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Abstract

In this thesis we investigate the feasibility of using Rosenbrock Wanner (ROW)
methods for the computation of magnetic fields in electric machines. We then
compare the performance to established timestepping methods. We discover
that ROW methods are suitable for the simulation of electrical machines, but
special attention has to be given to the time-derivative of the mesh deformation.
Adaptive timestepping with ROW posed unresolved challenges, which needs to
be addressed. The performance of ROWwith fixed timestep-size and established
methods has been compared on two geometries: firstly, a static geometry, which
represents a transformer, and then on a rotating geometry which represents an
electric machine. We provide a complexity analysis for both methods based on a
set of selected elementary operations, which allows to determine which method
is better suited given the cost of the elementary operations.
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Chapter 1

Introduction

The simulation of magnetic fields is an important component of the development
of low-frequency electric machines, in order to optimize the desired properties,
such as torque, and minimize undesired effects such as heating of the machine.
A popular approach to compute magnetic fields is the finite element method
(FEM) [Logan, 2011], which provides a discrete approximation to the magnetic
field in space. Magnetic fields change in time, due to changes in the current
applied to the electric machine, motion of the electric machines and transient
effects dictated by the governing equations. In order to approximate the chang-
ing magnetic field, so called timestepping schemes are needed. In such schemes,
the time interval in which we compute the magnetic field is discretized into
time steps, at which an approximation of the solution is provided. A widely
used timestepping scheme is Implicit Euler, which will be considered the ref-
erence in this work. In this scheme, a non-linear system has to be solved at
every timestep, which means that Newton-Raphson iterations need to be used.
This is an expensive operation, and the aim of this work is to replace Im-
plicit Euler timestepping with an iteration free method. The chosen method is
called Rosenbrock-Wanner (ROW), which linearizes the equation and promises
high order of convergence. ROW methods have already been used to simulate
magnetic fields in static electronic components such as transformers, and the
contribution of this work is to apply ROW to rotating machines and explore
whether it provides the same advantages as in static components.

In Chapter 2 we explain concepts on which this work builds, in Chapter
3 we report what the previous works have achieved, in Chapter 4 we explain
how Implicit Euler and ROW have been implemented to compute the magnetic
fields, and in Chapter 6 we report the performance of the two methods, which
is then discussed in 7.
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Chapter 2

Preliminaries

2.1 Runge-Kutta methods

Runge-Kutta methods are a family of iterative timestepping methods used to
approximately solve ordinary differential equations (ODEs). They are defined by
a general formula, which is parametrized by a set of coefficients. The coefficients
can be computed such that the method satisfies a certain order of convergence,
which is a measure of how well the numerical solution approximates the exact
solution, based on the step-size. A method of order x has an error of O(hx+1),
where h is the step size. A general initial value problem (IVP) is given by an
ordinary differential equation (ODE) and the initial value, which read as follows:

dy

dt
= f(t, y), y(t0) = y0 (2.1)

A Runge-Kutta method approximately solves such a problem by discretizing it
in time, meaning that instead of providing a solution at every possible time, it
computes the solution at a finite set of time-points. The solutions are computed
in the following way [Süli and Mayers, 2003, pp. 351–352]:

y(j+1) = y(j) + h

s∑
i=1

biki (2.2)

where j indices the timestep, ki is the so called increment, h is the size of
the timestep , and s is the number of stages. The coefficients bi are tabulated
for every Runge-Kutta method. For this work we need implicit Runge-Kutta
methods, since the nature of our problem requires stability guarantees, which
we will further discuss in a later section. The increments for such methods are
computed by solving the equations

ki = f(x(j) + hci, y
(j) + h

s∑
j=1

aijkj), 1 ≤ i ≤ s. (2.3)
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The argument x(j) indicates the time at the previous timestep and aij and ci are
coefficients which are tabulated for every method. A property of these equations
that is central to this work is that f can be nonlinear, which means that we
need to solve a nonlinear system of equations in every timestep, which entails
expensive Newton-Raphson iterations.

2.2 Rosenbrock-Wanner methods

A detailed introduction to Rosenbrock-Wanner methods can be found in [Lang,
2021]. The original idea of Rosenbrock [Rosenbrock, 1963], on which Wanner
builds [Hairer and Wanner, 1987], is to apply a single Newton-Raphson step to
the Crank-Nicholson timestepping method [Crank and Nicolson, 1947]. Rosen-
brock then expands this idea to general Runge-Kutta methods, and the general
form of a Rosenbrock method reads as:I − hγiiJ(y

(j) +

i−1∑
j=1

γijkj)

 ki = hf(y(j) +

i−1∑
j=1

αijkj), i = 1, ..., s, (2.4)

y(j+1) = y(j) +

s∑
i=1

biki, (2.5)

where J is the Jacobian matrix of f , and γij are method-specif coefficients,
which are tabulated for every method. Wanner modifies this method by adding
a term and only evaluating the Jacobian matrix once per timestep, which leads
to the following formula for a Rosenbrock-Wanner (ROW) method:

(
I − hγiiJ(y

(j))
)
ki = hf(y(j)+

i−1∑
j=1

αijkj) + hJ(y(j))

i−1∑
j=1

γijkj , i = 1, ..., s,

(2.6)

y(j+1) = y(j) +

s∑
i=1

biki, (2.7)

High order ROW methods have been found, which means that even when per-
forming only one Newton-Raphson step, high accuracy can be maintained.

2.3 Stability of the Timestepping Methods

A property of numerical integration methods that is relevant for our problem
is stability. The ODE which describes our problem is stiff, which means that
it requires special attention to the size of the timesteps, since for some integra-
tion methods a too large timestep may cause the numerical solution to diverge
from the true solution. The stability of integration methods is based on how it
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behaves when applied to the initial value problem (IVP)

d

dt
y(t) = k · y(t), y(0) = 1, k ∈ C (2.8)

Two types of stability are relevant for this work: A-stability and L-stability. A
method is called A-stable [Dahlquist, 1963], if, when applied to Equation (2.8),
has the following property:

lim
j→∞

y(j) = 0 for Re(k) < 0. (2.9)

This is desirable since it reflects the behavior of the true solution. A method
is called L-stable if is A-stable and it converges to 0 in one timestep, for an
infinitely big timestep [Ehle, 1969]. This property means that unwanted oscil-
lations are avoided. The methods BDF-1 and BDF-2, which we will use and
will be introduce later, are both L-stable, while the ROW method we will use
is A-stable.

2.4 Adaptive timestepping and Embedded Meth-
ods

Regarding the choice of the step size there are two options, either one chooses
a fixed step size, meaning the solution is computed at regular time-intervals, or
one changes the step-size between the timesteps, depending on an estimate of
the error of the solution. The latter is called adaptive timestepping. Adaptive
timestepping is a feature needed in this project, since variation in the prescribed
current in the coils and saturation of the magnetic material means that a dif-
ferent amount of change may happen in different moments, so an adaptive step
size is needed.

In order to control the step size, we need to know how good the solution is
with the current step size, and reduce the size if the error is too big. In order to
do so, an estimate of the error is needed. Such an estimate can be provided by
embedded methods. These are constituted by a pair of Runge-Kutta methods,
in which the two methods only differ by bi coefficients, and have a different
order. By taking the difference of the solution provided by the two methods, an
estimate of the error is computed. If the error is smaller than a tolerance, the
solution is accepted and the next timestep is computed. If the error is above
the tolerance the solution is discarded and a new one is computed with half
the step size. An adaptive timestepping method has two parameters: a relative
tolerance and an absolute tolerance, which are used as following. If est is the
difference between the solution using the methods of high and low order, then
the step is accepted if est < max(reltol · norm(y(j)), abstol) [Hiptmair, 2023a],
where reltol and abstol are the relative and absolute tolerances respectively, and
norm(y(j) is the norm of the previous timestep.
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2.5 Maxwell’s equations

In this work we are interested in the magnetic fields generated inside of the
electrical machine. These are governed by Maxwell’s equations, which are given
by

curlE = −∂tB , (2.10)

curlH = j+ ∂tD , (2.11)

divB = 0 , (2.12)

divD = ρ . (2.13)

Where E is the electric field, B is magnetic flux, H is the magnetic field, and D
is the displacement field. ρ is the electric charge density, and j is the electric
current. The fields are related by the following equations:

D = ϵ ·E = ϵ0 · ϵr ·E (2.14)

B = µ ·H = µ0 · µr ·H , (2.15)

where ϵ, ϵ0 and ϵr are the absolute, vacuum and relative permittivity respec-
tively, while µ, µ0 and µr are the respective permeabilities

We assume ohmic conductors

j = σE , (2.16)

where σ is the conductivity.
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Chapter 3

Previous Works

The idea of applying ROW methods to the Eddy current problem has been
explored in [Kähne and Clemens, 2025]. One difference between their approach
and ours is that they compute the Jacobian on the right hand side of the ROW
increment equation 2.6 for every increment, while we only compute it once per
timestep. According to the authors, computing the Jacobian for every increment
improves accuracy, so this could be a possible way to improve our method. They
show that the improved ROW method produces accurate results on a static
geometry.

In [Clemens et al., 2009] adaptivity in space and time is explored, meaning
that in every timestep the mesh is refined based on local error estimates, with
a ROW method. This underlines how influential the mesh quality is on the
performance of ROW methods, and suggests paying particular attention to the
mesh quality when using ROW methods.
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Chapter 4

Methods

4.1 Notation

We provide the definition of the following space:

H1(Ω) :=
{
v : Ω→ R | ∥v∥H1(Ω) <∞

}
, (4.1)

where the norm is defined as following:

∥u∥2Hm(Ω) :=

m∑
k=0

∑
α∈Nd,|α|=k

∫
Ω

|Dαu|2 dx, where Dαu :=
∂|α|u

∂xα1
1 . . . ∂xαd

d

.

(4.2)

This is called a Sobolev space.

4.2 The Eddy Current Model in A∗ formulation

The Eddy current model is a simplification of the full Maxwell’s equations that
results from neglecting the displacement current ∂tD. In time-domain it writes

curlE = −∂tB , (4.3)

curlH = j , (4.4)

divB = 0 . (4.5)

The charge density ρ can be determined in a post-processing step, and is there-
fore neglected. We use an potential approach in temporal gauge (φ = 0), i.e.,

B = curlA , (4.6)

E = −∂tA . (4.7)
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Some communities call this an A*-formulation. Inserting this approach into the
eddy current model by using the material relations

j = σE = −σ∂tA+ j0 , (4.8)

B = µH (4.9)

finally yields

curl

(
1

µ
curlA

)
+ σ∂tA = j0 , in Ω. (4.10)

with the solenoidal exciting current density j0. The function of the excitation
current j0 can e.g. be to model windings of coils.

The excitation current density j0 is constant in the windings, and the con-
ductivity σ in the exciting winding is set to be zero there.

4.3 3D Weak Formulation with Electric-Circuit-
Element (ECE) Boundary Conditions

In order to solve the Eddy-current equations using FEM, we describe the bound-
ary conditions that are used, and then derive the weak formulation of the equa-
tions which results from these conditions.

Stokes’s formula for the curl operator is given by:

∫
Ω

curl v·u dx =

∫
Ω

curl u·v dx−
∫
Γ

(v×n)·u dS ∀u ∈ H(curl; Ω),v ∈ H1
0(Ω),

(4.11)
where Ω is the computational domain, u and v are functions defined on Ω and
n is the normal to the domain.

The weak formulation of (4.10) is derived in the following steps. First the
equation is multiplied by a test function A′ and integrated over the domain Ω.
Then Stokes’s formula is applied to the first term.∫

Ω

curl

(
1

µ
curlA

)
A′dx +

∫
Ω

σ∂tAA′dx =

∫
Ω

j0A
′dx ∀A′ ∈ H1(Ω)

(4.12)

⇔
∫
Ω

1

µ
curlAcurlA′dx−

∫
Γ

(
1

µ
curlA× n) ·A′ dS +

∫
Ω

σ∂tAA′dx =

∫
Ω

j0A′dx ∀A′ ∈ H1(Ω).

(4.13)

Now we consider the ECE boundary conditions. They read as following:

(i) There is no inductive coupling with the exterior:

∂tB · n = 0 ⇐⇒ curlE · n = 0 on the entire boundary ∂Ω ,

where n is the outer unit normal vector-field on ∂Ω.
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(ii) No electric currents can penetrate the boundary of the non-conductive
domain:

curlH · n = 0 ⇐⇒ E · n = 0 on ∂ΩN .

Analogously to the curl operator, it can be shown that when the surface
curl of a vector field (curlϕ · n) is 0, then the tangential component trace
ϕt := (n× ϕ)× n|∂Ω is the surface gradient of a scalar potential. For the
electric field it means that we can make the following ansatz:

A = A0 + grad η (4.14)

E = −∂tA0 − grad(∂tη), (4.15)

where A0 = 0 on the boundary ∂Ω, (4.16)

η is only defined on the boundary ∂Ω. (4.17)

Plugging this ansatz into (4.13), for the boundary term we get:∫
Γ

(
1

µ
curlA× n) ·A′ dS (4.18)

=

∫
Γ

(
1

µ
curl(A0 + grad η)× n) ·A′ dS (4.19)

=

∫
Γ

(
1

µ
curl(grad η)× n) ·A′ dS (4.20)

= 0 (4.21)

where we used (4.17) in the first step and curl grad(ϕ) = 0 for any ϕ, in the
second step.

Equation (4.13) then simplifies to∫
Ω

1

µ
curlAcurlA′dx +

∫
Ω

σ∂tAA′dx =

∫
Ω

j0A′dx. (4.22)

Plugging in the Ansatz again:∫
Ω

1

µ
curl(A0 + grad η) curlA′dx +

∫
Ω

σ∂t(A0 + grad η)A′dx =

∫
Ω

j0A′dx.

(4.23)
The conductivity σ is set to 0 on the boundary in all examples, since the

electrical devices are set in an air box. Thus, grad η, which is only defined on
the boundary, drops out in the second term. It also drops out of the first term
for the same reason as before.

The resulting weak formulation for A0 is:∫
Ω

1

µ
curl(A0) curlA

′dx +

∫
Ω

σ∂t(A0)A
′dx =

∫
Ω

j0A′dx.. (4.24)
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4.4 Simplification to 2D

Following the derivation in [Casagrande, 2013], the weak 3D formulation is
reduced to a 2D formulation. To do so, a so-called TM model is used. It
assumes that the excitation current j0 is aligned with the z-axis. The fields
follow:

Field Qantity TM Model
j0 (0, 0, j0z )
E (0, 0, Ez)
B (Bx, By, 0)
A (0, 0, Az)

Table 4.1: Field quantities for the TM model

The curl operator of a field is defined as following:

curlA =

 ∂Az

∂y −
∂Ay

∂z
∂Ax

∂z −
∂Az

∂x
∂Ay

∂x −
∂Ax

∂y

 . (4.25)

Plugging in A from the TM model, (4.25) becomes

curlA =

 ∂Az

∂y

−∂Az

∂x
0

 , (4.26)

thus the z-component of the curl is known and the operator can be reduced
to

curl2D A :=

[ ∂Az

∂y

−∂Az

∂x

]
(4.27)

in equation (4.24), resulting in

∫
Ω

1

µ
curl2D A(t)·curl2D A′dx+

∫
Ω

σ(t)∂tAz(t)·A′
zdx =

∫
Ω

j0 ·A′
zdx ∀A′ ∈ H1

(4.28)

4.5 Stationary Finite Element Discretization of
the 2D Formulation

In the stationary problem, the current and magnetic field do not change with
time. This means that in this setting the time derivative in weak form (4.28)
becomes zero, resulting in the weak form:

14



∫
Ω

1

µ
curl2D A · curl2D A′dx =

∫
Ω

j0 ·A′
zdx ∀A′ ∈ H1. (4.29)

Following the principles of FEM, as presented in [Hiptmair, 2023b], a discrete
formulation of the 2D weak form (4.28) is derived. The test and trial spaces,
which are the spaces in which the test functions and solution live, are substituted
by a finite-dimensional space. Here the space of 1-st degree Lagrangian finite
element functions on a simplicial meshM, S01 , is used.

To compute the matrices corresponding to the various terms of (4.28), the
element matrices need to be computed, from which the “LehrFEM++” finite
element software can construct the system matrix and vector. Element matrices
are the restriction of the Galerkin matrices to mesh triangles.

The stiffness matrix, corresponding to the term

a(A,A′) =

∫
Ω

1

µ
curl2D A · curl2D A′dx, (4.30)

has the following form:

Ak =

[∫
Ω

1

µ
curl2D λi · curl2D λjdx

]3
i,j=1

∈ R3,3, (4.31)

where λi is the barycentric coordinate function corresponding to point i.
The barycentric coordinate function can be represented in the form

λi(x) = αi + βi · x. (4.32)

Consider a triangle with vertices a1K =

[
a11
a12

]
,a2K =

[
a21
a22

]
,a1K =

[
a31
a32

]
. In In

the Lecture Script [Hiptmair, 2023b] it is shown that the coefficients βj
i can be

found by solving the following equation:1 a11 a12
1 a21 a22
1 a31 a32

α1 α2 α3

β1
1 β2

1 β3
1

β1
2 β2

2 β3
2

 =

1 0 0
0 1 0
0 0 1

 . (4.33)

From (4.32) it can be seen that

βi
j =

∂λi

∂j
. (4.34)

Considering that µ is constant over the cell, and inserting the definition of
2D curl, (4.28) becomes:

AK =
1

µ
|K|

[
∂λi

∂y

∂λj

∂y
+

∂λi

∂x

∂λj

∂x

]3
i,j=1

. (4.35)
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The element matrix then becomes:

AK =
1

µ
|K|

β1
2 β1

1

β2
2 β2

1

β3
2 β3

1

[
β1
2 β2

2 β3
2

β1
1 β2

1 β3
1

]
. (4.36)

The element vector, corresponding to the term

l(v) :=

∫
Ω

j0 ·A′
zdx, (4.37)

has the form

ϕ⃗K :=

[∫
K

j0zλidx

]3
i=1

= j0z

[∫
K

λidx

]3
i=1

=
1

3
|K|j0z,K [1]

3
i=1 ∈ R3, (4.38)

since we consider the current to be constant over mesh elements. The last
step follows from the midpoint quadrature rule.

4.6 Verifying the Stationary Solver on a Cylin-
drical Domain with Known Analytical Solu-
tion

In order to test a solver implementation, the result can be compared to the
analytical solution of a problem with known solution. In the case of the Eddy-
current problem, the chosen problem is a conducting cylinder with infinite ex-
tension in z direction in an air box, which can be seen in Figure 4.1. The
problem is solved in cylinder coordinates, so the solution is expressed in terms
of the radius r, angle ϕ and z-coordinate. Since the cylinder is infinitely long,
there is no dependence from z. Radial symmetry also implies that the solution
is not dependent from the angle, so it is only dependent from r. Consider the
air-box to be infinitely big. For the first part we are interested in testing the
stationary solver, which will later be extended to a time-dependent solver, so
the second part in (4.10) is zero, and the equation becomes:

curl2D

(
1

µ
curl2D A

)
= j0, in Ω. (4.39)

Further, we solve the equation in the two domains separately, first in the
interior of the cylinder and then in the outside.

Inside of the cylinder:
In the interior of the cylinder there is a constant current j0z in the z-direction,
constant conductivity σ greater than 0, which will become relevant in the time-
dependent part, and constant permeability µ. Since µ is constant on the inside,
it can be pulled in front of the first curl operator, and (4.39) becomes

1

µ
∆A = j0, in Ω, (4.40)
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where ∆ = grad2, and the equality curl2 u = ∆u has been used.
We will proceed to solve the equation in cylinder coordinates. The Laplace

operator (∆) in cylinder coordinates is

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
(4.41)

(4.40) then becomes

1

r

∂

∂r

(
r
∂A

∂r

)
+

1

r2
∂2A

∂θ2
= µj0z (4.42)

Since the domain is rotationally symmetric, the second term is 0

1

r

∂

∂r

(
r
∂A

∂r

)
= µj0z . (4.43)

Integrating both sides over r we get

r
∂A

∂r
=

r2

2
µj0z + C1, (4.44)

∂A

∂r
=

r

2
µj0z +

C1

r
, (4.45)

A(r) =
r2

4
µj0z + C1 log(r) + C2. (4.46)

Since we are interested in the magnetic field B, which we will later argue is
the radial derivative of A, we are not interested in C2, and can consider it to be
zero. A inside of the cylinder then becomes:

A(r) =
r2

4
µj0z (4.47)

Outside of the Cylinder
Outside of the cylinder no current is flowing, so the right hand side is 0:

1

r

∂

∂r

(
r
∂A

∂r

)
= 0. (4.48)

Integration then delivers:

r
∂Az

∂r
= C3, (4.49)

Az(r) = C3 log(r) + C4, (4.50)

where again C4 can be ignored since Az will be derived with respect to r to
get Bθ, resulting in the following equation outside the cylinder:

Az(r) = C3 log(r) (4.51)
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As introduced earlier, the relation between Az and B is B = curlAz. In
Cylinder coordinates the curl operator corresponds to:

curlAz =

(
1

r

∂Az

∂ρ
− ∂Az

∂z

)
r̂+

(
∂Ar

∂z
− ∂Az

∂r

)
φ̂+

1

r

(
∂(ρAφ)

∂r
− ∂Ar

∂φ

)
ẑ

(4.52)
We know the magnetic field will only have a φ component, and ∂Ar

∂z = 0, so

B(r) = −∂Az

∂r
. (4.53)

Inside of the cylinder we get

B(r) =
r

2
µj0z , (4.54)

while outside we get

B(r) =
C3

r
. (4.55)

To get the coefficient C3 the equations need to be compared at the boundary,
and the value of B at from the inside has to be the same as at the outside.
Assume the cylinder has radius R. The the following has to hold at r = R:

R

2
µj0z =

C3

R
(4.56)

=⇒ C3 =
R2

2
µj0z , (4.57)

and the final formula for the magnetic field outside the cylinder reads as

B(r) =
R2

2
µj0z

1

r
. (4.58)

After we computed this formula, we computed a static FEM solution with
the previously derived matrices, and sampled the solution along the radius of
the cylinder, which had a perfect correspondence with the analytical solution.
This allowed us to be confident about the accuracy of the stiffness matrix A and
proceed with the implementation of the transient solver. In order to solve the
system of equations arising from the FEM method, we built a preconditioner,
which is described in Appendix B.

4.7 Time-Dependent Finite Element Discretiza-
tion of the 2D Formulation

After having verified the static solver, we move on to implementing the time
dependent equation.
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σ > 0

I = j0z

σ = 0

I = 0

x

y
z

rφ

Figure 4.1: Simple static test geometry. A current is applied round cylinder
made of a conductive material, and placed in air. The magnitude of the magnetic
field grows linearly inside of the magnetic field and decays with 1/r outside the
cylinder.

The following matrix definitions will be useful:

A :=

[∫
Ω

1

µ(x)
curl2D bi

h(x) · curl2D bj
h(x)dx

]N
i,j=1

, (4.59)

M :=

[∫
Ω

σ(x, t)bi
h(x) · b

j
h(x)dx

]N
i,j=1

, (4.60)

ϕ⃗(t) =
[
j0(t)(bi

h)
]N
i=1

, (4.61)

where bih is the ith basis function of the finite dimensional subspace, and N
is the dimension of the subspace

4.7.1 Time Discretization using Implicit Euler

To solve the equation we discretize it in time, meaning that instead of having
a value of the solution for every time-point Az(t), we compute it for discrete

timesteps j: A
(j)
z , where j is a given timestep. When using implicit Euler, the

time derivative of Az is approximated as

∂A(j)

∂t
≈ A(j) −A(j−1)

∆t
. (4.62)
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Inserting this approximation into (4.28) we get∫
Ω

1

µ
curl2D A(j) · curl2D A′dx +

∫
Ω

σ(t)
A(j) −A(j−1)

∆t
·A′

zdx

=

∫
Ω

j0 ·A′
zdx ∀A′ ∈ H1. (4.63)

Bringing all the known quantities to the right hand side:

∫
Ω

1

µ
curl2D A(j)·curl2D A′dx+

∫
Ω

σ(t)
A(j)

∆t
·A′

zdx =

∫
Ω

(
j0(t) + σ(t)

A(j−1)

∆t

)
A′

zdx ∀A′ ∈ H1.

(4.64)
For the coefficient expansion vector x it then follows that:

Ax(j) +Mx(j)/∆t = ϕ⃗(t) +Mx(j−1)/∆t. (4.65)

Solving for x: (
A∆t+M

)
x(j) = ϕ⃗(t)∆t+Mx(j−1). (4.66)

The mass element matrix in this problem setting is given by

M
K

=

[∫
K

σλi · λjdx

]3
i,j=1

∈ R3,3 (4.67)

=
1

3
σ|K|I3, (4.68)

4.8 Assembling the Element and Stiffness Ma-
trix in a Rotating Mesh

An electric motor typically consists of three parts, which are the stator, the
rotor which turns around the stator, and an air-gap which separates the two,
shown in Figure 4.2. When creating a mesh, we can mesh the rotor and stator
in advance, since their geometry is constant, and simply rotate the mesh of the
rotor. The only part that needs to be re-meshed at every timestep is the air-gap.
Practically, this means that in every timestep the meshes of the different regions
are handled in the following ways:

(i) The mesh of the rotor is kept the same

(ii) The mesh of the stator is rotated by a constant angle, which is determined
by a constant rotation speed. This means that every node is rotated by
the same angle, but the edges between the nodes remain the same

(iii) The air-gap is re-meshed in every timestep, meaning there is no relation
between the nodes of one timestep and the next.
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From equation (4.66) we can see that to get the solution at timestep j, we
need to know the solution at the position of the same nodes, at timestep j − 1,
except for those in the air-gap. This is because in the air-gap the conductivity
is 0, so the term corresponding to the previous timesteps cancels out. In the
stator finding the value of the solution at a node at timestep j − 1 is trivial,
since the mesh is static. In the rotor on the other side it is not, since the node
was at a different position in the previous timestep. Still [Casagrande, 2013]
proved that the solution at the same node from the previous timestep can be
used when using implicit Euler method for timestepping. The arrow in Figure
4.2 illustrates that the solution at node k from the previous timestep, which was
at a different position, is used in a given timestep to solve equation (4.66).

This means that we know which at which nodes the solution needs to be
evaluated at for all the regions. The only block missing is how to map the
node indices from one timestep to the other. In fact, the matrix is changing
size in every timestep, because the number of nodes in the air-gap may change.
To make sure the indices of the rotor correspond between timesteps, you can
construct the solution vector by putting the nodes corresponding to stator and
rotor first, and the solution corresponding to the air-gap last. In this way even
when the number of nodes in the air-gap changes, the solution-indices of rotor
and stator nodes will stay the same.

Rotor

air-gap

Stator
kj

kj+1

S2

S1

S3

Figure 4.2: Simplified geometry of a motor. The rotor is the mobile part of the
domain, and is rotated around the stator. A thin airgap separates the rotor and
stator.

To ensure that the solution vector will have the above described structure,

21



we have to construct the system matrix in the corresponding way. Let us say
that the solution vector has the formx1

x2

x3

 , (4.69)

where the indices 1, 2, and 3 indicate nodes of the rotor, stator, and air-gap
respectively, as shown in Figure 4.2. Then the matrix A has the formA11 0 A13

0 A22 A23

A31 A32 A33

 , (4.70)

and the same holds for M. Aii is a sub-matrix, and the subscript indicates the
interaction between the different parts of the domain. A13 for example indicates
the interaction between basis functions in the rotor and air-gap. Since there is
no overlap between the basis functions in the rotor and stator, the matrix entries
corresponding to those interactions are 0. The sub-matrices A11 and A22 can
be precomputed since the meshes do not change between timesteps.

The right hand side vector also has to be assembled to follow the structure
described by (4.69), i.e.

ϕ⃗ =

ϕ⃗1

ϕ⃗2

ϕ⃗3

 (4.71)

Details about the implementation of matrix assembly in a rotating mesh can
be found in Appendix A.

4.9 Nonlinear Materials

Earlier we assumed for simplicity that there is a linear relationship between
magnetic field H and magnetic flux B. In reality this is not the case, and
the magnetic permeability is dependent on the strength of the magnetic flux:
µ = µ(B). We know that B = curlA, and B = µH. Thus H = B

µ = curlA
µ .

Following [Bachinger et al., 2006] (4.28) then becomes

∫
Ω

H(curl2D Az(t)) · curl2D vdx+

∫
Ω

σ(t)∂tAz(t) ·vdx =

∫
Ω

j0 ·vdx ∀v ∈ H1,

(4.72)
and (4.64) becomes:
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∫
Ω

H(curl2D A(j)) · curl2D vdx +

∫
Ω

σ(t)
A(j)

∆t
· vdx =

∫
Ω

(
j0(t) +

A(j−1)

∆t

)
vdx ∀v ∈ Vh

(4.73)

⇔
∫
Ω

H(curl2D A(j)) · curl2D vdx +

∫
Ω

σ(t)
A(j)

∆t
· vdx−

∫
Ω

(
j0(t) +

A(j−1)

∆t

)
vdx = 0 ∀v ∈ Vh.

(4.74)

which is a nonlinear system of equations in standard form F (A(j)) = 0. This
suggests using Newton’s iterations to find the solution. To do so, we need the
Jacobian of F .

Following the derivation in [Bachinger et al., 2006], we write the operator A
as

⟨A(A)|v⟩ :=
∫
Ω

H(curlA) · curl vdx, (4.75)

which has derivative

⟨A′(A)w|v⟩ =
∫
Ω

[
∂H

∂B
(curlA) curlw

]
· curl vdx, (4.76)

by using the chain rule when evaluated at w.
For the second term of (4.74) we write the operatorM defined as

⟨MA|v⟩ :=
∫
Ω

σ(t)
A

∆t
vdx, (4.77)

with derivative

⟨M′w|v⟩ =
∫
Ω

σ(t)
w

∆t
vdx. (4.78)

The derivative ofM does not depend from A, since it is linear.
A Newton iteration is defined as following. Assume you have a function

F (x) : RN → RN and want to find the root. Then you can start with an initial
guess x0, and iterate using the formula [Strang, 2017]:

xn+1 = xn − J(xn)
−1F (xn), (4.79)

where J(x) is the Jacobian of F (x).
Moving things around:

J(xn)(xn − xn+1) = F (xn). (4.80)
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So we are solving for δ = xn − xn−1.
Using the derivatives (4.76) and (4.78), (4.80) becomes:

∫
Ω

[
∂H

∂Bn
(curl2D xn) curl2D δ

]
· curl2D vdx +

∫
Ω

σ(t)
δ

∆t
vdx = (4.81)∫

Ω

H(curl2D A(j)) · curl2D vdx +

∫
Ω

σ(t)
A(j)

∆t
· vdx−

∫
Ω

(
j0(t) +

A(j−1)

∆t

)
vdx ∀v ∈ Vh.

(4.82)

Since xn represents a step to find the solution of A(j), we can say that
Bn = curl2D xn is a solution step for the magnetic flux, and rewrite (4.81) as

∫
Ω

[
∂H

∂Bn
(Bn) curl2D δ

]
· curl2D vdx +

∫
Ω

σ(t)
δ

∆t
vdx = (4.83)∫

Ω

H(curl2D xn) · curl2D vdx +

∫
Ω

σ(t)
xn

∆t
· vdx−

∫
Ω

(
j0(t) +

x(j−1)

∆t

)
vdx ∀v ∈ Vh.

(4.84)

The last piece of the puzzle is the Jacobian ∂H
∂B . We will take it directly from

[Gyselinck et al., 2004], where it reads:

∂H

∂B
= ν

[
1 0
0 1

]
+ 2

dν

db2

[
bxbx bxby
bybx byby

]
. (4.85)

Also, the integrand of the first term has been already computed in the paper
and reads as:

ν grad δ · gradv + 2
dν

db2
(grad δ · gradxn)(gradv · gradxn). (4.86)

Putting everything together, we arrive at

∫
Ω

ν grad δ · gradv + 2
dν

db2
(grad δ · gradxn)(gradv · gradxn)dx +

∫
Ω

σ(t)
δ

∆t
vdx =∫

Ω

H(curl2D xn) · curl2D vdx +

∫
Ω

σ(x)
xn

∆t
· vdx−

∫
Ω

(
j0(t) + σ(x)

x(j−1)

∆t

)
vdx ∀v ∈ Vh.

(4.87)

The second term on the left-hand side gives rise to a new type of matrix, by
inserting a basis expansion for the increment δ and test function v:

N(xn) :=

[∫
Ω

2
dν

db2
(grad2D bi

h(x) · gradxn)(grad2D bj
h(x) · gradxn)dx

]N
i,j=1

.

(4.88)
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Similarly to (4.36), the matrix for a single triangle K looks like:

N
K

= 2
dν

db2
|K|

β1
1 β1

2

β2
1 β2

2

β3
1 β3

2

gradxn|K

β1
1 β1

2

β2
1 β2

2

β3
1 β3

2

gradxn|K

T

. (4.89)

For the first term in the right-hand side we can write the vector

ρ⃗(n) =

[∫
Ω

H(curl2D xn) · curl2D bi
h(x)dx

]N
i=1

, (4.90)

which for a single element leads to:

ρ⃗K(n) =

[∫
K

H(curl2D xn) · curl2D λi(x)dx

]3
i=1

=[∫
K

Hx(curl2D xn)λ
i
y(x)−Hy(curl2D xy)λ

i
y(x)dx

]3
i=1

.

(4.91)

Where Hx and Hy are the x and y components of the field H. Since the
gradients are constant on the mesh elements, we get:

ρ⃗K(n) =
1

3
|K|

[
Hx(curl2D xn)

∂λi

∂y
(x)−Hy(curl2D xy)

∂λi

∂x
)

]3
i=1

= (4.92)

=
1

3
|K|

[
Hx(curl2D xn)β

i
2 −Hy(curl2D xy)β

i
1)
]3
i=1

(4.93)

The remaining terms lead to straight-forward matrices and vectors:

A :=

[∫
Ω

ν curl2D bi
h(x) · curl2D bj

h(x)dx

]N
i,j=1

(4.94)

M :=

[∫
Ω

σ(x, t)bi
h(x) · b

j
h(x)dx

]N
i,j=1

(4.95)

ϕ⃗ :=
[
j0(t)bi

h

]N
i=1

(4.96)

The Newton iteration in matrix form then looks like

N(n)δh+A(n)δh+M(n)δh/∆t = ρ⃗+M(n)xn/∆t−ϕ⃗−M(n)x(j−1)/∆t (4.97)

where the index (j − 1) indicates the previous timestep.
Solving for δh:

(N(n)∆t+A(n)∆t+M(n))δh = ρ⃗∆t+M(n)xn − ϕ⃗∆t−M(n)x(j−1) (4.98)
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4.10 Backwards Differentiation Formula 2

In practice a method called Backwards Differentiation formula 2 (BDF-2) is
often used instead of the Implicit Euler method. In order to compare to this
method we derive the formula of a Newton step for it.

The formula of a timestep of the BDF-2 method is given by:

x(j+2) − 4

3
x(j+1) +

1

3
x(j) =

2

3
hf(tj+2, x

(n+2)) (4.99)

⇔x(j+2) − 4

3
x(j+1) +

1

3
x(j) − 2

3
hf(tj+2, x

(j+2)) = 0. (4.100)

We are interested in the basis expansion coefficient vector xj+2, where the
exponent indicates the timestep, and are given the previous two timesteps.

The function f in the case of the Eddy-current equation is given by

f(x(n+2), tn+2) = M−1(φ(tn+2)−A(x(n+2))(x(n+2))), (4.101)

which we insert into Equation (4.100):

Mx(j+2) − 4

3
Mx(j+1) +

1

3
Mx(j) − 2

3
h(φ(tn+2)−A(x(n+2))(x(n+2))) = 0

(4.102)

⇔ (M +
2

3
hA(x(j+2)))x(j+2) − 4

3
Mx(j+1) +

1

3
Mx(j) − 2

3
hφ(tn+2) = 0.

(4.103)

Again we use the Newton-Raphson iteration to find the solution of this
nonlinear system. To do so, we need the Jacobian of the left hand side with
respect to x(j+2), which as before is given by

J(x) = (M +
2

3
h(A(x) +N(x))). (4.104)

A Newton-Raphson step then looks like:

(M +
2

3
h(A(xn) +N(xn)))δ = (M +

2

3
hA(xn))xn −

4

3
Mx(j+1) +

1

3
Mx(j) − 2

3
hφ(tn+2).

(4.105)

4.11 Termination Criterion for the Newton-Raphson
Iteration

An important issue when using Newton-Raphson iterations is when to terminate
the iteration, such that the iterate is close enough to the solution of the nonlinear
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system of equations. The correct way to do this is a so called correction-based
termination, which evaluates how much one iterate is different from the previous
one and stops when the difference is small enough. For this project on the
other hand, we used a residual-based termination criterion, which evaluates the

relative residuum ||lhs(x(k))−rhs||
||rhs|| and terminates when this value is small enough,

lhs is the left hand side of the system of equation and rhs is the right hand side.
For example in BDF2 the non linear system of equations is:

F (x(j+2)) = (M +
2

3
hA(x(j+2)))x(j+2) − 4

3
Mx(j+1) +

1

3
Mx(j) − 2

3
hφ(tn+2),

(4.106)

and the left hand side and right hand side are given by:

lhs = (M +
2

3
hA(x(j+2))), (4.107)

rhs =
4

3
Mx(j+1) − 1

3
Mx(j) +

2

3
hφ(tn+2). (4.108)

For this project the tolerance was set to 10−6.

4.12 Rosenbrock Wanner Timestepping for the
Eddy Current Model

The following section follows the notes kindly provided by Professor Hiptmair.
Consider the A-based formulation of the Eddy current model with ECE

boundary conditions, which reads as following:

Seek A : [0, T ]→ H0(curl,Ω)∫
Ω

σ(x)∂tA ·A′dx +

∫
Ω

ν(x, curlA) curlA · curlA′dx

=

∫
Ω

j0A′dx ∀A′ ∈ H0(curl,Ω) (4.109)

where ν is the B-dependent magnetic susceptibility:

ν : Ω× R3 → R3,3
spd, (4.110)

and ω is the electric conductivity, which is defined separately in a conductive
and non-conductive domain:

σ(x) =

{
0, x ∈ ΩI ,

σ
0
(x), x ∈ Ωc := Ω \ Ω̄I ,

(4.111)

where ΩI is the non-conductive medium.
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Furthermore, we will separate the domain Ω in two types of domain: one
which is defined by a rigid body, and one which is deforming, such as an air-gap:

Ω = Ωd

P⋃
i=1

Ωi, (4.112)

where i are the multiple rigid domains while d references the deformable do-
mains.

As an essential part of this work we assume that the conductive domain is
contained in the union of rigid bodies:

Ωc ⊂
P⋃
i=1

Ωi. (4.113)

One should note that formulation (4.109) a so-called ungauged formulation,
which means that the solution A is unique only up to a kernel contribution, and

A ∈ {z⃗ ∈ H0(curl,Ω) : curl z⃗ = 0}. (4.114)

Now we will proceed to solve the problem using a Finite Element discretiza-
tion, where we substitute the space H0(curl,Ω) with a finite dimensional sub-
space Vh.

We assume that the mesh used by the FE discretization resolves the domain
Ω = ΩI ∪̇ ΩC

Since the conducting and non-conducting domain have different physical
properties, that can be exploited to simplify the solution, we split the ungauged
discrete variational formulation, and define two subspaces of Vh

V C
h := span of all basis functions of Vh, whose supports overlap with Ωc,

(4.115)

V I
H := span of all basis functions of Vh, whose supports overlap with ΩI .

(4.116)

From these definitions, follows that

Vh = V C
h + V I

h . (4.117)

Using these two new subspaces we define a new problem formulation:

seek AC
h : [0, T ]→ V C

h ,

AI
h : [0, T ]→ V I

h ,∫
Ω

σ(x)∂tA
C
h ·WC

h dx +

∫
Ω

ν(x, curl(AC
h +AI

h) curl(A
C
h +AI

h) · curlWC
h dx

=

∫
Ω

j0WC
h dx ∀WC

h ∈ V C
h ,∫

Ω

ν(x, curl(AC
h +AI

h) curl(A
C
h +AI

h) · curlWI
hdx =

∫
Ω

j0WI
hdx ∀WI

h ∈ V I
h .

(4.118)

28



This problem gives rise to the following abstract algebraic structure:

M
d

dt
µ⃗+A

C
(µ⃗(t) + ξ⃗(t)))(µ⃗(t) + ξ⃗(t))) = φ⃗C(t), (4.119)

A
I
(µ⃗(t) + ξ⃗(t)))(µ⃗(t) + ξ⃗(t))) = φ⃗I(t). (4.120)

The matrices A
C

and A
I
both depend on the magnetic flux B, and they

map vectors in the whole discrete space to vectors defined on the conductive
and non-conductive domain respectively:

A
C
: RN → RNC ,N , NC := |V C

h |, (4.121)

A
I
: RN → RNI ,N , NI := |V I

h |, (4.122)

N = NC +NI . (4.123)

The equations (4.119) and (4.120) form a Differential Algebraic Equation
(DAE), which is a system which contains a differential and algebraic equation.
It is a so-called index-1 DAE.

The general form of a DAE is:

ẏ = d(t, y, z) , d : I × Rn × Rm → Rn, (4.124)

0 = c(t, y, z) , c : I × Rn × Rm → Rn, (4.125)

and a DAE is of index-1 when you can solve c for z.
In [Rang and Angermann, 2005] the authors propose Rosenbrock W-methods

to solve DAEs of index 1. A DAE becomes an initial value problem (IVP) when
you add the condition y(t0) = y0:

IV P : ẏ = d(t, y, z) , d : I × Rn × Rm → Rn, (4.126)

0 = c(t, y, z) , c : I × Rn × Rm → Rn, (4.127)

y(t0) = y0. (4.128)

Assume you are at time t0, know the approximate solution at that time given
by y0 and z0, and want to compute the approximate solution y1, z1 at time t1.

The stage equations used to solve a DAE defined by the Equations (4.126)
to (4.128) are given by ti

yi
zi

 =

t0
y0
z0

+

i−1∑
j=1

aij

 τ
kyj
kzj

 , (4.129)

while the increments kyi and kzi are given by the equations(
Mkyi
0

)
= τ

(
d(ti, yi, zi)
c(ti, yi, zi)

)
+ τJ

i∑
j=1

γij

(
kyj
kzj

)
+ τ2γi

(
∂td
∂tc

)
. (4.130)
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The matrix J is given by:

J =

(
∂yd ∂zd
∂yc ∂zc

)
. (4.131)

The update equation to compute y1 and z1 is given by(
y1
z1

)
=

(
y0
z0

)
+ τ

s∑
i=0

bi

(
kyi
kzi

)
. (4.132)

For the purpose of this work, we will focus on stiffly accurate methods,
which provide good performance for stiff problems [Michels et al., 2017]. Stiffly
accurate methods satisfy the following condition by definition:

asi + γsi = bi , i = 1, . . . , s. (4.133)

The coefficients for such a method are presented in [Rang and Angermann,
2005]:

γ = 4.3586652150845900e-1
α21 = 8.7173304301691801e-1 γ21 = −8.7173304301691801e-1
α31 = 8.4457060015369423e-1 γ31 = −9.0338057013044082e-1
α32 = −1.1299064236484185e-1 γ32 = 5.4180672388095326e-2
α41 = 0.0000000000000000e+00 γ41 = 2.4212380706095346e1
α42 = 0.0000000000000000e+00 γ42 = −1.2232505839045147e+00
α43 = 1.0000000000000000e+00 γ43 = 5.4526025533510214e-1

b1 = 2.4212380706095346e-1 b̂1 = 3.7810903145819369e-1

b2 = −1.2232505839045147e+00 b̂2 = −9.6042292212423178e-2
b3 = 1.5452602553351020e+00 b̂3 = 5.0000000000000000e-1

b4 = 4.3586652150845900e-1 b̂4 = 2.1793326075422950e-1

The diagonal coefficients γii are equal to γ. This method is of order 3 with
4 stages, and it is A-stable.

Now we proceed to compute the matrix J . To this end, we explicitly write
out the functions c and d.

d(t, µ⃗, ξ⃗) = (φC(t)−AC(µ⃗+ ξ⃗)(µ⃗+ ξ⃗)), (4.134)

c(t, µ⃗, ξ⃗) = (φI(t)−AI(µ⃗+ ξ⃗)(µ⃗+ ξ⃗)). (4.135)

Since we already computed the derivative of A in Section 4.9, we infer that

dµ⃗ = −(AC,C(µ⃗+ ξ⃗) +NC,C(µ⃗+ ξ⃗)), (4.136)

dξ⃗ = −(AI,C(µ⃗+ ξ⃗) +NI,C(µ⃗+ ξ⃗)), (4.137)

cµ⃗ = −(AC,I(µ⃗+ ξ⃗) +NC,I(µ⃗+ ξ⃗)), (4.138)

cξ⃗ = −(AI,I(µ⃗+ ξ⃗) +NI,I(µ⃗+ ξ⃗)), (4.139)
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where A∗,†(µ⃗) and N∗,†(µ⃗) are given by

A∗,†(µ⃗) :=

[∫
Ω

ν(µ⃗) curl2D bi
h(x) · curl2D bj

h(x)dx

]N∗,N†

i,j=1

,bi
h ∈ V ∗

h ,b
j
h ∈ V †

h ,

(4.140)

N∗,†(µ⃗) :=

[∫
Ω

2
dν

db2
(µ⃗)(grad2D bi

h(x) · grad µ⃗)(grad2D bj
h(x) · grad µ⃗)dx

]N
i,j=1

,bi
h ∈ V ∗

h ,b
j
h ∈ V †

h ,

(4.141)

and ∗, † are either C or I.
The time derivatives of d and c outside of the air-gap are computed as

following:

d

dt
c(t, µ⃗, ξ⃗) = ˙⃗φI , (4.142)

d

dt
d(t, µ⃗, ξ⃗) = ˙⃗φC . (4.143)

Since the matrix A is constant outside of the airgap.

4.12.1 Time-Parametric Finite Element Methods (FEM)
for the Air-Gap

Equation (4.130) presents a problem for the setting of a rotating machine. If
we re-mesh the Air-Gap to compute the increments corresponding to differ-
ent times, we lose correspondence of degrees of freedom (DOFs) between the
increments, which invalidates the solution.

To overcome this issue, we deform the mesh for increment timesteps, instead
of reconstructing it for each increment. This allows to keep the same number
of DOFs and to keep track of them between the increments. See Figure 4.3 for
a visual representation of mesh deformation.

In this work we assume constant angular velocity of the rotor

Assumption 1. ω = C.

This allows to parametrize the matrix, and use the paradigm of Parametric
FEM to compute the time-dependent deformation of the mesh.

One alternative to using parametric FEM is to rotate mesh nodes for every
increment and then assembling the stiffness matrix using the modified mesh.
The reason that this could be undesirable is that in the equation for the incre-
ments (4.130) a time derivative of the stiffness matrix is needed, and using a
numerical approximation could interfere with the order of the method.

Let a triangle of the original mesh be K̂, K(t) the deformed triangle at time
t, ΦD(t) a transformation ΦD(t) : K̂ 7→ K(t), and (Φ∗

D(t)u)(x̂) := u(ΦD(t)(x̂))

the pullback of a function to K̂. As proven in the Lecture Script [Hiptmair,
2023b] the following relation holds:
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rotation

Figure 4.3: This figure depicts the deformation of the air-gap for one of the
increments in the ROW equations

(gradx̂(Φ
∗
du))(x̂) = (DΦ(x̂))T (gradx u)(Φ(x̂)). (4.144)

A entry of the stiffness matrix for the deformed mesh reads as

[A(t)]
N
i,j =

∫
K

µ(t)grad bjK(t)(x) · grad biK(t)(x)dx (4.145)

=

∫
K̂

µ(t)Φ∗
D(t)(grad bj

K̂
))(x̂) · (Φ∗

D(t)(grad bi
K̂
))(x̂))|detDΦD(t)(x̂)|dx̂

(4.146)

=

∫
K̂

µ(t)(DΦD(t))−T (grad bjK)) · (DΦD(t))−T (grad bik))|detDΦD(t)(x̂)|dx̂,

(4.147)

where to get to Equation (4.147) we used the gradient formula (4.144) and
the fact that the gradients of first order Lagrangian FEM are constant, so x
dependency falls away.

Now we present the time-dependent transformation ΦD(t).
Figure 4.4 shows how points in the air-gap are transformed, along with the

parameters which depend on the machine geometry, which are the inner and
outer radius of the air-gap (r and R), and the angular velocity ω. Without loss
of generality, we make the following assumption:

Assumption 2. Only the outer boundary is moved, so the rotor is outside of
the stator.

Since only the outer boundary is moved, points in the air-gap are rotated by
an amount which is linearly proportional to the distance to the outer boundary.
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r x

ω∆t

O

Figure 4.4: This figure shows the transformation ΦD(t) in the air-gap. The outer
boundary moves, while the inner boundary is stationary. Thus every point in
the air-gap is moved along the rotational direction by an amount dependent on
the proximity to the outer boundary. ω is the angular speed and ∆t is the time
interval.

In polar coordinates this translates to:{
rx(t) = rx(0)

φx(t) =
rx(t)−r
R−r + φx(0),

(4.148)

where rx and φx are the polar coordinates of the point x with respect to it’s
initial position.

In Cartesian coordinates it becomes

ΦD(t)(x⃗) =
√
x2
1 + x2

2

cos
(√

x2
1+x2

2−r

R−r ωt+ φ(0)

)
sin

(√
x2
1+x2

2−r

R−r ωt+ φ(0)

)
 , (4.149)

with Jacobian matrix

DΦD(t)(x⃗) =

x1 cos(θ)
rx
− tx1ω sin(θ)

R−r
x2 cos(θ)

rx
− tx2ω sin(θ)

R−r
x1 sin(θ)

rx
+ tx1ω cos(θ)

R−r
x2 sin(θ)

rx
+ tx2ω cos(θ)

R−r )

 ,

(4.150)

where θ = tω(rx−r)
R−r + ϕ and rx =

√
x2
1 + x2

2.
Next, we compute the time derivative of the stiffness matrix in the air-

gap. Recalling the definition of stiffness matrix entries (4.147), we see that
only the Jacobian and the determinant are time-dependent, which simplifies
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the computation resulting in[
d

dt
A(ξ⃗)

]N
i,j

=

∫
K̂

µ(ξ⃗)(
d

dt
(DΦD(t)))−T (grad bjK)) · ( d

dt
(DΦD(t)))−T (grad bik))|

d

dt
(detDΦD(t)(x̂))|dx̂

(4.151)

The time derivative of the Jacobian is

d

dt
DΦD(t)(x⃗) =

 x1ω sin(θ)
R−r

x2ω sin(θ)
R−r

x1ω cos(θ)
R−r

x2ω cos(θ)
R−r )

 (4.152)

For the computation of the load vector on the deformed mesh we rely on the
fact that the prescribed current is constant for a given cell:

[φi(t)]
N
i=1 =

∫
K

j0(t)(x)bi(x)dx =

∫
K̂

(Φ∗
D(t)j0(t))(x̂)bi(x̂)|detDΦD(t)(x̂)|dx̂

(4.153)

= j0(t)

∫
K̂

bi(x̂)|detDΦD(t)(x̂)|dx̂, (4.154)

so only a change of surface area of the cell needs to be taken into account.
The derivative is:

[φ̇i(t)]
N
i=1 = j̇0(t)

∫
K̂

bi(x̂)|detDΦD(t)(x̂)|dx̂+ j0(t)

∫
K̂

bi(x̂)|
d

dt
(detDΦD(t)(x̂))|dx̂.

(4.155)

Finally, we need to compute the time derivative of d and c.

d

dt
c(t, µ⃗, ξ⃗) =

d

dt

(
φC(t)−AC(µ⃗+ ξ⃗)

)
, (4.156)

(4.157)

where we computed both quantities in (4.151) and (4.155).

4.13 Implementation Note

Time-parametric are the exact way to compute the time derivative of the mesh
deformation. Due to it’s high complexity and time constraints, this was not im-
plemented, and we opted for a numerical estimation of the deformation deriva-
tive. This was done with the forward finite difference method, where the deriva-
tive is estimated as:

d

dt
A(t) =

A(t+ dt)−A(t)

dt
, (4.158)

and A(t+ dt) is obtained from A(t) by applying the transformation (4.149)
and reassembling the matrix.
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4.14 Re-Computing the Solution in the airgap

In the equation for the temporary solutions yi, zi, (4.129) we notice that even in
the algebraic (deformable) domain, the solution at the previous timestep (z0) is
needed. This is problematic, since we remesh the airgap, so we don’t have corre-
spondence of DOFs between timesteps. Thankfully, the solution in the algebraic
is not time dependent, and can be computed instantly using the solution at the
non-deformable domain boundary. We solve a stationary problem, as described
in Section 4.5, on the deformable domain, and use the solution of the previous
timestep at the boundary of the non deformable domain as boundary values.

4.15 Adaptive Timestepping

Adaptive timestepping is especially important in ROW timestepping, since the
error for a given timestep depends on the error of the linearization, which
changes over the simulation. For example when the magnetic field is strong
the magnetic material becomes saturated, and the B-H curve becomes linear.

We implemented adaptive timestepping according to Section 2.4. As the
error norm we chose the dissipative power, which quantifies how much power is
dissipated on the domain. It is defined exactly later in Section 6.1.
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Chapter 5

Performance Comparison
Between BDF-2 and ROW
Methods

In order to compare the performance of BDF-2 and ROW, we proceed as fol-
lowing: first we define the compute intensive operations in the timestepping
scheme, and for each of the three methods we estimate how many of these op-
erations are needed per timestep and Newton-Raphson step. Then we define an
error norm, which describes how much the solution found by a method deviates
from the exact solution. For each method we impose that the error norm is be-
low a threshold. In the Newton-iteration methods (implicit Euler and BDF-2)
there are two parameters which influence the accuracy: the timestep size and
the threshold for the residual of the Newton-iteration. Thus the combination
which is optimal in terms of total cost and is below the required accuracy has
to be found. For the Rosenbrock-Wanner method on the other side only the
step-size has to be optimized. Finally, the cost of the BDF-2 method with the
optimal Newton-threshold and timestep size will be compared with the cost of
the Rosenbrock-Wanner method with the optimal step-size.

5.1 Theoretical Performance Estimates

We give the performance estimates based on how many times the most expen-
sive computations have to be performed. The cost of the specific operations
can depend on how much this operations has been optimized, so a user of the
timestepping method can discern which method will be more efficient for his
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implementation of the operations. The operations are defined as following:

q∗ = “cost of quadrature for element of matrix *, where * can be A, M, N”

P = “cost of computing the preconditioner of the system matrix”

S = “cost of solving the LSE when the preconditioner has already been decomposed”

And the number of elements per domain is defined as following:

• N : total number of elements in the domain

• NL: number of elements in linear material domain.

• NnnL: number of elements in nonlinear domain.

• NR: in rigid domain.

• ND : in deformable domain.

By elements we mean the 2D mesh elements, which in our case are triangles.

5.1.1 Implicit Euler and BDF-2

The performance of BDF-1 and BDF-2 methods are equivalent in terms of the
operations defined above, since the same matrices are assembled, and general
structure is the same. The number of operations can be directly read from
Equation (4.98), which describes a Newton step for the implicit Euler method.
The following operations are needed per program execution, per timestep, and
Newton iteration:

1. Once per program execution: NL · qN +NL · qA +N · qM .

2. Once per timestep: ND · qN +ND · qA +ND · qM .

3. Once per Newton step: NnnL · qN +NnnL · qA + P + S.

Since the stiffness matrix depends on the solution in the domain where the
material is nonlinear, it has to be reassembled there in every Newton step. The
mass matrix only has to be reassembled in the airgap, since it is remeshed in
every timestep.

The total time needed for one timestep depends on the time required per
operation, so we define ∆t∗ as the time needed for operation ∗. The time needed
for one timestep is:

ND · qN ·∆tqN +ND · qD ·∆tqD +ND · qM
+NNewton · (NnnL · qN ·∆tqN +NnnL · qA ·∆tqA + P ·∆tP + S ·∆tS), (5.1)

where NNewton is the number of Newton iterations needed to reach the desired
residuum in a given timestep.
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5.1.2 Rosenbrock-Wanner

This method uses the following operations:

1. Once per program execution: NL · qN +NL · qA +N · qM .

2. Once per timestep: ND · qN +ND · qA +ND · qM + P .

3. Once per increment: NnnL ·qN+NnnL ·qA+ND ·qN+ND ·qA+ND ·qM+S.

Since the left-hand side is the same for all four increments, the preconditioner
can be computed once per timestep (P), and the system can be solved quickly
for different right hand sides (S). We need to recompute the matrices in the
airgap for every increment, since we are deforming it there

The cost per Rosenbrock Wanner timestep is:

ND · qN ·∆tqN +ND · qD ·∆tqD +ND · qM + LU ·∆tLU

+ 4 · (NnnL · qN ·∆tqN +NnnL · qA ·∆tqA + S ·∆tS). (5.2)
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Chapter 6

Results

In the previous chapter we introduced a theoretical comparison on the cost
per timestep of Newton iteration-bound methods and ROW. Now we test both
methods on a model geometry, and while keeping the error below a critical
threshold, we record the number of timesteps, to propose a suggestion on which
method is more efficient.

6.1 Defining the Error Norm

In order to determine the quality of a solution, be it the solution obtained with
iteration-based methods, or with ROW methods, we need to define an error
norm with respect to a baseline solution, which represents the exact solution.
For the Eddy-current problem, the quantity of interest is the energy dissipation
in the domain, since often the objective of the design of an electrical machine
is to minimize such energy dissipation. The energy dissipation in a spacial
domain is given by Poyntings theorem [Poynting and Strutt, 1997]. Let Ω be
the computational domain. The energy dissipation per time, which corresponds
to dissipative power, is given by

P :=

∫
Ω

H · Ḃ+ j ·Edx, (6.1)

where B is the magnetic field, j is the electric current and E is the elec-
tric field. The normalized difference between the baseline solution ub and a
computed solution u is given by

||u− ub||P :=

∫
Ω
||(H · Ḃ+ j ·E)− (Hb · Ḃb + jb ·Eb)||dx∫

Ω
||(Hb · Ḃb + jb ·Eb)||dx

, (6.2)

where the fields are derived from the solutions ub and u. In the discrete solu-
tion, the fields E, B and the current are defined on the cells. We chose first
order Lagrangian elements, so the fields and current are constant on the mesh
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elements. The error norm for a solution u with corresponding magnetic field B
and electric field E then becomes:

||u− ub||P =
∑
K

|K| · ||(HK · ḂK + jK ·EK)− (Hb,K · Ḃb,K + jb,K ·Eb,K)||
||Hb,K · Ḃb,K + jb,K ·Eb,K)||

,

(6.3)

where K is a mesh element, and |K| is the area of such an element.

6.2 Computing a Baseline

In order to compute the error for a given approximate solution, we need a ref-
erence solution. Except for very simple geometries it is not possible to compute
an exact solution. Thus we computed a discrete solution that converges to the
exact solution. To find such a discrete solution we computed a solution using
fixed timestepping, and decreased the step size by a factor of 2, until the norm
as described by (6.3) was small enough:

Repeat: h← h/2 (6.4)

until ||uh − uh/2||P < tol, (6.5)

where h is the step size, and we set tol to 1e-4.

6.3 Comparison Between Iteration-Based Meth-
ods and ROW on a Static Geometry

We chose a transformer as a model geometry, where a prescribed current is set on
the primary coils, and a current is induced in the secondary coils. A transformer
core goes through the primary and secondary coils, in order to transport the
magnetic flux from the primary to secondary coils. A diagram is shown in Figure
6.1 The current applied to the primary coils is sinusoidal, with frequency 50hz
and an amplitude which is changed for different experiment, and we simulate
a whole period, which corresponds to 0.02 seconds. The H-B curve of the core
has been set to a parametrized analytical function, where the parameters have
been changed in different experiments. The formula for the relative magnetic
permeability is:

µr(B) :=
µ

µ0
=

max

1 +B4 ∗max/c
+ 1. (6.6)

For the parameters max = 5000, c = 100, the function is shown in Figure
6.2
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Figure 6.1: Diagram for a transformer. A current is applied to the primary
coils, and a current is induced in the secondary coils. The transformer core
transports the magnetic flux from the primary to secondary coils. Two coils are
missing on the external part of the core but the mechanics remain the same.
The dimensions of the transformer core are: width = 60cm, heidth = 60cm.
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(a) Relative Permeability (b) B-H curve

Figure 6.2: Relative permeability and B-H curve for the analytical function
µr(B) := µ

µ0
= max

1+B4∗max/c + 1, max = 5000, c = 100.

6.3.1 Fixed timestep

To avoid issues which arise from adaptive timestep size, we first analyze the
performance using fixed timestep. We try different sets of conditions to evaluate
how they influence the performance. The parameters we evaluate are the current
amplitude and nonlinearity. We will change the parameters of the nonlinearity
in order to assess how the strength of the curvature will influence the results.
In a nonlinear setting, ROW methods can degrade, because the nonlinearity
is linearized. Thus if the timestep is too big, this approximation leads to a
diverging solution. In order to understand what the largest possible timestep is
we perform a simulation with a large timestep and decrease it until the solution
doesn’t diverge.

We try two sets of parameters:

• Current density j: 2 · 107A/m2, nonlinearity parameters: max = 1000,
c = 100 (Set 1).

• Current density j: 1 · 107A/m2, nonlinearity parameters: max = 1000,
c = 100 (Set 2).

• Current density j: 1 · 107A/m2, nonlinearity parameters: max = 500,
c = 100 (Set 3).

For each of the sets of parameters, we compute a baseline solution at 5 ·
10e−6s, evaluate what the largest possible timestep for the ROW method is,
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Figure 6.3: This is the L2 norm of the error over the computational domain
over time. For every timestep, we ccompare the solution with the baseline
solution, which was computed using a smaller timestep. We divide the norm
of difference between the two solutions by the norm of the baseline solution for
every timestep. ROW has a better accuracy for all timesteps except two.

and compare the error norm and number of Newton steps/timesteps of BDF-2
and ROW respectively. We compute the error for every timestep, of we there
are 20 in total. In Table 6.1 median of the errors is shown, while Figure 6.3
shows the error for all the timesteps.

From the table you can see that ROW always takes less timesteps than BDF-
2 Newton steps. The non-linearity of the B-H curve doesn’t have an influence
of the

Set Method Step Size Number of Newton/time Steps Error

1 ROW 3e-5s 681 0.011
BDF-2 1e-4s 958 0.038

2 ROW 6e-5 341 0.011
BDF-2 1e-4 412 0.024

3 ROW 6e-5 341 —
BDF-2 1e-4 412 —

Table 6.1: This table compares the performance of the two methods on different
sets of parameters, on a static mesh. The mesh has 19802 DOFs.
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(a) This is a stable solution

(b) Diverged solution, which results from a timestep size which is too
large

Figure 6.4: A comparison between a converged solution and a diverged solution.
When a solution diverges the timestep size needs to be reduced.
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6.3.2 Adaptive timestepping

We didn’t manage to get a simulation of the full time-period using adaptive
timestepping. The issue was that the relative tolerance needed to be small
enough not to create an instability, see Figure 6.4, but with the tolerance too
small the error couldn’t be brought below the tolerance at a later time, even with
small timesteps. For example if we set the relative tolerance to 1.2, meaning
that the estimated error may be at most 1.2 times larger than the norm of
the previous timestep solution, the simulation runs until time 0.007s, where the
error is too big and the method doesn’t manage to bring it below the critical
threshold.

6.4 Comparison on a Rotating Geometry

6.4.1 Error Norms on a Rotating Geometry

The norm derived from the dissipative power (6.1) is not easily applicable to
a rotating mesh, since the energy dissipation per time includes a time deriva-
tive of the magnetic field, which is difficult to compute in the air-gap. The
magnetic field is defined on the mesh cells, and the air-gap is remeshed, so the
correspondence between the cells is lost. There are two norms which we use as
an alternative: the magnetic field energy, which is doesn’t depend on any time
derivative, and the density of electric power dissipated by the electric current,
which is only defined on the conducting domain.

The magnetic field energy reads as:

E(B) = H ·B, (6.7)

and the dissipative current power reads as:

P (j, E) = jE. (6.8)

6.4.2 Setup and Results

To assess how the method performs on a rotating geometry, we constructed a
test geometry which includes all the defining features of an electrical motor,
which are: a stator, a rotor, and an airgap which separates the two. Conversely
to a real motor, in our test geometry the rotor is outside of the stator, but this
doesn’t influence the physical phenomena we are interested in simulating, and
preserves the numerical challenges of the rotating motion. See Figure 4.1 for a
diagram of the test geometry. We again applied a sinusoidal current of 50Hz
to the coil and simulated for the duration of one period, and rotated the rotor
at a constant speed of 10 rotations per second. The steel rotor has the same
nonlinear behavior as the transformer core.
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The sets of parameters used to test the performance for the rotating ring
are:

• Current density j: 2 · 107A/m2, nonlinearity parameters: max = 1000,
c = 30 (Set 1).

• Current density j: 1 · 107A/m2, nonlinearity parameters: max = 500,
c = 30 (Set 2).

Set Method Step Size Number of Newton/time Steps Error — E(B) Error — P(j, E)

1 ROW 3e-5s 667 0.0061 0.023
BDF-2 1e-4s 1678 0.017 0.033

2 ROW 6e-5 333 0.03178 0.02299
BDF-2 1e-4s 1257 0.01680 0.03248

Table 6.2: This table compares the performance of the two methods on different
sets of parameters, on a static mesh. The mesh has 3321 DOFs.
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Figure 6.5: Diagram for the rotating ring. A current is applied to the coil in
the center, which has a quadratic form in order to break the circular symmetry.
This means that when in the irregularity present on the ring will move through
this field the magnetic field changes and a current is induced.
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Chapter 7

Discussion

7.1 Numerical Performance Comparison Between
Iteration-Based Methods and ROWwith Fixed
Timestep

In Chapter 5 we provided a detailed comparison between the performance of
iterative methods and ROW, based on the number of timesteps and Newton
iterations. Now that we have applied both methods to a variety of experimental
setups, and have recorded the number of timesteps/Newton-iterations, we can
deduce which method is more efficient, in terms of basic operations.

We recall the total time per timestep for BDF-2 and ROW respectively:

tBDF−2 = ND · qN ·∆tqN +ND · qD ·∆tqD +ND · qM
+NNewton·(NnnL · qN ·∆tqN +NnnL · qA ·∆tqA+

P ·∆tP + S ·∆tS), (7.1)

tROW =ND · qN ·∆tqN +ND · qD ·∆tqD +ND · qM + P ·∆tP

+ 4 · (NnnL · qN ·∆tqN +NnnL · qA ·∆tqA + S ·∆tS), (7.2)

with the operations are defined as following:

q∗ = “cost of quadrature for element of matrix *, where * can be A, M, N”

P = “cost of computing the preconditioner of the system matrix”

S = “cost of solving the LSE when the preconditioner has already been decomposed”

And the number of elements per domain is defined as following:

• N : total number of elements in the domain

• NL: number of elements in linear material domain.
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• NnnL: number of elements in nonlinear domain.

• NR: in rigid domain.

• ND : in deformable domain.

Thus the total time is:

tBDF−2 =Ntimesteps,BDF−2 · (ND · qN ·∆tqN +ND · qD ·∆tqD +ND · qM )

+NNewton · (NnnL · qN ·∆tqN +NnnL · qA ·∆tqA+

P ·∆tP + S ·∆tS), (7.3)

tROW =Ntimesteps,ROW · (ND · qN ·∆tqN +ND · qD ·∆tqD +ND · qM + P ·∆tP )

+ 4 · (NnnL · qN ·∆tqN +NnnL · qA ·∆tqA + S ·∆tS). (7.4)

As a simplification, we assume that assembly of the matrices in the linear
and nonlinear domain takes the same time:

Assumption 3. A := ND · qN ·∆tqN +ND · qD ·∆tqD +ND · qM + P ·∆tP =
NnnL · qN ·∆tqN +NnnL · qA ·∆tqA .

The difference in time between the two methods then becomes:

∆t := tBDF−2 − tROW = Ntimesteps,BDF−2 ·A+NNewton · (A+ P ·∆tP + S ·∆tS)

−Ntimesteps,ROW · ((A+ P ·∆tP ) + 4 · (A+ S ·∆tS)).
(7.5)

As a further simplification, we neglect the matrix assemblies which are com-
puted in every timestep of BDF-2, since the number of timesteps is much smaller
than the number of Newton iterations:

∆t = tBDF−2 − tROW = NNewton · (A+ P ·∆tP + S ·∆tS) (7.6)

−Ntimesteps,ROW · ((A+ P ·∆tP ) + 4 · (A+ S ·∆tS)).

Some algebraic manipulations provide the following expression:

∆t =A · (NNewton − 5 ·Ntimesteps,ROW ) + P ·∆tP · (NNewton −Ntimesteps,ROW )+

S ·∆tS · (NNewton − 4 ·Ntimesteps,ROW ). (7.7)

We simplify the analysis to three cases, and from Equation (7.7) we deduce
a condition on the number of total Newton iterations and ROW timesteps for
which ROW is more efficient than BDF-2.

1. The cost of computing the preconditioner (P) dominates over the other
two (P ≫ S, P ≫ A). ROW is more efficient than BDF-2 if NNewton >
Ntimesteps,ROW .
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2. The cost of solving the system (S) dominates. ROW is more efficient if
NNewton > 4 ·Ntimesteps,ROW .

3. The cost of assembling the matrix (A) dominates. ROW is more efficient
if NNewton > 5 ·Ntimesteps,ROW

We look at the experimental results from Tables 6.1 and 6.2, and see that in
all parameter sets ROW is more efficient than BDF-2 only in Case 1, when the
cost of computing the preconditioner dominates over the other operations. For
example with the static geometry (transformer), and Parameter Set 1, BDF-2
takes 958 Newton iterations, while ROW takes 681 timesteps. This is enough
for ROW to be more efficient in Case 1, but falls short of the 4 or 5 times more
Newton iterations BDF-2 would need for ROW to be more efficient, in Cases 2
and 3 respectively.

Ultimately, a case in between the ones analyzed could occur, where one
operation doesn’t dominate over the others, and you need to apply formulas
(7.7), or formulas (7.3) and (7.4) for an accurate comparison, with the measured
times for the various operations.

7.2 Acceptable Relative Error

Together with the number of timesteps and Newton iterations, we always com-
puted the error with respect to a given norm, when compared to the baseline.
Our philosophy is that as long as the error stays below an acceptability thresh-
old, lower errors are not an advantage. We choose an error threshold of 5%
(0.05 in Tables 6.1 and 6.2). For example if ROW has a lower error because
we used smaller timesteps due to stability constraints, we don’t consider it an
advantage.

7.3 Performance in a Rotating vs Static Geom-
etry

In Table 6.2 you can see that ROW performs much better relatively to BDF-2
in the rotating geometry than in the static geometry (6.1. This might be due to
the higher order of ROW, or due to the fact that the geometry of the rotating
setup is simpler.

7.4 Issues with Adaptive Timestepping

The issue with adaptive timestepping means that the method, as it was devel-
oped in this project, isn’t suitable for industrial application. Adaptive timestep-
ping is essential, because a method needs to automatically recover from insta-
bility, and it can’t produce diverged solutions when used in a practical setting.
This issue probably can be solved, and may be the subject of future work.
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Another issue of adaptive timestepping is the setting of tolerances. During
the testing of adaptive timestepping, we tried to find an absolute tolerance which
doesn’t lead to instabilities, but also doesn’t make the timestep too small. This
was only possible experimentally, which is not optimal in an industrial setting.
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Chapter 8

Conclusion

In this work we compared the performance of ROW methods to BDF-2 on
static electronic devices and rotating electric machines. We performed numerical
experiments to compare the amount of elementary operations needded for both
methods, which we used to conclude which method is more efficient in three
simplified cases. We provided formulas to predict the total time needed for
both methods, based on the time needed for the elementary operations. While
ROW worked using a fixed timestep, it failed with an adaptive timestep, and
further work is needed to find a solution.

From this investigation, we conclude that using ROW on rotating machines is
feasible, since the rotation of mesh doesn’t pose any conflict with the formulation
of the ROWmethod, but it poses some challenges for use in an industrial setting.
On the one hand, the failure of adaptive timestepping means that the user needs
to know in advance what timestep size will avoid instability, on the other hand,
even if the adaptive timestepping had worked, there would still be the challenge
of finding a suitable tolerance for the estimated error. Under this perspective,
BDF-2 seems a much simpler method, since when selecting a small tolerance it
never diverges. Thus the two methods can be compared as following: ROW is
a better performing method, but it still needs some work and is more difficult
to use; BDF-2 is less performing, but is very reliable and can be used without
any domain knowledge.

The implementation of ROW on a rotating geometry posed some challenges,
and this manuscript together with the provided code repository can be used to
improve the adaptive timestepping, reproduce the results, or implement ROW
for Eddy-current simulations in another framework.
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Appendix A

Implementation

In this chapter implementation details which posed difficulties will be explained.
The code repository can be found at https://github.com/luca-commits/ROW_
engines

A.1 Mesh Operations using GMSH

In this chapter we explain the techniques we used to ensure mesh conformity
at the airgap-stator and airgap-rotor interfaces. Indeed, GMSH doesn’t provide
tools to ensure conformity of meshes that are merged together, which means that
this has to be done manually. Another issue is the numbering of vertices when
merging the different meshes together. It is important that DOFs maintain the
same index between timesteps, in order to compute (numerical) time derivatives.
Since LehrFEM++ uses mesh indices to assign DOF indices, we need to ensure
that nodes in the rotor and stator have the same index between timesteps, while
the number of vertices in the airgap may change.

A.1.1 Rotating the Mesh

To understand how we ensured correspondence of nodes at the rotor-airgap
boundary, we need to explain how geometry definition and mesh generation
works in GMSH. First the geometry of the object needs to be defined. We
focus on the rotor-airgap boundary, which is the only mesh interface which is
moved. In order to define a circle, we need to define four arcs, for which we need
four points. After the geometry is defined, the arcs are meshed in 1D, meaning
that nodes and edges are placed on the curves, which which are subsequently
used to create a 2D mesh. The nodes on the rotor boundary are generated
pre-compilation time, and are rotated at every timestep together with all rotor
nodes, a shown below:

1 void rotateAllNodes_alt(const std::string& input_file, const std::string& output_file, double angle) {

2 gmsh::initialize();
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3 gmsh::option::setNumber("General.Terminal", 0);

4

5 // Calculate rotation matrix coefficients once

6 double cosA = std::cos(angle);

7 double sinA = std::sin(angle);

8

9 // Open the mesh file

10 gmsh::merge(input_file);

11

12 // Get all nodes

13 std::vector<std::size_t> nodeTags;

14 std::vector<double> coords;

15 std::vector<double> parametricCoords;

16

17 gmsh::model::mesh::getNodes(nodeTags, coords, parametricCoords);

18

19 for (std::size_t i = 0; i < nodeTags.size(); ++i) {

20

21 double x = coords[i * 3];

22 double y = coords[i * 3 + 1];

23 double z = coords[i * 3 + 2];

24

25 double new_x = x * cosA - y * sinA;

26 double new_y = x * sinA + y * cosA;

27

28 gmsh::model::mesh::setNode(

29 nodeTags[i],

30 {new_x, new_y, z} ,

31 parametricCoords

32 );

33 }

34

35 gmsh::model::mesh::rebuildNodeCache(false);

36 gmsh::write(output_file);

37

38 gmsh::finalize();

39 } .

The nodes on the airgap boundary, on the other hand, are generated at
every timestep. The points that are used to define the arcs which compose
the outer airgap boundary are rotated by the same angle as which the rotor is
rotated. Since the nodes are placed uniformly between the arc extremities, this
guarantees that the nodes on the airgap have the same position as the rotor.
The following code shows how the boundary-defining points are rotated and the
airgap is remeshed:

1 void remeshAirgap(std::string airgap_geo_file, const std::string& output_file, double angle) {

2 gmsh::initialize();

3 gmsh::option::setNumber("General.Terminal", 0);

4
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5 gmsh::open(airgap_geo_file);

6

7

8 gmsh::model::geo::rotate({{0, 139}, {0, 140}, {0, 141}, {0, 142}},

9 0,

10 0,

11 0,

12 0,

13 0,

14 1,

15 angle);

16

17

18 gmsh::model::mesh::generate(2);

19

20 std::vector<std::size_t> nodeTags;

21 std::vector<double> nodeCoords, nodeParams;

22 gmsh::model::mesh::getNodes(nodeTags, nodeCoords, nodeParams);

23

24 // Number of nodes is the size of nodeTags

25 unsigned airgap_nodes = nodeTags.size();

26

27 std::cout << "airgap nodes : " << airgap_nodes << std::endl;

28

29 // Save and show

30 gmsh::write(output_file);

31

32 gmsh::finalize();

33 } ,

where the points 139, 140, 141 and 142 define the outer airgap boundary.

A.1.2 Ensuring DOF Correspondence between Timesteps

In order to generate the whole motor mesh, the meshes of the rotor, stator and
airgap are merged together. This is a simple operation in GMSH. A nuance of
this operation is that the index of nodes in the merged mesh is assigned in order
of inclusion. This means that the meshes that have a constant number of nodes
need to be merged first, and the mesh of the airgap needs to be merged last, as
following:

1 unsigned mergeEverything(const std::string& input_file_stator,

2 const std::string& input_file_rotor,

3 const std::string& input_file_airgap,

4 const std::string& output_file) {

5 gmsh::initialize();

6 gmsh::option::setNumber("General.Terminal", 0);

7 unsigned numStableDof;

8

55



9 try {

10

11 gmsh::merge(input_file_rotor);

12 gmsh::model::geo::synchronize();

13 gmsh::model::mesh::removeDuplicateNodes();

14 gmsh::model::mesh::removeDuplicateElements();

15

16 gmsh::merge(input_file_stator);

17 gmsh::model::geo::synchronize();

18 gmsh::model::mesh::removeDuplicateNodes();

19 gmsh::model::mesh::removeDuplicateElements();

20

21 std::vector<std::size_t> nodeTags;

22 std::vector<double> nodeCoords, nodeParams;

23 gmsh::model::mesh::getNodes(nodeTags, nodeCoords, nodeParams);

24

25 numStableDof = nodeTags.size();

26

27 gmsh::merge(input_file_airgap);

28 gmsh::model::geo::synchronize();

29 gmsh::model::mesh::removeDuplicateNodes();

30 gmsh::model::mesh::removeDuplicateElements();

31

32

33 gmsh::write(output_file);

34 gmsh::finalize();

35

36 } catch (const std::runtime_error& e) {

37 gmsh::logger::write("Error during merge operation: " + std::string(e.what()));

38 gmsh::finalize();

39 throw;

40 }

41

42 return numStableDof;

43 } .
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Appendix B

Computing a
Preconditioner and Solving
the Linear System of
Equations (LSE)

In all the solver settings, which are stationary, transient, static geometry, ro-
tating geometry, using BDF-2 or ROW, a linear system of equations has to be
solved, where the left hand side always consist of a linear combination of the
stiffness matrix (A), mass matrix (M) and Jacobian matrix. A closer inspection
of the definition of the mass and stiffness matrix reveals that the stiffness matrix
has some 0 diagonal elements, and the mass matrix has 0 diagonal entries for
DOFs corresponding to the non-conducting domain. A linear combination of
these matrices results in a matrix which has entries 0 on the diagonal, which
leads to bad conditioning. For example when we set the conductivity to 0 on
the whole domain, the solver failed.

In order to deal with bad conditioning, we constructed a preconditioner,
where we set the conductivity to a small number everywhere the conductivity
was 0, and used it to construct a mass matrix, which we then added to the left
hand side matrix.

We used the bi conjugate gradient method together with this preconditioner
to solve the LSEs which arose in the various solvers.

57



Bibliography

Daryl L Logan. A first course in the finite element method, volume 4. Thomson,
2011.
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