple-level case recursively.
The two-level method is standard:

1. Perform relaxation on the fine level problem Ahuh = fh.
2. Compute the fine-level residual rh and restrict it to be the right side of the coarse-level problem:

fH = Rrh.
3. Solve the coarse-level problem eH = (AH)−1fH .
4. Interpolate the coarse-level error to the fine level and use it to correct the fine level approxi-
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mation, uh ← uh + PeH .
Where ρAMGe differs from other approaches is in the manner of constructing its basic coarsening

components, namely, coarse-level unknowns, coarse-level “elements,” and prolongation P . For restric-
tion, we use R = PT , and, for the coarse-level operator, we use AH = PT AP . We thus focus our
attention on construction of the basic coarsening components of the two-grid method.

Let G be a partition of element space E into agglomerates of the elements used to generate matrix
A (e.g., continuous piecewise bilinear functions on square elements). Let τ ∈ G be arbitrary. We
assume, for now, that G has been determined on the fine level.

To determine coarse-level sets of agglomerates in an algebraic, recursive manner, we need a few
important concepts. In particular, we need to define algebraically the notions of “interior” and “bound-
ary” of an agglomerate. To this end, consider a point, p ∈ P, that is in agglomerate τ ∈ G. We say
that p ∈ τ0 (the interior of τ) if p is in no other agglomerate; otherwise, p ∈ ∂τ (the boundary of τ).

In what follows, we focus on matrices, vectors, and Euclidean space. Thus, 〈·, ·〉 and ‖ · ‖ represent
the Euclidean inner product and norm, respectively, on the global vector space �n, and 〈·, ·〉τ and
‖ · ‖τ represent the local Euclidean inner product and norm, respectively, on the local vectors of node
values for agglomerate τ . That is, when applied to a vector in �n, we take 〈·, ·〉τ and ‖ · ‖τ to mean
that applied to the restriction of the vector to the agglomerate. We could instead pose our methods
and theory in the finite element function space setting using Sobolev inner products and norms, and
associated weak forms. This would change scale considerations and local-to-global connections, but
the basic principles would be the same. We choose here to take the more algebraic perspective.

The following two-level algorithm determines interpolation operator P as a mapping from the
coarse degrees of freedom within each agglomerate to the fine degrees of freedom corresponding to
points in P. For this construction, we assume some ordering of the agglomerates in G. For the
moment, suppose that the number of coarse degrees of freedom, mτ , in each agglomerate τ ∈ G has
been predetermined. Then nc =

∑
τ∈G mτ .

1. For each τ ∈ G, form an intra-agglomerate interpolation operator, Pτ , as follows:
• Compute the eigenvector decomposition of local agglomerate stiffness matrix Aτ .
• Select the eigenvectors corresponding to the mτ eigenvalues of smallest magnitude. Ex-

tend the eigenvectors with zeros outside of τ . These vectors form the columns of Pτ

corresponding to the coarse degrees of freedom in τ ; fill the other columns with zeros.
2. To form the global interpolation operator, P , define the following “partition of unity”: for

each agglomerate τ ∈ G, let Wτ = diag(w1
τ , w2

τ , ..., wn
τ ) be the n × n diagonal matrix with

entries

wp
τ = ap

τ/
∑
σ∈G

ap
σ,

where, for p ∈ P , ap
τ denotes the diagonal entry of Aτ associated with p. Note that wp

τ = 0
if p �∈ τ and wp

τ = 1 if p ∈ τ0. (While
∑

σ∈G ap
σ = 1 because of diagonal scaling of A on the

finest grid, this more general form is useful later in the multilevel case.) The Wτ have the
properties that

∑
τ Wτ = I (identity matrix) and ‖Wτ‖ = ‖Wτ‖τ ≤ 1. Now define the global

interpolation operator by

P =
∑

τ

WτPτ . (3.1)

3. Construct the usual Galerkin coarse-grid operator, PT AP .

3.1.1. Analysis of the two-level algorithm. The simplicity of ρAMGe lends itself to a simple
theory. We show first that the coarse subspace preserves the null space of A. For this to make sense,
we must temporarily allow A to be singular. In practice, what we really wish to conclude from this
theorem is that the coarse level adequately represents vectors that are in the null space of the operator
A, up to the effects of boundary conditions and reaction or Helmholtz terms (e.g., those arising from
discretization of −∆u + bu for b > 0). This property is important for coarsening because such “near
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null space” error components usually have very small energy and must therefore be approximated very
well on the coarse level.

Theorem 3.1. Suppose the coarsening is constructed such that, for every agglomerate τ , the
intra-agglomerate interpolation operator Pτ contains a basis for the null space of local agglomerate
stiffness matrix Aτ ; that is, ∀τ, mτ ≥ dim(Null(Aτ )). Then the null space of A is a subset of the
range of interpolation: if Au = 0, then there exists a v ∈ �nc such that u = Pv.

Proof. Assume that Au = 0. Then, for every τ ∈ G, we must have that Aτuτ = 0, where uτ is
formed from u by zeroing out its entries outside of τ . Hence, by our assumption on mτ , there exists a
coarse-grid vector, vτ , that is also zero outside τ and such that uτ = Pτvτ . Let v be the coarse-grid
vector that agrees with vτ on τ , for each τ ∈ G. Then we have

Pv =
∑

τ

WτPτvτ =
∑

τ

Wτuτ =
∑

τ

Wτu = Iu = u.

Averaging of eigenvectors is used to ameliorate conflicts between interpolation formulas at points on
the intersection of agglomerates. Theorem 3.1 shows that prolongation nevertheless exactly interpolates
components of the null space. We now show that the coarse level approximates all errors in proportion
to their energy: M(Q, e) is uniformly bounded when Q is the Euclidean projection. Thus, our objective
is now to find a small bound, K, for which

‖A‖ inf
ε∈Range(P )

‖e − ε‖2 ≤ K〈Ae, e〉, (3.2)

for any e ∈ �n. Note, by (2.2)-(2.3), that the two-level convergence factor is then bounded by

κ ≤
√

1 − 1
K

. (3.3)

Recall that Aτ denotes Loc(Aτ ), which is restricted matrix Aτ with all rows and columns corre-
sponding to points not in τ eliminated. Let λ1(Aτ ) ≤ λ2(Aτ ) ≤ . . . denote the eigenvalues of Aτ .
Finally, let the maximal overlap in G mean the maximum over p ∈ P of the size of agglomerate
neighborhood N (p) := {τ ∈ G : p ∈ τ}.

Theorem 3.2. Assume that the discretization is quasi-uniform in the sense that the local agglom-
erate stiffness matrices satisfy

‖Aτ‖ ≥ η‖A‖,

for all τ ∈ G. Assume also that we have chosen mτ so well that the local measure is uniformly bounded,
meaning that there exists a δ > 0 such that

‖Aτ‖ ≤ δλmτ+1(Aτ ),

for all τ ∈ G, where λmτ+1(Aτ ) denotes the (mτ + 1)th smallest eigenvalue of Aτ . Then, for any
vector e ∈ �n, there exists a global interpolant, ε, in the range of P such that

‖A‖ · ‖e − ε‖2 ≤ δ

η
< Ae, e > . (3.4)

Proof. Let e ∈ �n be given. Note that our assumption on mτ is equivalent to the assumption
that, for any agglomerate τ ∈ G, there exists an ετ in the range of Pτ such that

‖Aτ‖ · ‖eτ − ετ‖2
τ ≤ δ〈Aτeτ , eτ 〉τ , (3.5)
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where eτ is formed from e by zeroing out its entries outside of τ . We now construct an ε in the range
of P to satisfy (3.4) in a way that corresponds to the construction of P itself: ε =

∑
τ Wτετ . To show

that e satisfies (3.4), we now use properties of Wτ and the Cauchy–Schwarz inequality to conclude
that

‖e − ε‖2 = (e − ε)T

(∑
τ∈G

Wτ (e − ε)

)

= (e − ε)T

(∑
τ∈G

Wτ (eτ − ετ )

)

=
∑
τ∈G

(
W

1
2

τ (e − ε)
)T (

W
1
2

τ (eτ − ετ )
)

≤
[∑

τ∈G
(e − ε)T Wτ (e − ε)

] 1
2

[∑
τ∈G

‖W
1
2

τ (eτ − ετ )‖2
τ

] 1
2

= ‖e − ε‖
[∑

τ∈G
‖W

1
2

τ (eτ − ετ )‖2
τ

] 1
2

·

That is,

‖e − ε‖2 ≤
∑
τ∈G

‖W
1
2

τ (eτ − ετ )‖2
τ .

Therefore,

‖e − ε‖2 ≤
∑
τ∈G

‖W
1
2

τ (eτ − ετ )‖2
τ

≤
∑
τ∈G

‖eτ − ετ‖2
τ

≤ δ
∑
τ∈G

〈Aτeτ , eτ 〉τ
‖Aτ‖

≤ δ

η‖A‖
∑
τ∈G

〈Aτeτ , eτ 〉

=
δ

η‖A‖〈Ae, e〉.

We have as yet said nothing about how we select a value for mτ , the number of coarse degrees of
freedom in each agglomerate τ ∈ G. However, determining the number of coarse degrees of freedom
to use should involve a balancing of both the effectiveness of the coarse-grid correction and the cost
accrued in the grid and operator complexities. These complexities may be more fully discussed in a
multilevel, rather than a two-level, framework. Accordingly, we postpone discussion of the choice of
mτ until we have described the multilevel algorithm and dispensed with certain complications that
arise in the multilevel approach.

3.2. A multilevel algorithm. In a multilevel algorithm, a coarse grid is treated by relaxation,
followed by correction from a still coarser grid. The effectiveness of the components used in a multilevel
algorithm is determined largely by the character of the coarse grids. Here, we turn our attention to
altering the two-level ρAMGe algorithm in ways that aim to produce coarse-level problems that are
themselves amenable to further coarsening by the ρAMGe approach.
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Two-level ρAMGe, as proposed in Section 3.1, produces promising numerical results (see Section
4.) Therefore, recursion of the two-level algorithm is a natural step in the development of a multilevel
algorithm. Local stiffness matrices play a fundamental role in the construction of multigrid components
in ρAMGe. In the two-level algorithm, only the fine-grid element stiffness matrices are required.
However, when a coarse level itself must be coarsened, we need element stiffness matrices for the
coarse level to enable a local spectral decomposition there. (We could appeal to the finest grid stiffness
matrices, but this is infeasible for large problems with many coarse levels.) An efficient multilevel
scheme thus requires some coarse-grid version of these local stiffness matrices. Such matrices could
be created in a manner analogous to the coarse-grid operator by taking PT AαP . However, since the
number of matrices is not reduced in this method, this approach would also be very costly.

An obvious solution is simply to combine the fine-level stiffness matrices in some sensible way.
A natural choice is to form the coarse-grid element matrix corresponding to each agglomerate τ by
computing PT AτP . However, as we show below, problems can arise with this approach, so we describe
several potentially more useful alternatives for defining coarse-grid elements.

3.2.1. Coarse-grid elements and creep. Construction of the coarse-grid elements begins with
some agglomerate of fine-grid elements. We refer to these as e-agglomerates to distinguish them from
the agglomerates used to construct interpolation matrix P , which we refer to as p-agglomerates. For
now, it is best to think of the e-agglomerates and the p-agglomerates as being the same. Later, we
choose them to be different as a means of avoiding the difficulties we describe in this section.

While we refer to the coarse-grid matrices as element matrices, they are in reality purely algebraic
entities, and the familiar geometric correspondence between the element (seen as a subset of the
domain) and its nodes can be lost. We can even lose the property that the coarse-grid matrix can be
written as a sum of its element matrices. What is important, however, is that these element matrices
preserve a local sense of smoothness and, in particular, can be used to exactly represent the global
null space.

Before proceeding, it is instructive to introduce the idea of creep. This difficulty we first encoun-
tered with coarse-level element matrices in earlier work on AMGe, where coarse-level elements are
simply taken as unions of finer-level elements, the coarse grids chosen as some appropriate subset of
the finer grid, and interpolation is then defined. We observed that the coarse-level matrices in AMGe
could occasionally exhibit spurious null vectors that do not correspond in any way to the global null
space. A necessary (but not sufficient) condition for this to occur is that the coarse-grid nodes involved
in the coarse-grid element matrix extend beyond the union of corresponding fine-grid elements. The
term “creep,” as originally coined, describes this particular geometric difficulty, but has come more
generally to mean the appearance of spurious null vectors of coarse-grid element (or agglomerate)
matrices; these are local null vectors that do not correspond to global null vectors.

Creep is a pitfall in extending our two-level ρAMGe algorithm to multiple levels. Since we assume
that the null and near null spaces of agglomerate matrices provide a good local approximation to those
of the global matrix (and, in fact, are exact for the null space) and that relaxation cannot effectively
reduce such components, accurate interpolation of all such local components is critical to the success
of the method. The presence of creep indicates an unnecessarily large null space in the coarse-grid
agglomerate. Since we must choose all local eigenvectors belonging to zero eigenvalues if we want (3.5)
to hold, then we must have mτ ≥ dim(Null(Aτ )). Thus, uncontrolled creep can lead to unacceptable
complexity. Given the importance of this concept, we now examine it from both an algebraic and a
geometric perspective in the ρAMGe setting.

An algebraic perspective on creep. The existence of creep is easiest to see from an algebraic argu-
ment. Suppose that we have already determined the set, G, of p-agglomerates and defined interpolation
P as described in Section 3.1. For any e-agglomerate γ, let Mγ be the set of fine-grid degrees of free-
dom associated with it and let Mc

γ be the set of coarse-grid degrees of freedom used to interpolate
values to Mγ . Now, if |Mc

γ | > |Mγ |, then there must exist some nonzero coarse-grid function defined
over Mc

γ that interpolates to zero over Mγ . (It should be noted that this is a sufficient but not a
necessary condition for the existence of creep.) This means that if we construct the coarse-grid ele-
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ment matrix corresponding to γ in a straightforward way as Loc(
∑

α∈γ PT AαP ), then this matrix will
have a larger null space than the local fine-grid matrix Loc(

∑
α∈γ Aα). Choosing a large enough mτ

therefore induces creep, which in turn results in even larger complexity on coarser levels since |Mc
γ |

tends to increase with increasing mτ .

Fig. 3.1. Partition of a domain into 36 square elements. The shaded regions represent p-agglomerates,
τ1, τ2, . . . , τ9. The solid dots (•) indicate set Mτ5 , while all other degrees of freedom are indicated by open squares
( �). Xτ5 = {τi : i = 1, 2, . . . , 9}.

3.2.2. Fuzzy elements and creep. Consider the uniform grid of square elements depicted in
Figure 3.1. The shaded regions represent p-agglomerates and the dotted lines delineate elements.
Note that this 6×6 array of elements contains nine 2×2 p-agglomerates, τ1, τ2, . . . , τ9. Recall that we
are taking e-agglomerates and p-agglomerates to be the same. Now, the arbitration of interpolation
formulas for nodes on the boundary of τ5 results in values on τ5 being interpolated from the coarse-grid
degrees of freedom corresponding to τ1, τ2, . . . , τ9. Were the boundary nodes of τ5 to be interpolated
only from coarse-grid degrees of freedom corresponding to τ5, no creep would result in the coarse
element associated with τ5. This could be accomplished with an arbitration that assigned each fine-
grid degree of freedom to exactly one p-agglomerate (i.e., if p is a fine-grid degree of freedom shared by
more than one p-agglomerate, set wp

τ = 1 for one specific τ and wp
τ = 0 for all others.) Unfortunately,

this could easily interfere with the ability to approximate smooth functions not explicitly included in
the local interpolation. For instance, for a Poisson operator, taking this approach with mτ = 1 gives
piecewise constant interpolation, which would exactly interpolate the global near null space, but yields
unsatisfactory multilevel convergence. An alternative is to enlarge the e-agglomerate to all of Xτ5 , so
that the finer grid agglomerate matrix is able to “see” all interpolated functions.

We begin with a set of e-agglomerates that form a partition of the fine-grid elements, and then
extend each e-agglomerate, γ, to cover γ̄. This new fuzzy agglomerate contains γ as its core and γ̄ \ γ
as its fuzz. For simplicity, where it causes no confusion, we still refer to this fuzzy agglomerate as
γ. In trying to examine this method on coarser levels, it is often useful to associate each coarse-grid
element with its core. Referring to Figure 3.1, note that a fuzzy agglomerate with core γ = τ5 would
have τ1 ∪ . . . ∪ τ4 ∪ τ6 ∪ . . . ∪ τ9 as its fuzz.

We can now form a matrix corresponding to this fuzzy e-agglomerate, where, for generality, we
separately weight contributions from its core and associated fuzz: the matrix corresponding to the
fuzzy agglomerate with core γ is
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Âγ = α1Aγ + α2Aγ̄\γ . (3.6)

Empirically it seems reasonable to take α1 = 1.0 and α2 = 0.5.
One difficulty is that if we simply take PT ÂγP as the coarse-grid element matrix, it can include

many more coarse-grid degrees of freedom than if we use only the agglomerate matrix corresponding to
γ. Furthermore, there is no guarantee that using PT ÂγP eliminates creep. To avoid this difficulty, we
instead use a local interpolation operator in place of the global operator P for constructing the element
matrix. Specifically, we construct local interpolation operator P fuzz

γ exactly as described in Section
3.1, but with Âγ replacing A and Xγ replacing G. Thus, arbitration of interpolation formulas for shared
degrees of freedom is performed only over the p-agglomerates in Xγ . Theorem 3.1 guarantees that the
null space of Âγ is interpolated exactly by P fuzz

γ . Thus, the corresponding coarse-grid element matrix,
defined by (P fuzz

γ )T ÂγP fuzz
γ and referred to as a fuzzy element, maintains the appropriate null space

while tending to eradicate creep. As long as Loc(P fuzz
γ ) is full rank, then the corresponding coarse-grid

element matrix has no spurious null vectors. An interesting consequence is that the resulting coarse
grid is nonconforming in the sense that the global coarse-grid operator is no longer the sum of the
coarse-grid element matrices.

(a) (b)

Fig. 3.2. Partition of a grid into square elements, delineated by solid and dotted lines. The solid lines delineate
element cores (e-agglomerates) used to form the coarse-grid elements. The single-color regions (shaded or white) in
each figure represent the p-agglomerates used to determine interpolation. (a) The p-agglomerates coincide with the
coarse-grid elements. (b) The p-agglomerates are staggered with respect to the coarse-grid elements.

3.3. Choosing mτ : balancing accuracy and complexity. We must still define a specific
process for selecting the value of mτ for the two-level ρAMGe algorithm and, recursively, for the
multilevel algorithm. This decision affects the construction of fundamental components of the multigrid
process. Increasing mτ produces a richer interpolation and resulting coarse grid in the sense that it
improves effectiveness of the coarse-grid correction, but it also increases operator and coarse-grid
complexity. A careful balance must be made to optimize accuracy versus cost. To accomplish this, we
first define κ1/w to be the effective convergence factor of one ρAMGe cycle, where κ is a bound on its
convergence factor and w is the number of work units it requires. One work unit is defined as the cost
of one fine-grid relaxation step. Our goal is to minimize κ1/w.

Suppose we wished to optimize accuracy without regard to complexity. Then, for all τ ∈ G,
we would select mτ = nτ , the dimension of local agglomerate stiffness matrix Aτ . In general,∑

τ∈G nτ > n; hence, choosing mτ = nτ yields the impractical result that the coarse-grid problem
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would systematically contain more degrees of freedom than the fine-grid problem. While this example
is clearly extreme, it underscores the need to balance accuracy and complexity in selecting mτ .

To achieve this balance, we develop an accuracy/cost measure that we use to guide the process
of selecting a coarse grid. The example just given dictates that we must consider both components,
accuracy and complexity, in order to define an effective tool for coarsening. In addition, any useful
measure must use local qualities, assuming them to effectively represent the global characteristics of
the algorithm. By contrast, any global approach to building a useful accuracy/cost measure would be
prohibitively expensive.

Accuracy. First consider the component of the measure that addresses accuracy. We take the
convenient premise here that coarse-grid correction completely eliminates all error in the directions
of the first mτ eigenvectors, and that the remaining eigenvectors are reduced by one Richardson
relaxation, with optimal parameter ω. The error propagation matrix in this case is given in terms of
the local agglomerate stiffness matrix by I − ωAτ . We desire that this iteration effectively reduce the
mτ +1,mτ +2, . . . , nτ eigenvectors of Aτ . Observe that if λmτ+1, λmτ+2, . . . , λnτ

are the corresponding
eigenvalues of Aτ , then the eigenvalues of Richardson’s error propagation matrix are 1 − ωλmτ+1, 1 −
ωλmτ+2, . . . , 1 − ωλnτ

. The best overall reduction occurs when this range is centered at 0, that is,
when −(1−ωλnτ

) = 1−ωλmτ+1. This relation determines the optimal value of ω = 2/(λnτ
+λmτ+1),

which achieves the optimal error reduction factor of

1 − ωλmτ+1 = 1 − 2λmτ+1

λnτ
+ λmτ+1

=
λnτ

− λmτ+1

λnτ
+ λmτ+1

.

(3.7)

This reduction factor is used as a main component of the accuracy/cost measure we develop here.
Cost of the algorithm using a grid complexity estimate. An estimate of cost of the algorithm

constitutes the second component of the accuracy/cost measure. In AMG, algorithmic cost is measured
in terms of either grid complexity, defined as the total number of degrees of freedom on all grids divided
by the number of degrees of freedom on the fine grid, or operator complexity, defined as the total number
of nonzero entries in all operator matrices on all levels divided by the number of nonzero entries in
the fine-grid operator matrix. These quantities are used because the number of arithmetic operations
per cycle, as well as the the amount of memory required in an algorithm, can be expressed in terms
proportional to them. As we did with the accuracy component of the measure, we base our definitions
of the cost component on local information; hence, a measure must be designed to estimate global cost
based on local information. The underlying premise, of course, is that the local pattern is replicated
throughout the domain.

Suppose mτ := m eigenvectors are chosen in every agglomerate. Then the number of degrees of
freedom on the coarse grid is m|G|, where |G| is the number of agglomerates on the fine grid. To obtain
a local estimate of the number of degrees of freedom on the fine grid, we could make the convenient
assumption that every agglomerate on the fine grid contains precisely mf degrees of freedom. In this
case, however, mf |G| overestimates the number of degrees of freedom on the fine grid because while the
degrees of freedom in the interiors of the agglomerates are counted correctly, the degrees of freedom
on the agglomerate boundaries are shared by agglomerates and, hence, are counted more than once.
Instead, we devise a measure that counts a degree of freedom with a weight proportional to the number
of agglomerates to which it belongs: the count for p ∈ P is 1/|N (p)|, where N (p) = {τ ∈ G : p ∈ τ} is
the agglomerate neighborhood of p. Note that the count for a point in τ0 ∩P is 1. Thus the weighted
number of fine-grid degrees of freedom for agglomerate τ ∈ G is defined by

Nτ :=
∑
p∈τ

1
|N (p)| .

If Nτ := Ñ is the same for all τ ∈ G, then the number of fine-grid points is Ñ |G|. Thus, an
estimated coarsening ratio can be given by cg := m/Ñ , and the cost of one ρAMGe cycle is roughly

13



proportional to

1 + cg + c2
g + . . . =

1
1 − cg

=
Ñ

Ñ − m
. (3.8)

An accuracy/grid-cost measure. To estimate the accuracy (error reduction) versus cost of the
algorithm, we may compute an estimate of convergence per work unit (in this case, one fine-grid
Richardson relaxation sweep) using (3.7) and (3.8):

µg := accuracy1/cost =
(

λnτ
− λmτ+1

λnτ
+ λmτ+1

) Ñ−m

Ñ

. (3.9)

By construction, (3.9) reflects the accuracy as it relates to grid complexity (accounting for the notation
µg).

Cost of the algorithm using an operator complexity estimate. Another perspective on algorithmic
cost is obtained by considering operator complexity, which may in fact be better than grid complexity
as a measure of work performed in a cycle. Let ne denote the number of elements per agglomerate.
Considering a specific agglomerate, τ , an estimate of the number of points belonging to fine-grid
element τf ⊂ τ is given by mτf

:= Ñ/ne. To elaborate on the difference between a measure of grid
complexity versus operator complexity, note that the size of m affects not only the number of rows in
the coarse-grid operator, but also the number of nonzeros per row. The coarsening ratio is estimated
to be cg = m/Ñ , so, assuming that operator complexity is proportional to the square of the number of
degrees of freedom per element, then the ratio of the number of nonzeros in the coarse-grid operator
to those in the fine-grid operator is cop := (m/mτf

)2/ne. A two-level operator complexity growth
measure can be defined by

“two-level” cost := 1 + cop.

Considering multiple levels argues against using higher values of mτ . Specifically, a p-level operator
complexity growth measure may be defined by

“p-level” cost := 1 + cop + c2
op + . . . + c(p−1)

op . (3.10)

In analogy to grid complexity growth measure (3.8), operator complexity growth measure (3.10)
could be defined as 1/(1−cop). However, practical experiences suggest that, for some test cases, cop can
be greater than one when moving from the fine level to the first coarse level, resulting in an infinite
(or negative) complexity measure. Consider Poisson’s equation, discretized using bilinear functions
on rectangular elements. The use of 2 × 2 agglomerates on the finest level necessitates mτ = 1 in
order to maintain cop < 1, but this is far too restrictive for rectangular elements with large aspect
ratios. In such cases, the assumption, implicit in the estimate, that cop grows at the same rate on all
coarser grids is not generally warranted. Unfortunately, more realistic growth rate estimates for cop

are difficult to derive. To avoid having separate complexity measures on different levels, we employ a
compromise in which the number of levels in the estimate is fixed. For small p, measure (3.10) does
not restrict mτ excessively; hence, we use small p in practice. In fact, empirical results indicate that
a 3-level cost measure (p = 3) produces the most satisfactory results. To reflect the true cost of the
algorithm without resorting to an arbitrary choice of p, we intend to refine the operator complexity
estimate in future research. We also observe that, if we really wish to restrict cop < 1 on all levels,
larger agglomerates could likely be used, allowing more freedom in the choice of mτ .

An accuracy/operator-cost measure. Estimating the accuracy (error reduction) versus cost of the
algorithm using operator complexity allows us to produce the alternate accuracy/cost measure

µop := accuracy1/cost =
(

λnτ
− λmτ+1

λnτ
+ λmτ+1

)1/(1+cop+c2
op+...+(cop)p−1)

. (3.11)

We have two accuracy/cost measures, µg and µop. Limited numerical tests indicate that use of the
3-level operator complexity measure to determine mτ produces the most robust approach. A numerical
comparison between the uses of µop and µg appears in Section 4.1.
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A few comments on cost/accuracy measures. We developed the geometric and algebraic complexity
measures, and from them the two accuracy/cost measures µg and µop, with the explicit assumption
that the discretization is roughly the same everywhere (thus allowing the substitutions mτ := m and
Nτ := Ñ). This works well enough on regular grids (such as the ones used in the numerical tests in
Section 4), recognizing that minor modification occurs because of agglomerates involving boundary
elements. For truly unstructured grids, of course, the discretization can vary systematically over
different regions of the domain, so that in fact µg and µop should depend on τ , or at least on regional
averages. Indeed, one could imagine that the use of the measures to guide the coarsening could be
applied regionally, with the goal of implementing careful local actions to control the global complexities
resulting from the coarsening process. However, we have not yet implemented an algorithm to do
this, preferring instead for now to apply the measures as a result of a fixed “average” over the grid.
Continuing research is being pursued into effective methods for nonuniform grids.

In a similar vein, we observe that the optimal value of the Richardson relaxation weighting parame-
ter ω = 2/(λnτ

+λmτ+1) is also dependent on the agglomerate τ . In practice, of course, it is impractical
to compute a weighting factor for each agglomerate. The accuracy/cost measure can be used to guide
development of the multigrid operators for regular-grid problems by applying a global average for the
weighting parameter. More frequently in practice, however, it is simpler to use Gauss-Seidel or some
other relaxation in which the cost is fixed.

Finally, we note that one assumption that we have made is that the reduction in the number of
degrees of freedom between the first two grids is repeated on the coarser levels. While this assumption
is not unreasonable (although not always strictly accurate) for scalar problems, there are many systems
problems for which this is unlikely to occur. In certain elasticity problems, for example, especially in
3D, the first coarse operator often exhibits a noticeably smaller reduction in the number of degrees of
freedom than is seen on the succeeding coarse levels. For situations such as these, it is possible that
an effective strategy could be devised in which more realistic estimates of costs could be developed by
computing different values of cg or cop for each coarser level as the coarsening proceeds.

3.4. Reducing the dimension of coarse-grid element matrices. Let γ be an e-agglomerate.
We have seen that the coarse-grid matrix corresponding to the resulting element (fuzzy or not) has
nonzero rows and columns corresponding to all coarse-grid degrees of freedom associated with each
p-agglomerate τ ∈ Xγ . Thus, if there are m coarse-grid degrees of freedom introduced for each such τ ,
then the size (row dimension) of the coarse-grid element matrix is m|Xγ |. Storage of the elements is
proportional to the square of this value, while eigenvector/eigenvalue computation of the coarser-grid
p-agglomerate matrices can increase roughly with its cube. Thus, reducing this size can have a large
payoff in terms of both storage and computation time.

While it seems natural to use p-agglomerates as cores of the coarse-grid elements, this almost
guarantees that Xγ is as large as possible. An alternative that can dramatically reduce the coarse-grid
element size is to stagger the e-agglomerates with respect to the p-agglomerates. This is illustrated in
Figures 3.2 (a) and 3.2 (b). In both figures, the central 2× 2 agglomerate is an element core, γ, while
the white regions marked with τ show the orientations of the p-agglomerates with respect to γ. In
Figure 3.2 (a), Xγ consists of the central p-agglomerate and all 8 surrounding p-agglomerates, so that
|Xγ | = 9. In Figure 3.2 (b), where the single-color p-agglomerates (shaded or white) are staggered with
respect to the central e-agglomerate, |Xγ | = 4. Since m would be the same in either case, storage for
the coarse-grid elements is proportional to 81 in the first case and 16 in the second, so that staggered
elements give better than a five-fold reduction in coarse-grid element matrix storage requirements. In
a similar 3D problem, savings of the staggered case would be 64/729 over the unstaggered case, better
than a factor of 11. Further, assuming that we again construct 2 × 2 p-agglomerates on the coarser
grid, the sizes of the coarse-grid agglomerate matrices would be 16m×16m in the unstaggered case and
9m× 9m in the staggered case. Assuming an O(N3) cost for computing eigenvectors and eigenvalues,
staggering reduces work here by a factor of about 5.6 in 2D and about 13.3 in 3D. (O(N3) is the cost
of computing a complete machine-accurate eigenvector decomposition. More efficient methods should
be used in practice, but the matrix size would still strongly affect the cost of this computation.) The
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smaller size also reduces the work involved in computing the element matrices on the next-coarser
grid. An added benefit of these staggered agglomerates is that smaller |Xγ | tends to limit creep even
without the addition of fuzz to the e-agglomerates, although we generally use the fuzz in practice.

3.4.1. An algorithm for choosing staggered coarse-grid agglomerates. A current area of
research is to study some of the many ways to choose such staggered elements and agglomerates. Here
we describe one approach that seems very promising. Assume that we are on level k and are given
level k elements and associated matrices. We begin by partitioning the set of level k elements into a
set of level k + 1 e-agglomerates (element cores), denoted by C. (While an automatic agglomeration
algorithm such as that developed by Jones and Vassilevski [14] could be used, the numerical tests
reported here generally involve the use of standard 2 × 2 e-agglomerates.)

The following algorithm determines the set, G, of p-agglomerates staggered with respect to the
element cores, γ ∈ C. Here, we define Ei := {γ ∈ C : i ∈ Mγ} and, as before, Ti := {α ∈ E : i ∈ Mα}.

1. For each degree of freedom i, initialize the weight wi = |Ei|.
2. If wi = 0, for all i, then exit. Otherwise, pick i with maximal weight to serve as a seed for the

staggered p-agglomerate, τi.
3. Start the agglomerate by setting τi = Ti (the element neighborhood of i). Extend τi by adding

all elements in the interior of Ei not already in another p-agglomerate.
4. Set wj = 0, ∀ j ∈ Mτi

.
5. Let G ← G ∪ {τi}.
6. Go to step 2.

The local stiffness matrices over each p-agglomerate, τ ∈ G, can now be assembled, and inter-
polation can be defined (as described previously). We can then build the fuzzy elements for each
e-agglomerate γ ∈ C and construct the corresponding coarse-grid element matrices corresponding to
the elements by determining (P fuzz

γ )T Âγ P fuzz
τ (as in Section 3.2.2). At this point, the agglomerate

information is no longer needed and can be discarded, since it is only used in defining interpolation
and determining the element fuzz. Also, it is now possible to discard the element matrices on the
current level, since they will no longer be required.

A nice, but nonessential, feature of this approach comes from the fact that each p-agglomerate
is associated with a particular fine-grid degree of freedom (i in the above algorithm). On the finest
grid, it is common that a number of degrees of freedom are defined at physical nodes of the elements.
This nodal association is “inherited” by the block of coarse-grid degrees of freedom defined over the
p-agglomerate. This formally gives the coarse-grid elements the same structure as the fine grid, so that
each element is associated with some set of nodes and each node is associated with a set of degrees
of freedom. We may therefore rewrite the algorithm above in terms of “nodes” on each level, rather
than the degrees of freedom, which improves efficiency. Furthermore, this effect also provides some
advantages in terms of writing agglomeration algorithms based on generalized “faces” of elements,
where a face can be defined as a maximal intersection of two elements.

As noted above, staggered agglomerates reduce complexity and limit creep. This can be seen, to
some extent, in the results presented next, although exposing these effects fully requires more extensive
tests than those we offer.

4. Numerical results. We apply the ρAMGe algorithm numerically to two illustrative examples:
a Poisson equation and a plane-stress cantilever beam problem. Both problems are discretized using
bilinear functions on rectangular elements. The Poisson equation is included solely for illustrative
purposes: while many successful AMG approaches exist for solving Poisson problems, important facets
of ρAMGe are more readily illustrated within this context.

For detailed results using the original AMGe (as outlined in Section 2), see [3]. Comparing results
of such an AMGe algorithm to ρAMGe poses a difficult (if not impossible) task: as noted in Section 2,
robust coloring algorithms for the original AMGe scheme are problematic and currently do not even
exist. Furthermore, ρAMGe develops coarse grids that per se are not subsets of the fine grids. Because
of this, we lose a sense of C-points, F-points, and unknowns on coarser levels, making comparison still
more difficult.
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k κ CP CL dim(Null(Aτ ))
Unstaggered 2 0.04 1.47 1.9 1

elements 3 0.18 1.96 11.1 10
4 0.19 2.85 90.6 98

Staggered 2 0.05 1.53 2.0 1
elements 3 0.05 1.76 2.6 2

4 0.07 1.88 3.0 2
Unstaggered 2 0.04 1.47 1.9 1

fuzzy 3 0.05 1.60 2.4 1
elements 4 0.05 1.63 2.5 1
Staggered 2 0.05 1.53 2.0 1

fuzzy 3 0.05 1.67 2.2 1
elements 4 0.05 1.71 2.3 1

Table 4.1

The effects of creep and benefits of staggering elements in ρAMGe with and without the use of fuzzy elements; for
Poisson’s equation discretized with bilinear functions on square elements on a 32 × 32 grid; k is the number of levels,
κ is the observed convergence factor, CP and CL are the respective grid and operator complexities, and dim(Null(Aτ ))
is the maximum dimension of the agglomerate null spaces; tests used µop with p = 3.

While the ρAMGe theory assumes Richardson (or Jacobi) smoothing, simple Gauss-Seidel with
any convenient ordering is also a natural choice for relaxation. The numerical tests throughout this
section use a V(1,1) cycle with Gauss-Seidel relaxation.

Let nk
P denote the number of degrees of freedom on level k and nk

L the number of non-zero entries
in the level k operator, Ak. Grid complexity is thus given by

CP =
∑m

k=1 nk
P

n1
P

(4.1)

and operator complexity by

CL =
∑m

k=1 nk
L

n1
L

. (4.2)

The asymptotic convergence factor, κ, is estimated by applying 20 V(1,1) cycles to Au = 0 with
random initial guess u0 and computing the ratio of the last two residual norms: κ = ||r20||/||r19||.
Matrix A is diagonally scaled, so that its diagonal part is the identity matrix.

The tables giving the experimental results display grid and operator complexities as well as esti-
mated asymptotic convergence factors.

4.1. Numerical illustration of multilevel algorithm development. While producing im-
pressive two-level results, the ρAMGe algorithm as detailed in Section 3.2 does not extend easily to
the multilevel case. Here, we illustrate by numerical example the evolution of ρAMGe from a two-
level to a multilevel algorithm. Along the way, we observe the numerical results that give rise to the
mathematical stepping stones leading to a multilevel ρAMGe.

In particular, we consider the Poisson equation discretized with bilinear functions on a 32 × 32
square grid of square elements. Homogeneous Dirichlet boundary conditions are assumed, and they
are eliminated from the matrix during discretization. Standard 2 × 2 agglomeration is forced on each
level.

Creep. Table 4.1 illustrates the effect of creep. This effect is clearly evident as the level becomes
coarser (larger k). Due to the Dirichlet boundary conditions, dim(Null(Aτ )) varies somewhat over τ
in the domain. Therefore, Table 4.1 measures maxτ∈Gk−1(dim(Null(Aτ ))) as an indication of creep in
the k-level problem. Note that we consider τ ∈ Gk−1 since stiffness matrices are unnecessary in the
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µop µg

k κ CP CL κ CP CL dim(Null(Aτ ))
2 0.05 1.53 2.00 0.05 1.53 2.00 1
3 0.05 1.67 2.23 0.05 1.77 2.79 1
4 0.05 1.71 2.29 0.05 1.86 3.18 1
5 0.05 1.72 2.30 0.05 1.91 3.37 1

Table 4.2

Multilevel ρAMGe for Poisson’s equation discretized with bilinear functions on square elements on a 32 × 32 grid,
using either operator (µop) or grid (µg) complexity.

direct solve on level k. The effect of creep on operator complexity alone is evidence enough that major
enhancements in the two-level ρAMGe algorithm are required.

Staggering elements. Complexity is reduced by staggering coarse-grid elements relative to fine-grid
agglomerates (see Section 3.4). The Poisson problem serves as an instructive example regarding the
benefit of this algorithm enhancement. It is clearly seen in Table 4.1 that staggering the elements
can significantly improve multilevel algorithm convergence and complexity (improvement is observed
in both types of complexity, but it is especially dramatic for operator complexity).

Eliminating creep with fuzzy elements. The null cardinality column of Table 4.1 reveals that stag-
gering elements relative to fine-grid agglomerates reduces, but does not entirely eliminate, creep. In
fact, creep appears as early as level k = 3. For large-scale problems necessitating many more levels
and, perhaps, unstructured grids, creep could wreak much more serious devastation on the multigrid
components. The use of fuzzy elements in ρAMGe to eliminate creep was described in Section 3.2.2
and is illustrated in Table 4.1. The effectiveness of the technique is clearly illustrated in the table,
where the null cardinality remains at unity for all levels in which the fuzzy elements are employed.
The use of staggering with fuzzy elements appears to reduce operator complexity somewhat, as well
as to eliminate creep. This reduction in operator complexity is observable (though relatively slight) in
Table 4.1; however, we note without demonstration that it is somewhat more noticeable for more com-
putationally difficult problems, such as linear elasticity. In addition, the staggered approach actually
involves less work in the creation of (and storage for) the fuzzy elements, as described above (Section
3.4 and Figure 3.2).

Using the accuracy/cost measure and fuzzy weighting. Even for traditional AMG, a bewildering
host of options exists for the algorithm implementation. This is also true of ρAMGe. To find our way
through these options to robust algorithms, we begin by experimenting on the model problem choices
moderated by the above discussion. We then test the most promising options on other problems to
suggest their robustness.

We present in Table 4.2 results of choices regarding the complexity measure and the weight of the
agglomerate fuzz for the Poisson problem. The data show that the complexity of coarse grids depends
highly on the accuracy/cost measure, so that selecting one such measure to implement directly affects
the multigrid process. Further, we see that the accuracy/cost estimate incorporating a three-level
operator complexity growth measure (µop in (3.11) with p = 3) shows lower complexity (both grid and
operator) than does the measure incorporating grid complexity (µg in (3.9)). The remaining numerical
tests therefore use µop with a three-level operator complexity growth measure. A second option is that
fuzzy elements contain a core and a fuzz that can be weighted in various ways in the construction of
agglomerates (see Section 3.2.2). Table 4.2 reports on agglomerates that are formed using (3.6) with
weights α1 = 1.0 and α2 = 0.5. Limited testing with these (and other) choices show them to be the
most robust of those considered; this preliminary conclusion requires further study, however, especially
for a broader range of applications.

Accuracy estimate. The convergence bound developed in the theory of ρAMGe tends to be pes-
simistic, as is the case with its predecessor, AMGe. For example, the two-level accuracy estimate is
0.67 for Poisson’s equation discretized with bilinear functions on square elements on a 32 × 32 grid.
Despite this bound, in practice we often see much lower convergence factors, as is amply demonstrated
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k κ CP CL

2 0.13 1.52 2.00
3 0.17 1.69 2.32
4 0.17 1.74 2.42
5 0.17 1.77 2.47

Table 4.3

Linear elasticity discretized with bilinear functions on square elements (hx = hy = 1/32) on a 32 × 32 grid.

in Table 4.2. Yet, the theoretical estimates serve in guiding the choices necessary in constructing multi-
grid components, and give insight into the way that algorithm development must proceed. Developing
an accuracy estimate yielding a tighter convergence bound is an open, and important, question in
ρAMGe research.

Fig. 4.1. Plane-stress cantilever beam problem.

4.2. Applying ρAMGe to linear elasticity. Much of the motivation for research into AMGe
methods began in an effort to develop robust methods to solve matrix equations arising from systems
of differential equations. At the focus of current ρAMGe research is the 2D linear elasticity system

uxx +
1 − β

2
uyy +

1 + β

2
vxy = f1,

1 + β

2
uxy +

1 − β

2
vxx + vyy = f2,

(4.3)

where u and v are displacements in the x and y directions, respectively. Throughout the numerical
tests, we employ the value β = 1/2, which yields the Poisson ratio ν = β/(1+β) = 1/3. The problem,
depicted in Figure 4.1, has free boundaries, except on the left where u = v = 0. We discretize (4.3)
with bilinear finite elements on a uniform nx ×ny rectangular array of cells with spacing hx ×hy. The
actual domain (nxhx by nyhy) varies in size, depending on the values of nx, ny, hx, and hy.

4.2.1. Forcing agglomerates. To apply ρAMGe to (4.3) in this study, the agglomerates are
predetermined on each level. We consider the effects of several choices. For all experiments, we use
µop as the accuracy/cost measure and the parameter values α1 = 1.0 and α2 = 0.5 in (3.6) to form
fuzzy agglomerates.

First, consider a square domain with nx = ny = 32, partitioned with bilinear functions on square
elements (i.e., hx = hy = 1/32). The algorithm forces 2 × 2 agglomerates on each level so that level
5 contains only one agglomerate, where the coarse-grid problem is solved directly. Table 4.3 reveals
that reasonable grid and operator complexities are present throughout all levels.

The experiments reported in Table 4.4 use a rectangular domain on which stretched (rectangular)
elements with an aspect ratio of 10 : 1 (i.e., hx = 1/32, hy = 1/320) are used to discretize to a 32× 32
grid. Various patterns for agglomeration are forced on each level. Forcing 2 × 1, 1 × 2, or 2 × 2
agglomerates all yield acceptable two-level convergence factors, reflecting a certain flexibility toward
agglomeration in ρAMGe (see Table 4.4).

This flexibility apparently disappears if 2 × 1 agglomerates are forced for the 3-level test. In fact,
2× 1 fine-grid agglomerates produce coarse-grid elements with a relatively large number of associated
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Size of forced
agglomerates k κ CP CL

2 0.36 1.74 3.15
1 × 2 3 0.41 2.06 3.81

4 0.42 2.22 4.13
5 0.43 2.32 4.31
2 0.42 1.75 3.17

2 × 2 3 0.41 2.20 5.71
4 0.42 2.44 7.64
5 0.42 2.59 9.23
2 0.22 1.71 3.09

2 × 1 3 0.86 2.04 3.86
4 0.89 2.24 4.36
5 0.94 2.36 4.65

Table 4.4

Linear elasticity discretized with stretched rectangular elements (hx = 1/32 and hy = 1/320) on a 32 × 32 grid.

Square Elements Stretched Elements
k κ CP CL κ CP CL

2 0.24 1.51 1.51 0.28 1.75 2.12
3 0.25 1.82 1.88 0.29 2.12 2.65
4 0.27 1.99 2.08 0.32 2.37 3.09
5 0.39 2.09 2.19 0.35 2.52 3.37
6 0.43 2.15 2.26 0.39 2.61 3.54

Table 4.5

Single-element thick 2-D plane-stress cantilever beam discretized with rectangular elements on a 64 × 1 grid.
Stretched elements use a 10 : 1 aspect ratio.

eigenvalues close to 0. This effect on the spectrum of coarse-grid elements does not occur with 1 × 2
agglomerates, which results in more encouraging convergence factors, as seen in Table 4.4.

Finally, ρAMGe is applied to a thin 2-D plane-stress cantilever beam (the beam is a single-
element thick). Specifically, linear elasticity equations (4.3) are discretized with bilinear functions
on rectangular elements on a nx × 1 grid, with nx = 64 for the tests. The problem is discretized first
with square elements (hx = hy = 1/64) and then with stretched elements possessing a 10 : 1 aspect
ratio (i.e., hx = 1/64, hy = 1/(640). In both cases, 2 × 1 agglomerates are forced on each level.

Table 4.5 reveals that ρAMGe performs well on the 2-D plane-stress cantilever beam. Acceptable
results are attained when the domain is partitioned using either square or stretched elements. This
robustness is an important feature of ρAMGe and bodes well for its potential to efficiently solve a
larger family of problems.

4.2.2. Selecting agglomerates algebraically. The numerical results suggest that ρAMGe is
often not very sensitive to the type of agglomeration chosen. Therefore, there is promise that an
algebraic algorithm can be designed to select agglomerates. Yet, Table 4.4 suggests that a robust
algorithm should still take the operator into consideration.

As an initial step in this direction, we consider ρAMGe using the Jones-Vassilevski algebraic ag-
glomeration algorithm introduced in [14]. This graph-based routine was designed for AMGe and is
suitable for 2D and 3D domains. Its motivation is that it should restore (up to boundary effects) reg-
ular 2D triangulations obtained by uniform refinement using either triangles or rectangular elements.
In general, the algorithm provides compact agglomerated elements and tends to provide quasi-uniform
coarse elements when the fine-grid triangulation is quasi-uniform. This results in reasonable complexi-
ties for the AMGe algorithms. Even though these tests use a version of the algorithm in [14] that does
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Square Elements Stretched Elements
k κ CP CL κ CP CL

2 0.14 1.49 1.94 0.22 1.72 3.09
3 0.19 1.63 2.20 0.28 2.11 5.29
4 0.21 1.67 2.27 0.36 2.31 6.74
5 0.24 1.69 2.29 0.43 2.39 7.37

Table 4.6

Linear elasticity discretized with bilinear functions on rectangular elements on a 32 × 32 grid, with the Jones-
Vassilevski agglomeration algorithm used for aggregation. Again, stretched elements use a 10 : 1 aspect ratio.

not take the operator into account in making its agglomeration decision, the results are nevertheless
encouraging.

First consider linear elasticity equations (4.3) on a 32 × 32 regular grid of rectangular bilinear
elements. The problem is discretized both with square (hx = hy = 1/32) and stretched elements
possessing a 10 : 1 aspect ratio (hx = 1/32, hy = 1/320). The agglomeration routine chooses 2 × 2
agglomerates in the interior of the domain and tends to choose irregular agglomerates for elements on
the boundaries. Table 4.6 shows results for a domain partitioned with square and stretched elements.
The Jones-Vassilevski routine chooses the same agglomeration pattern for both problems because both
domains contain 32 × 32 elements.

For the single-element thick 2-D plane-stress cantilever beam, the agglomeration routine chooses
2×1 agglomerates on each level, the same agglomerates we predetermined for the experiments of Table
4.5. Hence, that table serves double duty– here as a report of the numerical results for tests using the
algebraic agglomeration routine. The occurrence of the same agglomeration pattern is a product of
the limited choices for aggregation for a single-element thick domain.

These results are very promising; we envision the possibility of designing an automatic, robust
agglomeration routine for ρAMGe. The creation of such an algorithm is an active area of research.

5. Future work. Our goal in devising ρAMGe, as reflected in its rather simple theory, is to
create a general approach to AMG unhindered by too many heuristics. We have explored only a few of
the problems that might be effectively solved by ρAMGe, which, with its general sense of smoothness,
increases the promise of AMG methods to fulfill the needs of modern computational simulation.

Designers of algebraic methods such as ρAMGe must choose from a huge number of options.
Undoubtedly, research into ρAMGe methods will continue and result in enhancements to the algorithm.
As we have indicated, numerous choices must be made regarding agglomeration strategies, selection of
staggered/unstaggered agglomerates, fuzzy agglomerate generation, employment of an accuracy/cost
measure to guide agglomeration choices, and several other questions. While we have touched on these
questions, much work remains to be done before they can be fully addressed. Still, we believe that
ρAMGe shows promise in fulfilling its underlying motivation of providing an AMG solver that broadens
the base of applicability of AMG methods.
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