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Abstract

In this thesis, we address the boundary value problem for the Hodge-Dirac
operator on a bounded, Lipschitz, polytopal, and topologically trivial domain
Ω ⊂ Rn. Utilizing a geometric multigrid method, we solve the resulting system of
linear equations derived from finite element exterior calculus (FEEC) and discrete
exterior calculus (DEC) discretizations.

The assembly and analysis of Galerkin matrices for structured grids are presented,
with the ”Dirac2 = −∆” property verified in the discrete setting. This facili-
tates the development and evaluation of appropriate smoothers, transforming
smoothers (more specifically, distributive relaxation), in both two- and three-
dimensional cases.

Unstructured grids are also discussed, and under relatively mild conditions we
prove a Poincaré inequality for DEC, stability of DEC, and ultimately spectral
equivalence between FEEC and DEC. We elucidate a multigrid approach for DEC
validated through numerical testing in 2D and 3D. Based on the DEC smoother, a
smoother for the FEEC problem is constructed and tested in 2D, showing robust
rates of convergence.

Furthermore, convergence of DEC is proven under the assumption of a well-
centered mesh and a sufficiently regular solution, which is demonstrated using
numerical tests in 2D.
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Chapter 1

Hodge-Dirac Operators

1.1 Exterior Calculus

We will now very briefly introduce some notation and concepts from exterior calculus.
For more details, refer to [9, 2, 12, 22]. The following notations are based on [12]. Let
Ω ⊂ Rn be a bounded, Lipschitz, polytopal, and topologically trivial domain and we
write Λk (Ω) for the space of smooth k-forms thereon. As in [12] the exterior derivative
operators are denoted by dk : Λk (Ω)→ Λk+1 (Ω), 0 ≤ k < n, the (Euclidean) Hodge
star operators by ⋆k and the codifferential operators by δk := (−1)k ⋆−1

k−1 dn−k⋆k :
Λk (Ω)→ Λk−1 (Ω) , k = 1, . . . , n. The Hodge star operators induce inner products on
Λk (Ω).

Definition 1.1
The L2 inner product on two k-forms ω and µ is given by

⟨ω, µ⟩L2Λk(Ω) :=
∫

Ω
ω ∧ ⋆kµ, ω, µ ∈ Λk (Ω) .

We denote by Λ (Ω) :=
⊕n

k=0 Λk (Ω) the exterior algebra of (smooth) differential
forms on Ω and write

d :=


0
d0 0

d1 0
. . . . . .

 , δ :=


0 δ1

0 δ2

0
. . .
. . .

 (1.1)

for the exterior derivative and codifferential on Λ (Ω). We equip Λ (Ω) with the
natural Hilbert space structure by combining the inner products from Definition 1.1.
For u ≡ (u0, . . . , un), v ≡ (v0, . . . , vn) ∈ Λ (Ω) we set

⟨u, v⟩L2Λ(Ω) :=
n

∑
k=0
⟨uk, vk⟩L2Λ(Ω) .

Write L2Λ (Ω) :=
⊕n

k=0 L2Λk (Ω), where L2Λk (Ω) is the space of square-integrable
k-forms, i.e. k-forms with coefficients in L2(Ω).

Also refer to [2, Section 6.2.6], where Sobolev spaces of differential forms are intro-
duced. Let

HΛ (Ω) :=
{
u ∈ L2Λ (Ω) : du ∈ L2Λ (Ω)

}
,
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1. Hodge-Dirac Operators

and define V̊ :=
⊕n−1

k=0 H̊Λk (Ω)⊕ L2
∗Λn (Ω), where

L2
∗Λ

n (Ω) :=
{

ω ∈ L2Λn (Ω) :
∫

Ω
ω = 0

}
, (1.2)

and H̊Λk (Ω) is the space of functions in HΛk (Ω) with vanishing trace on ∂Ω, see [2,
Section 6.2.6]. Also let H∗Λ (Ω) be the domain of δ, see also [2, Section 6.2.6].

Definition 1.2 ([19, Section 2.1])
We denote the inner product on HΛ (Ω) by

⟨u, v⟩HΛ(Ω) := ⟨u, v⟩L2Λ(Ω) + ⟨du, dv⟩L2Λ(Ω) .

Definition 1.3
The Hodge-Dirac operator is D := d + δ with domain of definition D(D) := H̊Λ(Ω)∩
H∗Λ(Ω), where the domain of d is H̊Λ(Ω) and that of δ is H∗Λ(Ω).

Remark 1.4 There is a connection between the Hodge-Dirac operator we see here and
the one from physics, at least in 3D. See Appendix B for more.

1.2 Variational Problem

Taking the cue from [19] we put the focus on the following boundary value problem1

for the Dirac operator: Given f ∈ L2Λ (Ω), seek u ∈ D(D) ∩ (ker D)⊥, p ∈ ker D such
that

Du+ p = f. (1.3)

Corollary 8 of [19] establishes the well-posedness and stability of the following weak
form of (1.3): Given f ∈ L2Λ (Ω), seek u ∈ H̊Λ (Ω) , p ∈ ker D such that

⟨du, v⟩L2Λ(Ω) + ⟨u, dv⟩L2Λ(Ω) + ⟨p, v⟩L2Λ(Ω) = ⟨f, v⟩L2Λ(Ω) ∀v ∈ H̊Λ(Ω)

⟨u, v⟩L2Λ(Ω) = 0 ∀v ∈ ker D.
(1.4)

As we are working with a domain with trivial topology, ker D (the space of harmonic
forms) is trivial (see [2, Section 4.3] for more information) except for constant n-forms,
i.e. ker D|V̊ = {0}, so that we can consider the following simpler problem:

Main Variational Problem

Given f ∈ L2Λ (Ω) with
∫

Ω fn = 0a, seek u ∈ V̊ such that

A(u, v) := ⟨du, v⟩L2Λ(Ω) + ⟨u, dv⟩L2Λ(Ω) = ⟨f, v⟩L2Λ(Ω) ∀v ∈ V̊. (1.5)

aOr given the general case, we can recover p by taking the mean of the n-form in f and then
subtract the mean to get a suitable right-hand side.

1.3 Vector Proxies

We will now state the explicit spaces we consider in 2D and 3D in terms of vector
proxies, as we will need to work with them.

1Note that the boundary conditions are included implicitly in the domain of the operator.
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1.3. Vector Proxies

1.3.1 Three Dimensions

We find that for the operator d in 3D, (see [2, Section 4.3]) in terms of vector proxies

• HΛ0 (Ω) ≡ H1(Ω),

• HΛ1 (Ω) ≡ H(curl),

• HΛ2 (Ω) ≡ H(div),

• HΛ3 (Ω) ≡ L2(Ω).

We will recall the explicit trace operator in this case for the boundary ∂Ω =: Γ:

γT : D(d) → H1/2(Γ) × H−1/2(curlΓ) × H−1/2(Γ) =: HT,

where

γT


U0
U1
U2
U3

 :=

 U0|Γ
n× (U1|Γ × n)

U2|Γ · n


where ·|Γ is understood as the usual trace operator on H1(Ω) and n denotes the unit
outward normal, cf. [22, Section 2]. For more details on traces, see [2, Chapter 6], [5],
[8, Section 2.1, 2.2]. As with differential forms, we denote the space of functions with
zero trace in H(•) by H̊(•). Note that by definition H̊Λ (Ω) ≡ ker γT.

The explicit problem in 3D becomes: Given f0 ∈ L2(Ω), f1, f2 ∈
(

L2(Ω)
)3 , f3 ∈ L2

∗(Ω),
seek u0 ∈ H̊1(Ω), u1 ∈ H̊(curl), u2 ∈ H̊(div), u3 ∈ L2

∗(Ω) such that∫
Ω

grad u0 · v1 + curl u1 · v2 + div u2v3 + u1 · grad v0

+u2 · curl v1 + u3 div v2 dx =
∫

Ω
v0 f0 + v1 · f1 + v2 · f2 + v3 f3 dx

(1.6)

for all v0 ∈ H̊1(Ω), v1 ∈ H̊(curl), v2 ∈ H̊(div), v3 ∈ L2
∗(Ω).

1.3.2 Two Dimensions

In 2D, the operators of interest to us are d0 = grad, d1 = curl (note that curl now maps
to scalars), and the domains are H1 ≡ HΛ0 (Ω) , H(curl) ≡ HΛ1 (Ω) , L2 ≡ HΛ2 (Ω)
with the trace operator

γT : D(d) → H1/2(Γ) × H−1/2(Γ) =: HT,

which is given by

γT

U0
U1
U2

 :=
(

U0|Γ
n×U1|Γ

)
where now n×U1|Γ yields a scalar in 2D.
The explicit problem in 2D becomes: Given f0,∈ L2(Ω), f1 ∈

(
L2(Ω)

)2 , f2 ∈ L2
∗(Ω),

seek u0 ∈ H̊1(Ω), u1 ∈ H̊(curl), u3 ∈ L2
∗(Ω) such that∫

Ω
grad u0 · v1 + curl u1v2 + u1 · grad v0 + u2 curl v1 dx

=
∫

Ω
v0 f0 + v1 · f1 + v2 f2 dx

(1.7)

for all v0 ∈ H̊1(Ω), v1 ∈ H̊(curl), v2 ∈ L2
∗(Ω).
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1. Hodge-Dirac Operators

1.3.3 Whitney Forms

Let Vh
k ⊂ HΛk (Ω) denote the finite element spaces of lowest order discrete differential

forms on T , known as Whitney forms, see [12, Section 4] and [27] for more details,
and Vh :=

⊕n
k=0 Vh

k , V̊h := V̊ ∩Vh. Note that V̊h contains only Whitney forms with
zero trace on ∂Ω or zero mean in the case of n-forms. We point out that the FEEC
approach to (1.5) from [19] employs V̊h for the Galerkin discretization of (1.5).

Definition 1.5
The FEEC mass matrix MFEEC

k is the mass matrix of V̊h
k w.r.t. the inner product

⟨·, ·⟩L2Λk(Ω). Also, we define MFEEC := blockdiag
(

MFEEC
0 , . . . , MFEEC

n

)
, the mass

matrix of V̊h.

4



Chapter 2

Structured Grids

This chapter is concerned with the discretization of the problem on Ω = [0, 1]k where
k = 2 or 3.
The discretization of (1.5) is done using lowest order FEEC on a tensor-product mesh
on the unit square/cube. If not specified otherwise, h denotes the mesh-width, i.e.
1/N where N is the number of elements in one direction (we will only deal with
meshes with an equal number of elements in each direction).

The finite element spaces elucidated in Section 1.3 are used (up to scaling):
In 3D, we use

• Vertex-based bilinear Lagrangian elements for u0;

• Edge-based Nédélec elements (first kind) for u1;

• Face-based Raviart-Thomas elements for u2;

• Cell-centered piece-wise constants for u3.

In 2D, we use

• Vertex-based Bilinear Lagrangian elements for u0;

• Edge-based Nédélec elements (first kind) for u1;

• Cell-centered piece-wise constants for u2.

In both cases, we will use mass lumping (using the trapezoidal rule) to compute the
integrals in the Galerkin projection.

If not further specified, Ah refers to the fully assembled Galerkin matrix on a grid
with the boundary DOF dropped.

2.1 Two Dimensions

2.1.1 Local Assembly

With the degrees of freedom enumerated as in Figure 2.1, the basis functions on the
reference element [0, 1]2 are given by (see [23])

5



2. Structured Grids

1 2

34

5

6

7

8
9

Figure 2.1: Element with the degrees of freedom as used in the 2D discretization of the problem.

• Vertex-based bilinear Lagrangian elements for u0:

Local Index Local Shape Function
1 1 + xy− x− y
2 x(1− y)
3 xy
4 y(1− x)

• Edge-centered Nédélec elements for u1:

Local Index Local Shape Function

5
(

1− y
0

)
6

(
0
x

)
7

(
y
0

)
8

(
0

1− x

)

• Cell-centered piece-wise constants for u3: the only DOF here is 1 with local
index 9.

In order to compute the elements of the matrix, we make use of mass lumping, i.e. we
approximate all integrals by∫

[0,1]2
f (x) dx ≈ 1

4
( f (x1) + f (x2) + f (x3) + f (x4)) ,

where xi are the vertices of the square.

With this enumeration of the DOF, the local element matrix (with mass lumping) of

6



2.1. Two Dimensions

the bilinear form on the left-hand-side of (1.7) on the reference element is

Aloc =



0 0 0 0 − 1
2 0 0 − 1

2 0
0 0 0 0 1

2 − 1
2 0 0 0

0 0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 0 − 1
2

1
2 0

− 1
2

1
2 0 0 0 0 0 0 1

0 − 1
2

1
2 0 0 0 0 0 1

0 0 1
2 − 1

2 0 0 0 0 −1
− 1

2 0 0 1
2 0 0 0 0 −1

0 0 0 0 1 1 −1 −1 0


.

In order to get to the element with side-length h, the integral needs to be transformed,
which can be done by scaling and translating, and in the end yields an element matrix
of hAloc, i.e. it is just re-scaled by the mesh-width1. The corresponding procedure for
the load vector will lead to a factor of h2.

2.1.2 Stencil

In order to get a concrete idea of how the Galerkin matrix looks like, we explicitly
compute rows corresponding to the interior DOF.

• In order to get the row corresponding to a vertex, we assemble a 2× 2 grid
manually, which can be seen in Figure 2.2.

+ 1
2 + 1

2
+1

+ 1
2

+ 1
2

+1

− 1
2

− 1
2

−1

− 1
2− 1

2

−1

Figure 2.2: One row of the Galerkin matrix of a DOF corresponding to a vertex in units of h. The red lines
indicate the coupling of the complete Galerkin matrix, whereas the grey lines indicate the contributions from
the single elements.

• For an edge, we assemble a 2× 1 grid (or 1× 2, they yield the same, but rotated).
The stencil can be found at Figure 2.3.

1It is not necessary to use a specific H(curl)-conforming transformation here, as we are just re-scaling.
Using it would lead to a different normalization of the basis functions, so we are technically not using
the standard Whitney forns.
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2. Structured Grids

− 1
2 − 1

2

−1

+ 1
2+ 1

2

+1+1 −1

Figure 2.3: One row of the Galerkin matrix of a DOF corresponding to an edge in units of h. The red lines
indicate the coupling of the complete Galerkin matrix, whereas the grey lines indicate the contributions from
the single elements (for cell-centered variables the grey and red lines coincide, so the grey ones have been
omitted).

• For the cell-centered variables, only one element is needed to understand all the
couplings, see Figure 2.4.

+1

−1

−1 +1

Figure 2.4: One row of the Galerkin matrix of a DOF corresponding to a cell-centered DOF in units of h.
The red lines indicate the coupling of the complete Galerkin matrix.

As one can see, the matrix will be very sparse. Another convenient consequence is the
fact that a matrix-free method can easily be implemented with these stencils.

To get an idea of how what the explicit matrix looks like (at least in 2D), a python

script was written to (brute-force) assemble the matrix with the following ordering of
the unknowns:

1. Vertices, left-to-right, bottom-up

2. Edges parallel to the x-axis, left-to-right, bottom-up

3. Edges parallel to the y-axis, left-to-right, bottom-up

4. Interior DOF, left-to-right, bottom-up.

The result can be seen in Figure 2.5. As is evident, Ah is populated with ±h or 0 and
the diagonal vanishes.

2.1.3 Squaring the Galerkin Matrix

As can be seen in Figure 2.5, the matrix squared gives something akin to a finite-
difference discretization of the (negative) Laplacian. This is a key property which can
be used for the smoother, so we will now take a closer look at it. Recall that on the
continuous level, “D2 ≡ −∆”, which we will discover carries over in some sense to
the discrete case.

8



2.1. Two Dimensions
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Figure 2.5: Fully assembled 2D Galerkin matrix with the boundary DOF dropped with 4× 4 cells multiplied
by 1

h , so all entries are in units of h, and its square. The gray lines indicate the block-partitioning of the
matrix corresponding to DOF associated with the nodes, edges and cells.

Remark 2.1 Note that the property “Dirac2 = −∆” on the discrete level is lost if we
do not do mass-lumping. As an example, see Figure 2.6, where we see additional entries
which couple the vertex and cell-centered DOF in the squared matrix.

It should be mentioned that the matrix in Figure 2.6 was assembled using MFEM (see [1]),
hence the Galerkin matrix of the Dirac operator might differ from the one in Figure 2.5.
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Figure 2.6: Fully assembled 2D Galerkin matrix without mass-lumping with the boundary DOF dropped
with 4× 4 cells and its square. The black lines indicate the block-partitioning of the matrix corresponding to
DOF associated with the nodes, edges and cells.

It is now the time to talk abut the boundary DOF, as they will affect the squared
matrix: the DOF on the boundary are dropped due to the boundary conditions from
(1.7), i.e. when applying the stencil, we can just set the values accessed at the boundary
to zero.
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2. Structured Grids

First, let us look at the 0-forms. In order to understand what happens if we apply
Ah twice is to visualize it, which is done in Figure 2.7. We draw the following two
conclusions:

• The violet arrows display the contribution from the cell-centered variables, which
vanish due to the alternating signs;

• The blue arrows couple the vertex DOF, and we can see that the self-coupling
will sum to 4h, whereas the surrounding vertices all get an individual weight of
−1h.

In the end, we recover the usual 5-point star for the scalar Laplacian. The boundary
DOF are zero, so this will yield a block which looks like a finite-difference matrix for
−∆ with Dirichlet boundary conditions. We can carry out the same procedure for one

+1

+1

−1

−1

−1

+1
−1

+1

+1

−1

+1

−1

−1

+1

−1

−1

+1

+1

+1

−1

Figure 2.7: One row of the squared Galerkin matrix in 2D corresponding to a DOF on a vertex. The blue
and violet arrows indicate the first application of Ah, whereas the red ones indicate the second one.

of the vector components, which will yield Figure 2.8. As before, the contributions
from the other forms cancel due to alternating signs, and now also the contributions
from the other vector components cancel out as well and we get a 5-star stencil for the
y-component of u1 (i.e. the 5-point star applied to the vertical edges). Of interest is
also what happens on the boundaries:

• Applying the stencil on the east and west boundaries in Figure 2.8 will yield
Dirichlet boundary conditions on there, as expected.

• On the north/south boundaries, the top/bottom edge-DOF in Figure 2.8 will
be missing and the edge-DOF parallel to the boundary will vanish. Hence only
the contribution from the edge of interest to the vertex at the top/bottom will
remain after the first application of Ah, and thus the diagonal entry of A2

h will
be reduced by 1h compared to the interior, i.e. we will have 3h instead of 4h.
The rest remains the same.

The same considerations apply to the components on the other edges, the one parallel
to the x-axis (it is the same as Figure 2.8 but rotated). One can see that this looks like

10



2.2. Three Dimensions
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Figure 2.8: One row of the squared Galerkin matrix in 2D corresponding to a DOF on an edge. The green
arrows indicate the first application of Ah, whereas the red ones indicate the second one.

a finite-difference discretization of an operator of the form

−∆
(

v1
v2

)
with vanishing tangential component on ∂Ω.

Finally, the cell-centered variables will look like a discretization (up to a factor) of −∆
with Neumann boundary conditions

−∆v with ∇v · n = 0 on ∂Ω,

i.e. the 5-point star is applied with ghost cells which hold the value of the nearest cell
at the boundary. The figure is omitted for the sake of brevity.

This will lead to a reduction of the diagonal entry by the number of adjacent “ghost
cells” when compared to the interior, i.e. the diagonal entry will be 4h in the interior,
3h if the cell neighbors exactly one boundary, and 2h if it is in a corner.

Zooming into A2
h in Figure 2.5 yields Figure 2.9, and we can see that indeed the

diagonal entries vary as expected (see the previous section for the enumeration of the
DOF).

2.2 Three Dimensions

Here, there are 27 DOF on the reference element. The enumeration of the local
shape functions can be found in Figure 2.10. The explicit expressions of the local

11



2. Structured Grids
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Figure 2.9: Zoom-in of A2
h from Figure 2.5.
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Figure 2.10: Enumeration of the DOF on the cube.

shape functions can be found in Appendix A. Here, the computation of the local
element matrix yields a 27× 27 matrix, which is quite unwieldy, so sympy was used to
carry out the local calculations symbolically, the result of which can also be found in
Appendix A. It is easy to check that the element matrix now scales with h2 instead of
h like in the 2D case. The entries in load vector now also scale with h3 instead of h2.

Explicitly looking at the entries of the element matrix, we observe the following:

• DOF associated with the vertices only have entries ± 1
4 ,

• DOF associated with the edges only have entries ± 1
4 ,

• DOF associated with the faces only have entries ± 1
2 , and

• DOF associated with the cell-center only have entries ±1

in their respective rows/columns in the element matrix. For the edges and faces, it
is exactly ±1 the reciprocal of the number of DOF which are shared by the cubes in
the interior of the grid. So like in the 2D case, assembling the matrix will then lead
to entries of only ±1 (in units of h2). To see this, let us look at a 2× 2× 2 grid and
assemble the row corresponding to a DOF on the middle vertex, as in Figure 2.11. As
can be seen, the entries sum to ±1, and this fact carries over to the other DOF as well,
but the explicit computation is omitted for the sake of brevity.

The square of the matrix can be computed by the same means as in the 2D case, except

12



2.3. Zero Mean Condition

that now the stencils contain more elements and it is harder to visualize. For concrete
numbers, see Appendix A. In the end, we find that (in units of h2)

• For u0, we get the 7-point stencil with Dirichlet boundary conditions, the diago-
nal is constant ≡ 6;

• For u1, we get the 7-point stencil with boundary condition u1|∂Ω × n = 0, the
diagonal is constant ≡ 6 on the interior, and at points on the boundary 5;

• For u2, we get the 7-point stencil with boundary condition u2|∂Ω · n = 0, the
diagonal is constant ≡ 6 on the interior, at points on exactly one boundary 5,
and on exactly two boundaries 4;

• For u3, we get the 7-point stencil with (like in 2D) mirrored ghost cells, the
diagonal is constant ≡ 6 on the interior, at cells on exactly one boundary 5, on
exactly 2 boundaries 4, and 3 at the corner cells of the cube.

+ 1
4

+1

− 1
4

−1

− 1
4

−1

+ 1
4 +1

+ 1
4
+1

− 1
4

−1

Figure 2.11: One row of the 3D Galerkin matrix of a DOF corresponding to a vertex in units of h2. The
gray arrows indicate the contributions from the single elements, whereas the red ones indicate the entries in
the assembled matrix.

2.3 Zero Mean Condition

The linear system to solve in the end has the form

Ahuh = fh. (2.1)

The DOF on the boundary are dropped due to the boundary conditions from (1.7)
or (1.6). However, we still need to augment the system to make sure that the second
scalar component is in L2

∗(Ω), see (1.7) and (1.6).
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2. Structured Grids

Without these zero-mean conditions, we expect Ah to be singular. Specifically, as this
is a mean-zero condition for the second scalar component, the matrix will have a
one-dimensional kernel

ker Ah = span
{
(0, . . . , 0, 1, . . . , 1)T

}
,

i.e. constant n-forms, where n is the dimension. The extended system is thus equivalent
to seeking a solution to (2.1) in (ker Ah)

⊥.

Note that ran Ah =
(
ker AT

h

)⊥
= (ker Ah)

⊥, as Ah = AT
h . This also implies that the

part of fh corresponding to the n-forms must have mean zero for a solution to exist, as
fh ∈ ran Ah has to be fulfilled. If quadrature is used to compute the load vector, this
condition can be violated, so we have to be careful. A potential option is to subtract
the mean of the second scalar component, which can incur a source of error in the
load vector.

See [13, Chapter 12.1.2] for a discussion on this (i.e. singular) and related problems.

2.4 Distributive Relaxation

2.4.1 Transforming Smoothers

Since the Galerkin matrices have zeros on the diagonal, a simple smoother like Gauss-
Seidel or Jacobi cannot be applied directly. Instead, the idea with transforming
smoothers is to transform the system into one where we can apply a known smooth-
ing procedure, and then transform back accordingly, see [26] for a more rigorous
description of this topic. In the notation of [26], given some matrix K for which we
want a smoother, we define a matrix-splitting via a transformation with (invertible)
matrices K̄ and ¯̄K, called r- and l-transformations respectively, by

K̃ := ¯̄KKK̄ = M− N,

where M− N is a suitable splitting, e.g. M = tril(K̃) for Gauss-Seidel.

Remark 2.2 (Intuition/Motivation) If we know that we can find a good approximate
inverse M−1 ≈ K̃−1, we can translate that into one for K via

K̄K̃−1 ¯̄K = K̄
(

¯̄KKK̄
)−1 ¯̄K = K−1,

so using K̄M−1 ¯̄K as the matrix for the smoother seems sensible. Note that the inverse of
K̄, ¯̄K is never needed in explicit form.

A step in the smoother for a given right-hand-side f is then defined by

u 7→ u + K̄M−1 ¯̄K ( f − Ku) .

2.4.2 DGSR and Convergence

Given Ah from (2.1), we know that A2
h has the structure of the finite-difference matrix

of −∆ with suitable boundary conditions. More importantly,

A2
h = (L + D) + U,

where L is the lower triangular, U = LT the upper triangular part and D the diagonal
of A2

h, for which D > 0 holds. Therefore, MGS := L + D is invertible.

14



2.4. Distributive Relaxation

The method proposed is a kind of r-transforming (r-transforming meaning ¯̄K = I)
smoother with K̄ = Ah:

ui+1
h = ui

h + Ah M−1
GS

(
fh − Ahui

h

)
︸ ︷︷ ︸

∈ran Ah

. (2.2)

Notice that if uk
h ∈ ran Ah = (ker Ah)

⊥, then uk+1
h ∈ ran Ah. This means that if the

method converges with an initial vector in (ker Ah)
⊥, it converges to the desired

solution with mean zero and the system need not be extended, cf. Section 2.3.

Remark 2.3 We could also use the corresponding l-transforming smoother (meaning
K̄ = I), i.e.

ui+1
h = ui

h + M−1
GS Ah

(
fh − Ahui

h

)
.

This is the smoother we get if we tackle the squared system

Ahu = f =⇒ A2
hu = Ah f

with Gauss-Seidel. As A2
h is the matrix of the Laplacian discretized with finite-differences,

we can solve it using standard multigrid methods, now with the right-hand-side Ah f .

Let now u∗h ∈ (ker Ah)
⊥ be the unique solution to Ahu∗h = fh. Then the error at

iteration k + 1 is given by

uk+1
h − u∗h =

(
1− Ah M−1

GS Ah

)
︸ ︷︷ ︸

=:E

(uk
h − u∗h).

In the spirit of [24, Chapter 12.3], we can prove the following.

Proposition 2.4

∀x ∈ (ker Ah)
⊥ \ {0} : ∥Ex∥ < ∥x∥.

Proof Let ⟨·, ·⟩ denote the standard inner product on vectors.
We get

⟨Ex, Ex⟩ = ⟨x, x⟩ −
〈

x, Ah M−1
GS Ahx

〉
−

〈
Ah M−1

GS Ahx, x
〉
+

〈
Ah M−1

GS Ahx, Ah M−1
GS Ahx

〉
= ⟨x, x⟩ −

〈
Ahx, M−1

GS Ahx
〉
−

〈
M−1

GS Ahx, Ahx
〉
+

〈
Ah M−1

GS Ahx, Ah M−1
GS Ahx

〉
,

as Ah is self-adjoint.

Now make the substitution z := M−1
GS Ahx ⇐⇒ MGSz = Ahx. Then:

⟨Ex, Ex⟩ = ⟨x, x⟩ −
〈

x, Ah M−1
GS Ahx

〉
−

〈
Ah M−1

GS Ahx, x
〉
+

〈
Ah M−1

GS Ahx, Ah M−1
GS Ahx

〉
= ⟨x, x⟩ −

〈
Ahx, M−1

GS Ahx
〉
−

〈
M−1

GS Ahx, Ahx
〉
+

〈
Ah M−1

GS Ahx, Ah M−1
GS Ahx

〉
= ⟨x, x⟩ − ⟨MGSz, z⟩ − ⟨z, MGSz⟩+ ⟨Ahz, Ahz⟩ .

What is left to prove is

⟨Ahz, Ahz⟩ < ⟨MGSz, z⟩+ ⟨z, MGSz⟩ =
〈(

MGS + MT
GS

)
z, z

〉
.
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2. Structured Grids

We have 〈(
MGS + MT

GS

)
z, z

〉
=

〈(
(D + L) +

(
D + LT

))
z, z

〉
=

〈(
A2

h + D
)

z, z
〉

= ⟨Ahz, Ahz⟩+ ⟨Dz, z⟩
> ⟨Ahz, Ahz⟩ ,

as we know that D > 0 and that z ̸= 0 by the assumption of the lemma: 0 ̸= x ∈
(ker Ah)

⊥ =⇒ z = M−1
GS Ahx ̸= 0. □

Remark 2.5 Strictly speaking convergence of the smoother is not a necessary assump-
tion, yet it is still good to know for testing purposes. The following is not supposed to be
a rigorous proof, but a motivation as for why we may expect the smoother to perform
well.

In [26, Theorem 2.2.1] it is proven that (for invertible matrices) we need the smoothening
property (from [13, Chapter 6]) of the product system, i.e. Gauss-Seidel for A2

h in our
case, in order to conclude two-grid convergence.

More precisely, for a sequence of meshes indexed by l, in [26, Theorem 2.2.1] it is
presumed that there exist η(ν), ν′(h) such that

η(ν)→ 0 for ν→ ∞, ν′(h) = ∞ or ν′(h)→ ∞ for h→ 0

and
∥KlK̄lSν

l ∥ ≤ Cη(ν) for 0 < ν < ν′(hl), l ≥ 2,

where Kl , K̄l denote the Galerkin matrix and the respective r-transformation on the l-th
refinement level, Sν

l refers to the ν-times applied smoother at level l and ∥·∥ refers to a
suitable norm, see [26] for more details.

Other assumptions regarding the stability and the “approximation property” (see again
[26], [13, Chapter 6]) enter in the theorem statement, which we assume to be fulfilled as
we are working with standard finite-differences/finite-elements.

In our case, we have Kl = K̄l = Ah and the smoothing property above boils down to the
one from [13, Chapter 6] for Gauss-Seidel applied to A2

h, the standard finite-difference
discretization of the Laplacian. Hence, we may anticipate a well-behaved method as
Gauss-Seidel (as a smoother) is expected to perform well on the finite-difference Laplacian.

In practice (2.2) can be made more efficient. [13, Chapter 11.3] describes in-place
operations, which is interesting especially in 3D, as the memory requirements are
quite demanding.

It works by “distributing” the update after each step, i.e. for each i = 1, . . . , Ndof,
where Ndof is the number of degrees of freedom (assume some ordering of the DOF),
do the following:

1. Find the correction ∆ui
h for the Gauss-Seidel step with A2

h for the i-th component

(∆ui
h)j :=

δij

Dii
( fh − Ahuh)i ,

where δij is the Kronecker delta.

2. Distribute the correction
uh ← uh + Ah∆ui

h.
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2.4. Distributive Relaxation

The advantage is that this can be done in-place if we know what Ah does to a single
DOF, which is trivial for structured grids as we know the stencils.

2.4.3 A Simple Parallelization Strategy on Structured Grids

The disadvantage of the above approach is that it cannot be parallelized at all: the
update of the next component depends on the values of previous one. There are
methods one could employ to ameliorate the issue, as mentioned in [18], however this
is not the topic of this thesis, so a simple approach will be take to at least gain some
speedup, as the 3D problems become quite large.

In order to parallelize DGSR, we can divide the DOF into subsets which do not
interfere with one another (“red-black splitting”, see [18]), and apply Gauss-Seidel in
parallel to each of the blocks of unknowns.

In our problem the stencils are local, so splitting the DOF into odd and even indices
in the outer loop and parallelizing the outer loop appears sensible.

To see how this works, let us look at an explicit example for the 3D 0-forms. The serial
loop for that part is listed in Figure 2.12. As can be seen the outer loop is over z, so

for(unsigned int kz = 1; kz < N; ++kz) {

for(unsigned int ky = 1; ky < N; ++ky) {

for(unsigned int kx = 1; kx < N; ++kx) {

const SCALAR diag_element = 6 * h * h;

// The value to distribute

const SCALAR val =

(

rhs.U0(kx, ky, kz) -

h * h *

(

U10(kx - 1, ky, kz) +

U11(kx, ky - 1, kz) +

U12(kx, ky, kz - 1) -

U10(kx, ky, kz) -

U11(kx, ky, kz) -

U12(kx, ky, kz)

)

) / diag_element;

// Distribute

U10(kx - 1, ky, kz) += val;

U11(kx, ky - 1, kz) += val;

U12(kx, ky, kz - 1) += val;

U10(kx, ky, kz) -= val;

U11(kx, ky, kz) -= val;

U12(kx, ky, kz) -= val;

}

}

}

Figure 2.12: Serial code for one DGS step for the 0-form in the 3D case. U1i denotes the i-th component
of (the approximation of) u1.

we proceed to split the loop into two by iterating separately over a loop starting at
kz = 0 in steps of kz ← kz + 2, and another one with kz = 1 with the same step size.
Every loop now iterates over “slabs” in z, and the elements inside the loops which
are accessed and modified are not shared by any two threads if only the outer loop is
parallelized, as only entries in kz and kz − 1 are accessed and modified.

[18] explains more ways in which one could further optimize this, e.g. by using
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2. Structured Grids

blocking to better utilize cache and doing several iterations with each block, but this
is outside the scope of this thesis.

2.5 Numerical Results

2.5.1 Two Dimensions

Unit Square

In order to test whether the convergence of the multigrid method is sound, a power
iteration was used to determine the convergence rate of one V-cycle, which can be
found in Table 2.1. We observe mesh-width independent convergence rates, which is

N |λmax|
16 0.127139
32 0.155516
64 0.180073
128 0.179090
256 0.179597
512 0.180109
1024 0.180379
2048 0.180386
4096 0.180453
8192 0.180490

Table 2.1: Estimated multigrid convergence rates in 2D with N × N cells. The coarse solver was used at
N = 8.

what is desired from a multigrid method.

To ensure that the solver is computing the correct solution, a solution was manufac-
tured. A solution to (1.7) is

u0 = sin 2πx sin 2πy, u1 = (sin 2πy, sin 2πx)T, u2 = cos 2πx sin 2πy

with a suitable right-hand-side. Midpoint quadrature was used to assemble the load
vector. Coincidentally, since the sine and cosine exhibit a lot of symmetry, this leads
to a load vector where the zero mean condition is already fulfilled. From Table 2.2, we
see that the method converges towards the correct solution (in L2).

L-domain

The domain was changed to [0, 1]2 \
[ 1

2 , 1
]2

, and the same experiments were performed

by “ignoring” the unknowns on
[ 1

2 , 1
]2

in the previous code.

The multigrid method converges independently of the mesh-width, albeit more slowly
than on the unit square, as can be seen in Table 2.3.

2.5.2 Three Dimensions

Similar to 2D, we used a unit cube [0, 1]3 to test the solver, the convergence rates
of which for a V-cycle were estimated using a power iteration, see Table 2.4 for the
results. The convergence rates appear to be independent of the mesh-width.
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2.5. Numerical Results

N L2-Error EOC

8 3.205e-02 -
16 7.892e-03 2.022e+00
32 1.963e-03 2.007e+00
64 4.901e-04 2.002e+00
128 1.225e-04 2.000e+00
256 3.062e-05 2.000e+00
512 7.658e-06 2.000e+00
1024 1.921e-06 1.995e+00
2048 4.802e-07 2.000e+00
4096 1.200e-07 2.000e+00
8192 3.001e-08 2.000e+00

Table 2.2: L2-convergence of the 2D method on the unit square.

N |λmax|
16 0.127750
32 0.205109
64 0.256203
128 0.277636
256 0.295125
512 0.313239

1024 0.330512
2048 0.317173
4096 0.347785
8192 0.354167

Table 2.3: Estimated multigrid convergence rates in 2D on the L-domain with N × N cells. The coarse
solver was used at N = 8.

N |λmax|
16 0.192022
32 0.254523
64 0.268223
128 0.277890
256 0.277934
512 0.278920

Table 2.4: Estimated multigrid convergence rates in 3D with N × N × N cells. The coarse solver was used
at N = 8.

To verify that the solver is solving the correct equation, a solution was again manufac-
tured. This time, the manufactured problem is given by

u0 = sin (2xπ) sin (2yπ) sin (2zπ),

u1 = (sin (2yπ) sin (2zπ) cos (2xπ)) î + (sin (2xπ) sin (2zπ) cos (2yπ)) ĵ

+ (sin (2xπ) sin (2yπ) cos (2zπ)) k̂,

u2 = (sin (2xπ) cos (2yπ) cos (2zπ)) î + (sin (2yπ) cos (2xπ) cos (2zπ)) ĵ

+ (sin (2zπ) cos (2xπ) cos (2yπ)) k̂,
u3 = cos (2xπ) cos (2yπ) cos (2zπ)
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2. Structured Grids

and an appropriate right-hand-side, where î, ĵ, k̂ denote the unit vectors in the cor-
responding directions. As in 2D, midpoint quadrature was used to assemble the
load vector, and as before, the mean is already zero. From Table 2.5, we see that the

N L2-Error EOC

16 6.401e-03 -
32 1.581e-03 2.017e+00
64 3.944e-04 2.003e+00
128 9.864e-05 1.999e+00
256 2.467e-05 1.999e+00
512 6.117e-06 2.012e+00

Table 2.5: L2-convergence of the 3D method.

solution converges towards the correct solution (in L2).

In Table 2.5 we can only go up to 5123 cells, as the memory requirements become
quite steep, even when using single precision. In contrast, in the 2D case in Table 2.2,
we can easily go up to 81922 cells with double precision and without any explicit
parallelization.
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Chapter 3

Unstructured Grids

3.1 Motivation: Dual Grid Perspective

Let us analyze in detail what exactly happens if we square the Galerkin matrix in 2D
on a more abstract level on a structured grid. This section is meant to motivate the
approach with discrete exterior calculus.

Let V̊h
k be spaces like in Section 1.3.3, in our case V̊h

0 ≡ nodal elements, V̊h
1 ≡ Nédélec

elements and V̊h
2 ≡ piece-wise constants, and let Dk := d|V̊h

k
be the (matrix of the)

exterior derivative on these spaces (recall: d0 ≡ ∇ and d1 ≡ ∇×).

Then for ωk ∈ Vh
k , νk−1 ∈ Vh

k−1, we have

⟨ωk, dνk−1⟩L2Λk(Ω) = ω⃗T
k MFEEC

k Dk−1⃗νk−1, (3.1)

where •⃗ denotes the corresponding coefficient vector. Using this (and the transpose
thereof), we conclude that the Galerkin matrix is given by

Ah =

 0 DT
0 MFEEC

1 0
MFEEC

1 D0 0 DT
1 MFEEC

2
0 MFEEC

2 D1 0


=⇒ A2

h =DT
0 MFEEC

1 MFEEC
1 D0 0 DT

0 MFEEC
1 DT

1 MFEEC
2

0 DT
1 MFEEC

2 MFEEC
2 D1 + MFEEC

1 D0DT
0 MFEEC

1 0
MFEEC

2 D1MFEEC
1 D0 0 MFEEC

2 D1DT
1 MFEEC

2

 .

In the case of structured grids, the mass-lumped mass matrices become multiples of
the identity and since D1D0 = 0, the off-diagonal terms cancel. In the unstructured
case, or even just the structured case without mass lumping, this will not happen and
we can see that “A2

h = −∆” will fail in general.

Furthermore, we know that (with mass lumping) MFEEC
2 D1DT

1 MFEEC
2 yields finite-

differences on cell-centered variables. This is curious, as it does not make much sense
to use cell-centered piece-wise constant finite elements to discretize the Laplacian. Or
rather, it is a mass-lumped nodal finite element discretization of the Laplacian on a
grid connecting the cell-centers, a dual grid.

The notion of a dual grid in the structured case in 2D is clear as one can identify the
mesh entities on the primal and dual grid. Explicitly, we can identify

• Nodes on the primal grid with cell-centers on the dual grid;
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3. Unstructured Grids

• Edges on the primal grid with edges on the dual grid;

• Cell-centers on the primal grid with nodes on the dual grid.

To see how things clear up in this perspective, define an operator sk mapping from
the finite-element space on the primal mesh to the one on the dual mesh via

skω⃗k := MFEEC
k ω⃗k,

where ω⃗k denotes the coefficients of a finite-element function ωk. It takes nodes to
cell-centers and edges to edges, which works as the boundary DOF are dropped
(recall: we are assuming essential boundary conditions), so the number of primal
nodes equals the number of dual cells. In the end, we get

(
MFEEC

)−1
Ah =

 0 s−1
0 DT

0 s1 0
D0 0 s−1

1 DT
1 s2

0 D1 0

 , (3.2)

where we recall that MFEEC = blockdiag
(

MFEEC
0 , MFEEC

1 , MFEEC
2

)
. In this form, the

blocks are reminiscent of concepts from exterior calculus: sk is related to the Hodge-Star
and s−1

k DT
k sk+1 to the codifferential.

3.2 Discrete Exterior Calculus

3.2.1 Cellular Complexes

We briefly introduce some notation regarding cellular complexes, but a complete
description will not be given, as it is not the main topic of this thesis. For more details
refer to [15, Chapter 3], [7, Section 5.1], [6, Section 3].

Let T be an oriented simplicial mesh of Ω ⊂ Rn and write T k for the k-cells of T and
Ck(T ) the k-cochains on T , see [7, around p. 69] for more details.

Furthermore, let the coboundary operator be denoted by ∂k : Ck (T )→ Ck+1 (T ). The
matrix of ∂k w.r.t. the standard basis of Ck (T ) is the incidence matrix between (oriented
and active) k- and (k + 1)-dimensional cells. It can be shown (see [7, Lemma 5.4]) that
∂k+1∂k ≡ 0.

Let ⟨u, σ⟩ ≡ u(σ) denote the duality pairing of u ∈ Ck(T ) and σ ∈ T k.

Remark 3.1 Notice how in the structured case in Figure 2.5 the matrix only has entries
in {−1, 0, 1} (in units of h). This is related to the coboundary operator, which when
understood as the matrix of a linear map, only contains entries in {−1, 0, 1}.

Definition 3.2 ([7, p. 72])
The de Rham map, denoted by Rk : Λk (Ω)→ Ck (T ) is defined by Rkω = w, where

⟨w, σ⟩ =
∫

σ
ω ∀σ ∈ T k.

We define the de Rham map on Λ (Ω) by R :=
⊕

kRk.
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3.2. Discrete Exterior Calculus

Definition 3.3 (Whitney Map)
The Whitney map on k-cochains is the isomorphism onto Whitney k-forms W k :
Ck(T ) → Vk

h , given by W kw = ∑σ∈T k φσ ⟨w, σ⟩ where w ∈ Ck(T ) and φσ is
the Whitney form associated to σ. Also, letW :=

⊕n
k=0W k.

Note thatW k is represented by an identity matrix with respect to the standard bases
of Ck (T ) and Vh

k .

Definition 3.4
Define C̊ (T ) :=

⊕n−1
k=0 C̊k (T )⊕Cn

∗ (T ), where C̊k (T ) are k-cochains with zero values
on the boundary and Cn

∗ (T ) is the space of n-cochains with vanishing mean, i.e. w ∈
Cn
∗ (T ) =⇒ ∑σ∈T n ⟨w, σ⟩ = 0.

3.2.2 Hodge Stars and Dual Grids

Definition 3.5 (Dual Mesh, [14, Definition 3])
Two meshes T̃ and T covering an n-dimensional manifold are called (topologically) dual
to each other if LT

l = (−1)l+1 L̃n−(l+1), 0 ≤ l < n, where Ll and L̃l are the incidence
matrices of oriented l- and (l + 1)-facets of T and T̃ , respectively.

The above implies that being dual also means that there is a one-to-one correspondence
between the k-cells on the primal and (n− k)-cells on the dual mesh.

Denote the identification map between the primal and dual mesh cells by

∗k : T k → T̃ n−k.

For more on this, see [14, Section 5] and [12, Definition 3.3].

Henceforth we will assume that none of the cells in either the primal or dual mesh
are degenerate, i.e. have zero volume.

Definition 3.6 (Discrete Hodge Star, [12, Definition 3.6])
Let |σ| denote the volume of a cell σ ∈ T . The discrete Hodge star on cochains is the
operator k : Ck (T )→ Cn−k (T̃ ) such that for w ∈ Ck (T )

1
| ∗ σ| ⟨ kw, ∗σ⟩ = 1

|σ| ⟨w, σ⟩ ∀σ ∈ T k.

We define −1
k by

1
|σ|

〈
−1
k w, σ

〉
=

1
| ∗ σ| ⟨w, ∗σ⟩ ∀σ ∈ T k.

Note that k is represented by a diagonal matrix.
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3. Unstructured Grids

Definition 3.7 (Discrete Codifferential)
The discrete codifferential δDEC

k+1 : Ck+1 (T )→ Ck (T ) is defined as

δDEC
k+1 := (−1)k+1 −1

k ∂̃n−(k+1)
k+1,

where ∂̃n−(k+1) denotes the coboundary operator on Cn−(k+1) (T̃ ).

As we are working with a dual mesh, we can freely write

δDEC
k+1 = −1

k

(
∂k
)T

k+1

by Definition 3.5, which now resembles the terms in the upper triangular part of (3.2).

In analogy to (1.1) we set

dDEC :=


0
∂0 0

∂1 0
. . . . . .

 , δDEC :=


0 −1

0

(
∂0)T

1

0 −1
1

(
∂1)T

2

0
. . .
. . .

 . (3.3)

3.3 Hodge-Dirac with DEC

In this section we endeavor to establish the discrete equivalent of the Hodge-Dirac
problem in the context of DEC. For this section we will use the convention that C ≥ 0
denotes a generic constant which may change from expression to expression and
which depends only on the shape-regularity of the mesh.

3.3.1 DEC Discretization of the Hodge-Dirac Operator

Definition 3.8 ([12, Section 4.5])
For u, v ∈ Ck (T ), define the inner product

Ju, vKk := ∑
σ∈T k

| ∗ σ|
|σ| ⟨u, σ⟩ ⟨v, σ⟩ , (3.4)

where ⟨u, σ⟩ ≡ u(σ) is the duality pairing of Ck (T ) and T k. We denote the norm
induced by this inner product by |||·|||k. Let C (T ) :=

⊕
k Ck(T ) and define an inner

product thereon for u, v ∈ C (T ) by

Ju, vK :=
n

∑
k=0

Juk, vkKk ,

where u = (u0, . . . , un), uk ∈ Ck(T ). For the induced norm we write |||·|||.
Furthermore, let

J·, ·KHΛ(Ω) := J·, ·K +
r

dDEC·, dDEC·
z

and denote the norm induced by this inner product by |||·|||HΛ(Ω).
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3.3. Hodge-Dirac with DEC

Definition 3.9
Define MDEC

k as the mass matrix of C̊k (T ) w.r.t. the inner product J·, ·Kk and MDEC as
the one of C̊ (T ) with J·, ·K.

Note that these mass matrices are just representations of the discrete Hodge stars
from Definition 3.6 and thus are diagonal.

Lemma 3.10 (Discrete Adjoint)
It holds that

r
δDECu, v

z
=

r
u, dDECv

z
∀u, v ∈ C̊ (T ) .

Proof This follows from the definition of J·, ·K and a proof completely analogous to
[12, Lemma 4.12] (applied to cochains instead of Whitney forms). □

Definition 3.11
The DEC Hodge-Dirac operator is

DDEC := dDEC + δDEC.

We define an associated bilinear form on C̊ (T )× C̊ (T ) by

ADEC (·, ·) :=
r

dDEC·, ·
z
+

r
·, dDEC·

z
,

which is represented by the matrix ADEC := MDECDDEC.

Remark 3.12 Note that DDECu = f for u, f ∈ C̊ (T ) is equivalent to

ADEC (u, v) = Jf, vK ∀v ∈ C̊ (T ) , (3.5)

i.e. a mass-lumped version of (1.5) when discretized with Whitney forms.

One can also look at a slightly more general form for f̃ ∈ C̊ (T )
ADEC (u, v) =

q
f̃, v

y
HΛ(Ω)

∀v ∈ C̊ (T ) . (3.6)

(3.5) can be transformed into (3.6) by the Riesz representation theorem: it tells us about
the existence and uniqueness of an f̃ such that Jf, ·K ≡

q
f̃, ·

y
HΛ(Ω)

. Moreover,∣∣∣∣∣∣f̃∣∣∣∣∣∣HΛ(Ω)
= sup
|||v|||HΛ(Ω)=1

∣∣∣qf̃, v
y

HΛ(Ω)

∣∣∣ = sup
|||v|||HΛ(Ω)=1

|Jf, vK| ≤ |||f|||. (3.7)

The motivation behind it is the variational formulation (1.4). It has a right-hand-
side functional which is bounded in L2Λ (Ω). If we instead have a linear functional
bounded in HΛ (Ω), existence and uniqueness follow from the inf-sup inequality in [19,
Theorem 6] (see also [3]). As we are working with Hilbert spaces, we can express a linear
functional ℓ on HΛ (Ω) as ℓ ≡ ⟨f, ·⟩HΛ(Ω) = ⟨f, ·⟩L2Λ(Ω) + ⟨df, d·⟩L2Λ(Ω) for some
f ∈ HΛ (Ω). (3.6) is the discrete version of this.

This setting is useful because it yields a problem which for a given f ∈ V̊ yields
another element in the same space, allowing us to interpret the solution operator as an
automorphism. Also, due to (3.7), stability of (3.6) implies stability (3.5), hence stability
of (3.6) is stronger than the one of (3.5).
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3. Unstructured Grids

3.3.2 Stability of DEC

As before, we consider the boundary value problem for the Hodge-Dirac operator
with essential boundary conditions, so assume that D acts on spaces with zero trace or
zero mean in the case of n-forms. This also means that f ∈ ran D =⇒

∫
Ω fn = 0.

New in this section, now we regard T as a member of a uniformly shape-regular
sequence (Th) of simplicial meshes of Ω indexed by their mesh-widths h, which are
supposed to tend to zero.

So far, we have not specified what kind of dual mesh we are using, so the statements
up until here hold in a generic context. However, in order to establish stability, we
need some assumptions on the dual mesh, or more precisely, the norm induced by
the discrete Hodge star.

Assumption 3.3.1 (h-uniform Norm Equivalence)
The norms |||·||| and ∥·∥L2Λk(Ω) on spaces of cochains and Whitney forms are h-uniformly
equivalent via the W -isomorphism. More precisely, there exist constants c−, c+ > 0
depending only on the shape-regularity of T , such that

c−∥Wu∥L2Λ(Ω) ≤ |||u||| ≤ c+∥Wu∥L2Λ(Ω) ∀u ∈ C (T ) .

Similar to [12, Lemma 5.11], we will need the following result relating to the Hodge-
decomposition (in the case of a trivial topology):

Lemma 3.13
For any u ∈ C̊ (T ) there exist v, w ∈ C̊ (T ) such that

u = dDECv + w,

|||w||| +
∣∣∣∣∣∣∣∣∣dDECw

∣∣∣∣∣∣∣∣∣ ≤ C
∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣,
|||v||| +

∣∣∣∣∣∣∣∣∣dDECv
∣∣∣∣∣∣∣∣∣ ≤ C′|||u|||

for constants C, C′ ≥ 0 independent of u and the mesh-width h.

Proof First, we note that due to the norm equivalence from Assumption 3.3.1 and the
fact thatWdDEC ≡ dW , it is sufficient to prove that ∃α, β ∈ V̊h such that

Wu = dα + β, (3.8)
∥β∥L2Λ(Ω) + ∥dβ∥L2Λ(Ω) ≤ C∥dWu∥L2Λ(Ω), (3.9)

∥α∥L2Λ(Ω) + ∥dα∥L2Λ(Ω) ≤ C′∥Wu∥L2Λ(Ω). (3.10)

To see this, we consider the discrete Hodge decomposition (see [19, Section 3.1]; recall
that V̊h excludes harmonic forms)

V̊h = Bh ⊕ Z⊥h ,

where Bh is the range and Zh the kernel of d|V̊h
. Moreover, this decomposition is

L2Λ (Ω)-orthogonal.

This implies that we can find α ∈ V̊h, β ∈ Z⊥h such that Wu = dα + β. Note that α
is not unique, as adding any element in Zh gives the same dα, hence we can safely
assume that there exists an α orthogonal to Zh, meaning we can find suitable α, β ∈ Z⊥h .
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3.3. Hodge-Dirac with DEC

We can now apply the discrete Poincaré inequality from [19, Lemma 9] (see also [2,
Theorem 5.2]) to β, which is applicable as β ∈ Z⊥h , and get

∥β∥L2Λ(Ω) + ∥dβ∥L2Λ(Ω) ≤ C∥dβ∥L2Λ(Ω) [Poincaré Inequality]

= C∥d (Wu− dα)∥L2Λ(Ω) [Using (3.8)]

= C∥dWu∥L2Λ(Ω)

[
d2 ≡ 0

]
for some mesh-width independent C ≥ 0, which proves (3.9).

To prove (3.10), we can apply the Poincaré inequality to α ∈ Z⊥h and use the orthogo-
nality of the decomposition to arrive at

∥α∥2
L2Λ(Ω) + ∥dα∥2

L2Λ(Ω) ≤ C′∥dα∥2
L2Λ(Ω)

≤ C′
(
∥dα∥2

L2Λ(Ω) + ∥β∥
2
L2Λ(Ω)

)
= C′∥Wu∥2

L2Λ(Ω).

Applying Young’s inequality to the above concludes the proof. □

Lemma 3.14 (DEC Hodge-Decomposition)
Let ZDEC := ker dDEC, BDEC := ran dDEC, HDEC := ker DDEC, then we have the
DEC-orthogonal (i.e. orthogonal w.r.t. J·, ·K) decomposition

C̊ (T ) = BDEC ⊕
(
ZDEC

)⊥DEC
⊕HDEC,

where ⊥DEC means orthogonal w.r.t. J·, ·K.

Proof The statement is a consequence of [19, Section 2.1], as we are in the same setting
because dDEC is nilpotent and adjoint to δDEC by Lemma 3.10.

Note that due to the trivial topology ker DDEC ≡ HDEC is trivial and can be dropped.

Lemma 3.15 (Poincaré Inequality for DEC)
Given u ∈

(
ZDEC)⊥DEC it holds that

|||u|||HΛ(Ω) ≤ cp

∣∣∣∣∣∣∣∣∣dDECu
∣∣∣∣∣∣∣∣∣

for some mesh-width independent constant cp ≥ 1.

Proof We first invoke Lemma 3.13 to find v, w ∈ C̊ (T ) such that

u = dDECv + w, |||w||| ≤ C
∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣
and then apply Lemma 3.14 to w, which implies the orthogonal decomposition

w = dDECṽ + w̃,

for some ṽ ∈ C̊ (T ) , w̃ ∈
(
ZDEC)⊥DEC . This gives us the following form of the Hodge

decomposition of u:

u = dDECv + w = dDEC (v + ṽ) + w̃,

but the assumption of the lemma was that u ∈
(
ZDEC)⊥DEC , thus w̃ = u must hold by

uniqueness of the decomposition.
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3. Unstructured Grids

We realize that due to orthogonality, we have

|||u||| = |||w̃||| ≤ |||w||| ≤ C
∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣,
which implies |||u|||HΛ(Ω) ≤ C

∣∣∣∣∣∣∣∣∣dDECu
∣∣∣∣∣∣∣∣∣, concluding the proof. □

Proposition 3.16 (DEC Inf-Sup Inequality, [19, Theorem 6])
There exists a constant γ > 0 depending only on the Poincaré constant, such that for all
nonzero u ∈ C̊ (T ), there exists a nonzero v ∈ C̊ (T ) satisfying

γ|||u|||HΛ(Ω)|||v|||HΛ(Ω) ≤ ADEC (u, v) .

Proof The proof is almost the same as the one from [19, Theorem 6], but with the
norms replaced by the DEC norms. We will go through it for completeness’ sake.

Take the Hodge decomposition of

u = dDECr + w

with r ∈
(
ZDEC)⊥DEC and define v := r + dDECu.

The Poincaré inequality for DEC from Lemma 3.15 together with the orthogonality of
the Hodge decomposition from Lemma 3.14 yields

|||v|||HΛ(Ω) ≤ |||r|||HΛ(Ω) +
∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣
HΛ(Ω)

≤ cp

∣∣∣∣∣∣∣∣∣dDECr
∣∣∣∣∣∣∣∣∣ + ∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣
≤ C|||u|||HΛ(Ω),

(3.11)

where we used that
∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣
HΛ(Ω)

=
∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣.
Substituting this into the bilinear form and once again using the Hodge decomposition
and Poincaré inequality gives

ADEC (u, v) =
∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣2 + r
u, dDECr

z

=
∣∣∣∣∣∣∣∣∣dDECu

∣∣∣∣∣∣∣∣∣2 + r
dDECr, dDECr

z

=
1
2

∣∣∣∣∣∣∣∣∣dDECu
∣∣∣∣∣∣∣∣∣2 + 1

2

∣∣∣∣∣∣∣∣∣dDECw
∣∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∣dDECr

∣∣∣∣∣∣∣∣∣2
≥ 1

2

∣∣∣∣∣∣∣∣∣dDECu
∣∣∣∣∣∣∣∣∣2 + 1

2c2
p
|||w|||2 +

∣∣∣∣∣∣∣∣∣dDECr
∣∣∣∣∣∣∣∣∣2

≥ 1
2c2

p
|||u|||2HΛ(Ω),

where the last inequality follows from cp ≥ 1. Combining this with (3.11) yields the
statement. □
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3.3. Hodge-Dirac with DEC

Corollary 3.17 (Stability of DEC)
Let f ∈ C̊ (T ) be given and let u ∈ C̊ (T ) be the solution to

ADEC (u, v) = Jf, vKHΛ(Ω) ∀v ∈ C̊ (T ) ,

then
|||u|||HΛ(Ω) ≤ C|||f|||HΛ(Ω)

for some constant C ≥ 0 independent of f and the mesh-width.

Proof This follows from Cauchy-Schwarz and Proposition 3.16: Let v be given by
applying Proposition 3.16 to u, then

γ|||u|||HΛ(Ω)|||v|||HΛ(Ω) ≤ ADEC (u, v) = Jf, vKHΛ(Ω) ≤ |||f|||HΛ(Ω)|||v|||HΛ(Ω),

which implies the statement. □

3.3.3 Spectral Equivalence to FEEC

In [16], an abstract approach to bounding the spectral condition numbers of problems
arising from bilinear forms fulfilling an inf-sup condition is elucidated. As both the
DEC and FEEC bilinear forms fulfill such inf-sup inequalities, and since both bilinear
forms are bounded h-uniformly in the Sobolev norms, we may employ similar means
to prove spectral equivalence.

Notice that ADEC and AFEEC do not necessarily map to vectors of coefficients fulfilling
the zero mean condition. Instead, we can to understand them as the matrices repre-
senting the induced operators of the bilinear forms ADEC (·, ·) := Jd·, ·K + J·, d·K and
AFEEC (·, ·) := ⟨d·, ·⟩L2Λ(Ω) + ⟨·, d·⟩L2Λ(Ω), respectively, i.e.

BFEEC : V̊h →
(
V̊h)∗ ,

BDEC : C̊ (T ) →
(

C̊ (T )
)∗

,

where the ∗ denotes the dual vector space. As norms on the spaces we use the
respective Sobolev norms and the norms induced thereby on the dual spaces.

Using the Whitney isomorphism, we see that

T :=W−1
(

BDEC
)−1
WBFEEC : V̊h → V̊h

is a well-defined automorphism on V̊h, represented by the matrix
(

ADEC)−1 AFEEC1.

Lemma 3.18 (FEEC Inf-Sup Inequality, [19, Theorem 10])
There exists a constant γ > 0 depending only on the Poincaré constant, such that for all
nonzero uh ∈ V̊h, there exists a nonzero vh ∈ V̊h satisfying

γ∥uh∥HΛ(Ω)∥vh∥HΛ(Ω) ≤ AFEEC (uh, vh) .

1Note that the matrices by themselves are not invertible without incorporating the zero mean
condition somewhere. Also important to mention is that while the dual spaces may be isomorphic to the
vector spaces themselves, the zero mean condition on the duals may not manifest as a a simple sum-zero
requirement on the corresponding coefficients as for C̊ (T ) , V̊h.
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3. Unstructured Grids

Lemma 3.19 (h-uniform Boundedness of Bilinear Forms and Inverses)
It holds that ∣∣∣∣∣∣BDEC

∣∣∣∣∣∣
C̊(T )→(C̊(T ))

∗ ,
∥∥BFEEC

∥∥
V̊h→(V̊h)

∗ ,∣∣∣∣∣∣∣∣∣(BDEC)−1
∣∣∣∣∣∣∣∣∣
(C̊(T ))

∗→C̊(T )
,

∥∥∥(BFEEC)−1
∥∥∥
(V̊h)

∗→V̊h

are all bounded from above by constants independent of the mesh-width.

Proof For the FEEC problem, we immediately see that

AFEEC (uh, vh) ≤ 2∥uh∥HΛ(Ω)∥vh∥HΛ(Ω) ∀uh, vh ∈ V̊h

which implies
∥∥BFEEC

∥∥
V̊h→(V̊h)

∗ ≤ 2.

Proposition 3.16 implies that
∣∣∣∣∣∣∣∣∣(BDEC)−1

∣∣∣∣∣∣∣∣∣
(C̊(T ))

∗→C̊(T )
≤ C.

For the DEC problem, we have

ADEC (u, v) ≤ 2|||u|||HΛ(Ω)|||v|||HΛ(Ω) ∀u, v ∈ C̊ (T )

which implies
∣∣∣∣∣∣BDEC

∣∣∣∣∣∣
C̊(T )→(C̊(T ))

∗ ≤ 2.

Lemma 3.18 implies
∥∥∥(BFEEC)−1

∥∥∥
(V̊h)

∗→V̊h
≤ C, concluding the proof. □

Theorem 3.20 (Spectral Equivalence of DEC and FEEC)
Let

κ (A) := ∥A∥V̊h→V̊h

∥∥∥A−1
∥∥∥

V̊h→V̊h

denote the spectral condition number of an automorphism A : V̊h → V̊h and ρ(A) the
spectral radius, then

κ (T) ≤ c, ρ(T) ≤ c′, ρ
(

T−1
)
≤ c′′

for some mesh-width independent constants c, c′, c′′ ≥ 0.

Proof We first note that due to Assumption 3.3.1, we have

∥T∥V̊h→V̊h ≤ C
∣∣∣∣∣∣∣∣∣∣∣∣(BDEC

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
(C̊(T ))

∗→C̊(T )

∥∥∥BFEEC
∥∥∥

V̊h→(V̊h)
∗ .

and ∥∥∥T−1
∥∥∥

V̊h→V̊h
≤ C

∣∣∣∣∣∣∣∣∣BDEC
∣∣∣∣∣∣∣∣∣

C̊(T )→(C̊(T ))
∗

∥∥∥∥(BFEEC
)−1

∥∥∥∥
(V̊h)

∗→V̊h
.

The estimate on the condition number is then a trivial consequence of Lemma 3.19.
The eigenvalues can be bounded from above by the operator norms, so the estimates
on ρ(T), ρ

(
T−1) follow immediately, which concludes the proof. □

3.3.4 Commuting Interpolation Operators

From the results in [12, Section 4] (cf. [7, Proposition 5.5]) we learn the following
commuting diagram property.
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3.3. Hodge-Dirac with DEC

Lemma 3.21
On sufficiently smooth forms, we have the commuting relationship

dDEC ◦ R = R ◦ d.

Definition 3.22 ([12, Section 5.1])
Let Jk := −1

k R̃
n−k

⋆k, where R̃k denotes the canonical projection onto Ck (T̃ ), and
define J :=

⊕
k Jk.

Lemma 5.3 of [12] asserts another commuting property.

Lemma 3.23
On sufficiently smooth forms, we have the commuting relationship

δDEC ◦ J = J ◦ δ.

The natural DEC discretization of (1.3) is: Given f ∈ L2Λ (Ω) with
∫

Ω fn = 0 which is
sufficiently regular to admit an L1-trace on all simplices, seek u ∈ C̊ (T ), such that

DDECu = Rf. (3.12)

We need
∫

Ω fn = 0 also in the discrete case, because we want Rf ∈ ran DDEC, but
ran DDEC only contains n-cochains with zero mean. The de Rham map R preserves
the integral of the traces over the simplices, so we get Rf ∈ ran DDEC.

3.3.5 Error Bound

Theorem 3.24
Given f ∈ ran D in the domain of R and J, we assume that the strong solution
u ∈ V̊∩ H∗Λ (Ω) of the Hodge-Dirac boundary value problem

Du = f

is sufficiently regular such that Lemma 3.21 and Lemma 3.23 apply and R and J are
well-defined on u, du and δu. Further let u ∈ C̊ (T ) solve the DEC equation

DDECu = Rf,

and denote the error in cochain space by e := Ru− u. Then

|||e||| +
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣ ≤C (|||(R − J)u||| + |||(R − J)du||| + |||(R − J)f|||) ,

where C ≥ 0 is a constant independent of f and the mesh-width h.

Proof Unless stated otherwise, C, C′ ≥ 0 denote generic mesh-width independent
constants which may change from expression to expression.

Similar to the proof of Theorem 5.2 in [12], we apply the operator to the error e and
get an estimate of

∣∣∣∣∣∣∣∣∣dDECe
∣∣∣∣∣∣∣∣∣:
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3. Unstructured Grids

DDECe = (dDEC + δDEC)e [Definition 3.11]

= dDECRu+ δDECRu− (dDEC + δDEC)u [e = Ru− u]

= dDECRu+ δDECRu−Rf
[
Using (dDEC + δDEC)u = Rf

]
= Rdu+ δDEC Ju+ δDEC(R − J)u−R f [Adding 0, Lemma 3.21]

= (R − J)du+ δDEC(R − J)u+ (J −R)f.
[
Using δDEC Ju = Jδu = J(f− du)

]
(3.13)

=⇒ δDECdDECe = δDEC(dDEC + δDEC)e
[

Using
(

δDEC
)2

= 0
]

= δDEC(R − J)du+ δDEC(J −R)f.

=⇒
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣2 =
r

dDECe, dDECe
z
=

r
δDECdDECe, e

z
[Lemma 3.10]

=
r

δDEC(R − J)du+ δDEC(J −R)f, e
z [

Using
(

δDEC
)2

= 0
]

=
r
(R − J)du, dDECe

z
+

r
(J −R)f, dDECe

z
[Lemma 3.10]

≤ |||(R − J)du|||
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣ + |||(J −R)f|||
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣. [Cauchy-Schwarz]

=⇒
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣ ≤ |||(R − J)du||| + |||(R − J)f|||. (3.14)

To bound |||e|||, we proceed similarly to [12, Lemma 5.14]: Using Lemma 3.13, we find
v, w ∈ C̊ (T ) such that

e = dDECv + w, |||v||| +
∣∣∣∣∣∣∣∣∣dDECv

∣∣∣∣∣∣∣∣∣ ≤ C|||e|||, |||w||| ≤ C′
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣. (3.15)

Thus,
|||e|||2 =

r
dDECv, e

z
+ Jw, eK =

r
v, δDECe

z
+ Jw, eK

by Lemma 3.10. We can immediately estimate the second term using (3.14):

Jw, eK ≤ |||w||||||e||| ≤ C′
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣|||e||| ≤ C′ (|||(R − J)du||| + |||(R − J)f|||) |||e|||.
(3.16)

In order to estimate the first term, we re-write δDECe using (3.13):

δDECe = DDECe− dDECe = δDEC(R − J)u+ (R − J)du+ (J −R)f− dDECe.
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3.3. Hodge-Dirac with DEC

=⇒
r

v, δDECe
z
=

r
v, δDEC(R − J)u+ (R − J)du+ (J −R)f− dDECe

z

=
r

dDECv, (R − J)u
z
+ Jv, (R − J)duK +

Jv, (J −R)fK −
r

v, dDECe
z

≤
∣∣∣∣∣∣∣∣∣dDECv

∣∣∣∣∣∣∣∣∣|||(R − J)u|||+

|||v|||
(
|||(R − J)du||| + |||(R − J)f||| +

∣∣∣∣∣∣∣∣∣dDECe
∣∣∣∣∣∣∣∣∣) [Cauchy-Schwarz]

≤
∣∣∣∣∣∣∣∣∣dDECv

∣∣∣∣∣∣∣∣∣|||(R − J)u|||+

2|||v||| (|||(R − J)du||| + |||(R − J)f|||) [Using (3.14)]
≤ 2 (|||(R − J)u||| + |||(R − J)du|||+

|||(R − J)f|||)
(
|||v||| +

∣∣∣∣∣∣∣∣∣dDECv
∣∣∣∣∣∣∣∣∣)

≤ C (|||(R − J)u||| + |||(R − J)du||| + |||(R − J)f|||) |||e|||. [Using (3.15)]
(3.17)

Combining (3.16) and (3.17), we get

|||e|||2 =
r

v, δDECe
z
+ Jw, eK

≤C′ (|||(R − J)du||| + |||(R − J)f|||) |||e|||+
C (|||(R − J)u||| + |||(R − J)du||| + |||(R − J)f|||) |||e|||.

=⇒ |||e||| +
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣ ≤C (|||(R − J)u||| + |||(R − J)du||| + |||(R − J)f|||) ,

which is the assertion of the theorem. □

Remark 3.25 We examined the discretization error in a finite-difference sense as the
difference of the discrete solution and a “projection of the exact solution on T ”. We can
easily obtain an error estimate in the FEEC sense:

∥u−Wu∥HΛ(Ω) ≤ C
(
∥u−WRu∥HΛ(Ω) + |||e||| +

∣∣∣∣∣∣∣∣∣dDECe
∣∣∣∣∣∣∣∣∣) .

3.3.6 Rates of Convergence

While we can conclude stability under the rather mild Assumption 3.3.1, we cannot
conclude convergence. In order to establish convergence, we need to be more specific
about the dual mesh. For this, we rely on an oriented well-centered simplicial mesh T
of Ω, that is, as stipulated by [17, Definition 2.4.3] the circumcenter of any simplex of
T lies in its interior.

For the standard dual mesh for DEC consisting of the circumcenters, see [12, Definition
3.3] or [22] for a detailed explanation, we have that

Lemma 3.26 ([12, Lemma 4.11])
Assumption 3.3.1 holds true for circumcentric duals on well-centered simplicial meshes.

[12] proves the following estimate on R − J in this setting.
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3. Unstructured Grids

Lemma 3.27
Given a sufficiently smooth u ≡ (u0, . . . , un) in the exterior algebra of differential forms,
we have

|||(R − J)u|||2 ≤ C
n

∑
k=0

rk

∑
s=1

h2s|uk|2Hs(Ω),

where h is the mesh-width, C ≥ 0 a constant independent of h and rk = max
{
⌈ n−k

2 +

ε⌉, ⌈ k
2 + ε⌉

}
for any 0 < ε < 1.

Proof [12, Lemma 5.10] tells us that for all k, we have∣∣∣∣∣∣∣∣∣(Rk − Jk)uk

∣∣∣∣∣∣∣∣∣2
k
≤ Ck

rk

∑
s=1

h2s|uk|2Hs(Ω)

for some h-independent constant Ck. Realizing that |||v|||2 = ∑n
k=0 |||vk|||2k for all

v ∈ C(T ) and setting C = maxk Ck yields the desired result. □

In a similar setting as before, we can prove an estimate for sufficiently smooth solutions.
Let CℓΛ (Ω) denote the space of ℓ-times continuously differentiable forms.

Proposition 3.28
Let r := ⌈ n

2 + ϵ⌉ for any 0 < ϵ < 1. Given f ∈ ran D∩ CrΛ (Ω), assume that we are
given a strong solution u ∈ V̊∩ Cr+1Λ (Ω) to the Hodge-Dirac problem

Du = f.

Let u ∈ C̊ (T ) solve its discrete counterpart

DDECu = Rf,

and denote the error in cochain space by e := Ru− u. Then

|||e|||2 +
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣2 ≤ C
n

∑
k=0

rk

∑
s=1

h2s
(
|uk|2Hs(Ω) + |(du)k|

2
Hs(Ω) + | fk|2Hs(Ω)

)
for some C ≥ 0 independent of h and rk = max

{
⌈ n−k

2 + ε⌉, ⌈ k
2 + ε⌉

}
for any 0 < ε <

1.

Proof Let p = |||e|||, q =
∣∣∣∣∣∣∣∣∣dDECe

∣∣∣∣∣∣∣∣∣, r = |||(R − J)u|||, s = |||(R − J)du|||, t = |||(R − J)f|||,
then the estimate in Theorem 3.24 says

p + q ≤ C(r + s + t).

By (repeated application of) Young’s inequality and because p, q ≥ 0, we have

p2 + q2 ≤ (p + q)2 ≤ C2(r + s + t)2 ≤ 2C2(r2 + (s + t)2) ≤ 4C2(r2 + s2 + t2).

The statement then follows from applying Lemma 3.27 to the terms r2, t2 and s2. □
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3.4. Multigrid

Remark 3.29 The approach pursued here follows [12] very closely, but a different route
could have been taken to prove convergence, at least in 2D. [28] uses a very close
relationship between the inner products from FEEC and DEC (on suitable meshes) to
show that the consistency gap between FEEC and DEC solutions for the Hodge-Laplacian
decreases with the mesh-width, then convergence of FEEC implies convergence of DEC.
The advantage of that approach is that we do not have to assume that the solution enjoys
the high regularity stipulated in Proposition 3.28.

3.4 Multigrid

We will now describe a multigrid method for the Hodge-Dirac operator in the context
of DEC.

3.4.1 Transfer Operators

In FEEC, we have canonical prolongation and restriction operators for a hierarchy of
meshes. In the case of DEC, we can exploit this to get restriction and prolongation
operators for cochains on different meshes.

Let V̊h,ℓ
k denote the space of Whitney k-forms on the ℓ-times regularly refined initial

mesh T , denoted by Tℓ, and let P̃k
ℓ,ℓ+1 denote the canonical prolongation operator of

the Whitney forms from V̊h,ℓ
k to V̊h,ℓ+1

k . We define the prolongation operator for DEC
by

Pk
ℓ,ℓ+1 := Rk

h,ℓ+1P̃k
ℓ,ℓ+1W k

h,ℓ,

where the subscript “h, ℓ” for R andW denotes the corresponding operator on the
ℓ-times refined mesh, i.e. we go from chochains on T k

ℓ to Whitney forms via W k
h,ℓ,

prolong there and then go to cochains on T k
ℓ+1 via the de Rham map Rk

h,ℓ+1. In
terms of matrices, as mentioned before, R••,• and W••,• are represented by identity
matrices on the respective spaces if standard bases are used, so the FEEC and DEC
prolongation matrices coincide. We can extend the prolongation to C̊ (T ) by defining
it as Pℓ,ℓ+1 :=

⊕
Pk
ℓ,ℓ+1.

For the restriction operator, we cannot just take the transpose, as DDEC does not arise
from a finite element discretization. Instead, we look at ADEC

h,ℓ+1 := MDEC
h,ℓ+1DDEC

ℓ+1 , where
MDEC

h,ℓ+1 denotes the DEC mass matrix and DDEC
ℓ+1 the DEC Dirac operator at the level ℓ,

which is a mass-lumped FEEC matrix as was explained in Remark 3.12. We multiply
the problem from (3.12) by MDEC and regard it as a finite element equation, that is,
given the problem

DDEC
ℓ+1 u = f,

we look for a coarse grid correction for solving

ADEC
h,ℓ+1u = MDEC

h,ℓ+1DDEC
ℓ+1 u = MDEC

h,ℓ+1f.

The coarse grid correction is given by

u 7→u + Pℓ,ℓ+1

(
ADEC

h,ℓ

)−1
PT
ℓ,ℓ+1

(
MDEC

h,ℓ+1f− ADEC
h,ℓ+1u

)
=u + Pℓ,ℓ+1

(
DDEC

ℓ

)−1
[(

MDEC
h,ℓ

)−1
PT
ℓ,ℓ+1MDEC

h,ℓ+1

] (
f−DDEC

ℓ+1 u
)

.
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3. Unstructured Grids

The obvious choice for the restriction operator for solving DDEC
ℓ+1 u = f is then

Rℓ+1,ℓ :=
(

MDEC
h,ℓ

)−1
PT
ℓ,ℓ+1MDEC

h,ℓ+1.

As can be seen, this is the adjoint of the prolongation operator, but w.r.t. the DEC
inner product as opposed to the standard inner product on vectors.

3.4.2 Distributive Relaxation

In the context of DEC we can quite easily define a transforming smoother in the sense
of Section 2.4.1. If we want to solve a linear system of equations of the form

DDECu = f,

where f ∈ ran DDEC, we can do the same as in the structured case and construct a
transforming smoother using the block-diagonal DEC Hodge-Laplacian

(
DDEC

)2
=



δDEC
1 ∂0

∂0δDEC
1 + δDEC

2 ∂1

. . .
∂k−1δDEC

k + δDEC
k+1 ∂k

. . .
∂n−1δDEC

n


,

where we used ∂k+1∂k ≡ 0 and δDEC
k δDEC

k+1 ≡ 02.

We can define a DGSR of the form

DGSR on Unstructured Grids

u 7→ u + DDEC
(

tril
(

DDEC
)2

)−1 (
f−DDECu

)
.

Of course it is highly desirable for DDEC to only perform local operations, which is
given if we use the Hodge star from Definition 3.6.

Remark 3.30 In complete analogy to Remark 2.3, we can define an l-transforming
smoother

u 7→ u +

(
tril

(
DDEC

)2
)−1

DDEC
(

f−DDECu
)

,

which is again analogous to solving the squared system with an appropriate right-hand-
side.

Note that unlike in the structured case,
(

DDEC
)2

is no longer symmetric, so the proof
of convergence from Proposition 2.4 cannot be applied here. Nonetheless, one can
show that the iteration still converges as can be seen from the proposition below.

2Assume that the boundary values have already been eliminated, that is, the respective rows and
columns set to zero and filled with ones on the diagonal. Alternatively, one can delete the respective
rows and columns and remove the entries from the load and solution vector.
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Proposition 3.31
Let

(
DDEC

)2
= L + D + U, M := L + D = tril

(
DDEC

)2
, where L denotes the lower

triangular, U the upper triangular and D the diagonal part of
(

DDEC
)2

and define the

error propagation matrix E := 1−DDECM−1DDEC, then

∀x ∈
(

ker DDEC
)⊥DEC

\ {0} : |||Ex||| < |||x|||.

Proof The proof is mostly the same as in Proposition 2.4.

For any x ∈ C̊ (T ), we have

JEx, ExK = Jx, xK −
r

x, DDECM−1DDECx
z
−

r
DDECM−1DDECx, x

z

+
r

DDECM−1DDECx, DDECM−1DDECx
z

= Jx, xK −
r

DDECx, M−1DDECx
z
−

r
M−1DDECx, DDECx

z

+
r

DDECM−1DDECx, DDECM−1DDECx
z

,

as DDEC is self-adjoint.

Now make the substitution z := M−1DDECx ⇐⇒ Mz = DDECx. Then

JEx, ExK = Jx, xK − JMz, zK − Jz, MzK +
r

DDECz, DDECz
z

.

What is left to prove is
r

DDECz, DDECz
z
< JMz, zK + Jz, MzK .

Recall that for any a, b ∈ C̊ (T ), we have

Ja, bK = a⃗TMDEC⃗b,

where a⃗, b⃗ are the coefficient vectors of a, b and MDEC is the diagonal DEC mass matrix.
It follows that

Jz, MzK =

s(
MDEC

)−1
MTMDECz, z

{
.

MDECDDEC is self-adjoint w.r.t. the usual inner product, i.e. symmetric, hence

MDECDDEC =
(

MDECDDEC
)T

=
(

DDEC
)T

MDEC

⇐⇒ DDEC =
(

MDEC
)−1 (

DDEC
)T

MDEC

=⇒
(

DDEC
)2

=
(

MDEC
)−1

[(
DDEC

)2
]T

MDEC

⇐⇒ L + D + U =
(

MDEC
)−1

(LT + D + UT)MDEC.

By comparing the upper triagonal parts of the above (MDEC is diagonal), it must hold
that

U =
(

MDEC
)−1

LTMDEC.
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Finally, we get

JMz, zK + Jz, MzK =

s(
L + D +

(
MDEC

)−1
(LT + D)MDEC)z

)
, z

{

= J((D + L) + (D + U)) z, zK

=

s((
DDEC

)2
+ D

)
z, z

{

=
r

DDECz, DDECz
z
+ JDz, zK

>
r

DDECz, DDECz
z

,

as we know that D > 0 and that z ̸= 0 by the assumption of the lemma: 0 ̸= x ∈(
ker DDEC

)⊥DEC
=⇒ z = M−1DDECx ̸= 0. □

As in Proposition 2.4, the algorithm only eliminates error components in
(

ker DDEC
)⊥DEC

and stays in ran DDEC if the start vector is in ran DDEC, i.e. it preserves the components
in the harmonic forms and eliminates the other ones.

Remark 3.32 Note that the prolongation of an element in C̊ (Tℓ) is mapped to C̊ (Tℓ+1),
that is, the trivial harmonic forms are preserved. If we had considered a problem with non-
trivial topology, it is not clear why the transfer operators should preserve orthogonality,
i.e.

Pℓ,ℓ+1

(
ker DDEC

ℓ

)⊥DEC
⊂

(
ker DDEC

ℓ+1

)⊥DEC

and the corresponding relation for the restriction operator might not be fulfilled.

As distributive relaxation only eliminates components which are in
(

ker DDEC
)⊥

, if the
transfer operators incur an error component in the harmonic forms, these will never be
eliminated by the multigrid solver.

Using the l-transforming smoother from Remark 3.30 does not solve this issue, or rather,
it could actively incur error components in the harmonic forms as it is not clear why the
added correction should be in ran DDEC.

The exploration of harmonic forms exceeds the scope of this thesis. However, it remains
an intriguing subject for further investigation.

3.4.3 Smoother for FEEC

As we know that by Theorem 3.20 ADEC and AFEEC are spectrally equivalent, we
can attempt to construct a smoother for the FEEC problem from the one applied
to the problem arising from ADEC ≡ MDECDDEC. The r-transforming smoother for
ADECu = f using the r-transformation DDEC yields a smoother

u 7→ u + DDEC
(

tril MDEC
(

DDEC
)2

)−1 (
f− ADECu

)
.

Note that ADECDDEC = MDEC
(

DDEC
)2

is block-diagonal and symmetric due to the

fact that
(

DDEC
)2

is self-adjoint w.r.t. the DEC inner product.
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Replacing the residual by the one of the spectrally equivalent FEEC problem AFEECuh =
fh

3 yields the smoother

DEC-Based DGSR for FEEC

uh 7→ uh + DDEC
(

tril MDEC
(

DDEC
)2

)−1 (
fh − AFEECuh

)
. (3.18)

3.5 Numerical Results

The multigrid algorithm described in this chapter was implemented using MFEM, see
[1]. The code is available at https://gitlab.ethz.ch/rdabetic/master-thesis.

3.5.1 Two Dimensions

We employ the method of manufactured solutions to empirically verify the order of
convergence obtained in Proposition 3.28. We measure DEC norms of the discretization
error e := Ru− u, u solution of (3.12), where Ru and Rf are computed by “overkill
quadrature”, which means that the quadrature error is negligible compared to the
discretization error. We monitor two error norms: When we talk about the DEC
L2-norm we mean |||e|||, and by the DEC HΛ-norm we mean |||e||| +

∣∣∣∣∣∣∣∣∣dDECe
∣∣∣∣∣∣∣∣∣.

We also tested the convergence rates of a V-cycle by performing a power iteration.

Test I

We consider the unit square Ω = [0, 1]2 and fix the right-hand-side f such that we
obtain a smooth solution of (1.7), which reads

u0 = sin 2πx sin 2πy, u1 = (sin 2πy, sin 2πx)T, u2 = cos 2πx sin 2πy

in Euclidean vector proxies.

The coarsest mesh that was used is displayed in Figure 3.1a. It was refined several
times using regular refinement, i.e. connecting the midpoints of the edges to split each
triangle into four smaller ones.

The resulting error norms are plotted in Figure 3.1b, and we observe first-order
convergence, exactly the order of convergence predicted by Proposition 3.28.

The multigrid convergence rates can be found in Table 3.1a, and it can be seen that
the method displays mesh-width independent convergence.

Test II

Similar to [12], we tested the DEC discretization on a triangle as well. As a domain
Ω ⊂ R2 we chose an equilateral triangle with vertices at (0, 0), (0, 1), and

(
1/2,

√
3/2

)
.

We fix the right-hand-side such that we obtain the exact solution (in Euclidean vector
proxies)

u0 = 215 (λ0λ1λ2)
3 , u1 = (u0, u0)

T, u2 = u0 −
1
|Ω|

∫
Ω

u0(x, y) dxdy,

where λi denotes the barycentric coordinate function associated with vertex i.
3We re-interpret u, f as uh, fh via the Whitney isomorphism.
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3. Unstructured Grids
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(a) Test I: Coarsest mesh
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(b) Test I: Error norms

Figure 3.1: Mesh and convergence of DEC on a square.

As before, we used successive regular refinement of a coarse mesh, which can be seen
in Figure 3.2a, to generate a sequence of meshes with decreasing mesh-width. Note
that the refined meshes only contain equilateral triangles.

The plot of Figure 3.2b clearly reveals that for h→ 0 the error norms decrease faster
than expected. The better-than-expected order of convergence is most likely due to the
symmetry of the mesh (all equilateral triangles), as explained in [12, Section 6], where
the authors provide improved error estimates on R − J in such a case. Concretely, [12,
Equation 6.2 & Proposition 6.2] establish second order convergence, which is what is
observed. For the multigrid convergence, see Table 3.1b, where we see that it works
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(b) Test II: Error norms

Figure 3.2: Mesh and convergence of DEC on an equilateral triangle with a structured mesh.

as anticipated.

Test III

This numerical experiment is inspired by the ”Perturbed Mesh” computation in [12,
Section 7]. The setup is the same as in Test II, but now we start with a slightly
perturbed coarse mesh of the triangle domain Ω, see Figure 3.3a. This breaks sym-
metries, the theory from [12, Section 6] no longer applies and, as one can see from
Figure 3.3b, now convergence of error norms appears to be first order, albeit with
some pre-asymptotic behavior.
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3.5. Numerical Results

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

(a) Test III: Coarsest mesh

10 3 10 2 10 1

Mesh-Width

10 5

10 4

10 3

10 2

10 1

Er
ro

r n
or

m
s

DEC L2

DEC H
(h1)

(b) Test III: Error norms

Figure 3.3: Mesh and convergence of DEC on an equilateral triangle with a perturbed mesh.

For the multigrid convergence, see Table 3.1c, where we see that while being robust,
the convergence rate has decreased compared to the unperturbed case.

Level h |λmax|
1 1.99E-01 4.53E-01
2 9.94E-02 7.71E-01
3 4.97E-02 7.92E-01
4 2.48E-02 8.01E-01
5 1.24E-02 8.09E-01
6 6.21E-03 8.15E-01
7 3.11E-03 8.15E-01
8 1.55E-03 8.17E-01

(a) Square

Level h |λmax|
1 1.25E-01 1.88E-01
2 6.25E-02 2.49E-01
3 3.12E-02 2.69E-01
4 1.56E-02 2.76E-01
5 7.81E-03 2.87E-01
6 3.91E-03 3.02E-01
7 1.95E-03 3.08E-01
8 9.77E-04 3.15E-01

(b) Triangle with a regular mesh

Level h |λmax|
1 1.37E-01 1.78E-01
2 6.84E-02 3.81E-01
3 3.42E-02 4.50E-01
4 1.71E-02 2.78E-01
5 8.56E-03 5.01E-01
6 4.28E-03 5.08E-01
7 2.14E-03 5.14E-01
8 1.07E-03 5.11E-01

(c) Triangle with a perturbed mesh

Table 3.1: DEC multigrid convergence rates on different meshes in 2D (with circumcentric duals). The
mesh-width is denoted by h.

Test IV

In this test, a coarse mesh of Ω = [0, 1]2 \ [1/4, 3/4]2, a domain with a non-trivial
topology, see Figure 3.4, was used to investigate the convergence of just the multigrid
method.

To solve the linear system at the coarsest level, a sparse QR factorization was used to
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3. Unstructured Grids

compute the least-squares solution.

The domain in Figure 3.4 has exactly one hole and connected component, hence we
expect the dimension of the space of non-trivial harmonic forms to be equal to one,
that is, the sum off all Betti numbers minus one (we exclude the trivial ones). Thus,
by applying our theoretical understanding gained in Remark 3.32, we conjecture that
the error matrix of a V-cycle will display exactly one eigenvalue of magnitude one.
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Figure 3.4: Test IV: Coarsest Mesh

Level h |λ0| |λ1| |λ2|
1 8.838835E-02 9.999992E-01 3.261091E-01 3.017770E-01
2 4.419417E-02 9.999919E-01 4.413730E-01 4.418638E-01
3 2.209709E-02 9.999844E-01 4.917262E-01 4.918557E-01
4 1.104854E-02 9.999879E-01 5.095853E-01 5.089627E-01
5 5.524272E-03 9.999819E-01 5.151095E-01 5.183340E-01

Table 3.2: Test IV: Absolute value of the (approximate) largest three eigenvalues of the error matrix of a
V-cycle on Figure 3.4.

By using a power iteration with deflation, that is, seeking an eigenvector in the
orthogonal complement of the ones already computed, the largest (in magnitude) few
eigenvalues were approximated. The results are recorded in Table 3.2.

As can be observed in Table 3.2, exactly one eigenvalue with magnitude one (up to
rounding errors) appears to manifest itself, reinforcing the understanding presented
in Remark 3.32.

Test V

To further investigate how the dimension of the space of harmonic forms influences
convergence, a test was carried out on the domain found in Figure 3.5, which is
anticipated to give rise to two non-trivial harmonic forms, in contrast to one in test IV.
Therefore we may expect to find two eigenvalues of magnitude one.

The results can be found in Table 3.3 and as can be seen, two harmonic forms produce
two eigenvalues of unit magnitude.
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3.5. Numerical Results
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Figure 3.5: Test V: Coarsest Mesh

Level h |λ0| |λ1| |λ2|
1 9.961539E-02 9.999961E-01 9.999992E-01 3.236872E-01
2 4.980769E-02 1.000066E+00 9.999767E-01 8.240601E-01
3 2.490385E-02 1.000092E+00 9.998758E-01 8.446312E-01
4 1.245192E-02 9.999391E-01 9.999369E-01 8.596365E-01
5 6.225962E-03 9.999812E-01 9.998069E-01 8.612764E-01

Table 3.3: Test V: Absolute value of the (approximate) largest three eigenvalues of the error matrix of a
V-cycle on Figure 3.5.

3.5.2 Three Dimensions

We were unable to find suitable meshes to test the convergence of DEC, so we used
dual meshes based on the barycenters to test the convergence of the multigrid method4.
Even if we have a well-centered coarse mesh, the refinement techniques used in MFEM

do not have to preserve well-centeredness in 3D, meaning it may not be trivial to
generate a hierarchy of well-centered meshes. Regarding well-centered meshing in
3D, there appears to have been some research, see [25], which we shall not dwell on
as it is not the main topic of this thesis.

The convergence of a V-cycle was tested on three different meshes: a mesh of the
unit cube [0, 1]3, a coarse mesh of a unit ball and a regular tetrahedron with vertices
at (−1/2, 0, 0), (1/2, 0, 0),

(
0,
√

3/2, 0
)
,
(
0,
√

3/6,
√

2/3
)
. The corresponding convergence

rates can be found in Table 3.4a, Table 3.4b and Table 3.4c respectively. The method
displays convergence rates which are independent of the mesh-width.

3.5.3 FEEC

To test whether the smoother from (3.18) works as intended, as we did not provide
any theoretical results, we tested the convergence of the multigrid algorithm for the
FEEC problem in 2D on the same meshes as in the DEC case (see Section 3.5.1), but
now with barycentric duals.

The results for meshes with trivial topologies can be found in Table 3.5, and as can be
seen, we observe robust convergence rates across all the problems.

For problems with a non-trivial topology, refer to Table 3.6.

4The dual mesh was obtained by connecting the barycenters of a k-simplex to the barycenters of the
(k− 1)-simplices which are a part of the k-simplex. This leads to a non-orthogonal dual mesh (with
kinks).
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3. Unstructured Grids

Level h |λmax|
1 4.13E-01 6.65E-01
2 2.06E-01 6.95E-01
3 1.03E-01 7.00E-01
4 5.16E-02 6.81E-01
5 2.58E-02 6.87E-01

(a) Cube

Level h |λmax|
1 3.25E-01 6.93E-01
2 1.62E-01 7.07E-01
3 8.11E-02 7.12E-01
4 4.06E-02 7.18E-01
5 2.03E-02 7.15E-01

(b) Coarse Mesh of a Ball

Level h |λmax|
1 7.07E-01 5.67E-01
2 3.54E-01 6.03E-01
3 1.77E-01 5.77E-01
4 8.84E-02 5.84E-01
5 4.42E-02 5.84E-01

(c) Regular Tetrahedron

Table 3.4: DEC Multigrid convergence rates on different meshes in 3D. The mesh-width is denoted by h.

Level h |λmax|
1 1.99E-01 3.07E-01
2 9.94E-02 3.83E-01
3 4.97E-02 4.20E-01
4 2.48E-02 4.51E-01
5 1.24E-02 4.65E-01
6 6.21E-03 4.71E-01
7 3.11E-03 4.75E-01
8 1.55E-03 4.76E-01

(a) Square

Level h |λmax|
1 1.25E-01 2.45E-01
2 6.25E-02 2.61E-01
3 3.12E-02 2.63E-01
4 1.56E-02 2.91E-01
5 7.81E-03 2.92E-01
6 3.91E-03 2.60E-01
7 1.95E-03 3.07E-01
8 9.77E-04 3.14E-01

(b) Triangle with a regular mesh

Level h |λmax|
1 1.32E-01 2.07E-01
2 6.58E-02 2.60E-01
3 3.29E-02 2.82E-01
4 1.65E-02 2.94E-01
5 8.23E-03 3.23E-01
6 4.11E-03 3.35E-01
7 2.06E-03 3.46E-01
8 1.03E-03 3.50E-01

(c) Triangle with a perturbed mesh

Table 3.5: FEEC Multigrid convergence rates on different meshes in 2D (with barycentric duals). The
mesh-width is denoted by h.
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3.5. Numerical Results

Level h |λ0| |λ1| |λ2|
1 8.838835E-02 9.999992E-01 2.921614E-01 2.845712E-01
2 4.419417E-02 9.999814E-01 4.094331E-01 4.091378E-01
3 2.209709E-02 9.999942E-01 4.541379E-01 4.534524E-01
4 1.104854E-02 9.999925E-01 4.700092E-01 4.690883E-01
5 5.524272E-03 9.999803E-01 4.773131E-01 4.781302E-01

(a) Absolute value of the (approximate) largest three eigenvalues of the error matrix of
a V-cycle for FEEC on Figure 3.4.

Level h |λ0| |λ1| |λ2|
1 9.961539E-02 9.999978E-01 9.999957E-01 3.161215E-01
2 4.980769E-02 9.999931E-01 9.999950E-01 3.630346E-01
3 2.490385E-02 9.999927E-01 9.999884E-01 3.999449E-01
4 1.245192E-02 9.999834E-01 9.999896E-01 4.561642E-01
5 6.225962E-03 9.999909E-01 9.999799E-01 4.713637E-01

(b) Absolute value of the (approximate) largest three eigenvalues of the error matrix of
a V-cycle for FEEC on Figure 3.5.

Table 3.6: FEEC Multigrid convergence rates on different meshes in 2D (with barycentric duals) with
non-trivial topology. The mesh-width is denoted by h.

It appears to behave exactly the same as DEC in regards to the number of eigenvalues
with unit magnitude, which comes as no surprise as we expect the dimension of the
space of harmonic forms to be the same.
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Chapter 4

Conclusion

In conclusion, this thesis successfully developed methodologies for solving the bound-
ary value problem associated with the Hodge-Dirac operator within a bounded,
Lipschitz, polytopal, and topologically trivial domain Ω ⊂ Rn. Using a geometric
multigrid method, we effectively solved the system of linear equations derived from
DEC and FEEC discretizations.

We first confirmed the persistence of the ”Dirac2 = −∆” property in the discrete
context with mass-lumped FEEC on structured grids using explicit computation by
hand and used the insight gained to design a smoother for a multigrid method in
both 2D and 3D, which was validated numerically.

We saw that the property ”Dirac2 = −∆” extends to the unstructured case in the
DEC-setting and extended the smoother from the structured case to the unstructured
case. A multigrid method for solving the boundary value problem in the context of
DEC was elucidated and tested successfully.

We proved that under the assumption of h-uniform norm equivalence, i.e. Assump-
tion 3.3.1, we have a Poincaré inequality for DEC, which we used to prove stability of
DEC based on [19], culminating in a proof of the spectral equivalence between FEEC
and DEC. In addition, a smoother for the FEEC problem based on the DEC problem
was proposed and tested in 2D, showing promising results.

Furthermore, we proved and verified the convergence of DEC under the assumption
of a well-centered mesh with circumcentric duals using techniques established in [12].

Future directions include investigating the smoothers (especially the FEEC smoother)
more closely, as well as exploring ways of dealing with non-trivial topologies and
the non-trivial harmonic forms arising therefrom, e.g. by combining the multigrid
method with an iterative solver. Additionally, it would be interesting to see whether
the techniques in this thesis, i.e. using DEC to build a transforming smoother, can be
applied to other problems.

47





Appendix A

3D Matrices

A.1 Local DOF and Element Matrix

Let î, ĵ, k̂ be the unit vectors in x, y, z respectively, then the local DOF on the reference
element with the ordering from Figure 2.10 are given by (see [23])

• u0 :

−xyz + xy + xz − x + yz − y − z + 1,
x (yz − y − z + 1) ,
y (xz − x − z + 1) ,

xy (1− z) ,
z (xy − x − y + 1) ,

xz (1− y) ,
yz (1− x) ,

xyz

• u1:

(yz − y − z + 1) î,

(xz − x − z + 1) ĵ,

(xy − x − y + 1) k̂,

(x (1− z)) ĵ,

(x (1− y)) k̂,

(y (1− z)) î,

(y (1− x)) k̂,

(xy) k̂,

(z (1− y)) î,

(z (1− x)) ĵ,

(xz) ĵ,

(yz) î

• u2 :

(1− z) k̂, (1− y) ĵ, (1− x) î, (x) î, (y) ĵ, (z) k̂
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A. 3D Matrices
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Figure A.1: Fully assembled 3D Galerkin matrix with the boundary DOF dropped with 53 cells multiplied by
1
h2 , so all entries are in units of h2, and its square.

• u3 : 1.

The local element matrix on the reference element is given by Table A.1.

A.2 Stencils

In order to verify that we indeed get back the 7-point stencils for −∆ in 3D as well,
one can assemble a small grid and look at the rows corresponding to the interior DOF.
We chose a grid with 53 cells, with the enumeration of the DOF of the 6-dimensional
vector in the order of the vector components and then the x1, x2 and x3 direction. The
Galerkin matrix (with normalized entries) can be found in Figure A.1. The script also
extracts a row of A2

h corresponding to an interior DOF, the output of which is:

--- N = 5 ---

Non-Zero locations and entries in an interior vertex-row:

[ 50 80 85 86 87 92 122]

[-1. -1. -1. 6. -1. -1. -1.]

Non-Zero locations and entries in an interior edge-row:

[258 283 287 288 289 293 318]

[-1. -1. -1. 6. -1. -1. -1.]

Non-Zero locations and entries in an interior face-row:

[800 824 829 830 831 836 860]

[-1. -1. -1. 6. -1. -1. -1.]

Non-Zero locations and entries in an interior cell-row:

[1243 1263 1267 1268 1269 1273 1293]

[-1. -1. -1. 6. -1. -1. -1.]

and as can be seen, we get the stencils for −∆ again.
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A.2. Stencils
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Appendix B

Connection to the Dirac Operator from
Physics

The Hodge-Dirac operator in 3D and the Dirac operator from physics are closely re-
lated, as elucidated by [11, Section 1.2], where the complex Dirac operator is considered

DC :=
3

∑
k=1

Sk∂k, Sk :=
(

02×2 σk
σk 02×2

)
∈ C4×4,

where σk are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

By separating the real and imaginary parts of DC, applying permutations and swap-
ping some signs, we get back to the Hodge-Dirac operator in 3D, see [21] or [11,
Section 1.2] for an explicit computation.

It turns out that the Dirac equation for Ψ(x, t) ∈ C4 (in 3+ 1 dimensions) from physics
can be written as

i∂tΨ = −iDCΨ + m


1

1
−1

−1

 Ψ, (B.1)

see [10] for more. One could say that we are discretizing the spatial part of the
momentum operator in (B.1) in this thesis.

There is also a formulation relying more on differential geometry, see [20] for more.
The operator is of the form d− δ, where d is the exterior derivative and δ the codiffer-
ential, so it looks similar to the Dirac operator, but with a different metric (signature
(+−−−) or (−+++) depending on the convention), for which a similar discretiza-
tion scheme to the ones considered in this thesis has been investigated in [4]. The
reason why it is not possible to apply our techniques to that is that squaring this type
of Dirac operator will lead to a (up to a sign) Laplacian in the space-time metric, hence
it looks like a d’Alembert operator, which is unsuitable for designing a smoother.
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