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1 Introduction

This project presents a way of computing general interface modes in 1- and 1.5D for two
joint semi-infinite photonic crystals with periodic material parameters ε and µ based on
the transfer matrix method.

The period does not need to be the same and the material parameters are piecewise
continuous functions on both sides. An interface mode is a Bloch mode localized at the
interface, and it shows exponential decay on both sides. It is the solution to the joint
left- and right-side equations, which is continuous both in value and derivative across the
interface. In addition, there is a computation of band diagrams with marked interface
modes and the full Zak phase calculator.

Some interface modes are topologically protected - or guaranteed to exist - if the Zak
phases of the bands below a band gap, which houses this mode, induce different topological
indices. In the case of inversion symmetric µ and ε it is sufficient to check the parity of the
first Bloch mode that belongs to a band below the band gap. The core numerical methods
used are the implicit midpoint rule, extrapolation to zero using the Aitken-Neville scheme,
and the secant method. The mathematical background, implementation, and application
for each are discussed in the following sections.

∇× e(x) = −iωµ(x)h(x) (1)

∇× h(x) = iωε(x)e(x) (2)

The starting point are Maxwell’s equations, shown in equation 1 and equation 2.
Everything is normalized so that c = 1. The transfer matrix method involves finding two
orthogonal solutions with unit initial conditions and constructing a matrix from them,
that can transfer any initial conditions across the unit cell it was defined for. With
transfer matrices for both spaces, we are equipped to construct any Bloch mode if the
solution for just one unit cell per space is available. Going in reverse is also simple: the
inverse of the transfer matrix is used.

This matrix also solves the original ordinary differential equation, meaning it is a
fundamental matrix, and it is evaluated at the end of the unit cell (period), so it is also
the monodromy matrix. The eigenvalues of the monodromy matrix are the characteristic
multipliers of the Bloch waves, and their graph over a range of frequencies is the band
diagram of the unit cell. After solving for the monodromy across one unit cell, the solution
Bloch can be constructed from the monodromy and the waves that the two orthogonal
solutions trace.

2 Interface Modes in 1D

Now we will pick two orthogonal initial conditions (and solutions) to find the monodromy
matrix, and the Bloch waves in the sections that follow.

Explanation of some terms that will make the equations easier to understand:

y-polarized wave A wave with the electric field in the y-direction.

z-polarized wave A wave with the electric field in the z-direction.
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TE (transversal electric) Describes the initial condition: electric field has a value of
1, magnetic field has a value of 0

TM (transversal magnetic) Describes the initial condition: magnetic field has a value
of 1, electric field has a value of 0

For example, to get the system transfer matrix, both TE and TM systems will be
solved. In both cases these are 2D vectors. These are directly derived from equation 1
and equation 2. There are two options that we get, and here is an example of the z-

polarized TE and TM vectors:

[
ezTE(x)
hyTE(x)

]
and

[
ezTM(x)
hyTM(x)

]
These two vectors can be concatenated into a 2 × 2 z-polarized system matrix (see

lemma 1) which will turn out to be the transfer matrix itself when evaluated at the end
of the unit cell.

2.1 Mathematical Background and Numerical Methods

This section will provide a selection of definitions and proofs that explain the choice of
numerical methods. First, we must satisfy the continuity and Bloch mode conditions.
This, in the context of Maxwell’s equations, implies a certain behavior of solutions that
can be used to refine the search for frequencies at which interface modes exist.

Definition 1 The Bloch mode is any function that satisfies

ψ(x+ a) = eikaψ(x) (3)

for the period a and some complex constant k.

Definition 2 The tangential components of e and h are continuous across the interface.

h(0+) = h(0−)

e(0+) = e(0−) (4)

2.1.1 Implicit Midpoint Rule

The following definitions and proofs will show why energy-preserving Runge-Kutta meth-
ods work well for this problem.

The following lemma shows the equivalence of 1D systems.

Lemma 1 The y- and z-polarized solutions are complex conjugates of each other.

Proof. The z-polarized system is[
ezTE(x) ezTM(x)
hyTE(x) hyTM(x)

]′
=

[
0 iωµ(x)

iωε(x) 0

] [
ezTE(x) ezTM(x)
hyTE(x) hyTM(x)

]
, (5)

and the y-polarized system is[
eyTE(x) eyTM(x)
hzTE(x) hzTM(x)

]′
=

[
0 −iωµ(x)

−iωε(x) 0

] [
eyTE(x) eyTM(x)
hzTE(x) hzTM(x)

]
. (6)
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If we conjugate the z-polarized system, the result is:[
e∗zTE(x) e∗zTM(x)
h∗yTE(x) h∗yTM(x)

]′
=

[
0 −iωµ(x)

−iωε(x) 0

] [
e∗zTE(x) e∗zTM(x)
h∗yTE(x) h∗yTM(x)

]
, (7)

from which it follows that e∗zTE = eyTE, e∗zTM = eyTM , h∗yTE = hzTE, and h∗yTM =
hzTM as desired. ■

Knowing the system, we can use the implicit midpoint rule like described in the follow-
ing pseudocode to find the z-polarized solution matrix. Note that saving the full solution
is not necessary (and it is expensive) to get the monodromy matrix. It is included in the
listing below to illustrate how it is stored in a 4 ×Npts solution matrix.

1 function systemZ ( Npts , T, so lu t i on , ω , µ , ε)
2 h = T/Npts
3 Matrix A(2 , 2 ) , B(2 , 2 ) , C(2 , 2 )
4 Matrix I = Ident i ty2x2 ( )
5 Matrix Y = I // the i n i t i a l monodromy matrix
6

7 for i = 0 : N−1 do
8 x = ( i + 0 . 5 ) ∗ h
9 A = 0 , i ∗ ω ∗ µ( x )

10 i ∗ ω ∗ ε( x ) , 0
11

12 B = I − 0 .5 ∗ h ∗ A
13 C = I + 0 .5 ∗ h ∗ A
14

15 // i m p l i c i t midpoint r u l e
16 Y = B. i n v e r s e ( ) ∗ C ∗ Y
17 s o l u t i o n . c o l ( i ) = Y. reshaped (4 , 1 ) // 2x2 matrix
18 // to 4−vec to r
19 end
20 return Y

2.1.2 Bloch Modes and the Monodromy

Here we will see some additional properties of the monodromy matrix Y, and how these
can be used to construct Bloch modes using the Monodromy and its eigenvalues.

The general structure of these proofs follows that from Lin and Zhang [1]; however,
proofs that are similar are not the same because they had to take into account complex
rather than real numbers for this project.

Lemma 2 The electric field Bloch wave of the system above is given by

eBloch(x) = eTXeTE(x) + hTXeTM(x), (8)

and the magnetic field Bloch mode is given by

hBloch(x) = eTXhTE(x) + hTXhTM(x), (9)
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where

[
eTX

hTX

]
is an eigenvector of the monodromy matrix M(ω). These Bloch modes

are continuous across the cells.

Proof. Eigenvectors of the monodromy satisfy the following

M(ω)

[
eTX(x)
hTX(x)

]
= eika

[
eTX(x)
hTX(x)

]
=

[
eTX(x+ a)
hTX(x+ a)

]
(10)

(1) Let us construct a Bloch wave of the system solutions of the TE and TM electric
fields:

eBloch(x) = AeTE(x) +BeTM(x) (11)

If this is a Bloch wave then

eBloch(x+ a) = eikaeBloch = eika(AeTE(x) +BeTM(x)) (12)

by definition 1. Combining terms and evaluating at x = a yields

eBloch(a) = eikaeBloch(0)

eikaeBloch(0) = Aeika

⇒ A = eBloch(0) (13)

Similarly, if the equation is differentiated and multiplied by 1
iωε(x)

,

hBloch(x) = AhTE(x) +BhTM(x) (14)

hBloch(a) = AhTE(a) +BhTM(a) (15)

hBloch(a) = eikahBloch(0) (16)

eikahBloch(0) = Beika (17)

⇒ B = hBloch(0) (18)

Because we had [
eBloch(a)
hBloch(a)

]
= eika

[
eBloch(0)
hBloch(0)

]
= eika

[
A
B

]
(19)

,

the vector

[
A
B

]
is an eigenvector of the monodromy by definition, see equation 10.

(2) If we construct a wave using some eigenvector of the monodromy

[
eTX(0)
hTX(0)

]
so that

the initial values of the constructed waves match with the initial values of the eigenvector,
eg. at x = 0, then it holds for the constructed wave

eBloch(x) = eTX(0)eTE(x) + hTX(0)eTM(x), (20)

that
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eikaeBloch(x) = eikaeTX(0)eTE(x) + eikahTX(0)eTM(x) (21)

eikaeBloch(x) = eTX(a)eTE(x) + hTX(a)eTM(x) (22)

but eTX(a)eTE(x) +hTX(a)eTM(x) is the wave that matches the eigenvector values at the
next cell so it is the constructed wave evaluated at x+ a or

eikaeBloch(x) = eBloch(x+ a), (23)

which is the definition of a Bloch mode, so the constructed wave is a Bloch mode. If
this equation is differentiated and multiplied by 1

iωε(x)
, we get

eikahBloch(x) = hBloch(x+ a), (24)

so equation 8 and equation 9 give the Bloch modes, as desired. ■

And not only that; the Bloch modes are by this construction continuous across all
cells, because the following cell must start at the point the previous cell finished.

Lemma 3 The off-diagonal solution entries of the y− and z− polarized transfer matrix
systems are imaginary, and the diagonal solution entries are real.

Proof. Take any system, z- or y- polarized. Here, the z-polarized one is used. Set

the initial condition to

[
ezTE(x) ezTM(x)
hyTE(x) hyTM(x)

]
=

[
1 0
0 1

]
.

Because the identity matrix is the initial condition and the system matrix A =[
0 iωµ(x)

iωε(x) 0

]
always affects the other entry, and its non-zero terms are imaginary,

the off-diagonal solution entries will be imaginary (since we started with real numbers),
and the diagonal solution entries will be real:

ℑ(ezTE) = ℑ(hyTM) = 0 and ℜ(ezTM) = ℜ(hyTE) = 0. (25)

Another way to see this is to rewrite the system as a Helmholtz equation for one of
the entries, for example, the electric field in the z-direction:

− ∂

∂x

(
1

µ(x)

∂

∂x
ez

)
− ω2ε(x)ez = 0 (26)

and notice the cancellation of imaginary terms. This means that if ez is imaginary, then
ez will stay imaginary, and likewise, if it is real, it will stay real. Even from this equation
it is clear this holds for hy as well, because for this Helmholtz equation hy = 1

iωµ(x)
∂
∂x
ez.
■

Definition 3 The impedance of the electric and magnetic Bloch modes constructed from
the monodromy system solution is given by

Z(ω) =
eBloch(0)

hBloch(0)
=
eTX(0)

hTX(0)
, (27)

where

[
eTX

hTX

]
is an eigenvector of the monodromy matrix M(ω) from lemma 2.
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The impedance function in definition 3 is the central part of this project as it provides
the sufficient and necessary condition for the existence of interface modes.

Definition 4 The sufficient and necessary condition for the existence of an interface
mode in the band gap is

ZR(ω) = ZL(ω), (28)

where ZL is the impedance of the left half-space, and ZR is the impedance of the right
half-space.

The existence of an interface mode implies that the condition in definition 2 is satisfied,
after the left or right side Bloch wave is multiplied by an appropriate constant, which is
shown below.

Lemma 4 The impedance function defined by

Z(ω) =
ezTM(1)

eika − ezTE(1)
for the z-polarized wave, and (29)

Z(ω) =
eyTM(1)

eika − eyTE(1)
for the y-polarized wave (30)

enforces the continuity condition between the half-spaces by having ZL = ZR, and it is
purely imaginary.

Proof. The continuity follows from definition 3. The impedance is given by equa-
tion 27: Z(ω) = eBloch(0)

hBloch(0)
= eTX(0)

hTX(0)
. Having ZL = ZR means that

eBloch,L(0)

hBloch,L(0)
=
eBloch,R(0)

hBloch,R(0)
. (31)

From equation 31 it follows that eBloch,L(0) = CeBloch,R(0) and hBloch,L(0) = ChBloch,R(0),
where C ∈ C, and this constant can be set arbitrarily as any solution to the systems from
lemma 1 (system equation 1 and equation 2) multiplied by a constant is still a solution.

From lemma 3 we know that ℑ(ezTE) = ℑ(hyTM) = 0 and
ℜ(ezTM) = ℜ(hyTE) = 0. Likewise, from definition 3 we know that the impedance is
the ratio of the components of the monodromy eigenvector. This requires finding an
eigenvector of a 2 × 2 matrix:

[
a b
c d

] [
x
y

]
= λ

[
x
y

]
(32)

=⇒ (λ− a)x = by, (33)

(λ− d)y = cx. (34)

Now equation 33 and equation 34 imply two eigenvectors:

v1 = C1

[
b

λ− a

]
, and v2 = C2

[
λ− d
c

]
(35)

Picking the first one and substituting a = exTM(1) and b = exTE(1) yields the eigen-

vector

[
eTX

hTX

]
=

[
ezTM

eika − ezTE

]
or

[
eyTM

eika − eyTE

]
as desired. ■
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Lemma 5 Given the monodromy M(ω) ∈ C2,2 of the system described by equation 1 and
equation 2:

detM(ω) = 1. (36)

Proof. By direct differentiation and combining with any system from lemma 1:

∂

∂x

(
det

[
eTE eTM

hTE hTM

])
=

∂

∂x
(eTEhTM − eTMhTE)

= hTM
∂

∂x
eTE + eTE

∂

∂x
hTM − hTE

∂

∂x
eTM − eTM

∂

∂x
hTE

= hTM(±iωµhTE) + eTE(±iωεeTM) − hTE(±iωµhTM) − eTM(±iωεeTE)

= 0

And because detM(ω) = 1 at x = 0, and its derivative is 0 for all x, it must be
constant, detM(ω) = 1. See also lemma 9. ■

Lemma 6 Given the monodromy M(ω) ∈ C2,2 of the system described by equation 1 and
equation 2:

TrM(ω) ∈ R. (37)

Proof. From lemma 3 we know that the diagonal entries of the system solution are
real. Since the monodromy is the solution evaluated at the end of the cell, its diagonal is
also real, and hence its trace is real. ■

Theorem 1 As a consequence of lemma 5 and lemma 6, the eigenvalues of the mon-
odromy are given by

e±ika =
D(ω) ±

√
D2(ω) − 4

2
, (38)

where D(ω) = TrM(ω).

Proof. The eigenvalue equation for a 2×2 matrix M =

[
a b
c d

]
is (λ−a)(λ−d)−bc = 0.

Rewriting, we get λ2−(a+d)λ+ad−bc = λ2−TrM+detM = 0. SettingD(ω) = TrM and
knowing that, for the monodromy by lemma 5, detM = 1, directly results in theorem 1.

■

The result of theorem 1 allows for sweeping a range of frequencies, finding the mon-
odromy matrix as a solution to one of the systems in lemma 1, and finding its eigenvalues
without explicitly saving the Bloch modes.

Definition 5 If and only if the eigenvalues of the monodromy e±ika ∈ R and |eika| ≠ 1,
then they belong to a band gap.

8



Lemma 7 The off-diagonal entries of the monodromy M(ω) ∈ C2,2 of the system de-
scribed by equation 1 and equation 2 are pure imaginary:

ℜ (M(ω)0,1) = ℜ (M(ω)1,0) = 0. (39)

Proof. From lemma 3 we know that the off-diagonal entries of the system solution
are imaginary. Since the monodromy is the solution evaluated at the end of the cell, its
off-diagonal terms must also be imaginary. ■

The eigenvalues can easily be computed using theorem 1, and used to find the band
diagram by sweeping the frequency ω. This is shown in the listing below:

1 for i = 0 : N ω do
2 ω = (ω end − ω s t a r t ) / N ω∗ i + ω s t a r t
3

4 Matrix ML=systemZ ( Npts , T l e f t , so lut ionL ,ω ,µ l e f t , ε l e f t )
5 Matrix MR=systemZ ( Npts , T right , so lut ionR ,ω ,µ r i g h t , ε r i g h t )
6

7 DL = (ML0,0 + ML1,1 ) . r e a l ( )
8 DR = (MR0,0 + MR1,1 ) . r e a l ( )
9

10 // r i g h t h a l f s p a c e
11 i f ( abs (DR) < 2)
12 k+ = arcco s ( 0 . 5∗DR) // 0 .5 ∗ D i s the r e a l part o f
13 // a complex number with modulus 1
14 else
15 k+ = NaN
16 end
17

18 // l e f t h a l f s p a c e
19 i f ( abs (DL) < 2)
20 k− = −arcco s ( 0 . 5∗DL) // property o f cos : cos (−x )=cos ( x )
21 else
22 k− = NaN
23 end
24

25 // mutual bandgap
26 i f ( abs (DR) > 2 && abs (DL) > 2)
27 track impedance (ω , ML, MR, DR, DL)
28 end
29

30 save (ω , k+ , k− )
31 end

In the following subsection we will see why impedance is being tracked in the band
gap, and how this is useful for finding a more accurate frequency at which the interface
modes appear.
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2.1.3 Secant Method

The reasoning behind using the secant search method to get a more precise value of the
interface mode frequencies ω is shown here.

Lemma 8 The Bloch impedance as defined in definition 3 is pure imaginary in the band
gap:

ℜ (Z(ω)) = 0. (40)

Proof. The term eTM in the impedance equation in lemma 4 is an off-diagonal term
of the monodromy which is imaginary by lemma 7, and the term eTE is a diagonal term
so it is real by the proof of lemma 6. We are in the band gap, so by definition 5, the

eigenvalue eika ∈ R. This means that the first entry of the eigenvector

[
eTM

eika − eTE

]
is

imaginary and the second real. Their ratio, the impedance, is therefore imaginary. ■

Another result from the proof of lemma 8 is the fact that electric field Bloch waves
are imaginary, and magnetic field Bloch waves are real in the band gap.

Theorem 2 Away from its poles, the real function f : R → R

f(ω) = ℑ (ZR(ω)) −ℑ (ZL(ω)) (41)

is monotonously decreasing or increasing with ω in the band gaps.

Proof. This proof is the electromagnetic analog of Lemma 4.2 by Coutant and Lom-
bard [4]. Since the impedance depends only on electric fields, the electric field by lemma 4,
the Helmholtz equation 26 from the system of equation 1 and equation 2 can be used:

− ∂

∂x

(
1

µ(x)

∂

∂x
ez

)
− ω2ε(x)ez = 0 (26)

Differentiating this with respect to ω and dividing by iω yields

∂

∂x

(
1

iωµ(x)

∂

∂x

∂ez
∂ω

)
= 2iε(x)ez + iωε(x)

∂ez
∂ω

(42)

The dependencies on x will now be removed and the derivatives replaced by ∂
∂x
ez = e′z

for readability.
From definition 3 and equation 1 we have the impedance derivative

∂ℑ{ZR}
∂ω

=
∂

∂ω
ℑ

{
e(0+)
1

iωµ
e′(0+)

}
=

∂

∂ω

(
e(0+)
1
ωµ
e′(0+)

)
(43)

Now:

∂ℑ{ZR}
∂ω

=

(
e
1
ωµ
e′

)′

=

1
iωµ

(
ee′

ω
+ e′ ∂e

∂ω
− e∂e

′

∂ω

)
1

i(ωµ)2
(e′)2

(44)

=
W

1
i(ωµ)2

(e′)2
, (45)
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where W is the analog of the Wronskian in [4].
This is now differentiated with respect to x:

W ′ =
∂

∂x

[
1

iωµ

(
ee′

ω
+ e′

∂e

∂ω
− e

∂e′

∂ω

)]
(46)

=
∂

∂x

(
1

iωµ

ee′

ω

)
+

∂

∂x

(
e′
∂e

∂ω
− e

∂e′

∂ω

)
(47)

The first term can be rewritten with the help of equation 26 as

∂

∂x

(
1

iωµ

ee′

ω

)
=

(
1

iωµ
e′
)′

e

ω
+
e′

ω

(
1

iωµ
e′
)

(48)

= iεe2 − i

ω2µ
(e′)2 (49)

The second term, with substitutions from equation 26 and equation 42 is

∂

∂x

(
e′
∂e

∂ω
− e

∂e′

∂ω

)
=
∂e

∂ω

(
1

iωµ
e′
)′

− e

(
1

iωµ

∂e′

∂ω

)′

(50)

= iωεe
∂e

∂ω
−
(

2iωεe+ iωε
∂e

∂ω

)
e (51)

= −2iεe2. (52)

Combining equation 49 and equation 52, we get that

W ′ = iεe2 − i

ω2µ
(e′)2 − 2iεe2 (53)

= − i

ω2µ
(e′)2 − iεe2 (54)

Following the analogy, we can integrate the imaginary (and only) part of this Wron-
skian derivative with respect to x from 0 to +∞ and see that W(+∞) = 0 because of the
evanescent field:

ℑ{W} = ℑ{W(+∞) −W(0)} = −W(0+) =

∫ ∞

0

ℑ{W ′(x, ω)}dx = −
∫ ∞

0

1

ω2µ
(e′)2 + εe2dx < 0,

(55)

since µ and ε are both positive, so ℑ{W(0+)} > 0. This means that the imaginary
constants cancel in the fraction with the Wronskian and the denominator of the derivative

∂ℑ{ZR}
∂ω

(0+) =
W(0+, ω)

i(ωµ)2(e′)2
= −ℑ{W(0+, ω)}

(ωµ)2(e′)2
< 0, ∀ω. (56)
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Since the derivative of the imaginary part of the right side impedance is always nega-
tive, it means it is monotonically decreasing. A similar conclusion can be reached for the
left side impedance, except this time, the integration is from −∞ to 0 which flips the sign
so it is monotonically increasing.

Subtracting a monotonically increasing function from a monotonically decreasing func-
tion will result in a monotonically decreasing function. ■

As a consequence of theorem 2, we are allowed to use a zero-finding algorithm in the
band gaps in the vicinity of points that cross the ω-axis. For this project, the secant
method was used. Pseudocode for the secant method is given in the listing below:

1 function secant ( f , x0 , x1 , maxiter , t o l )
2 for i = 0 : maxiter do
3 f a t 1 = f ( x1 )
4 i f ( abs ( f a t 1 ) < t o l )
5 p r i n t ( ”Converged  with  ” + i + ”  i t e r a t i o n s . ” )
6 return ( x1 , f a t 1 )
7 else
8 x2 = x1 − f a t 1 ∗ ( x1 − x0 ) / ( f a t 1 − f ( x0 ) )
9 x0 = x1

10 x1 = x2
11 end
12 end
13 p r i n t ( ” Maxiter  reached ! ” )
14 return ( x1 , f a t 1 )

Now we are equipped to properly track impedance. The ”track impedance()” function
from the listing about computing the band diagram is calculating the impedance using
the expressions from lemma 4 which require the monodromy matrix and its eigenvalues
only. This function works together with the function which is tracking bands and band
gaps. The idea is to calculate the impedance and save its sign. If the sign changes at some
frequency, that frequency is saved to an array. The following pseudocode illustrates the
idea behind the impedance sign and band tracking. The idea is, if the current frequency is
in a band gap, and the previous one was not, then a band gap was just entered. Likewise,
if the current frequency is on a band, and the previous one was not, then it just entered a
band, etc. This is also helpful to know when to start and end the Zak phase calculations,
for example.

If the impedance in the band gap is negative, it is assigned a -1, and if it is positive
a +1. On bands, the impedance is assigned a 0 to avoid spurious interface modes and
ensure a proper sign initialization when entering the band gap. If the pervious ”oldsign”
and current ”newsign” give a negative number when multiplied, that registers as a sign
change.

1 for i = 0 : N ω do
2 ω = (ω end − ω s t a r t ) / N ω∗ i + ω s t a r t
3

4 array = [ ]
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5 o l d s i g n = 0 // avoid band edge and spur i ous modes
6

7 bandgapL = f a l s e
8 bandgap newL = f a l s e
9 bandgapR = f a l s e

10 bandgap newR = f a l s e
11

12 . . c a l c u l a t i n g ML, MR etc . .
13

14 // r i g h t h a l f s p a c e −−−−−−−−−−−−−−−−−−−−
15

16 // we are on a r i g h t band
17 i f ( abs (DR) < 2)
18 bandgap newR = f a l s e
19 . . e i g enva lue and other c a l c u l a t i o n s . .
20

21 i f ( bandgap newR != bandgapR )
22 // we are on a new band
23 . . c a l c u l a t i o n s . .
24 end
25 else
26 bandgap newR = true
27 i f ( bandgap newR != bandgapR )
28 // we j u s t entered a band gap
29 . . c a l c u l a t i o n s . .
30 o l d s i g n = 0
31 end
32 end
33

34 bandgapR = bandgap newR
35

36 // l e f t h a l f s p a c e −−−−−−−−−−−−−−−−−−−−
37

38 // we are on a l e f t band
39 i f ( abs (DL) < 2)
40 bandgap newL = f a l s e
41 . . e i g enva lue and other c a l c u l a t i o n s . .
42

43 i f ( bandgap newL != bandgapL )
44 // we are on a new band
45 . . c a l c u l a t i o n s . .
46 end
47 else
48 bandgap newL = true
49 i f ( bandgap newL != bandgapL )
50 // we j u s t entered a band gap
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51 . . c a l c u l a t i o n s . .
52 o l d s i g n = 0
53 end
54 end
55

56 bandgapL = bandgap newL
57

58 // mutual bandgap −−−−−−−−−−−−−−−−−−−−
59

60 i f ( abs (DR) > 2 && abs (DL) > 2)
61 . . f i n d impedance and track the s i gn . .
62 // the s i gn can change i f Z R − Z L
63 // encounters a s i n g u l a r i t y
64 newsign = s ign (Z R − Z L )
65 i f ( o l d s i g n ∗ newsign < 0)
66 p r i n t ( ”Change  o f  s i gn  at  ” + ω )
67 array . push (ω )
68 end
69 end
70

71 . . o ther code . .
72 end

After this part of the program is run, we have an array filled with potential interface
mode frequencies. We already know that the step in the loop was ∆ω = ωend−ωstart

Nω
so the

interval that will be provided to the secant is simply [ω − ∆ω, ω].
The function that is provided to the secant method is a functor that numerically

finds the monodromy matrices at the provided frequency and calculates the impedance
difference:

f(ω) : ω → ZR − ZL (57)

and this function is the function of which the zero needs to be found. Before relaying
further calculations to the secant method, it is recommended to set the desired meshwidth
for the plot and adjust the Aitken-Neville algorithm (explained below in Extrapolation
to Zero) tolerances accordingly, since these parameters will be applied to f(ω).

2.1.4 Extrapolation to Zero

The monodromy matrix found in the above sections will satisfy lemma 5 because of energy
preservation. However, in Deuflhard and Bornemann’s book [7], the energy conservation
can be traded for higher precision since for reversible timestepping methods, one of which
is the implicit midpoint rule:

Theorem 4.42 (Deuflhard, Bornemann, p. 167, eBook: 6 December 2012)
Let Ψ be a reversible discrete evolution. Then there exists a sequence e0, e1, e2, ... of
smooth functions with initial values ek(t0) = such that for each k ∈ N0, the asymptotic
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expansion in even powers of τ ,

xτ (t) = x(t) + e0(t)τ
2q + ...+ ek−1τ

2(q+k−1) + O(τ 2(q+k)) (58)

Here, the steps are in space, but the conclusion holds: the error of the calculation with
the implicit midpoint rule is an even polynomial in h, specifically O(h2p+1) where p is the
number of monodromy matrices calculated for a series of steps. The steps h were created
by halving hi = h0/2

i.
The Aitken-Neville scheme was used to extrapolate the monodromy polynomial in h

to h→ 0, with predefined tolerance. The above conclusions lead to the fact that instead
of using the original steps in the Aitken-Neville scheme, their squares can be used. This
means that for using hn we will get the same accuracy as if we used h2n with a regular
Aitken-Neville scheme.

A pseudocode similar to Hiptmair [6] code 5.2.3.19. is provided below. Note that the
square of the meshwidth is used instead of the meshwidth in the standard Aitken-Neville
scheme.

1 function monodromyAtZero (N0 , T, maxiter , to l , ω , µ , ε)
2 Vector h( maxiter )
3 h (0) = 1/N0
4 Matrix Y(4 , maxiter )
5 N = N0
6

7 // monodromyZ ( ) i s the same as systemZ ( ) except i t
8 // does not save the f u l l s o l u t i o n as we do not need i t
9 Y. c o l (0 ) = monodromyZ(N, T, ω , µ , ε) . reshaped (4 , 1 )

10

11 for i = 1 : maxiter − 1 do
12 h( i ) = 0 .5 ∗ h( i −1)
13 N ∗= 2
14 Y. c o l ( i ) = monodromyZ(N, T, ω , µ , ε) . reshaped (4 , 1 )
15

16 for k = i − 1 : −1 : 0 do // stepp ing backwards
17 Y. c o l ( k ) = Y. c o l ( k + 1) − (Y. c o l ( k + 1) − Y. c o l ( k ) )
18 ∗h(i)*h(i) / (h(i)*h(i) − h(k)*h(k))
19 end
20

21 i f ( (Y. c o l (1 ) − Y. c o l (0 ) ) . norm ( ) < t o l )
22 p r i n t ( ” Extrapo la t ion  to  0  converged  with  ”
23 + i + ”  i t e r a t i o n s . ” )
24 break
25 end
26 end
27 return Y. c o l (0 ) . reshaped (2 , 2 )
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2.2 Errors and Convergence

The best error and convergence test case is the interface mode at ω = 15.9449 (f = 2.5377)
for both varying ε and µ. See figure 6 and equation 64. This mode is topologically
protected according to table 3 and it is quite close to the edge of the band. It will be the
first interface mode to be missed by the program if errors get too high. The theoretical
expectation is to obtain identical results with respect to h set by Aitken-Neville and
∆ω since the results are limited by predefined Aitken-Neville (AN) and secant method
(SM) maximum iterations and tolerances. The interface mode in question can be seen in
figure 1.

Figure 1: Electric field of the interface mode at ω = 15.9449

2.2.1 Aitken-Neville Results for Fixed SM and Tolerance (Implicit Midpoint
Rule)

The secant method was used with tolerance 10−12 and maximum number of iterations
100, with its Aitken-Neville parameters of 14 for maximum iterations, 10−12 for absolute
tolerance, and N0 = 40. There were 10 000 ω-steps in the range ω : 0 − 20. The sweep
Aitken-Neville tolerance was set to 10−6. This is without explicit computation of the
interface mode. The result is the following:

N0 ω, maxiter=5 ω, maxiter=8
8 miss 1.594490e+01
10 1.594490e+01 slows secant 1.594490e+01
20 1.594490e+01 1.594490e+01
40 1.594490e+01 1.594490e+01
80 1.594490e+01 1.594490e+01

Table 1: Interface mode frequency vs. initial number of steps, for maxiter = 10, 11 and
sweep AN tolerance 10−6
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In table 1 only maxiter 5 and 8 were shown since the table looks almost identical to
5 for maxiters 5-7, and the first one for which all are correct is maxiter 8 and above.
Stepping that produces intervals to be searched without any interface modes is marked as
”slows secant” since it will cause it to break the 100 iterations, thus slowing the program.
We obtain nearly identical results as expected since they are limited by the secant method
and its Aitken-Neville parameters.

2.2.2 Omega Stepping Results for Fixed AN/SM

Just like above, the secant method was used with tolerance 10−12 and maximum number
of iterations 100, with its Aitken-Neville parameters of 14 for maximum iterations, 10−12

for absolute tolerance, and N0 = 40. The Aitken-Neville algorithm parameters for the
sweep are default: tolerance of 10−6, 10 for maximum iterations, and the starting number
of points N0 = 20. The range was kept to be ω : 0 − 20. Again, this is without explicit
computation of the interface mode.

The first miss occurs around Nω = 300. At and above 400, all interface modes are
found, and the most difficult one attains the same value as those in table 1.

2.2.3 Secant Method and Time

In both results above, if an interface mode exists, it converges in less than 10 iterations.
The only times when it went above 10 were when it missed an interface mode or it searched
for a non-existent interface mode. The run with highest accuracy took 1473 milliseconds,
and the successful run with ”least” accuracy 29 milliseconds on Intel(R) Core(TM) i7-
10875H CPU @ 2.30GHz. The entire table 1 took less than 10 seconds per run. The
graphs are drawn with 40 000 points per cell (with Python’s automatic choice from these
points to plot). Running the secant with lower tolerances (10−13 and Secant AN 10−15,
maximum AN iterations 15, everything else the same) produces 15.94489701693366, while
the table above has values around 15.94489701693407. They differ in the last 3 of the 14
decimals as expected since the secant parameters for table table 1 set the errors to show
the 12th decimal. Stricter secant tolerances will not converge with these parameters.

2.2.4 Drawing (Implicit Midpoint Rule) Errors

These errors are the error of the monodromy, last entry, and full solution matrix without
the Aitken-Neville scheme in figure 2. It shows second order convergence for the implicit
midpoint rule and also justifies the use of the Aitken-Neville scheme. The total solution
matrix is a 4 × N matrix, which is not computed using the Aitken-Neville scheme. The
reference monodromy matrix is the one with parameters: max iterations 14, tolerance
10−12, and starting N = 40. The errors were plotted for 100, 200, 400, ..., 409600, 819200
points in the systemZ function, which uses the implicit midpoint rule only, for the left
side of the ω = 15.9449 interface mode. The reference solution had a million points. The
entire error computation took 9741 milliseconds.
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Figure 2: Error of the systemZ function without the Aitken-Neville scheme, used to
compute the full solution

2.3 Results

2.3.1 Inversion-Symmetric Interface Modes

This subsection is mainly dedicated to comparisons with results from the literature Xiao,
Zhang, Chan [2] and Kalozoumis [5].

Here the spatial distribution is inversion symmetric:

ε(x) = ε(a− x) (59)

µ(x) = µ(a− x) (60)

The structure is depicted on the left side in figure 3.
The permeability is a constant 1 in the first example, and the permittivity function in

the normalized unit cell for achieving a Dirac point (band crossing point) is

ε(x) =

{
4 for x < 0.2 or x > 0.8,

1 else.
(61)

Opening the Dirac point with a perturbation like [5] will cause an interface mode to
appear (green line):
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Figure 3: Inversion-symmetric and non-symmetric unit cell

εleft(x) =

{
1.952 for x < 0.2

0.95
or x > 1 − 0.2

0.95
,

1 else.
(62)

εright(x) =

{
2.052 for x < 0.2

1.05
or x > 1 − 0.2

1.05
,

1 else.
(63)

Material parameters from equation 62 and equation 63 create spaces with the band
diagrams shown in figure 4. These band diagram can be seen in [2], [5] and [4].

Figure 4: Dirac point space and perturbed space with interface mode (green)
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The electric field of the expected ω ≈ 5π or f ≈ 2.5 interface mode is shown in figure 5.
The same interface mode was shown in [1], and mentioned in [2], [5]. The interface is at
x = 0.

Figure 5: Electric field of the interface mode at ω = 1.0001 · 5π

Another configuration from [2] was tested:

εleft(x) =

{
1 for x < 0.175 or x > 0.825,

3.5 else.
(64)

µright(x) =

{
1 for x < 0.3 or x > 0.7,

6 else.

with µleft = εright = 1. The configuration from equation 64 has interface modes in the
first, second, and fifth band gaps according to [2], and the interface modes in figure 6
comply with this, and an extra interface mode that was not included in their frequency
range (see figure 1). The transmission coefficient was calculated for 10 unit cells of each
half-space.

The continuous case mentioned shifting the boundary to z = 0. It appears that the
boundary begins at the center of the left half-space unit cell (shift by π). Due to this, the
permittivity values adapted to the coordinate system in this report are

εleft(x) = 12 + 6 sin[2π(x/a+ 0.25) + π] (65)

εright(x) = 12 + 5 sin[2π(x/a− 0.25)] + 5 sin[4π(x/a+ 0.125)]

In figure 7 created by equation 65 interface modes appear in the second and third gap
as denoted in [2], and the transmission coefficient approximation seems to roughly agree
with the finite calculation in [2]. The transmission coefficient was calculated with 20 unit
cells from the left and 10 unit cells from the right side.
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Figure 6: Approximate transmission coefficient and band diagram for varying ε and µ

Figure 7: Approximate Transmission Coefficient and Band Diagram for Continuously
Varying ε
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Two joint spaces with different period values were also included. The parameters are
the same as for figure 6, but the left half-space has period 2 instead of 1 (note that the
period in a functor must be set to 2, to match the space period). The results agree with
those in [2].

Figure 8: Approximate transmission coefficient and band diagram for varying ε and µ for
period 2 and 1 at the left and right side respectively (the left space is the reference, hence
no unitless frequency change)

2.3.2 Non-Inversion-Symmetric Interface Modes

A selection of interface modes for a non-symmetric space given by µ = 1, equation 66
and equation 67 is provided in this section. Both electric and magnetic field solutions are
provided.

εleft =

{
1 for x > 0.4

0.95
,

3.8025 otherwise.
(66)

εleft =

{
1 for x < 1 − 0.4

1.05
,

4.2025 otherwise.
(67)
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Note that the 4 unit cells defined in equation 62, equation 63, equation 66, and equa-
tion 67 tile the same infinite spaces, up to mirroring. The band diagrams in this space
look exactly the same as the ones in the perturbed space of figure 4. They are shown next
to each other in figure 9.

Parameters: 10 000 drawing points, 40 000 frequency points, default sweep Aitken-
Neville, secant Aitken-Neville 14 maximum iterations, tolerance 10−12, and 40 starting
points. Secant method tolerance 10−12 and 20 maximum iterations. Interestingly, the
secant method succeeds in finding some modes multiple times from points further away.

Unfortunately, no non-symmetric interface mode representations were found in the
literature so they currently have no reference to compare with.

Figure 9: Perturbed space from figure 4 and the non-symmetric space diagram
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Figure 10: Electric field of the interface mode at ω = 8.7467

Figure 11: Electric field of the interface mode at ω = 13.3644

Figure 12: Electric field of the interface mode at ω = 15.7120
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Figure 13: Magnetic field of the interface mode at ω = 8.7467

Figure 14: Magnetic field of the interface mode at ω = 13.3644

Figure 15: Magnetic field of the interface mode at ω = 15.7120
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3 Interface Modes in 1.5D

3.1 Review - Infinite Stripes in 2D

The problem of this subsection is almost identical to the one in 1D, except that now
the y-axis is included so the space looks like a chain of periodic stripes infinite in the
y-direction.

First, we pick a transversal electric (TE) or transversal magnetic (TM) solution. For
TE, the electric field vector is confined to the z−axis and for TM, the magnetic field is
confined to the z−axis.

For TE, the electric field will only have a z-component, and magnetic fields will be
confined to the xy plane:

e(x, y) =

 0
0

ez(x, y)

 , h(x, y) =

hx(x, y)
hy(x, y)

0

 (68)

Because we have infinite stripes for which the medium parameters are uniform in the y
direction, we can assume that the electric field can be separated into the following product

ez(x, y) = exz(x)eyz(y), (69)

where

eyz(y) = exp(ikyy). (70)

Together with equation 1 and equation 2, this yields a second order equation for exz(x)
dependent only on x:

− ∂

∂x

(
1

µ(x)

∂exz(x)

∂x

)
−
(
ω2ε(x) −

k2y
µ(x)

)
exz(x) = 0. (71)

This equation is almost the same as equation 26, except for the extra
k2y
µ(x)

term. This
means that almost all of the methods discussed for the 1D problem apply to this modified
system, except lemma 5 and theorem 2, so new ones are included below.

The only significant differences would be the calculations with real numbers rather
than complex, the impedances, and the monodromy matrix system, which now depends
on ψ = exz(x) and ψ′ = 1

µ(x)
∂exz (x)
∂x

instead of h:

∂

∂x

[
ψ′
1 ψ′

2

ψ1 ψ2

]
=

[
0

k2y
µ(x)

− ω2ε(x)

µ(x) 0

][
ψ′
1 ψ′

2

ψ1 ψ2

]
(72)

As a result, the band diagrams and interface mode frequencies shift depending on the
choice of ky. When ky = 0, the problem reduces to 1D. The space chosen is the same as
the one given by equation 64.

Lemma 9 Given the 1.5D monodromy M(ω) ∈ C2,2 of the system described by equation 1
and equation 2:

detM(ω) = 1. (73)
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Proof. For the TE system: by direct differentiation and combining with equation 71:

∂

∂x

(
det

[
ψ′
1 ψ′

2

ψ1 ψ2

])
=

∂

∂x
(ψ′

1ψ2 − ψ1ψ
′
2)

= ψ′′
1ψ2 + ���ψ′

1ψ
′
2 −���ψ′

1ψ
′
2 − ψ1ψ

′′
2

=

(
−ω2ε(x) +

k2y
µ(x)

)
ψ1ψ2 − ψ1

(
−ω2ε(x) +

k2y
µ(x)

)
ψ2

= 0

And because detM(ω) = 1 at x = 0, and its derivative is 0 for all x, it must be
constant, detM(ω) = 1. ■

An identical procedure can be done for magnetic fields, yielding

− ∂

∂x

(
1

ε(x)

∂hxz(x)

∂x

)
−
(
ω2µ(x) −

k2y
ε(x)

)
hxz(x) = 0, (74)

and

∂

∂x

[
ψ′
1 ψ′

2

ψ1 ψ2

]
=

[
0

k2y
ε(x)

− ω2µ(x)

ε(x) 0

][
ψ′
1 ψ′

2

ψ1 ψ2

]
. (75)

Definition 6 The TE impedance is defined as

ZTE =
exz
1
µ
exz
, (76)

and the TM impedance is defined as

ZTM =
hxz
1
ε
hxz
, (77)

Theorem 3 Both the TE and TM impedances are monotonously decreasing functions on
the right side, and increasing functions on the left side.

Proof. This proof is very similar to that of theorem 2. A part of the proof for right-
side TE is provided below. TM is analogous. First, we differentiate equation 71 with
respect to ω:

− ∂

∂x

(
1

µ(x)

∂

∂x

∂exz
∂ω

)
− 2ωε(x)exz −

(
ω2ε(x) − k2

µ(x)

)
∂exz
∂ω

(78)

The dependencies on x and z will now be removed and the derivatives replaced by
∂
∂x
exz = e′ for readability.
We have the TE impedance derivative
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∂ZR

∂ω
=

∂

∂ω

(
e(0+)
1
ωµ
e′(0+)

)
(79)

Now:

∂ZR

∂ω
=

(
e
1
µ
e′

)′

=

1
µ

(
e′ ∂e

∂ω
− e∂e

′

∂ω

)
1
µ2 (e′)2

(80)

=
W

1
µ2 (e′)2

, (81)

This Wronskian is now differentiated with respect to x:

W ′ =
∂

∂x

[
1

µ

(
e′
∂e

∂ω
− e

∂e′

∂ω

)]
(82)

The first term can be rewritten with the help of equation 26 as
This, rewritten with substitutions from equation 71 and equation 78 is

∂

∂x

[
1

µ

(
e′
∂e

∂ω
− e

∂e′

∂ω

)]
=
∂e

∂ω

(
1

µ
e′
)′

− e

(
1

µ

∂e′

∂ω

)′

(83)

= −
(
ω2ε(x) − k2

µ(x)

)
e
∂e

∂ω
+ e

[
2ωεe+

(
ω2ε(x) − k2

µ(x)

)
∂e

∂ω

]
e

(84)

= 2ωεe2. (85)

Since W ′ is always positive, it will give a negative W(0+) so the rest of the proof is
analogous to that of theorem 2. ■

The full solution can be reconstructed after solving for the x-components.

3.2 Results

The results for k = 1 are provided below, as well as the full 2D solution plots for TE
and TM modes in subsection 3.2. If k = 0, the problem reduces to 1D and the checks
and comparisons for 1D interface modes hold. The only difference from the 1D presented
above is that all fields are now real. One TM interface mode for different periods is
included in figure 20 for completeness. The space used is that of equation 64 in all cases
(except the one which has period 2 of ε on the left).
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Figure 16: Interface Mode Slice at y = 0, ω = 4.0063, Transversal Electric

Figure 17: Interface Mode Slice at y = 0, ω = 4.0037, Transversal Magnetic

Figure 18: Real Parts of TE (ez) and TM (hz) waves on a [−10, 10] × [−10, 10] square
with ky = 1
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Figure 19: Band diagrams from figure 6 (left, same for k = 0 TE), for ky = 1 TM (middle)
and ky = 1 TE (right)

Figure 20: Interface mode slice at y = 0 with ky = 1, ω = 7.9940, Transversal Magnetic
with period 2 on the left and 1 on the right
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4 Zak Phase and Topologically (Non) Protected In-

terface Modes

4.1 Zak Phase

The Zak phase is the Berry phase accumulated by the Bloch mode photon as it moves
through the Brillouin zone. It essentially measures the global phase shift from the periodic
structure.

The Zak phase, from Fang, Li, Yang [3] and [1], of the j − th band can be computed
as

θZakj = i

∫ π

−π

⟨uj,k|
∂uj,k
∂k

⟩ dk mod 2π, (86)

where uj,k is the periodic part of a given Bloch mode ψ(x) = eikxuj,k(x) and the inner
product is given by the integral over the unit cell of length T

⟨u|v⟩ =

∫ T

0

ε(x)u∗(x)v(x)dx. (87)

An additional term is provided by [1] which takes jumps across 0± and ±π into account,
resulting in the following formula:

θZakn = i

∫ 0

−π

⟨uj,k|
∂uj,k
∂k

⟩ dk + i

∫ π

0

⟨uj,k|
∂uj,k
∂k

⟩ dk + θ̂j mod 2π (88)

θ̂j = −Im ln ⟨uj,0−|uj,0⟩ − Im ln ⟨uj,π|e−i2πxuj,(−π)+⟩ (89)

4.1.1 Trapezoidal Rule and Finite Differences

In the inner product, the integrand is periodic so it makes sense to use the trapezoidal
rule with uniform meshwidth since the cell has uniform meshwidth. This is given in the
following listing with arrays u and v, and the period T:

1 function innerprod (u , v , T)
2 sum = 0
3 h = T / Npts
4

5 for i = 0 : Npts−2 do
6 sum = sum + ε(h∗ i ) conj (u( i ) ) v ( i )
7 + (ε(h∗( i +1) ) conj (u( i +1) ) v ( i +1)
8 end
9

10 return sum ∗ h ∗ 0 .5 // even meshwidth permits e x t r a c t i o n
11 // o f the product with h ∗ 0 .5

The finite differences will be applied to the full Zak pahse integral, but with non-
uniform meshwidth. The k wave vectors are unknown, and they are generated in the loop
itself.
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The idea is to sweep along the frequency ω as above, generate the two associated k−

and k+, find the periodic parts of the Bloch modes, and save them in arrays for use in the
next step. We already keep track of the bands and band gaps as above, so this is simple
to implement in that structure.

The formula will use a ”pseudo-central” difference derivative for
∂uk,n

∂k
:

∂ukj+1/2,n

∂k
≈
ukj+1

− ukj
kj+1 − kj

, (90)

which will be applied to a trapezoidal rule-like sum

θj =
N−1∑
i=0

⟨uj,ki |
∂uki+1/2,k

∂k
⟩ + ⟨uj,ki+1

|
∂uj,ki+1/2

∂k
⟩

2
(ki+1 − ki) (91)

=
N−1∑
i=0

⟨uj,ki + uj,ki+1
|
∂uj,ki+1/2

∂k
⟩

2
(ki+1 − ki) (92)

=
N−1∑
i=0

⟨uj,ki+1
+ uj,ki |uki+1

− uki⟩
2

. (93)

The name is pseudo-central because the k-step is not uniform and the backward and
forward differences are averaged with a factor 1/2, which would, for a uniform mesh,
produce central differences. The result will have error of first order O( 1

Nk
) since forward

and backward differences used here are of first order, and will conveniently avoid the
division and multiplication by small meshwidth differences.

1 for i = 0 : N ω do
2 ω = (ω end − ω s t a r t ) / N ω∗ i + ω s t a r t
3 zak = 0
4

5 // f i n i t e d i f f e r e n c e s over k
6 i f ( same band )
7 u1 = e x t r a c t P e r i o d i c ( bloch1 , phase k+ )
8 u2 = e x t r a c t P e r i o d i c ( bloch2 , phase k− )
9

10 zak = zak + 0.5i∗ innerprod ( u1 + u1 old , u1 o ld − u1 o ld )
11 zak = zak + 0.5i∗ innerprod ( u2 + u2 old , u2 o ld − u2 o ld )
12

13 u1 o ld = u1
14 u2 o ld = u2
15

16 // a d d i t i o n a l jump terms
17 else i f ( j u s t entered new band )
18 zak = 0
19 i f ( k=±π ) zak = zak − arg ( innerprod ( u1 , e−2πixu2 ) )
20 else i f ( k=0) zak = zak − arg ( innerprod ( u2 , u1 ) )
21 end
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22

23 else i f ( j u s t ex i t ed o ld band )
24 i f ( k=±π ) zak = zak − arg ( innerprod ( u1 old , e−2πix u2 o ld ) )
25 else i f ( k=0) zak = zak − arg ( innerprod ( u2 old , u1 o ld ) )
26 end
27 save ( zak )
28 end
29 end

The Zak phase calculator is quite sensitive to errors. It is best to run it with around
4000 system solution steps and about 2500 frequency steps per band. Otherwise it might
encounter spurious π shifts. For 40 000 frequency steps in the range 0-20 and 4000 solution
steps, the results for the band diagram from [1] in figure 4 are shown in table 2. Note
that the bands are numbered from below: the first band is the lowest band, the second
above that one etc.

band 1 2 3 4 5 6 7 8
expected L 0 0 π 0 π 0 0 π

result L 1.684e-5 -9.871e-5 -3.142 2.414e-5 3.142 -1.717e-4 - 1.173e-5 -3.142
expected R 0 0 π 0 π 0 π 0

result R 1.031e-5 1.387e-4 -3.142 2.142e-5 3.142 3.424e-4 3.142 -2.816e-5

Table 2: Band Zak phases for right and left space from [1]

Since ”fmod” was used with real numbers, the results are not quantized πs and 0s but
values between ⟨−2π, 2π⟩.

The following table 3 shows the Zak phases of the bands in figure 6 and and expected
from [2].

band 1 2 3 4 5 6
expected L ? π π π 0 π

result L 3.142 3.142 3.142 3.142 -8.849e-6 3.142
expected R ? π 0 π π 0

result R -2.609e-5 3.142 6.283 3.142 3.142 -1.761e-5

Table 3: Band Zak phases for right and left space from varying µ, ε [2]

For table table 4 10 000 solution points and 50 000 frequency steps were used. These
are Zak phases from bands shown in figure 8 and expected from [2].

Interestingly, the Zak phases disagree with the right side of figure 8 from [2]; however,
since the unit cell was scaled uniformly, there should be no reason for a Zak phase change
- and the results from this project agree with the non-scaled cell, while those from [2]
do not. Perhaps the signs π, 0, π were shifted one place lower since the first band was
included in figure 8 of [2] and it is not included in most figures, or the Zak phase calculator
from this project encounters issues with ”stretched” spaces that evaded inspection.
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band 1 2 3 4 5 6
expected L ? π π π 0 π

result L -3.122 -3.111 -3.109 -3.108 2.712e-2 -3.099
expected R π 0 π ? ? ?

result R -5.892e-6 3.142 6.283 3.142 3.142 -
stretched R -2.609e-5 3.142 6.283 3.142 3.142 -1.761e-5

Table 4: Band Zak phases for right and left space from varying µ, ε, different period [2]

4.2 Topologically Protected Interface Modes

An interface mode is topologically protected for symmetric cells with quantized Zak phase,
if the bulk topological index of the cells on the right and left side is different. In this case,
the bulk topological index attains values of -1 or 1.

The bulk topological index [1], [3] for the j-th is defined as

γj := (−1)j+l−1ei
∑j

m=1 θm , (94)

where l is the number of Dirac points below that band, and θm is the Zak phase of
the m-th band.

Additionally, [1] show that the bulk topological index is 1 if the Bloch mode at the
edge of the j-th band is even, and it is -1 if the Bloch mode is odd.

4.2.1 Tiling

Unit cells that tile the same space show the same band diagrams. To find the characteristic
multipliers of a Bloch mode, the starting position in the unit cell is not relevant since the
periodicity must be preserved if it is indeed a Bloch mode; changing the unit cell in this
regard is like changing the starting position which is equivalent to multiplying the solution
by eikx0 so the quasi-periodicity and therefore the eigenvalues which constitute the band
diagram remain unchanged.

4.2.2 Persistent Modes

From numerical simulations, it seems that changing the unit cell does not affect the
existence of an interface mode in a given band gap, if it is protected for one choice of
cell. From tiling, these different cells will yield the same band diagrams; however, the Zak
phase, and consequently, the bulk topological index, will be changed which is confirmed
by the full Zak phase calculator. If cells on both sides can be made symmetric, so that an
interface mode is topologically protected in the n-th band gap, that band gap appears to
have an interface mode for non-symmetric and mirrored cells, which do not have quantized
Zak phase or bulk topological indices of 1 or -1.

The exact frequency of an interface mode depends on the unit cell because it defines
the contact, and hence the associated impedance, which is changing at different positions
of the unit cell.
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5 Conclusion and Further Work

The code developed in this project can compute all interface modes that satisfy the
sufficient and necessary condition in definition 4 in 1D and 1.5D. Both can handle periodic
piecewise continuous material parameters that do not need to be inversion symmetric, with
different periods on different sides.

The 1D class also supports computations of Zak phase. The 1.5D class supports TE
and TM modes. Both offer retreival of the field or its derivative, as well as band gap start
and end positions.

Further work would involve extending the ideas from 1D and 1.5D and applying them
to 2D, with Chern numbers instead of Zak phase and impedance matrices instead of a
scalar as described by Lawrence et al. [10].

6 Using the Code

The code is structured like a mini library and is intended to use in the way described by
the C++ code listing. The reference space of this code is the left-halfspace. It dictates
all normalizations.

First, a space is initialized with material parameters as std::functions, followed by
the number of plotting (solution) points, the period values for the two media, number of
discrete frequencies and the frequency range beginning and end.

After this, the space should be preprocessed by calling the drawBands(. . . ) method.
This will also create a band diagram .csv file. Assign the result of this method to a
std::vector of possible interface mode frequencies.

Now we can loop through the vector of possible frequencies and call the secant method
on the original space at that frequency. If there is an interface mode, the secant method
will return true. After finding an interface mode we can simply run the drawInterface(. . . )
method which will compute the interface mode at one cell each and save 20 cells, 10 on
each side.

These functions all have additional parameters such as those for choosing the Y or Z
polarizations, or the electric or magnetic fields.

The main differences between 1.5D and 1D are the wave vector that comes after the
material parameters in the constructor, and the fact that it can compute the field itself
or the x-derivative of the TE electric or TM magnetic fields since this is sufficient to
reconstruct the vector field that is in the xy plane.

Zak phases and the inner product are available for 1D and can be computed using
zakPhases(. . . ) which otherwise has the same functionality as drawBands(. . . ) but it is
much slower and heavily depends on the number of plotting points and discrete frequen-
cies.

All kernel methods are available for use as well, for example, the MonodromyAtZe-
roX(. . . ) methods and systemX(. . . ) methods. You can find more about them and
methods mentioned earlier in the documentation.

After computing the band diagrams, transmission coefficients, and interface modes,
they can be visualized using the Python scripts: plot.py, plot band.py, and plot 2d.py.
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1 #include ” i n t e r f a c e m o d e s 1 d . h”
2 #include ” i n t e r f a c e m o d e s 1 5 d . h”
3

4 int main ( ) {
5 cout << ” s t a r t i n g ” << endl ;
6

7 // d e f i n e the mate r i a l parameters , eg .
8 double per iod2 = 2 . ;
9 auto muR = [ per iod2 ] ( double x ) {

10 double xmod = std : : fmod (x , per iod2 ) ;
11 i f (xmod < 0) xmod += per iod2 ;
12 i f (xmod <= 0.3 ∗ per iod2 | | xmod >= 0.7 ∗ per iod2 ) {
13 return 1 . ;
14 }
15 return 6 . ;
16 } ;
17

18 InterfaceModes1D space (muL, muR, epsL , epsR , 10000 , 1 . ,
per iod2 , 40000 , 0 , 20) ;

19 space . s e t A i t k e n N e v i l l e (10 ,1 e −6 ,20) ; // op t i o na l
20

21 std : : vector<double> preproc = space . drawBands (10 ,10) ;
22

23 // f o r h igher p r e c i s i o n
24 space . s e t A i t k e n N e v i l l e (14 , 1e −12, 40) ;
25

26 for ( int i = 0 ; i < preproc . s i z e ( ) ; i++) {
27 i f ( space . f indInter faceModeSecant ( preproc [ i ] , 1e −12, 20 ,

fa l se ) ) {
28 space . drawInterfaceMode ( ) ;
29 } else {
30 cout << ”There  i s  nothing  here . ” << endl ;
31 }
32 }
33

34 return 0 ;
35 }
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6.1 List of Documented Class Members

• drawBands() : InterfaceModes1D

• drawBandsTE() : InterfaceModes1 5D

• drawBandsTM() : InterfaceModes1 5D

• drawInterfaceMode() : InterfaceModes1 5D , InterfaceModes1D

• findInterfaceModeSecant() : InterfaceModes1 5D , InterfaceModes1D

• innerprod() : InterfaceModes1D

• InterfaceModes1 5D() : InterfaceModes1 5D

• InterfaceModes1D() : InterfaceModes1D

• monodromyAtZeroTE() : InterfaceModes1 5D

• monodromyAtZeroTM() : InterfaceModes1 5D

• monodromyAtZeroY() : InterfaceModes1D

• monodromyAtZeroZ() : InterfaceModes1D

• monodromyTE() : InterfaceModes1 5D

• monodromyTM() : InterfaceModes1 5D

• monodromyY() : InterfaceModes1D

• monodromyZ() : InterfaceModes1D

• setAitkenNeville() : InterfaceModes1 5D , InterfaceModes1D

• setRKSSMiter() : InterfaceModes1 5D , InterfaceModes1D

• systemTE() : InterfaceModes1 5D

• systemTM() : InterfaceModes1 5D

• systemY() : InterfaceModes1D

• systemZ() : InterfaceModes1D

• zakPhases() : InterfaceModes1D
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