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1 Introduction

In the low Renolds number regime, the stationary velocity field u and pressure field p

of an incompressible fluid on a domain Ω ⊂ RN , N = 2, 3 with a Lipschitz boundary

Γ can be described by the Stokes problem

−2∇· ϵ(u) +∇p = f , in Ω, (1)

∇·u = 0, in Ω, (2)

where ϵ(u) denotes symmetric gradient of u, namely

ϵ(u) :=
1

2
(∇u+ (∇u)T ),

and f is a given forcing term. The first equation expresses the conservation of momen-

tum and the second the incompressibility condition. The system can be supplemented

with various boundary conditions, including Dirichlet boundary conditions on u or

Neumann boundary conditions prescribing the normal force on Γ. In this project, we

are interested in imposing Navier slip boundary conditions, namely

u · n = 0, on Γ, (3)

γ∥(ϵ(u)n) = 0, on Γ, (4)

where n denotes the outward oriented unit normal vector on Γ and γ∥(ζ) denotes the

tangential part of a vector field ζ on Γ, i.e.

γ∥(ζ) := ζ − ζ · n = n× ζ × n.

A conventional weak formulation of the Stokes problem can be derived by using the

function spaces H1(Ω) and L2(Ω) for u and p, respectively, as is described in [9, Chap-

ter 53]. For some structure-preserving numerical schemes for the Navier-Stokes equa-

tion [18] or MHD [11], however, it is beneficial to use a mixed formulation seeking the

vorticity w = ∇×u, the velocity u and the pressure p in (subspaces of) the function

spaces H(curl; Ω), H(div; Ω) and L2(Ω), respectively. This motivates our use of the

Vorticity-Velocity-Pressure (VVP) formulation proposed by Nédélec [15] for the dis-

cretization of the Stokes problem with Navier slip boundary conditions. Although the

VVP formulation has been extensively analyzed by Dubois and his collaborators [6, 5,

7], it is a priori not clear how to incorporate Navier slip boundary conditions. Following
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the approach adopted by Wouter and his collaborators in [3], we derive the variational

formulation with the help of an equivalent formulation of Navier slip boundary condi-

tions proposed by Mitrea and Monniaux [14, Eq. 2.9], which can be viewed as a Robin

type boundary condition for the velocity u. The resulting variational problem is shown

to be well-posed on the continuous level, which is then discretized using appropriate

finite element spaces. The convergence of the numerical scheme is confirmed by the

results of numerical experiments conducted.

The remaining of the thesis proceeds as follows. In Section 2, we introduce the no-

tations and derive the VVP formulation for the Stokes problem with pure natural

boundary conditions and Navier slip boundary conditions. In Section 3, we recall im-

portant results on establishing the well-posedness of variational problems and prove

the well-posedness of the variational problems obtained in Section 2. After discretizing

the variational problems in Section 4, Section 5 presents the results from numerical

experiments and Section 6 draws conclusions.

4



2 VVP formulations

Let us first introduce some notations. Throughout the thesis, the domain of the func-

tion spaces is Ω unless otherwise stated and will be omitted in notation. We use

the standard Lebesgue and Sobolev spaces Lp and Hp, and the vector valued version of

these Lp andHp. For sufficiently smooth scaler field σ and vector field u = (u1, . . . , uN)

defined on Ω ⊂ RN , we define the following calculus operators

∇σ :=

(
∂σ

∂x1
, . . . ,

∂σ

∂xN

)
, N = 2, 3,

∇×σ :=

(
∂σ

∂x2
,− ∂σ

∂x1

)
, N = 2,

∇·u :=
i=N∑
i=1

∂ui
∂xi

, N = 2, 3,

∇×u :=
∂u2
∂x1

− ∂u1
∂x2

, N = 2,

∇×u :=

(
∂u3
∂x2

− ∂u2
∂x3

,
∂u1
∂x3

− ∂u3
∂x1

,
∂u2
∂x1

− ∂u1
∂x2

)
, N = 3.

and the spaces H(curl), H(div), and H(curl) are defined as

H(curl) := {σ ∈ L2 | ∇×σ ∈ L2 } = H1, N = 2,

H(div) := {u ∈ L2 | ∇·u ∈ L2 }, N = 2, 3,

H(curl) := {u ∈ L2 | ∇×u ∈ L2 }, N = 2, 3.

We will also need a larger space than H(curl)

Σ := {w ∈ L2 | ∇×w ∈ H̊(div)
′
},

which is equipped with the norm

∥·∥Σ = ∥·∥L2 + ∥∇× ·∥
H̊(div)

′ .

The 2-dimensional counterpart of Σ is defined as

Σ := {σ ∈ L2 | ∇×σ ∈ H̊(div)
′
},

the norm on which is defined in the same way as Σ. These spaces have been introduced

in [7] and [2] for the studies of the VVP formulation of the Stokes problem with no slip

boundary conditions.
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The standard L2 and L2 inner product will be denoted as (·, ·), the duality pair between

H̊(div)
′
and H̊(div) as ⟨·, ·⟩, and the inner product on L2(Γ) and L2(Γ) as (·, ·)Γ. H(div)

and H(curl) are equipped with the following inner products

⟨u,v⟩H(div) = (u,v) + (∇·u,∇·v), ∀u,v ∈ H(div),

⟨w, z⟩H(curl) = (w, z) + (∇×w,∇× z), ∀w, z ∈ H(curl),

with respect to which they are Hilbert spaces. The closure of C∞
c in Hp, Hp, H(div)

and H(curl) with respect to the corresponding norms are denoted by H̊p, H̊p, H̊(div)

and H̊(curl), respectively.

We will denote the subspace of divergence-free functions in H(div) as H(div0) and the

subspace of curl-free functions in H(curl) as H(curl0). The orthogonal complement

of H(div0) in H(div) and of H(curl0) in H(curl) with respect to the inner products

defined above will be denoted as H(div0)
⊥ and H(curl0)

⊥, respectively. Similarly,

H̊(div0) and H̊(curl0) will denote the corresponding subspaces in H̊(div) and H̊(curl),

respectively, and H̊(div0)
⊥
and H̊(curl0)

⊥
their orthogonal complement. The subspace

of L2 functions with zero mean will be denoted as

L̂2 := {σ ∈ L2 |
∫
Ω

σ dx = 0 }.

Finally, let us denote the trace map of H1 functions as

γ : H1 → H
1
2 (Γ)

ξ 7→ ξ|Γ

and introduce the space of tangential vector fields in H
1
2 (Γ)

TH
1
2 (Γ) := { γ(ξ) | ξ ∈ H1, γ(ξ) · n = 0 on Γ }.

It has been shown in [7, Prop. 4.5] that there exists a continuous trace map from Σ

to (TH
1
2 (Γ))′

γt : Σ → (TH
1
2 (Γ))′

φ 7→ φ× n.

Denoting the duality pair between (TH
1
2 (Γ))′ and TH

1
2 (Γ) as ⟨·, ·⟩Γ, φ× n is defined

by

⟨φ× n, γ(ξ)⟩Γ = (φ,∇× ξ)− ⟨∇×φ, ξ⟩, ∀φ ∈ Σ, ∀γξ ∈ TH
1
2 (Γ).
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The definitions for N = 2 are analogous, where Σ contains scalar-valued functions. For

2-dimensional vector-valued functions, we define the tangential trace on H(curl) in a

similar way

γ⊥ : H(curl) → (H
1
2 (Γ))′

ξ 7→ ξ × n,

where ξ × n is defined by

⟨ξ × n, γ(ψ)⟩Γ = (ξ,∇×ψ)− (∇× ξ, ψ), ∀ξ ∈ H(curl), ∀ψ ∈ H1.

If ξ is restricted to H1, then γ(ξ) ∈ H
1
2 (Γ) ⊂ L2(Γ) and ξ×n is given by a tangential

vector field in L2(Γ).

2.1 The Stokes problem: reformulated

Following [3], we reformulate the Stokes problem with Navier slip boundary conditions

in this subsection.

For sufficiently smooth u with ∇·u = 0, we have

−2∇· ϵ(u) = −∆u−∇(∇·u)
= ∇×∇×u− 2∇(∇·u)
= ∇×∇×u.

Substituting into (1) and introducing a new variable w = ∇×u for the vorticity, we

obtain

∇×w +∇p = f , in Ω. (5)

For Navier slip boundary conditions, the following conditions have been proven by

Mitrea and Monniaux [14, Eq. 2.9] to be an equivalent formulation if Γ is C2:

u · n = 0, on Γ, (6)

−n×w + 2W(γ∥(u)) = 0, on Γ, (7)

where W : TΓ → TΓ denotes the Weingarten map on the space TΓ of tangential vector

fields on Γ.
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Using (5),(6) and (7) and adding the definition ofw, we reformulate the Stokes problem

with Navier slip boundary conditions as

w −∇×u = 0 in Ω, (8)

∇×w +∇p = f in Ω, (9)

∇·u = 0 in Ω, (10)

u · n = 0, on Γ, (11)

−n×w + α(γ∥(u)) = 0, on Γ, (12)

where α = 2W . This will be the starting point for our derivation of the VVP formu-

lation.

Remark 2.1. In the case of N = 2, n×w and γ∥(u) are not defined since w and n×u

are scalar-valued. However, we can circumvent the problem by interpreting the vorticity

as a vector perpendicular to the plane and the velocity as a vector parallel to the plane,

and the calculus operators for N = 3 are then compatible with those for N = 2. In the

following, we will tacitly omit the case for N = 2 if such an interpretation makes both

cases compatible with each other. Moreover, we denote the scalar-valued vorticity and

the corresponding 3-dimensional vector perpendicular to Ω as w and w (z and z for

test functions), respectively.

2.2 Derivation of VVP formulations

We first derive the VVP formulation for the Stokes problem with pure natural boundary

conditions, i.e.

p = 0, on Γ, (13)

u× n = 0, on Γ, (14)

whose well-posedness will be shown in the next section to illustrate the standard tech-

nique. Then we will give a VVP formulation for the Stokes problem with Navier slip

boundary conditions from a naive approach, which poses significant constraint on Γ.

Finally, we introduce a modified variational formulation circumventing the constraint

on Γ, which will be the focus of analysis in the next section.
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Let us assume f ∈ L2. Multiplying (8), (9) and (10) by test functions z, u and q,

respectively, we obtain by formally integrating by parts

(w, z)− (∇× z,u)− (n× u, z)Γ = 0, (15)

(∇×w,v)− (p,∇·v) + (v · n, p)Γ = (f ,v), (16)

(q,∇·u) = 0. (17)

For pure natural boundary conditions and N = 3, we set the trial and test space for

w, u and p to be H(curl), H(div) and L2, respectively, and the following variational

problem is derived after incorporating (13) and (14)
Seek w ∈ H(curl), u ∈ H(div), p ∈ L2 :

(w, z)− (∇× z,u) = 0, ∀z ∈ H(curl),

(∇×w,v)− (p,∇·v) = (f ,v), ∀v ∈ H(div),

(q,∇·u) = 0, ∀q ∈ L2.

(18)

For N = 2, we obtain a similar variational problem by replacing H(curl) by H1.

For Navier slip boundary conditions and N = 2, (11) can be imposed strongly if

u ∈ H(div) and the boundary term in (15) can be reformulated using (12) as

(n× u, z)Γ = ((n× u)× n, z× n)Γ = (γ∥(u), z× n)
Γ

= (α−1(n×w), z× n)Γ

= (α−1(n×w)× n, (z× n)× n)Γ = −(α−1γ∥(w), γ∥(z))Γ

= −(α−1w, z)Γ,

(19)

where the α−1 and ×n commute since the Weingarten map is a scalar multiplication

in 2D. If we follow the approach in the case of pure natural boundary conditions, we

arrive at the following variational problem by restricting the trial and test space for u

to be H̊(div0)
Seek w ∈ H1, u ∈ H̊(div), p ∈ L̂2 :

(w, z)− (∇× z,u) + (α−1w, z)Γ = 0, ∀z ∈ H1,

(∇×w,v)− (p,∇·v) = (f ,v), ∀v ∈ H̊(div),

(q,∇·u) = 0, ∀q ∈ L̂2.

(20)

However, there are two problems with this formulation. First, the use of α−1 requires

the absolute value of the Weingarten map to be uniformly lower bounded, which may
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be violated even for a convex domain. Second, it is not clear how to generalize the

formulation to the case of N = 3 since γ∥(w) is in general not in L2(Γ) for w ∈
H(curl). To address these issues, we first observe that without the boundary term, (20)

corresponds to the VVP formulation for the Stokes problem with no slip boundary

conditions. Hence, inspired by [7] and [2], we choose the trial and test space for w to be

Σ and the terms (∇× z,u) and (∇×w,v) in (15) and (16) are given a mathematical

sense by the duality pairs ⟨∇× z,u⟩ and ⟨∇×w,v⟩, respectively. Furthermore, we

introduce a new variable for the tangential trace of u

ψ := γ∥(u),

and the boundary term (n× u, z)Γ in (15) is interpreted as ⟨z× n,ψ⟩Γ by the first

two equalities in (19). Using TH
1
2 (Γ) as the trial and test space for ψ, testing (12) by

η ∈ TH
1
2 (Γ) yields

⟨w × n,η⟩Γ + (αψ,η)Γ = 0, (21)

which, together with the weak formulation for the other equations of the Stokes prob-

lem, constitutes the following variational problem

Seek w ∈ Σ, u ∈ H̊(div), p ∈ L̂2,ψ ∈ TH
1
2 (Γ) :

⟨w × n,η⟩Γ + (αψ,η)Γ = 0, ∀η ∈ TH
1
2 (Γ),

(w, z)− ⟨∇× z,u⟩ − ⟨z× n,ψ⟩Γ = 0, ∀z ∈ Σ,

⟨∇×w,v⟩ − (p,∇ · v) = (f ,v), ∀v ∈ H̊(div),

(q,∇ · u) = 0, ∀q ∈ L̂2.

(22)

Remark 2.2. Without the term (αψ,η)Γ, ψ can be viewed as a Lagrange multiplier

for the enforcement of vanishing tangential trace of w.

Although (22) is more general than (20) as mentioned above, we will see in the following

sections that these two formulations are related on the continuous and discrete level.

The close relation between the two formulations is also supported by the results from

the numerical experiments in the case of uniformly positive α, as will be shown in

Section 5.
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3 The continuous problem

In this section, we establish the well-posedness of the weak formulations of the Stokes

problem derived in the previous section on the continuous level.

3.1 Preliminaries

Throughout the section, we assume that Ω is bounded and contractible. In particular,

Ω is simply-connected and Γ is connected. We then have de Rahm complexes [8, Section

16.3] [1, Section 4.3]

H(curl)
∇×−−→ H(div)

∇·−−→ L2, (23)

H̊(curl)
∇×−−→ H̊(div)

∇·−−→ L̂2, (24)

which will be used in the following without being explicitly mentioned.

Let us recall two forms of the Poincaré–Friedrichs inequality:

∥ψ∥H(div) ≤ Cp1∥∇·ψ∥L2 , ∀ψ ∈ H(div0)
⊥ or ∀ψ ∈ H̊(div0)

⊥
, (25)

∥τ∥H(curl) ≤ Cp2∥∇× τ∥L2 , ∀τ ∈ H(curl0)
⊥ or ∀ψ ∈ H̊(curl0)

⊥
, (26)

which can be proved using de Rahm complexes and open mapping theorem [1, Thm.

4.6].

Next we recall the Babuška-Brezzi theorem, which can be found in [9, Thm. 49.13].

We have the following abstract setting: V and M are real reflexive Banach spaces,

Q :=M ′, a and b are bounded bilinear forms defined on V ×V and V ×Q, respectively,
and f ∈ V ′, g ∈ Q′. Let us set

∥a∥ := sup
v∈V

sup
w∈W

|a(v, w)|
∥v∥V ∥w∥W

,

and define N ⊆ V as

N := { v ∈ V | b(v, q) = 0 ∀q ∈ Q },

which is a closed subspace of V . Q′ = M ′′ is identified with M by reflexivity of M .

The following abstract problem is considered:
Seek u ∈ V and p ∈ Q :

a(u,w) + b(w, p) = f(w), ∀w ∈ V,

b(u, q) = g(q), ∀q ∈ Q.

(27)
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Theorem 3.1 (Babuška-Brezzi). (27) is well-posed if and only if inf
v∈N

sup
w∈N

|a(v, w)|
∥v∥V ∥w∥W

=: α > 0,

∀w ∈ N : [∀v ∈ N, a(v, w) = 0] =⇒ [w = 0],

(28)

and the following inequality, usually called Babuška-Brezzi condition, holds:

inf
q∈Q

sup
v∈V

|b(v, q)|
∥v∥V ∥q∥Q

=: β > 0. (29)

Furthermore, we have the following a priori estimates:

∥u∥V ≤ c1∥f∥V ′ + c2∥g∥Q′ , (30)

∥p∥Q ≤ c3∥f∥V ′ + c4∥g∥Q′ , (31)

where c1, c2, c3, c4 are generic constants that only depend on α, β and ∥a∥.

Since b is bounded, N ⊆ V is closed and hence reflexive. In view of the Banach-

Nečas-Babuška (BNB) theorem [9, Thm. 25.9], (28) in Theorem 3.1 is equivalent to

the well-posedness of the following problem

Seek u ∈ N : a(u,w) = f(w), ∀w ∈ N,

where f ∈ N ′. If this variational problem is also in mixed form, we can invoke Theo-

rem 3.1 again to verify (28). This approach will be adopted in the following since we

will have nested mixed variational formulations.

In the case of Navier slip boundary conditions, we have introduced the spaces Σ and

Σ for the vorticity in Section 2. Now we derive some properties of these spaces, which

will be useful in the proof of the well-posedness of (22).

In 2D, it has been shown in [2] that

∥τ∥Σ ∼ ∥τ∥L2 + ∥∇× τ0∥L2 , ∀τ ∈ Σ,

where ∼ denotes norm equivalence and τ0 ∈ H̊1 is defined by

⟨∇× τ,∇×ψ⟩ = (∇× τ0,∇×ψ) ∀ψ ∈ H̊1.

As stated in the following theorem, this can be generalized to 3D.
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Theorem 3.2. For τ ∈ Σ, let τ 0 ∈ H̊(curl0)
⊥ be defined by

⟨∇× τ ,∇×ψ⟩ = (∇× τ 0,∇×ψ) , ∀ψ ∈ H̊(curl). (32)

Then

∥τ∥Σ ∼ ∥τ∥L2 + ∥∇× τ 0∥L2 . (33)

Proof. First we show that τ0 is well-defined. This follows from Riesz representation the-

orem since (26) implies that the Hilbert space structure on H̊(curl0)
⊥
can be generated

by the inner product (∇× ·,∇× ·).

Then we define ϕ ∈ L̂2 by

(ϕ,∇·v) = ⟨∇× τ ,v⟩ − (∇× τ 0,v) , ∀v ∈ H̊(div). (34)

If ∇·v = 0, then there exists a ψ ∈ H̊(curl0)
⊥ such that ∇×ψ = v and the right-hand

side vanishes by definition of τ 0. Since ∇· is surjective onto L̂2 and L̂2 is closed in L2,

ϕ is well-defined by Riesz representation theorem.

Now we want to find some generic constants C1 > 0 and C2 > 0 such that

C1 (∥τ∥L2 + ∥∇× τ 0∥L2) ≤ ∥τ∥Σ ≤ C2 (∥τ∥L2 + ∥∇× τ 0∥L2) . (35)

By tesing (32) with τ 0, we obtain that

∥∇× τ 0∥L2 ≤ ∥∇× τ∥
H̊(div)

′ .

Hence

∥τ∥L2 + ∥∇× τ 0∥L2 ≤ ∥τ∥Σ.

On the other hand, from (34) it holds that

⟨∇× τ ,v⟩ ≤ (∥ϕ∥L2 + ∥∇× τ 0∥L2) ∥v∥H(div),

which implies that

∥∇× τ∥
H̊(div)

′ ≤ (∥ϕ∥L2 + ∥∇× τ 0∥L2) .

From [12, Cor. 2.4], we can find ṽ ∈ H̊1 such that

∇· ṽ = ϕ, ∥ṽ∥H1 ≤ C∥ϕ∥L2 ,
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where C is a generic constant. Testing (34) with ṽ we obtain that

∥ϕ∥2L2 = (τ ,∇× ṽ)− (∇× τ 0, ṽ)

≤ (∥τ∥L2 + ∥∇× τ 0∥L2) ∥ṽ∥H1

≤ C (∥τ∥L2 + ∥∇× τ 0∥L2) ∥ϕ∥L2 .

It follows that

∥ϕ∥L2 ≤ C (∥τ∥L2 + ∥∇× τ 0∥L2)

and hence

∥τ∥Σ ≤ (C + 1) (∥τ∥L2 + ∥∇× τ 0∥L2) .

Let us introduce the space H as

H := { τ ∈ Σ | ⟨∇× τ ,∇×ψ⟩ = 0, ∀ψ ∈ H̊(curl) }.

By Theorem 3.2, Σ can be decomposed as

Σ = H̊(curl0)
⊥
⊕H, (36)

and

∥τ∥Σ ∼ ∥τ∥L2 on H. (37)

We now give some equivalent characterizations of H:

Proposition 3.3. For τ ∈ L2, the following statements are equivalent:

(1) τ ∈ H,

(2) τ ∈ Σ and ∀v ∈ H̊(div0) : ⟨∇× τ ,v⟩ = 0,

(3) ∀v ∈ H̊(div0) ∩ H̊1 : ⟨∇× τ ,v⟩
(H̊1)

′
,H̊1 = 0,

(4) ∇× τ = ∇p for some p ∈ L2.

The same holds for Ω ⊂ R2.

Before giving the proof, we recall a classical result [12, Lemma 2.1]:
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Lemma 3.4. If f ∈ (H̊1)′ satisfies

⟨f ,v⟩
(H̊1)

′
,H̊1 = 0, ∀v ∈ H̊1 ∩ H̊(div0),

then there exists p ∈ L2 such that

f = ∇p,

where the equality holds in distributional sense.

Proof of Proposition 3.3. The proof for 2D and 3D are the same. We prove for Ω ⊂ R3

that 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 1.

1 ⇒ 2 τ ∈ Σ by definition of H. For all v ∈ H̊(div0), there exists a ψ ∈ H̊(curl) such

that ∇×ψ = v. Again by definition of H, we have that

⟨∇× τ ,v⟩ = ⟨∇× τ ,∇×ψ⟩ = 0.

2 ⇒ 3 For all v ∈ H̊1 ∩ H̊(div0), ⟨∇× τ ,v⟩ = 0 by assumption. Let (vn)n∈N be

a sequence in C∞
c converging to v in H1-norm. Since H(div)-norm is upper

bounded by H1-norm up to a constant, (vn)n∈N converges to v also in H(div)-

norm. Hence we have

⟨∇× τ ,v⟩
(H̊1)

′
,H̊1 = lim

n→∞
⟨∇× τ ,vn⟩(H̊1)

′
,H̊1

= lim
n→∞

⟨∇× τ ,vn⟩

= ⟨∇× τ ,v⟩ = 0.

3 ⇒ 4 Follows directly from Lemma 3.4.

4 ⇒ 1 Let φ ∈ C∞
c , it holds that

|⟨∇× τ ,φ⟩| = |(p,∇·φ)| ≤ ∥p∥L2∥φ∥H(div),

which implies that ∇× τ ∈ H̊(div)
′
and hence τ ∈ Σ. Moreover,

⟨∇× τ ,∇×ψ⟩ = −(p,∇·(∇×ψ)) = 0, ∀ψ ∈ H̊(curl).

This shows that τ ∈ H.
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Finally, we want to establish a connection between TH
1
2 (Γ) and H

1
2 (Γ) in the case of

N = 2. We first note that for ξ ∈ H1, γ⊥(ξ) only depends on γ(ξ). Hence, we define

the following function by a slight abuse of notation

γ⊥ : H
1
2 (Γ) → L2(Γ)

γ(ξ) 7→ γ(ξ)× n.

Now we have the following result

Theorem 3.5. If N = 2 and Γ is C1,1, we have

γ⊥(TH
1
2 (Γ)) = H

1
2 (Γ)

and γ⊥ is continuous as a function from TH
1
2 (Γ) to H

1
2 (Γ).

Proof. We first show γ⊥(TH
1
2 (Γ)) ⊂ H

1
2 (Γ). Let ψ ∈ TH

1
2 (Γ). By [12, Lemma 2.2],

we can find an extension ψ̃ ∈ H1 of ψ such that

∇· ψ̃ = 0,

i.e. ψ̃ ∈ H̊(div0) ∩ H1. Now [12, Thm. 3.1] asserts that there is a stream function

u ∈ H1 such that

ψ̃ = ∇×u.

Since ψ̃ ∈ H1, u ∈ H2. We observe that (∇×u)× n = ∇u · n, since

∀ξ ∈ H1 : (∇u · n, γ(ξ))Γ = (∇u,∇ξ) + (∇·(∇u), ξ)
= (∇×u,∇× ξ)− (∇×(∇×u), ξ)

= ((∇×u)× n, γ(ξ))Γ.

Hence (∇×u)× n ∈ H
1
2 (Γ) by [12, Thm. 1.6].

Now we show H
1
2 (Γ) ⊂ γ⊥(TH

1
2 (Γ)). Let g ∈ H

1
2 (Γ). Again by [12, Thm. 1.6], we can

find u ∈ H2 such that

γ(u) = 0, ∇u · n = g.

Now we claim that ∇×u ∈ H1 is the candidate we seek. Indeed, using the same

argument as above we have (∇×u)× n = ∇u · n = g and

∀ξ ∈ H1 : ((∇×u) · n, γ(ξ))Γ = (∇·(∇×u), ξ) + (∇×u,∇ξ)
= (∇×u,∇ξ)− (u,∇×(∇ξ))
= (∇ξ × n, γ(u))Γ

= 0,
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which shows that (∇×u) · n = 0 and hence γ(∇×u) ∈ TH
1
2 (Γ).

Finally, we verify the continuity of γ⊥ as a function from TH
1
2 (Γ) to H

1
2 (Γ). Let

g = ψ × n ∈ H
1
2 (Γ). Since ×n does not alter the L2(Γ) norm, γ⊥ is injective. By the

previous argument, there exists u ∈ H2 such that

γ(u) = 0, ∇u · n = (∇×u)× n = g, (∇×u) · n = 0,

which implies that γ(∇×u) = ψ by the injectivity of γ⊥. By [12, Thm. 1.6], the

normal trace of the gradient is a continuous map from H2 to H
1
2 (Γ). Hence we have

∥g∥
H

1
2 (Γ)

≤ C1∥u∥H2 = C1(∥u∥H1 + ∥grad(∇×u)∥L2)

where grad is the gradient operator for vector fields and C1 > 0 is a generic constant.

Moreover, since γ(u) = 0, the Poincaré inequality [12, Thm. 1.1] gives

∥u∥H1 ≤ C2∥∇×u∥L2

for some generic constant C2 > 0. Combining these inequalities we get

∥g∥
H

1
2 (Γ)

≤ C1C2∥∇×u∥H1 .

Since the left-hand side only depends on γ(∇×u) and

∀ξ ∈ H(div0) ∩ H̊1 : γ(∇×u+ ξ) = γ(∇×u),

taking the infimum over all such ξ ∈ H(div0) ∩ H̊1 gives

∥g∥
H

1
2 (Γ)

≤ C∥γ(∇×u)∥
TH

1
2 (Γ)

= C∥ψ∥
TH

1
2 (Γ)

by [12, Lemma 2.2], where C > 0 is a generic constant.

Remark 3.6. By [12, Remark 1.1], the first part of Theorem 3.5 can be extended to

bounded polygons with the sides Γj, j = 1 . . . J by replacing H
1
2 (Γ) with

∏J
j=1H

1
2 (Γj),

i.e.

γ⊥(TH
1
2 (Γ)) =

J∏
j=1

H
1
2 (Γj).

The proof is analogous to that of Theorem 3.5.

Remark 3.7. This proof may be simplified using a more tractable definition of TH
1
2 (Γ)

and H
1
2 (Γ), e.g. the definition using the Sobolev-Slobodeckij norm as in [3].

17



3.2 Pure natural boundary conditions

In this subsection, we establish the well-posedness of the VVP formulation of the Stokes

problem with pure natural boundary conditions in the case of N = 3 to illustrate the

iterated use of 3.1. The adaptation of the arguments to the case of N = 2 amounts to

replacing H(curl) by H1. We consider the variational problem (18) with general source

functions f = (f1, f2) ∈ (H(curl)×H(div))′ and g ∈ L2 on the right-hand side

Seek w ∈ H(curl), u ∈ H(div), p ∈ L2 :

(w, z)− (∇× z,u) = ⟨f1, z⟩H(curl)′,H(curl), ∀z ∈ H(curl),

(∇×w,v)− (p,∇·v) = ⟨f2,v⟩H(div)′,H(div), ∀v ∈ H(div),

(q,∇·u) = (g, q), ∀q ∈ L2,

(38)

and present the following result:

Theorem 3.8. (38) is well-posed.

Proof. We first invoke 3.1 with the following setting:

V = H(curl)×H(div), Q = L2,

a((w,u), (z,v)) = (w, z)− (∇× z,u)− (∇×w,v),

b((z,v), p) = (∇·v, p),

where V is endowed with the norm ∥(a,b)∥V = ∥a∥H(curl) + ∥b∥H(div).

For (29), let q ∈ L2 and φ ∈ H(div0)
⊥ be such that

∇·φ = q.

We then have the following inequality:

sup
(z,v)∈V

|b((z,v), q)|
∥(z,v)∥V

= sup
(0,v)∈V

|b((0,v), q)|
∥(0,v)∥V

= sup
(0,v)∈V

|b((0,v), q)|
∥v∥H(div)

≥ |b((0,φ), q)|
∥φ∥H(div)

=
∥q∥2L2

∥φ∥H(div)

≥
∥q∥2L2

Cp1∥q∥L2

=
1

Cp1

∥q∥L2 ,

where in the last step the Poincaré–Friedrichs inequality (25) is used. This estab-

lishes (29).
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For (28), we note that

(∀q ∈ L2 : b((z,v), q) = 0) ⇐⇒ ∇·v = 0,

i.e.

N = H(curl)×H(div0).

Observing that a on N ×N is a bilinear form in mixed form, we invoke Theorem 3.1

again with the following setting:

Ṽ = H(curl) , Q̃ = H(div0),

ã(w, z) = (w, z),

b̃(z,u) = −(∇× z,u).

For (29), let v ∈ H(div0) and ρ ∈ H(curl0)
⊥ be such that

∇×ρ = v.

It follows that

sup
z∈V

∣∣∣b̃(z,v)∣∣∣
∥z∥Ṽ

≥

∣∣∣b̃(ρ,v)∣∣∣
∥ρ∥H(curl)

=
∥v∥2L2

∥ρ∥H(curl)

≥
∥v∥2L2

Cp2∥v∥L2

=
1

Cp2

∥v∥L2 =
1

Cp2

∥v∥Q̃,

by the Poincaré–Friedrichs inequality (26), which establishes (29).

Observing that

Ñ = H(curl0),

(28) can be easily verified since ã is coercive with respect to ∥·∥H(curl) on Ñ .

Remark 3.9. We can see that the de Rahm complex (23) is used every time we invoke

Theorem 3.1. Similarly, we can use the de Rahm complex (24) to show the well-

posedness of the VVP formulation for essential boundary conditions, namely

w × n = 0 on Γ,

u · n = 0 on Γ.

The importance of the Hilbert complex, in particular for the optimal convergence rates

of numerical methods, has already been indicated in [2].
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3.3 Navier slip boundary conditions

Recall that we have the following two variational formulations for N = 2 and α uni-

formly positive:
Seek w ∈ H1, u ∈ H̊(div), p ∈ L̂2 :

(w, z)− (∇× z,u) + (α−1w, z)Γ = 0, ∀z ∈ H1,

(∇×w,v)− (p,∇·v) = (f ,v), ∀v ∈ H̊(div),

(q,∇·u) = 0, ∀q ∈ L̂2.

(39)



Seek w ∈ Σ, u ∈ H̊(div), p ∈ L̂2,ψ ∈ TH
1
2 (Γ) :

⟨w × n,η⟩Γ + (αψ,η)Γ = 0, ∀η ∈ TH
1
2 (Γ),

(w, z)− ⟨∇× z,u⟩ − ⟨z × n,ψ⟩Γ = 0, ∀z ∈ Σ,

⟨∇×w,v⟩ − (p,∇ · v) = (f ,v), ∀v ∈ H̊(div),

(q,∇ · u) = 0, ∀q ∈ L̂2.

(40)

These formulations are related in the following sense

Theorem 3.10. Assume Γ is C1,1 and α ∈ L∞(Γ) is bounded away from 0. Let

(w,u, p) ∈ H1 × H̊(div)× L̂2.

Then (w,u, p) is a solution to (39) if and only if there exists ψ ∈ TH
1
2 (Γ) such that

(w,u, p,ψ) is a solution to (40).

Proof. We first assume that (w,u, p) ∈ H1 × H̊(div)× L̂2 is a solution to (39). Testing

the first equation of (39) with z ∈ C∞
c , we obtain that

w = ∇×u. (41)

Since w ∈ H1, u ∈ H(curl). By the last equation in (39) and using ∇·(H̊(div)) = L̂2,

we obtain that ∇·u = 0. Hence u ∈ H(curl) ∩ H̊(div0) and the assumptions on the

domain allows us to invoke [12, Prop. 3.1] to deduce that u ∈ H1 ∩ H̊(div0). Now

testing with z ∈ H1 and using (41), the first equation in (39) yields

−(u× n, z)Γ + (α−1w, z)Γ = 0, ∀z ∈ H1.

Let ψ = γ(u) ∈ TH
1
2 (Γ). The assumption on Γ implies the density of H

1
2 (Γ) in L2(Γ),

and we obtain that

α−1γ(w) = ψ × n. (42)
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Since

(ψ × n, z)Γ = −⟨z × n,ψ⟩Γ,

the first equation in (39) can now be reformulated as

(w, z)− (∇× z,u)− ⟨z × n,ψ⟩Γ = 0, ∀z ∈ H1. (43)

Let η ∈ TH
1
2 (Γ). Multiplying (42) by α and testing with η × n yields

0 = −(w,η × n)Γ + (αψ × n,η × n)Γ

= ⟨w × n,η⟩Γ + (αψ × n,η × n)Γ

= ⟨w × n,η⟩Γ + (αψ,η)Γ, ∀η ∈ TH
1
2 (Γ).

(44)

By (43) and (44), we know that (w,u, p,ψ) satisfies the weak formulation (40) after

restricting z to be in H1. The continuity of the left-hand side with respect to ∥·∥Σ and

the density of H1 in Σ [7, Prop. 4.4] then implies that (w,u, p,ψ) is a solution to (40).

Now let (w,u, p,ψ) ∈ H1 × H̊(div)× L̂2 ×TH
1
2 (Γ) be a solution to (40). By the same

argument as in (44), the first equation can be reformulated as

−(w,η × n)Γ + (αψ × n,η × n)Γ = 0, ∀η ∈ TH
1
2 (Γ),

which is equivalent to the following condition by Theorem 3.5

−(w, z)Γ + (αψ × n, z)Γ = 0, ∀z ∈ H1.

Again by the density of H
1
2 (Γ) in L2(Γ), we obtain that

γ(w) = αψ × n. (45)

Let z ∈ H1. The boundary term in the second equation in (40) can be reformulated

using (45) as

−⟨z × n,ψ⟩Γ = (ψ × n, z)Γ = (α−1w, z)Γ

and we have

(w, z)− (∇× z,u) + (α−1w, z)Γ = 0, ∀z ∈ H1,

which implies that (w,u, p) is a solution to (39).

Remark 3.11. Note that if α = 2W, then α ∈ L∞(Γ) by the assumption on Γ.
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Now we focus on establishing the well-posedness of (40) since it is more general

than (39) as mentioned in Section 2. It should be noted that the uniqueness of the

solution of the Stokes problem with Navier slip boundary conditions is in general not

guaranteed. For example, the rotation field u = [−y, x]T is a solution to the system

on the domain Ω = { (x, y) ∈ R2 | x2 + y2 ≤ 1 } with f = 0. Thus, the goal of the

remainder of this subsection is to show that the kernel of (40) has finite dimension, and

the strategy is to view the term (αψ,η)Γ as a compact perturbation of the following

variational problem

Seek w ∈ Σ, u ∈ H̊(div), p ∈ L̂2,ψ ∈ TH
1
2 (Γ) :

⟨w × n,η⟩Γ = ⟨f1,η⟩Γ ∀η ∈ TH
1
2 (Γ),

(w, z)− ⟨∇× z,u⟩ − ⟨z× n,ψ⟩Γ = ⟨f2, z⟩Σ′,Σ ∀z ∈ Σ,

⟨∇×w,v⟩ − (p,∇ · v) = ⟨f3,v⟩ ∀v ∈ H̊(div),

(q,∇ · u) = (f4, q) ∀q ∈ L̂2.

(46)

where f1 ∈ (TH
1
2 (Γ))′, f2 ∈ Σ′, f3 ∈ H̊(div)

′
, f4 ∈ L2 are general source terms.

We now present the following result

Theorem 3.12. (46) is well-posed iff the following condition is satisfied

inf
ψ∈TH

1
2 (Γ)

sup
τ∈H

|⟨τ × n,ψ⟩|
∥τ∥Σ∥ψ∥TH

1
2 (Γ)

> 0, (47)

which is equivalent to the surjectivity of γt : Σ → (TH
1
2 (Γ))′.

Proof. Using the same argument as in Subsection 3.2, we can reduce the system to
Seek w ∈ Σ, u ∈ H̊(div0), ψ ∈ TH

1
2 (Γ) :

⟨w × n,η⟩Γ = ⟨f1,η⟩Γ ∀η ∈ TH
1
2 (Γ),

(w, z)− ⟨∇× z,u⟩ − ⟨z× n,ψ⟩Γ = ⟨f2, z⟩Σ′,Σ ∀z ∈ Σ,

⟨∇×w,v⟩ = ⟨f3,v⟩ ∀v ∈ H̊(div0),

(48)

by invoking Theorem 3.1 and using the de Rahm complex (24). Now we invoke Theo-

rem 3.1 again with the following setting:

V = Σ×TH
1
2 (Γ), Q = H̊(div0),

a((w,ψ), (z,η)) = (w, z)− ⟨z× n,ψ⟩Γ − ⟨w × n,η⟩Γ,
b((z,η),u) = −⟨∇× z,u⟩,
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where V is equipped with the norm

∥(a,b)∥V = ∥a∥Σ + ∥b∥
TH

1
2 (Γ)

.

Observing that for z ∈ H(curl) ⊆ Σ it holds that

|⟨∇× z,u⟩| = |(∇× z,u)| ≤ ∥∇× z∥L2∥u∥H(div), ∀u ∈ H̊(div),

we have

∥∇× z∥′
H̊(div)

≤ ∥∇× z∥L2 , ∀z ∈ H(curl),

and hence

∥∇× z∥Σ ≤ Cp2∥∇× z∥L2 , ∀z ∈ H̊(curl0)
⊥
,

by the Poincaré–Friedrichs inequality (26). Let v ∈ H̊(div0) and ρ ∈ H̊(curl0)
⊥
such

that

∇×ρ = v.

It follows that

sup
(z,η)∈V

|b((z,η),v)|
∥(z,η)∥V

≥ |b((ρ,0),v)|
∥ρ∥Σ

=
∥v∥2L2

∥ρ∥Σ

≥
∥v∥2L2

Cp2∥v∥L2

=
1

Cp2

∥v∥L2 =
1

Cp2

∥v∥Q,

which establishes (29) for (48).

Since for τ ∈ Σ it holds that

(∀v ∈ H̊(div0) : ⟨∇× τ ,v⟩ = 0) ⇐⇒ (∀ξ ∈ H̊(curl) : ⟨∇× τ ,∇× ξ⟩ = 0)

we obtain that

N = H× TH
1
2 (Γ).

Now we invoke Theorem 3.1 again with

Ṽ = H, Q̃ = TH
1
2 (Γ),

ã(w, z) = (w, z),

b̃(z,ψ) = −⟨z× n,ψ⟩Γ,

and Ñ is determined By

Ñ = { τ ∈ H | ⟨τ × n,ψ⟩Γ = 0, ∀ψ ∈ TH
1
2 (Γ) } = { τ ∈ H | τ × n = 0 }.
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Since ã is coercive by (37), it is also coercive on Ñ ⊆ H and the condition (28) is easily

verified. Hence the condition for the well-posedness of (46) is reduced to

inf
ψ∈TH

1
2 (Γ)

sup
τ∈H

∣∣∣b̃(τ ,ψ)∣∣∣
∥τ∥Σ∥ψ∥TH

1
2 (Γ)

> 0,

which is equivalent to the surjectivity of

B : H → (TH
1
2 (Γ))′

τ 7→ b̃(τ , ·),

namely

B = γt|H
by [9, Thm. C.40]. We conclude by noting that γt(Σ) = γt(H) by (36).

To show (47), we first want to convert the bilinear form in the numerator into an inner

product by finding a suitable extension of ψ ∈ TH
1
2 (Γ). Thanks to [12, Lemma 2.2],

we can find an extension ψ̃ ∈ H1 of ψ ∈ TH
1
2 (Γ) such that

∇· ψ̃ = 0,

i.e. ψ̃ ∈ H̊(div0) ∩H1. For τ ∈ H, it then holds that

⟨τ × n,ψ⟩Γ = (τ ,∇× ψ̃)− ⟨∇× τ , ψ̃⟩ = (τ ,∇× ψ̃)

by Proposition 3.3 (2). Now let us denote H̊(div0) ∩H1 as U and define the bilinear

form

c : H×U → R, c(τ , ξ) = ⟨τ × n, γ(ξ)⟩Γ = (τ ,∇× ξ), (49)

(47) is then equivalent to

inf
ξ∈Ũ

sup
τ∈H

|c(τ , ξ)|
∥τ∥Σ∥γ(ξ)∥TH

1
2 (Γ)

> 0, (50)

where Ũ := U \ ker(γ) = U \ (H̊(div0) ∩ H̊1).

To establish (50), we show that for all ψ ∈ TH
1
2 (Γ), there is an extension ξ ∈ U of ψ

such that ∇× ξ ∈ H. Then we choose τ = ∇× ξ and it suffices to show that

∥τ∥L2∥∇× ξ∥L2 ≥ C∥τ∥Σ∥γ(ξ)∥TH
1
2 (Γ)

, ∀τ ∈ H ∀ξ ∈ U
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for some generic constant C. This will follow from some norm equivalence on the spaces

Σ and U.

Let L := ∇×U and define the operators C and C∗ as

C :H → U′, C(τ ) = c(τ , ·),
C∗ :U → H′, C∗(ξ) = c(·, ξ).

We note that if there exists ξ ∈ ker(C∗) such that γ(ξ) ̸= 0, then ξ ∈ Ũ and (50) can

not hold. The following lemma excludes this case:

Lemma 3.13.

ker(C∗) = H̊(div0) ∩ H̊1.

Proof. First we note that

∀ξ ∈ H̊(div0) ∩ H̊1 : C∗(ξ) = ⟨γt(·), γ(ξ)⟩Γ = 0,

hence

H̊(div0) ∩ H̊1 ⊂ ker(C∗).

Now let ξ ∈ ker(C∗). It holds that

∀τ ∈ H : c(τ , ξ) = ⟨γt(τ ), γ(ξ)⟩Γ = 0. (51)

Since γt(Σ) = γt(H) by (??), the condition (51) can be extended to Σ. Since H1 ⊂ Σ,

we have

∀τ ∈ H1 : 0 = (γt(τ ), γ(ξ)) = (τ ,∇× ξ)− (∇× τ , ξ) = −(γ(τ ), γt(ξ)).

This implies that γt(ξ) = 0, i.e. ξ ∈ U ∩ H̊(curl) = H̊(div0) ∩ H̊(curl) ∩H1. By [12,

Lemma 2.5], it holds that H̊(div) ∩ H̊(curl) = H̊1 and hence ξ ∈ H̊(div0) ∩ H̊1. This

implies that

ker(C∗) ⊂ H̊(div0) ∩ H̊1.

Remark 3.14. The argument in showing ker(C∗) ⊂ H̊(div0) ∩ H̊1 proves that

∀ψ ∈ TH
1
2 (Γ) : [∀τ ∈ Σ : ⟨γt(τ ),ψ⟩Γ = 0] =⇒ [ψ = 0].

Since TH
1
2 (Γ) is reflexive, this shows that γt(Σ) is dense in (TH

1
2 (Γ))

′
.
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Lemma 3.15. The following decompositions are orthogonal with respect to L2:

(1) H = ker(C)⊕ (L̄ ∩H),

(2) L̄ = ∇× ker(C∗)⊕ (L̄ ∩H).

Proof. Let us denote H̊(div0) ∩ H̊1 as U0.

(1) By definition of C,

τ ∈ ker(C) ⇔ τ ∈ H and [ ∀ξ ∈ U : (τ ,∇× ξ) = 0 ].

This implies that

ker(C) = L̄⊥ ∩H

and the statement would follow if L̄⊥ ∩H = L̄⊥. Now since

∀ξ ∈ U0 : (τ ,∇× ξ) = ⟨∇× τ , ξ⟩
(H̊1)

′
,H̊1 ,

by Proposition 3.3 we have that

[∀ξ ∈ U : (τ ,∇× ξ) = 0 ] ⇒ [∀ξ ∈ U0 : ⟨∇× τ , ξ⟩
(H̊1)

′
,H̊1 = 0 ] ⇒ τ ∈ H.

Hence

τ ∈ L̄⊥ ⇔ [∀ξ ∈ U : (τ ,∇× ξ) = 0 ] ⇒ τ ∈ H

and L̄⊥ ∩H = L̄⊥.

(2) We observe that

ξ ∈ ker(C∗) ⇒ [ (τ ,∇× ξ) = 0 ∀τ ∈ H ]

⇒ ∇× ξ ∈ H⊥ in L2 ⇒ ∇× ξ ∈ (L̄ ∩H)
⊥
in L̄,

hence

∇× ker(C∗) ⊂ (L̄ ∩H)
⊥
in L̄. (52)

On the other hand, let φ ∈ L̄, it holds that

[ (φ,∇× ξ) = 0 ∀ξ ∈ U0 ] ⇒ [ ⟨∇×φ, ξ⟩
(H̊1)

′
,H̊1 = 0 ∀ξ ∈ U0 ]

⇒ φ ∈ H ⇒ φ ∈ L̄ ∩H,

where in the second last step we used Proposition 3.3. This implies that

(∇×U0)
⊥ ⊂ L̄ ∩H in L̄.
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and hence

(L̄ ∩H)
⊥ ⊂ ∇×U0 in L̄. (53)

Combining (52)-(53) and using Lemma 3.13, we obtain that

(L̄ ∩H)
⊥ ⊂ ∇×U0 = ∇× ker(C∗) ⊂ (L̄ ∩H)

⊥
in L̄,

which proves the statement.

Now we can prove the well-posedness of (46) under some assumptions on Ω:

Theorem 3.16. Assume that Ω satisfies one of the following

(1) Γ is C1,1,

(2) Ω ⊂ R2 and Γ is piecewise smooth without reentrant corners,

(3) Ω ⊂ R3 is a convex polyhedron.

Then (46) is well-posed.

Proof. We want to establish (50), namely

inf
ξ∈Ũ

sup
τ∈H

|c(τ , ξ)|
∥τ∥Σ∥γ(ξ)∥TH

1
2 (Γ)

> 0.

Let us first show that

∃C > 0 : ∀ξ ∈ U : ∥∇× ξ∥L2 ≥ C∥ξ∥H1 . (54)

For Ω ⊂ R2, this is established by the assumptions on Ω and by [12, Prop. 3.1, Remark

3.5]. For Ω ⊂ R3, by the assumptions on Ω and [12, Thm. 3.8-3.9], H̊(div) ∩H(curl)

is continuously imbedded in H1. This implies that

∃C1 > 0 : ∀ξ ∈ U : ∥ξ∥H1 ≤ C1 (∥ξ∥L2 + ∥∇× ξ∥L2) . (55)

Furthermore, [12, Lemma 3.6] gives that

∃C2 > 0 : ∀ξ ∈ U : ∥ξ∥L2 + ∥∇× ξ∥L2 ≤ C2∥∇× ξ∥L2 . (56)

Combining (55) and (56) we obtain (54) for Ω ⊂ R3.
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We observe that by (54), ∥∇× ·∥L2 is an equivalent norm on U. Hence

∇× : U → L

is an isomorphism. Since U as a closed subspace of H1 is a Banach space, L is

also a Banach space and thus closed in L2. Moreover, since ker(C∗) is closed in U,

∇× ker(C∗) = ∇×(H̊(div0) ∩ H̊1) is also closed in L and hence in L2. Therefore,

Lemma 3.15 gives the orthogonal decomposition

L = ∇× ker(C∗)⊕ (L ∩H) (57)

in L2. Now let ξ ∈ Ũ and let

∇× ξ = ∇×φ+ η, φ ∈ ker(C∗), η ∈ L ∩H

be the decomposition of ∇× ξ given by (57). Since ξ /∈ H̊(div0) ∩ H̊1, ξ /∈ ker(C∗) by

Lemma 3.13 and hence η ̸= 0. Then it holds that

(η,∇× ξ) = (η,∇×(ξ −φ))
= ∥η∥2L2 = ∥η∥L2∥∇×(ξ −φ)∥L2

≥ C∥η∥L2∥ξ −φ∥H1

≥ C∥η∥L2∥γ(ξ −φ)∥
TH

1
2 (Γ)

= C∥η∥Σ∥γξ∥TH
1
2 (Γ)

,

where in the second last inequality we used (54) and in the last equality we used (37)

and that γ(φ) = 0 since φ ∈ H̊1. This establishes (50) and proves the result.

Corollary 3.16.1. Assume Ω satisfies the same assumptions as in Theorem 3.16.

Then γt is surjective onto (TH
1
2 (Γ))

′
.

Let us denote the bilinear form on the left-hand side of (46) as ã, namely

V := Σ× H̊(div)× L̂2 × TH
1
2 (Γ), ã : V × V → R,

ã((w,u, p,ψ), (z,v, q,η)) = (w, z)− ⟨∇× z,u⟩+ ⟨∇×w,v⟩
− (p,∇·v) + (q,∇·u)
− ⟨z× n,ψ⟩Γ + ⟨w × n,η⟩Γ,

and define the bilinear form

k : V × V → R2, k((w,u, p,ψ), (z,v, q,η)) = (αψ,η)Γ.
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Let us also define

a := ã+ k

and the linear operators associated with a, ã and k as A, Ã,K : V → V ′, respectively:

A(ξ) := a(ξ, ·), Ã(ξ) := ã(ξ, ·), K(ξ) := k(ξ, ·).

As mentioned at the beginning of the subsection, we view k as a compact perturbation

and obtain that

Theorem 3.17. Assume Ω satisfies the same assumptions as in Theorem 3.16. Then

ker(A) is finite-dimensional.

Proof. By Theorem 3.16, Ã is a isomorphism and hence Ã−1 exists and is continuous.

On the other hand, the imbedding of TH
1
2 (Γ) in L2(Γ) is compact by [10, Lemma 4.5],

which implies that K is compact. Hence Ã−1K is also compact by [4, Prop. 6.3]. The

Fredholm alternative [4, Thm. 6.6] asserts that ker(I + Ã−1K) is finite-dimensional.

We conclude by A = Ã(I + Ã−1K).
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4 The discrete problem

In this section, we discretize the VVP formulations obtained in Section 2 in the case

of N = 2. The resulting discrete problems are then implemented in the next section

for numerical tests.

4.1 Preliminaries

We need to introduce some notations for the finite element spaces. Throughout the

section, let {Ωh}h be a quasi-uniform and uniformly shape regular family of meshes

with mesh sizes h > 0 and {Γh}h be the (N−1)-dimensional boundary meshes obtained

by restricting {Ωh}h to Γ. We will denote the Lagrange finite elements, the Ravier-

Thomas finite elements and piecewise polynomial space of degree r ≥ 0 on Ωh as Sr
h,

V r
h and Qr

h, respectively. The following subcomplex of the de Rahm complex (23) holds

on Ωh for r > 0

Sr
h

∇×−−→ V r−1
h

∇·−−→ Qr−1
h , (58)

which will be the guidance of our choice of the degrees of finite element spaces.

We will also need the restriction of Sr
h to the boundary mesh, which will be denoted by

T r
h = γ(Sr

h). Since γ is continuous from H1 onto H
1
2 (Γ) and {Sr

h}h is a dense sequence

in H1, {T r
h}h is a dense sequence in H

1
2 (Γ).

4.2 Discretizations

For the approximation of the Weingarten map, we note that on 2D the Weingarten

map corresponds to the scalar curvature and consider the following variational problem

as described in [16, Section 3]
Seek κ ∈ H

1
2 (Γ) :

(κ, ψ)Γ =
∑
v∈VΓ

arccos(nL(v) · nR(v))ψ(v) + (t · (∇n · t), ψ)Γ, ∀ψ ∈ H
1
2 (Γ), (59)

where VΓ denotes the set of boundary vertices, κ the scalar curvature, t the tangential

vector on the boundary edges, and nL(v) and nR(v) the normal vector of the left and

right boundary edges that are connected by vertex v. The right-hand side of (59)
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splits the rotation angle weighted by ψ into two parts: the first term describes the

change of angle across every vertex, and the second the rotation within every edge. We

discretize (59) by restricting the trial and test space for κ to T r
h and the approximation

of α obtained in this way will be denoted as αh in the following.

Using Sr
h as the finite element space for H1, V r−1

h forH(div), P r−1
h for L2 and considering

general source functions on the right-hand side, we discretize (18) as

Seek wh ∈ Sr
h, uh ∈ V r−1

h , ph ∈ P r−1
h :

(wh, zh)− (∇× zh,uh) = ⟨f1, zh⟩(H1)′,H1 , ∀zh ∈ Sr
h,

(∇×wh,vh)− (ph,∇·vh) = ⟨f2,vh⟩H(div)′,H(div), ∀vh ∈ V r−1
h ,

(qh,∇·uh) = (g, qh), ∀qh ∈ P r−1
h .

(60)

For (20), we replace the trial and test space for u by V̊ r−1
h := V r−1

h ∩ H̊(div) and

introduce a Lagrange multiplier to enforce the condition of vanishing mean value of ph

(see [13, Problem 2-15]). The discrete problem then reads

Seek wh ∈ Sr
h, uh ∈ V̊ r−1

h , ph ∈ P r−1
h , λ ∈ R :

(wh, zh)− (∇× zh,uh) + (α−1
h wh, zh)Γ = ⟨f1, zh⟩(H1)′,H1 , ∀zh ∈ Sr

h,

(∇×wh,vh)− (ph,∇·vh) = ⟨f2,vh⟩, ∀vh ∈ V̊ r−1
h ,

(qh,∇·uh) + (qh, λ) = (g, qh), ∀qh ∈ P r−1
h ,

(ph, λ
′) = 0, ∀λ′ ∈ R.

(61)

For (22), we keep the finite element spaces of u and p unchanged since the function

spaces for these variables are the same as in (20). For w, we also use the same finite

element space as above since {Sr
h}h is a dense sequence in Σ. To see this, we note

that {Sr
h}h is a dense sequence in H1 also with respect to ∥·∥Σ since ∥·∥Σ is controlled

by ∥·∥H1 . Hence, the density of {Sr
h}h in Σ follows from the density of H1 in Σ. For

the variable ψ, we note that for w, z in H1 the first two equations in (22) can be

reformulated using the argument in the proof of Theorem 3.10 as

−(w,η × n)Γ + (αψ × n,η × n)Γ = 0, ∀η ∈ TH
1
2 (Γ), (62)

(w, z)− (∇× z,u) + (ψ × n, z)Γ = 0, ∀z ∈ H1, (63)

which is equivalent to the following conditions in the case that Γ is C1,1 by Theorem 3.5

−(w, η)Γ + (αψ, η)Γ = 0, ∀η ∈ H
1
2 (Γ), (64)

(w, z)− (∇× z,u) + (ψ, z)Γ = 0, ∀z ∈ H1, (65)
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where ψ is sought in H
1
2 (Γ). Since the finite element space for w is chosen to be

Sr
h ⊂ H1, the above reformulation holds on the discrete level for any choice of the

finite element space Rh for ψ. Moreover, if {Rh}h is a dense sequence of subspaces in

TH
1
2 (Γ) and Γ is C1,1, {Rh} × nh would be a dense sequence of subspaces in H

1
2 (Γ)

by Theorem 3.5. Therefore, the discretization of (62) and (63) would be equivalent

to that of (64) and (65). We discretize the latter and choose T r
h as the finite element

space for ψ. Again considering general source functions on the right-hand side, the

discrete problem is given by

Seek wh ∈ Sr
h, uh ∈ V̊ r−1

h , ph ∈ P r−1
h , ψh ∈ T r

h , λ ∈ R :

−(wh, ηh)Γ + (αψh, ηh)Γ = ⟨f1, ηh⟩(
H

1
2 (Γ)

)′
,H

1
2 (Γ)

, ∀ηh ∈ T r
h ,

(wh, zh)− (∇× zh,uh) + (ψh, zh)Γ = ⟨f2, zh⟩(H1)′,H1 , ∀zh ∈ Sr
h,

(∇×wh,vh)− (ph,∇·vh) = ⟨f3,vh⟩, ∀vh ∈ V̊ r−1
h ,

(qh,∇·uh) + (qh, λ) = (g, qh), ∀qh ∈ P r−1
h ,

(ph, λ
′) = 0, ∀λ′ ∈ R.

(66)

Comparing (66) with (61), we see that these two formulations differ only by an L2(Γ)

projection onto T r
h , since (61) can be obtained if we require αhψ = wh in (66) and

assume αh to be bounded away from 0. The similarity between the two formulations

will be confirmed by the numerical results in the next section.
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5 Numerical experiments

The numerical schemes derived in the last section are implemented using the open

source finite element library NGSolve [17] and tested against numerical experiments.

The source code is available in the git repository https://gitlab.ethz.ch/peiyyu/

hdiv-based-approximation-of-stokes. In the following discussion, we will refer to

the degree of the Lagrange finite element spaces Sr
h as the order of the finite element

spaces used in a numerical scheme. For Navier slip boundary conditions, we refer

to (61) and (66) as formulation A and B, respectively.

For Navier slip boundary conditions, we use a curved mesh to avoid variational crime

due to the approximation of the Weingarten map. For order r finite element spaces,

T r+2
h is used to calculate αh.

5.1 Pure natural boundary conditions

We consider Ω = (0, 1)2 and choose the right-hand side f1, f2 and g in (60) such that

the reference solutions for u = (ux, uy), w and p are given by

ux(x, y) = −2x2(x− 1)2y(y − 1)(2y − 1),

uy(x, y) = −ux(y, x),
∇·u = 0,

w(x, y) = ∇×u = 2(y2(y − 1)2(6x2 − 6x+ 1) + x2(x− 1)2(6y2 − 6y + 1)),

p(x, y) =

(
x− 1

2

)5

+

(
y − 1

2

)5

.

The solutions from (60) of order 1 for h = 2−3 and h = 2−6 are in good accordance with

the reference solution, as is shown in Fig. 1. The convergence of the scheme for orders

1 to 3 is demonstrated in Fig. 2. For the H(div) norm of u, we see that the discrete

solution preserves the divergence-free property of u, and the H(div) error converges

with rate r for order r finite element spaces. The L2 error of p and H1 error of w also

converge with the same order as the order of finite element spaces, and the L2 error of

w enjoys an elevation of convergence order by 1. These optimal convergence rates are

possibly related to the subcomplex of de Rahm complex (58), as has been pointed out

in [2] for the vector Laplacian problem.
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(a) u, h = 2−3. (b) w, h = 2−3. (c) p, h = 2−3.

(d) u, h = 2−6. (e) w, h = 2−6. (f) p, h = 2−6.

Figure 1: Pure natural boundary conditions: color plots of u, w and p for order 1,

mesh size 2−3 and 2−6.
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(e) L2 error of ∇×w.

Figure 2: Pure natural boundary conditions: error plots of u, w and p.
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5.2 Navier slip boundary conditions

For Navier slip boundary conditions, we consider Ω to be an ellipse with semi-major

axis of length 2 and semi-minor axis of length 1. The manufactured solutions are now

defined by

ux(x, y) = − sin(2x) cos(2y),

uy(x, y) = −ux(y, x),
w(x, y) = ∇×u = −4 sin(2x) sin(2y),

p(x, y) = x sin(3x) cos(y).

As is shown in Fig. 3 and Fig. 4, the solutions from the two formulations of order

1 show no significant difference and have no singularities. From Fig. 5 and Fig. 6

we see that the two formulations also share similar convergence behavior, and the

convergence rates are summarized in Table 1. Compared to the optimal convergence

rates obtained for pure natural boundary conditions, we get optimal convergence rates

in the first order case, while for higher order finite element spaces the convergence rates

are suboptimal by 1
2
for the L2 and H1 error of w, which is a minor indication of the

use of certain inverse inequality in the error analysis. We also note that the divergence

(a) u, h = 2−3. (b) w, h = 2−3. (c) p, h = 2−3.

(d) u, h = 2−6. (e) w, h = 2−6. (f) p, h = 2−6.

Figure 3: Navier slip boundary conditions: color plots of u, w and p from formulation

A for order 1, mesh size 2−3 and 2−6.
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(a) u, h = 2−3. (b) w, h = 2−3. (c) p, h = 2−3.

(d) u, h = 2−6. (e) w, h = 2−6. (f) p, h = 2−6.

Figure 4: Navier slip boundary conditions: color plots of u, w and p from formulation

B for order 1, mesh size 2−3 and 2−6.
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Figure 5: Navier slip boundary conditions: error plots of u, w and p from formulation

A.

36



10−1

Mesh Size

10−6

10−5

10−4

10−3

10−2

10−1

100

||u
h

−
u|

| 0

order 1
O(h1.0)
order 2
O(h2.0)
order 3
O(h3.0)

(a) L2 error of u.

10−1

Mesh Size

10−13

10−11

10−9

10−7

10−5

10−3

10−1

||∇
⋅u

h
−

∇
⋅u

|| 0

order 1
O(h2.0)
order 2
O(h4.0)
order 3
O(h4.0)

(b) L2 error of ∇·u.

10−1

Mesh Size

10−6

10−5

10−4

10−3

10−2

10−1

100

||p
h

−
p|

| 0

order 1
O(h1.0)
order 2
O(h2.0)
order 3
O(h3.0)

(c) L2 error of p.

10−1

Mesh Size

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

||w
h

−
w

|| 0

order 1
O(h2.0)
order 2
O(h2.5)
order 3
O(h3.5)

(d) L2 error of w.

10−1

Mesh Size

10−4

10−3

10−2

10−1

100

101

||∇
×
w
h

−
∇

×
w

|| 0

order 1
O(h1.0)
order 2
O(h1.5)
order 3
O(h2.5)

(e) L2 error of ∇×w.

10−1

Mesh Size

10−6

10−5

10−4

10−3

10−2

10−1

||ψ
h

−
ψ|

| 0,
∂Ω

order 1
O(h1.5)
order 2
O(h2.0)
order 3
O(h3.0)

(f) L2(Γ) error of ψ.

Figure 6: Navier slip boundary conditions: error plots of u, w, p and ψ from formulation

B.

free property of u is not exactly preserved in this case, which should be attributed to

the curved mesh resulting in a non-linear map from the reference element to the finite

elements near the boundary.

∥u− uh∥H(div) ∥p− ph∥L2 ∥w − wh∥L2 ∥w − wh∥H1 ∥ψ − ψh∥L2(Γ)

A r r r + 1/r + 0.5 r/r − 0.5 -

B r r r + 1/r + 0.5 r/r − 0.5 r + 0.5/r

Table 1: Navier slip boundary conditions: convergence rates from formulation A and

B using finite element spaces of order r. A slash means that the convergence rates for

r = 1 and r > 1 are different, in which case the rate for r = 1 is before the slash, the

rate for r > 1 after.
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6 Conclusion

Motivated by the structure-preserving numerical schemes for the Navier-Stokes equa-

tion [18] and MHD [11], we try to derive VVP formulations for the Stokes problem with

Navier slip boundary conditions using an equivalent formulation of the boundary con-

dition proposed by Mitrea and Monniaux [14, Eq. 2.9]. A first variational formulation

was derived by following the approach for pure natural boundary conditions, which

poses significant constraint on the domain. To alleviate the issue, we enlarged the trial

and test space for the vorticity and introduced a new variable for the tangential trace

of the velocity, which allows us to enforce Navier slip boundary conditions in a La-

grange multiplier fashion. The resulting formulation is more general and shown to be

well-posed on the continuous level, and the two formulations are closely related under

certain assumptions. We also derived and simplified the discretization of the obtained

variational problems, which was implemented using NGSolve [17] for numerical tests.

Both formulations for Navier slip boundary conditions produce similar results in the

numerical experiment, where the convergence rates for the L2 error and H1 error of

w are suboptimal by half an order compared to the rates observed from pure natural

boundary conditions in the case of finite element spaces with order higher than one.

For the lowest order finite element spaces, optimal convergence rates are observed.

The stability and error analysis of the numerical schemes is still open for future work.

In particular, the difference in the convergence behavior between the use of first order

and higher order finite element spaces needs to be clarified. Moreover, additional

numerical experiments will be conducted to compare the two formulations for Navier

slip boundary conditions, with a focus on domains with non-invertible Weingarten

maps.
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