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0.1 Prerequisites

This course builds upon the ETH lecture 401-0663-00L Numerical Methods for CSE, see [8]. In particular,

familiarity with the following topics from computational mathematics is taken for granted:

• Techniques for handling sparse matrices and sparse linear systems, see [8, Section 1.7].

• Numerical quadrature, concepts and methods as introduced in [8, Chapter 5].

• Numerical method for solving initial value problems for ordinary differential equations (numerical

integration), in particular stiff initial value problems as discussed in [8, Chapter 12].
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Lecture notes for the course “Numerical Methods for CSE are available” for download here.

Of course, a solid knowledge of calculus and linear algebra is also important. The following texts may be

used for reference and self-study:

• Calculus: M. STRUWE, Analysis für Informatiker. Lecture notes, ETH Zürich, 2009, link.

• K. NIPP AND D. STOFFER, Lineare Algebra, vdf Hochschulverlag, Zürich, 5th ed., 2002.

0.2 Goals

This lecture is a core course for

• BSc in Computational Science and Engineering (RW/CSE),

• BSC in Computer Science with focus Computational Science.

Main skills to be acquired in this course:

✦ Ability to implement advanced numerical methods for the solution of partial differential equations in

C++ efficiently (, based on numerical libraries, of course).

✦ Ability to modify and adapt numerical algorithms guided by awareness of their mathematical founda-

tions

✦ Ability to select and assess numerical methods in light of the predictions of theory

✦ Ability to identify features of a PDE (= partial differential equation) based model that are relevant for

the selection and performance of a numerical algorithm

✦ Ability to understand research publications on theoretical and practical aspects of numerical methods

for partial differential equations.

Distinction from other courses

This course 6=
Numerical analysis of PDE (→ mathematics curriculum)

(401-3651-00V Numerical methods for elliptic and parabolic par-

tial differential equations, )

Instruction on how to apply software packages

0.3 Course History

Precursor courses of the current lecture are the following:

• Summer semester 04, R. Hiptmair (for RW/CSE undergraduates)

• Winter semester 04/05, C. Schwab (for RW/CSE undergraduates)

• Winter semester 05/06, H. Harbrecht (for RW/CSE undergraduates)
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• Winter semester 06/07, C. Schwab (for BSc RW/CSE)

• Autumn semester 07, A. Chernov (for BSc RW/CSE)

• Autumn semester 08, C. Schwab (for BSc RW/CSE)

• Autumn semester 09, V. Gradinaru (for BSc RW/CSE, Subversion Revision: 22844)

• Spring semester 10, R. Hiptmair (for BSc Computer Science)

• Autumn semester 10, R. Hiptmair (for BSc RW/CSE, Subversion Revision: 30025)

• Autumn semester 11, P. Grohs (for for BSc RW/CSE, Subversion Revision: 39100)

• Spring semester 12, R. Hiptmair (for RW/CSE & BSc Computer Science)

• Spring semester 13, R. Hiptmair (for BSc RW/CSE & BSc Computer Science)

• Spring semester 15, R. Hiptmair (for BSc RW/CSE & BSc Computer Science)

• Spring semester 16, R. Hiptmair (for BSc RW/CSE & BSc Computer Science)

Up to 2013, implementation of finite element method was discussed using a MATLAB library called

“LehrFEM” [4]. From 2015 a C++ finite element programming environment based on the DUNE inter-

face standard is used, first it was a code developed as part of the DUNE project, now the BETL code

developed at the Seminar for Applied Mathematics of ETH Zürich.

0.4 Reading Instructions for Lecture Notes

These lecture notes have not been written as a self-contained textbook.

They are meant to be supplemented by explanations given in class.

Some pieces of advice:

✦ this material is dense and concise to complement explanations given in class

✦ this document is not meant for mere reading, but for working with,

✦ turn pages all the time and follow the numerous cross-references,

✦ study the relevant section of the course material when doing homework problems.

✦ these lecture notes come with review questions and quizzes for immediate testing of understanding

after first thorough reading.

0.5 Characteristics of the Course

0.5.1 Level

✦
The course is difficult and demanding (ie. ETH level)

✦ Do not expect to understand everything in class. The average student will

• understand about one third of the material when attending the lectures,
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• understand another third when making a serious effort to solve the homework problems,

• hopefully understand the remaining third when studying for the examnination after the end of

the course.

Perseverance will be rewarded!

0.5.2 Teaching Model

The bulk of the material will be presented in a traditional classroom setting using a tablet. The tablet notes

will be made available as PDF documents shortly after each lecture. Most complex considerations will be

elaborated in handwriting, while theorems, definitions, some long formulas and numerical results may just

be pasted from this lecture document. Taking notes during class is not essential, but it may help some

students to stay focused.

Some parts of the lecture will be covered using a flipped classroom model: students will be asked to

prepare some topics based on this lecture document and, occasionally, short video tutorials. The topics

will again be discussed in class, in the form of a questions and answers session, however.

0.5.3 Homework assignments

A problem sheet will be published every week comprising a number of homework problems, most of them

involving both implementation and theoretical parts.

Some homework problems will be labelled core problems and we strongly recommend that an

earnest attempt is made to solve them. We expect the average student to take 3-4 hours to solve

the core problems completely. Of course, students are also encouraged to tackle the remaining

non-core problems, time permitting.

The problems are published on the TASKBASE online platform, together with plenty of hints. A master

solution will be made available shortly after a problem sheet has been released, but it is foolish to read the

master solution parallel to working on a problem sheet, because trying to find the solution on one’s own is

essential for developing problem solving skills, though it may occasionally be frustrating.

Assignments will now be incorporated into TASKBASE

“the adaptive learning platform”. Students registered

in the lecture can log in with their nethz username

and password.

Taskbase login screen ✄

0. Introduction, 0.5. Characteristics of the Course 10
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Once you logged in, you will arrive to a homepage

including an icon for each one of your lectures using

taskbase.

You can also explore the assignment online.

✁ online display of an assignment

Click on to download the assignment as a pdf file. Click on to get it with solutions.

You may click the Hint button to see the hints, if some are provided.

online display of hint for subproblem 1.a) ✄

You can click the Solution button to display the pro-

posed It also allows you to give us feedback for each

subproblem.

✁ online display of solution for subproblem 1.a)

Note: Homework problems can be handed in, if you want to receive feedback about your solution.

Please write your name on your homework paper clearly and hand it to one of the assistants in the

study center or deposit it in the tray in the aisle HG G 53-54.3 marked “Numerical Methods for Partial

Differential Equations”. One week later the corrections will usually be returned.

0.5.4 Study center

The tutorials for this course will be conducted in the

format of study groups in the ETH “flexible lecture

hall” (study center) HG E 41 ✄.

Several assistants will be present to explain and dis-

cuss homework problems both from the previous and

the current problem sheet.

The study center session is also a good opportunity

to do the homework in a group. In case you are

stalled you may call an assistant and ask for advice.
Fig. 1

0.6 Practical Information

Course recordings: CMS link
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Course: 401-0674-00L Numerical Methods for Partial Differential Equations

Lectures: Mo 15-17 HG F 1

Tu 15-17 HG F 1

Tutorials: Mo 17-19 HG E 41

Lecturer: Prof. Ralf Hiptmair, office: HG G 58.2, e-mail: hiptmair@sam.math.ethz.ch

Assistants: Roger Käppeli, office: HG G 52.1,

e-mail: roger.kaeppeli@sam.math.ethz.ch

(Senior Scientist at Seminar of Applied Mathematics)

Kjetil Lye, office: HG G 56.1,

e-mail: kjetil.lye@sam.math.ethz.ch

(2nd year PhD student at Seminar of Applied Mathematics)

Laura Scarabosio, office: HG G 54.1,

e-mail: laura.scarabosio@sam.math.ethz.ch

(4th year PhD student at Seminar of Applied Mathematics)

Elke Spindler, office: HG G 53.1,

e-mail: elke.spindler@sam.math.ethz.ch

(4th year PhD student at Seminar of Applied Mathematics)

Carolina Urzua Torres, office: HG G 53.1,

e-mail: carolina.urzua@sam.math.ethz.ch

(2nd year PhD student at Seminar of Applied Mathematics)

Teaching assistants:

Dominik Borer borerdo@student.ethz.ch

Nicolas Ochsner ochsnern@student.ethz.ch

Alexander Xandeep xandeepv@student.ethz.ch

Office hours:

• Prof. Ralf Hiptmair, Monday, 17:15-17:45, HG G 58.2

Assignments: ✦ 11 weekly assignment sheets, made available for download on Monday. Due on

Monday one week later: to be deposited in the labeled box at HG G 53.x.

✦ “Testat” requirement: NONE

✦ Submit your C++ solutions via the online submission interface

http://www.math.ethz.ch/ grsam/submit/ (choose course n.5)

✦ Exercises are marked either as core or non-core problems. Core problems (about

2 per sheet) are supposed to be essential for following the course.

✦ Correction of homework problems will be done on request for at most two problems

per sheet.
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Examinations:
✦ Mid-term quick assessment (∗): April 12, 2016, 15:15 - 15:45

✦ End-term quick assessment (∗): May 24, 2016, 15:15 - 15:45

✦ “Sessionsprüfung”: Computer based examination involving coding problems be-

side theoretical questions. Parts of the lecture slides, C++ documents, and Eigen

documentation will be made available during the examination.✞
✝

☎
✆3 hour examination

(∗) The mid-term and end-term last 30 minutes, closed book. Achieving 100% of the points in a term

exam will yield a BONUS of 10% of the points for the session exam. Passing of either term exam is

not required for admission to the session exam. Repetition of term exams is not possible.

Web page: http://www.math.ethz.ch/education/bachelor/lectures/fs2016/other/n_dgl

0.7 Course Wiki

A course wiki can be accessed through

http://npdeeth.wikispaces.com/

It serves two purposes

1. Reporting errors: Please supply the following information:

• (sub)section where the error has been found,

• precise location (e.g, after Equation (4), Thm. 2.3.3, etc. ). Refrain from giving page numbers,

• brief description of the error.

2. Online discussion: The wiki has been set up so that you can post questions on the programming

exercises that accompany the course. One of the assistants will look at the entries and

• write an answer in this forum or

• discuss the question in a consulting session and post an answer later.

A second purpose of online discussion is that the assistants can collect FAQs and post answers

here.

0.8 Credits

• To Thomas Häner and Benjamin Ulmer, MSc students of CSE, for setting up the DUNE based

environment used in this course.

• To Baranidharan Mohan, MSc student of CSE, for preparing the text for Section 3.6.1.

• to Federico Danieli, MSc students of CSE, for preparing BETL based finite element demonstration

codes for scalar linear elliptic boundary value problems in 2D.
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0.9 Implementation

Algorithmic aspect of numerical methods will bulk large in this course. Thus, code samples will even be

discussed in class, and homework assignments will involve substantial coding parts.

(0.9.1) Programming language

Programming language

This course will entirely rely on the programming language C++ using the latest standard C++ 11.

➨ For information about C++ 11 and further references please consult [8, Section 0.2].

(0.9.3) Tools for numerical linear algebra

To handle matrices and vectors we will rely on the template library EIGEN, which offers very efficient

high-level operations from linear algebra; from the EIGEN home page:

Eigen is a C++ template library for linear algebra:

matrices, vectors, numerical solvers, and related algorithms.

For an introduction to EIGEN refer to [8, Section 1.2.3] and the wealth of online resources available for this

widely used library.

EIGEN is an open source community code development project and you are also invited to contribute.

(0.9.4) Visualization tools

A big advantage of MATLAB is the ease with which computational results can be visualized using high level

plotting functions. In C++ a similar ease can be achieved by the use of suitable libraries. For this course

we opted for MATHGL, a library for creating high-quality graphics in C++.

(0.9.5) Build tools

The use of large template libraries entails complex build procedures, because the compiler and linker have

to be informed about the location of numerous files and libraries scattered over many directories. Thus

build tools become indispensable and in this course we use the

psframebox[style=melframe]cmake psframebox[style=melframe]make

build chain:

cmake

make

0. Introduction, 0.9. Implementation 14
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(0.9.6) Git/Gitlab source repository

• Short tutorial for Git with many further links.

• Link to an introduction to Gitlab bu Til Ehrengruber.

• Course Git repository:

git@gitlab.math.ethz.ch:NumPDE/NumPDE.git

See the instructions on how to clone the repository and for information about its structure.

0.10 Mathematical Modelling with Partial Differential Equations

(0.10.1) Continuum models

Partial differential equations (PDEs) are at the core of most mathematical models arising from a continuum

approach, where the configuration or state of a system is described by means of a function on a (multi-

dimensional) domain Ω ⊂ Rd, d ≥ 1. In fact, in one dimension, for d = 1, the models will involve ordinary

differential equations (ODEs) rather than partial differential equations. Yet, in many cases the dimension d
can be regarded as a parameter for a family of models and the case d = 1 is not really special and shares

many traits with models for the genuinely multi-dimensional setting d > 1.

Therefore, the title of the course is a slight misnomer; a more appropriate title would be

Numerical Methods for Continuum Models with Local Interactions

but who would find this excitiing?

Next, notations used for stating partial differential equations will be explained. Then a few examples of

mathematical models based on PDEs will be presented in a cursory way, in order to convey their diversity

and wide scope.

0.10.1 PDEs: Basic Notions

(0.10.2) Formal notion of a partial differential equation (PDE)

A partial differential equation for an unknown function u = [u1, . . . , un]
⊤ : Ω ⊂ Rd → Rn, d, n ∈ N,

depending on the independent variables x1, . . . , xd (u = u(x1, . . . , xd)) has the form

F(u,D u,D2 u, . . . ,Dm u) = 0 , (0.10.3)
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where F is a general function and D
j u denotes a tensor of dimension n× d× · · · × d with ndj entries

defined as

(
D

j u(x)
)

i,k1,...,kj

:=
∂jui

∂xk1
. . . ∂xkj

(x) , kℓ ∈ {1, . . . , d} ,kℓ ∈ {1, . . . , j} . (0.10.4)

✎ notation: we write x1, . . . , xd for the independent “spatial” variables, x = [x1, . . . , xd]
⊤

Note that for j = 1 the derivative Du boills down to the classical Jacobian of u

D u(x) =

[
∂ui

∂xj
(x)

]n

i,j=1

=




∂u1
∂x1

(x) ∂u1
∂x2

(x) · · · · · · ∂u1
∂xn

(x)
∂u2
∂x1

(x) ∂u2
∂xn

(x)
...

...
∂un
∂x1

(x) ∂un
∂x2

(x) · · · · · · ∂un
∂xn

(x)




. (0.10.5)

For j = 1 and n = 1 the matrix D
2 u agrees with the Hessian H u of the scalar valued function u = u1:

H u(x) = D
2 u(x) =

[
∂2u

∂xi∂xj
(x)
]d

i,j=1
∈ R

d,d . (0.10.6)

Note that Dj u may not be well defined in some x ∈ Ω in case u is not “sufficiently smooth” (j-times

differentiable).

(0.10.7) Partial derivatives [12, Sect. 7.1]

In (0.10.4) we already used the concept of partial derivatives. The partial derivative of a function f : Ω ⊂
Rd → R of d independent variables x1, . . . , xd ( f = f (x1, . . . , xd)) in an interior point x = [x1, . . . , xd] ∈
Ω with respect to xj, j = 1, . . . , d, is defined as

∂ f

∂xj
(x) := lim

h→0

f (x1, . . . , xj−1, xj + h, xj+1, . . . , xd)− f (x1, . . . , xj−1, xj, xj+1, . . . , xd)

h
, (0.10.8)

if the limit exists. In other words, the partial derivative with respect to xj is obtained by differentiating the

function xj 7→ f (x1, . . . , xj−1, xj, xj+1, . . . , xd) as a function R 7→ R, regarding all the other independent

variables as mere parameters. Higher-order partial derivatives are simply defined by nesting the above

definition, for instance

∂2 f

∂xi∂xj
(x) :=

∂

∂xj

(
∂ f

∂xi

)
(x) 1 ≤ i, j ≤ d . (0.10.9)

A fundamental result about higher order partial derivatives is that there order does not matter in general:

Theorem 0.10.10. Partial derivatives commute

If all second partial derivatives of f : Ω ⊂ Rd → Rn are continuous functions on the open domain

Ω, then

∂2 f

∂xi∂xj
(x) =

∂2 f

∂xj∂xi
(x) , 1 ≤ i, j ≤ d , x ∈ Ω .
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The assertion of the theorem generalizes to all higher-order partial derivatives:

∂jui

∂xk1
. . . ∂xkj

(x) , kℓ ∈ {1, . . . , d} ,kℓ ∈ {1, . . . , j} ,

is invariant with respect to permutations of k1, . . . , kj, if u is at least j-times continuously differentiable.

(0.10.11) Differential operators

Differential operators are special linear combinations of partial derivatives. As such they spawn linear

operators on spaces of differentiable functions defined on a domain Ω ⊂ Rd.

Important first-order differential operators are

• the gradient , defined for differentiable scalar functions u : Ω→ R, is the column vector

grad u(x) :=




∂u

∂x1
...

∂u

∂xd



∈ R

d , x ∈ Ω ,

see Suppl. 2.2.8 for more details.

• the divergence, defined for differentiable vector fields u : Ω→ Rd, is the scalar function

div u(x) :=
∂u1

∂x1
(x) + · · ·+ ∂ud

∂xd
(x) ∈ R , x ∈ Ω ,

refer to Suppl. 2.5.6.

• the rotation, defined for d = 3 and differentiable vector fields u = [u1, u2, u3]
⊤ : Ω → R3, is the

column vector

curl u(x) :=




∂u3

∂x2
− ∂u2

∂x3
∂u1

∂x3
− ∂u3

∂x1
∂u2

∂x1
− ∂u1

∂x2



∈ R

3 , x ∈ Ω .

These operators have distinct properties that account for their prominent occurrence in many mathematical

models. For instance, from Thm. 0.10.10 we conclude

curl ◦ grad = 0 , div ◦ curl = 0 . (0.10.12)

A key second-order differential operator is the Laplacian, defined for a twice differentiable scalar function

u : Ω→ R as

∆u(x) :=
∂2u

∂x1
2
(x) + · · ·+ ∂2u

∂xd
2
(x) , x ∈ Ω .
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0.10.2 Electromagnetics: Eddy Current Problem

A model for the behavior of low-frequency electromagnetic fields with harmonic dependence on time:

Fig. 2 1

Eddy current model [2]

curl E = −ıωµ(x)H in Ω ,

curl H = σ(x)E + js in Ω ,

E× n = 0 on ∂Ω .

(0.10.13)

ω > 0 =̂ angular frequency

σ = σ(x) ≥ 0 =̂ conductivity

µ = µ(x) > 0 =̂ magnetic permeability

E : Ω 7→ C3 =̂ electric field

H : Ω 7→ C3 =̂ magnetic field

(Known: σ, µ, unknowns: E, H: complex fields!)

✁ induction heating simulation: surface electric field

(boundary element simulation [9])

Remark 0.10.14 (Truncation of unbounded domain)

Generically, the electromagnetic equations are posed on the unbounded domain Ω = R
3 and have to be

supplemented by the decay conditions

E(x)→ 0 uniformly for ‖x‖ → ∞ . (0.10.15)

In practice, (0.10.15) is often approximated by switching to a bounded domain Ω ⊂ R3 and imposing

vanishing tangential components of the electric field E on the boundary ∂Ω, as it is done in (0.10.13).

Remark 0.10.16 (Degenerate elliptic boundary value problem)

The eddy current equations in frequency domain (0.10.13) belong to the class of degenerate second-order

elliptic boundary value problems. They are called degenerate, because E is not uniquely determined

where σ ≡ 0. To see this recall (0.10.12): In regions where σ ≡ 0 we can add any gradient to E and it will

still be a solution of (0.10.13).
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0.10.3 Viscous Fluid Flow

Fig. 3

(Stationary, incompressible) Navier-Stokes equa-

tions:

−ν∆u + Du · u + grad p = f in Ω ,
div u = 0 in Ω ,

u = 0 on ∂Ω .

(0.10.17)

ν =̂ dynamic viscosity

f : Ω 7→ R3 =̂ given external force field

u : Ω 7→ R
3 =̂ velocity field (unknown)

p : Ω 7→ R =̂ pressure (unknown)

If the convective term Du ·u is omitted we obtain the

Stokes-equations, see Chapter 9

✁ Lid driven cavity flow, pressure distribution (finite

element simulation with FEATFLOW)

The Navier-Stokes equations (0.10.17) describe the motion of viscuous (“sticky”) fluid under external

forces. The boundary conditions mean that the fluid sticks to the wall of the container Ω (no-slip bound-

ary conditions). The equations (0.10.17) provide the fundamental model in computational fluid dynamics

(CFD).

0.10.4 Micromagnetics

Micromagnetics deals with the evolution of the time-dependent magnetization m = m(x, t), of a ferro-

magnetic material under the influence of an external magnetic field. The main quasi-stationary model are

the Landau-Livshits-Gilbert equations here given in scaled (non-dimensional) form, see[11]:

∂m

∂t
−m× dE(m, ψ(m))

dm
− αm× (m× dE(m, ψ(m))

dm
) = 0 in Ω× [0, T] ,

−∆ψ + div m = 0 in R3 × [0, T] .

|ψ(x)| = O(|x|−1) for |x| → ∞ ,

m(·, 0) = m0(·) in Ω .

(0.10.18)

with scaled Gibbs free energy

E(m, ψ) = 1
2

∫

Ω

η| grad m|2 + Q(1− (d ·m)2)− 2H0 ·m dx + 1
2

∫

R3

| grad ψ|2 dx .

The fields and coefficients occurring in the model are

m : Ω× [0, T] 7→ S2 =̂ magnetization (direction field, ‖m‖ = 1, if ‖m0‖ = 1);

(the unknown of the model)

ψ : R3 → R =̂ magnetic scalar potential

α > 0 =̂ damping parameter

Q > 0, d ∈ R3 =̂ strength/direction of material anisotropy

m0 =̂ initial magnetization
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The equations (0.10.18) describe a parabolic gradient flow system for the Gibbs free energy on the mani-

fold of director fields, that is, vector fields with modulus 1.

Flipping of magnetization, computed by means of a finite element simulation [5], more details about finite

element method (FEM) are given in Chapter 3.

We observe the formation of vortices, which finally disappear at the upper left and the lower right corners.

In the final state, the elementary magnets tend to point in the same direction.

0.10.5 Reaction-diffusion: Phase Separation

The Cahn-Hillard equation is a PDE of mathematical physics which describes the process of phase sep-

aration, by which the two components of a binary fluid spontaneously separate and form domains pure in

each component. u is the concentration of one phase of the fluid, with u = ±1 indicating domains. Here

we give a boundary value evolution problem for the Cahn-Hillard equation in scaled (non-dimensional)

form:

du

dt
− α∆(u3 − u− γ∆u) = 0 in Ω×]0, T[ ,

u(·, 0) = u0 in Ω .
grad(u3 − u− γ∆u) · n = 0 on ∂Ω ,

1
Γs

∂u

∂t
+ grad u · n + σ∆u = 0 on ∂Ω .

(0.10.19)

u = u(x, t) =̂ time-dependent concentration (unknown)

α > 0 =̂ known diffusion coefficient

γ > 0 =̂ known diffusion length

The equations (0.10.19) describe a gradient flow system with “mass conservation” for the chemical poten-

tial.

Evolution snapshots (finite difference discretization, [10]):

Fig. 4
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0.10.6 Quantitative Finance: Black-Scholes equation

The task of option pricing for European options leads to the Black-Scholes equation on Rd
+ [1]:

∂u

∂t
+ 1

2

d

∑
i,j=1

qij xixj
∂2u

∂xi∂xj
+ r

d

∑
i=1

xi
∂u

∂xi
− ru = 0 in Rd

+ × [0, T] ,

+ “exact boundary values” imposed on ∂Rd
+ ,

u(T, ·) = g(·) in Ω .

(0.10.20)

✦ d ∈ N = no. of underlying stocks, x = (x1, . . . , xd)
T, xi ↔ price of stock #i

✦ Unknown u = u(x, t) =̂ option price at time t given stock prices xi:

u(t, x) = E(exp(−r(t− T))g(ST)|St = x) ,

with payoff function g : Rd
+ 7→ R.

✦ Coefficientsr > 0 = interest rate,
(
qij

)d

i,j=1
= s.p.d. covariance matrix

This is a high-dimensional degenerate parabolic initial-boundary value problem. The Stock price fluctua-

tions are modelled by means of a Wiener process (log-normal distribution) Si(t) = exp(rt + Xi
t) .Here

we give numerical simulations in d = 2 with linear finite elements on tensor product mesh (MATLAB

computations, C. Winter, SAM, ETH Zürich):

Fig. 5
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The payoff functions used in the computations are

call option: g(S1, S2) := max{S1 + S2 − K, 0} , with strike price K ,

better-of-two option: g(S1, S2) := max{S1, S2} .

More details ➮ course “Computational Methods for Quantitative Finance” (Ch. Schwab)

0.10.7 Quantum Mechanics: Electronic Schrödinger Equation

The following equations formulate an elliptic eigenvalue problem obtained from the Born-Oppenheimer

approxmation of the Schrödinger equation, the fundamental governing equation for quantum phenomena.
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Its solutions describe the cloud of electrons around for a molecule at different excited states.

(
−1

2
∆ +

N

∑
i=1

P

∑
j=1

Zj

|xi − r j|
+

N

∑
i=1

N

∑
j>i

1

|xi − xj|

)
u = λu , (0.10.21)

+ exponential decay of u for |x| → ∞ . (0.10.22)

✦ N = number of electrons

✦ P = number of nuclei (with charges Zj ∈ N and positions r j ∈ R
3)

✦ Unknown: u = u(x1, . . . , xN) 6= 0, xi ∈ R3 ! ➥ probability density |u|2

✦ Unknown: eigenvalue λ = state energy

High-dimensional elliptic eigenvalue problem on R3N !

Numerical simulation: states (N, P = 1) computed with spectral sparse grid Galerkin method [6]:

Fig. 7

Symmetric ground state

Fig. 8

Anti-symmetric ground state

0.10.8 Rarefied Gas Dynamics: Boltzmann Equation

The state of a rarefied gas occupying the bounded region of space Ω ⊂ R3 can be described by a density

function f = f (x, v, t), which is a function of space (x), of velocity (v), and time (t). Its meaning is the

following: the integral

∫

Bx

∫

Bv

f (x, v, t)dvdx , Bx ⊂ Ω , Bv ⊂ R
3 ,

yields the number of gas molecules located inside Bx and travelling with a velocity in Bv at time t. The

evolution of the density function is governed by the Boltzmann equation

∂ f

∂t
+ v · gradx f = Q( f , f ) in Ω×R

3 , (0.10.23)
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supplemented with the inflow boundary conditions

u(x, v, t) = g(x, v, t) for x ∈ ∂Ω , v · n(x) < 0 , (0.10.24)

where g are given boundary data. The collision operator is given by

Q( f , g)(x, v, t) :=
∫

R3

∫

S2

B(‖v− v∗‖, cos θ)(h′∗ f ′ − h∗ f )dσdv∗ , (0.10.25)

f := f (x, v, t) , h∗ := h(x, v∗, t) , f ′ := f (x, v′, t) , h′∗ := h(x, v′∗, t) ,

v′ := 1
2(v + v∗ + ‖v− v∗‖) , v′∗ := 1

2(v + v∗ − ‖v− v∗‖σ) .

The function B : R ×R → R is the so-called collision kernel, and S2 stands for the unit sphere. The

angle θ is enclosed by the two velocities v and v′.

Note: The problem (0.10.23) is moderately high-dimensional, since it is posed on a seven-dimensional

unbounded domain Ω×R×R.

Fig. 9

Mach-3 CFD benchmark prob-

lem. Inflow on left boundary,

specular reflective wall, out-

flow boundary conditions on

the right. Computation with

least squares finite elements in

space and spectral polynomial

approximation in velocity, see

[7].

0.10.9 Wave Propagation: Helmholtz equation

Time-harmonic acoustic waves are described by the spatio-temporal behavior of sound pressure o =
p(x, t). In linear media without sources it satisfies the homogeneous Helmholtz equation

∆p + k2n(x)p = 0 in Ω , (0.10.26)

where k > 0 is the wave number (inversely proportional to the frequency), and n = n(x) is a dimension-

less spatially varying refractive index of the medium.

Often the Helmholtz equation is posed on unbounded domain, for instance Ω = R3. In this case we need

a radiation condition at ∞:

lim
‖x‖→∞

‖x‖
(

∂ps

∂r
(x)− ıkps(x)

)
= 0 uniformly , (0.10.27)

where ps := p− pinc is the scattered field, the difference of the pressure field p and another pressure

field pinc that belongs to an incident exciting acoustic wave.
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Fig. 10
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Left: incident wave; middle: scattered field, right: total pressure p (real parts). Computation with method

of particular solutions, using the software MPSPACK, see [3].

?! Review question(s) 0.10.28.

• The following is a PDE for a vector field u : Ω→ R2:

grad div u = [ f1 f2 f3]
⊤ , fi : Ω→ R . (0.10.29)

Write this PDE in detail for the components of u.

• Compute the Hessian according to (0.10.6) for the function u(x1, x2) = exp(x2
1 + x2

2).

• Compute the rotation curl u and the divergence div u for the vector field u(x) = − x

‖x‖2 , x ∈
R3 \ {0}.
• Compute the Laplacian of the function u(x1x2) = sin(x1) cos(x2). What do you observe?
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Chapter 1

Case Study: A Two-point Boundary Value

Problem

This chapter offers a brief tour of

✦ mathematical modelling of a physical system based on variational principles (= minimization in infi-

nite dimensional configuration space),

✦ the derivation of differential equations from these variational principles,

✦ the discretization of the variational problems and/or of the differential equations using various ap-

proaches.
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1.1 Preface

(1.1.1) Looking behing a partial differential equation (PDE)

The term “partial differential equation” (PDE) usually conjures up formulas like

div(

√
1 + ‖grad u(x)‖2 grad u(x)) + v · grad u = f (x) , x ∈ Ω ⊂ R

d .

All the mathematical models presented in Section 0.10 were stated in this “PDE form”.

This chapter aims to wean you off the impulse to look at a PDE as an equation of the form (0.10.3) linking

partial derivatives. Rather it wants to instill the appreciation that✎
✍

☞
✌

a meaningful PDE encodes structural principles

(like equilibrium, conservation, etc.)

In other words, usually there is a physical system or real phenomenon behind a PDE. The differential

equation is meant to capture some of its aspects, in particular those that are important to the “user” of the

PDE. In a sense, it provides a mathematical model.

Of course, a numerical solution of a PDE should reflect the structures inherent in the model. Thus,

awareness of these structures matters for numerical simulation and we can state the following guideline:

!
The design and selection of numerical methods for solving a “PDE” has to take into account its

origin and context.

Remark 1.1.2 (Mathematical modelling)

Prerequisite for numerical simulation: Mathematical modelling

Physics Biology · · · Economics

Appropriate & necessary simplifications

(PDE based) mathematical model

Necessary simplification:

{
system

phenomenon

}
described by a few variables/functions in a configuration space

The art of modelling: devise “faithful model”

Essential/relevant traits of

{
system

phenomenon

}
−→ structural properties of model
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This chapter will offer a glimpse of considerations typical of mathematical modeling approaches that lead

to differential equations.

Our notion of PDE based models → § 0.10.1

This course uses “partial differential equation” as a synonym for a mathematical model

✦ based on an infinite-dimensional function space as configuration space,

✦ governed by “local interactions of function values”.

The elements of a function space are functions defined on a common domain. In analysis and linear

algebra you have come across function spaces, for instance the space of continuous functions on an

interval, which is the domain in this case, see [5, Sect. 4.1, Bsp. 3].

Theses function spaces will usually be vector spaces under (pointwise) addition and multiplication with a

scalar; if V is a space of real-valued functions on the domain Ω, we define

f , g ∈ V, α ∈ R: ( f + g)(x) := f (x) + g(x) , (α · f )(x) := α f (x) , ∀x ∈ Ω .

Remark 1.1.4 (Models based on ordinary differential equations (ODEs))

Mathematical models of time-dependent (instationary) systems with finite-dimensional configuration space

are often stated in the form of initial value problems [4, § 11.1.19] for ordinary differential equations: with

a function f : I ×Rn → Rn, I ⊂ R and interval, t0 ∈ I, they read [4, Section 11.1]

ẏ = f(t, y) , y(t0) = y0 ∈ R
n . (1.1.5)

Though we seek an unknown function y : I ⊂ R → Rn, the configuration space is Rn in this case.

Equally important, the solution is obtained from tracking an evolution from initial time to final time.

Remark 1.1.6 (Evolution partial differential equations)

Systems that evolve with time and whose configuration can be adequately modelled by means of an

infinite-dimensional function space are very common, refer to Section 0.10.4, Section 0.10.5, Section 0.10.6,

Section 0.10.8 for examples. Their mathematical description leads to evolution problems for partial differ-

ential equations, which can be regarded as “ordinary differential equations” in function spaces, which are

evolutions with infinite-dimensional configuration spaces.

Remark 1.1.7 (“PDEs” for univariate functions)

The classical notion of a PDE inherently involves functions of several independent variables. However,

when one embraces the concept of a PDE as a mathematical model built on a function space, then simple

representatives in a univariate setting can be discussed.

☞ some ordinary differential equations (ODEs) do not encode evolutions in time and thus offer simple

specimens of important classes of PDEs!
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Thus, in this chapter we examine ODEs that are related to the important class of elliptic PDEs.

Note: The presentation in this course cannot completely comply with standards of mathematical rigor,

because what has deliberately omitted is the discussion of the functional analytic framework (∗)
(function space theory) required for a complete statement of, for instance, minimization problems

and variational problems.

(∗) functional analysis a branch of pure mathematics devoted to the study of infinite dimensional vector

spaces and related mappings.

1.2 A Model(ing) Problem

1.2.1 Thin Elastic String

Stationary mechanical problem:

Deformation of elastic “1D” string (rubber

band) under its own weight
✄

Constraint: string pinned at endpoints

Fig. 11

Gravity

Rubber band

Photo of a rubber band bent by

its own weight ✄

(In this case the elastic defor-

mation is almost negligible due

to the light weight of rubber)

Fig. 12

Sought: (Numerical approximation of) “shape” of elastic string

We want to find the shape of the elastic string based on a continuum approach. The first step is to find a

suitable mathematical description of this “shape”.
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(1.2.1) Configuration space for elastic string

The configuration space of a physical system is a set, for which a single element completely describes the

state of the system in the underlying mathematical model.

Fig. 13

force field f

u1

u2

a b

(a, ua)

(b, ub)

Configuration space

= space of curves (connecting given points)

☞ shape of string

l
function u : [0, 1] 7→ R2, u = u(ξ)

(physical units [u] = 1m)

☞ Pinning conditions (boundary conditions):

u(0) =

[
a

ua

]
∈ R

2 , u(1) =

[
b

ub

]
∈ R

2 .

(1.2.2)

Terminology: [0, 1] =̂ parameter domain, ✎ notation Ω

Remark 1.2.3 (Coordinate system)

The description of a curve in the plane by a mapping [0, 1] 7→ R
2 requires a coordinate system. Of course,

the choice of the coordinate system must not affect the shape obtained from the mathematical model, a

property called frame indifference.

Switching from one coordinate system to another is accomplished by affine linear mappings of point

coordinates.

(1.2.4) Spaces of continuously differentiable functions → [6, Sect. 5.4]

A first family of important function spaces relies on the classical notion of differentiability from calculus:

✎ notation: Ck([a, b]) =̂ k-times continuously differentiable functions on [a, b] ⊂ R,

Clearly, Ck([a, b]) is a vector space under pointwise addition and pointwise multiplication with a scalar.

(1.2.5) Parameterization of a curve→ [6, Sect. 7.4]

(Coordinate system in the plane is taken for granted,

see Rem. 1.2.3)

We consider a curve in R
2 u : [0, 1] 7→ R

2

✄

u ∈ (C0([0, 1]))2

m
connected curve

Fig. 14

u1

u2

u(0)

u(1)

u′(ξ)
u(ξ)
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✎ notation: (Ck([a, b]))2 =̂ k-times continuously differentiable curves u : [a, b] 7→ R2, that is, if

u =

[
u1

u2

]
, then u1, u2 ∈ Ck([a, b]).

➣ parameterization is supposed to be locally injective:

∀ξ ∈]0, 1[: ∃ǫ > 0: ∀η, |η − ξ| < ǫ: u(η) 6= u(ξ) .

Meaning of “locally”: Global injectivity of parameterization must break down in case of self-intersection of

the curve, because in this case there will be ξ 6= η with u(η) = u(ξ), but these parameter values cannot

be arbitrarily close.

For u ∈ (C1([0, 1]))2 we demand u′(ξ) 6= 0 for all 0 ≤ ξ ≤ 1

✎ notation: ′ =̂ derivative w.r.t. curve parameter, here ξ. It does not affect physical units, because

the parameter ξ is dimensionless.

Remark 1.2.6 (Length of a curve)

We consider a curve in the plane (equipped with a coordinate system according to Rem. 1.2.3) described

by a parameterization u : [0, 1]→ R2 as in § 1.2.5.

Geometric intuition: u(ξ) moves along the curve as ξ increases from 0 to 1.

Interpretation of curve parameter ξ: “virtual time”

➣ ‖u′‖ =̂ “speed” with which curve is traversed (physical units m!), see Fig. 14.

➣

∫ 1

0

∥∥u′(ξ)
∥∥dξ =̂ length of curve,

because the length of a path is the integral of speed over time.

✎ notation: ‖·‖ =̂ Euclidean norm of a vector ∈ Rn

Note: Length remains well defined for merely piecewise differentiable curves.

?! Review question(s) 1.2.7. (Curves)

1. Give a parameterization over [0, 1] of a straight line segment connecting two points a, b ∈ R
d,

d ∈ N.

2. How can you describe a circle in the plane with radius r > 0 and center z ∈ R
2 as a curve

parameterized over [0, 1].

3. Let a curve in the plane be given by a parameterization u =: [u1, u2]
⊤ : [0, 1] → R2. When can it

be written as the graph of a function f : D ⊂ R → R, that is u2 = f (u1)?

4. Let u : [0, 1] → Rd be a parameterization of a C1-curve. Give a formula describing the tangent at

the curve in u(ξ), 0 ≤ ξ ≤ 1.
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(1.2.8) Non-uniqueness of parameterization of curve

Again, consider a parameterized curve u : [0, 1]→ R
2.

For every strictly monotone continuous function Φ : [0, 1] → [0, 1] with Φ(0) = 0 and Φ(1) = 1, the

function v(ξ) := u(Φ(ξ)), ξ ∈ [0, 1], will provide another parameterization of the same curve.

➥ ✓
✒

✏
✑

The parameterization of a curve is not unique: different functions [0, 1]→ R2 can describe

the same curve (reparameterization)!

➥ Seeking a curve in terms of a parameterization leads to models that may fail to possess a unique

solution!

We have to constrain the parameterization in order to render it unique. A popular way to do this is arclength

parameterization that demands ‖u′‖ ≡ const (constant speed).

Remark 1.2.9 (Material coordinate)

Interpretation of curve parameter ξ:

ξ: unique identifier for each infinitesimal section of the string,

a label for each “material point” on the string

ξ =̂ material coordinate, unrelated to “position in space” (= physical coordinate),

ξ has no physical dimension ➤
′ does not change physical units.

However, we have great freedom to choose material coordinates for a curve, compare § 1.2.8.

Remark 1.2.10 (Non-dimensional equations)

By fixing reference values for the basic physical units occurring in a model (“scaling”), one can switch to a

non-dimensional form of the model equations.

In the case of the elastic string model the basic units are

• unit of length 1m,

• unit of force 1N.

Thus, non-dimensional equations arise from fixing a reference length ℓ0 and a reference force f0.

Below, following a (bad) habit of mathematicians, physical units will routinely be dropped, which tacitly

assumes a priori scaling.

Note: Scaling is convenient, but is actually not required for numerical simulation and SI units can be kept

for all quantities, owing to the fact that proper implementations of numerical methods should be

scale-invariant. The code should always produce the same result regardless of chosen physical

units (, if potential under-/overflow of floating point numbers is neglected [4, Rem. 1.5.36]).
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(1.2.11) External forces

Non-trivial and stable shapes of elastic strings can be expected only if they are subject to external forces.

These will usually be supplied by the earth’s gravity field. We focus on the more general setting of conser-

vative force fields acting on the string.

Assumption 1.2.12. Gravitational potential

We assume that a (differentiable) gravitational potential V : R2 → R (units [V] = m2

s2 ) acts on the

elastic string; in it a mass m at position x ∈ R2 has “gravitational” potential energy −mV(x).

Force on mass at x: f = m grad V(x) , x ∈ R
2 .

➣ grad V : R2 → R2 is called the acceleration field or gravitational field (units m
s2 , acceleration).

Simplest choice: linear potential ↔ constant acceleration field

V(x) = g · x ⇔ grad V(x) = g , g ∈ R
2 (units [g] =

m

s2
) .

✎ notation: u · v := uTv =
n

∑
j=1

uivi =̂ inner product of vectors in Rn.

(1.2.13) Problem data/parameters

Quantities that have to be specified to allow the unique determination of a configuration in a mathematical

model are called problem data/parameters. In the elastic string model the problem parameters are

✦ the boundary conditions (1.2.2),

✦ the acceleration field f := grad V : R2 7→ R2, (units [f] = N
kg ), f(x) =̂ force “pulling at” a point x.

Special case: vertical downward gravitational force f(x) := −g

[
0
1

]
, g = 9.81m s−2.

✦ local elastic material properties, see Section 1.2.3.

?! Review question(s) 1.2.14. (Configuration spaces)

Suggest suitable configuration spaces for

✦ a fluid model like the stationary Navier-Stokes equations (0.10.17),

✦ the wave propagation model based on the Helmholtz equation (0.10.26)

1.2.2 Mass-Spring Model

(Fixed coordinate system in the plane is assumed throughout this section, cf. Rem. 1.2.3).
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Reduction to finite-dimensional configuration space

Idea: model string as a system of finitely many simple components that interact in simple ways

Fig. 15

Rubber band

∞-dimensional: elastic string

=⇒

Fig. 16

m1

m2

m3 m4
m5

m6

m7

m8

n point masses connected with n + 1 springs

Configuration space for mass-spring model:

ui ∈ R2 =̂ position of i-th mass point (“bead”), i = 1, . . . , n

➣ finite-dimensional configuration space = (R2)n

Fig. 17

u1

u2

m1

m2

m3 m4
m5

m6

m7

m8

a b

Convention: We set

u0 :=

[
a

ua

]
, un+1 :=

[
b
ub

]
(1.2.16)

for the pinning point positions. This will simplify the

formulas.

Remark 1.2.17 (Discrete models)

Models, for which configurations can be described by means of finitely many real numbers are called

discrete. Hence, the mass-spring model is a discrete model, see Sect. 1.5.

The configuration of the mass-spring system with n masses can uniquely be described by specifying the

2n numbers ui
1, ui

2, i = 1, . . . , n. Thus the customary parlance is that the mass-spring system has 2n
degrees of freedom.

Still missing: mathematical model for the springs; we opt for the simplest possible.

Assumption 1.2.18. Hooke’s law

linear springs ↔ Hooke’s law: force proportional to relative elongation

Force F(l) = κ

(
l

l0
− 1

)
(relative elongation) . (1.2.19)

κ =̂ spring constant (stiffness), [κ] = 1N, κ > 0,

l0 =̂ equilibrium length of (relaxed) spring, [l0] = 1m, l0 > 0.
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(1.2.20) Elastic energy

Recall that work can be computed by integrating a (tangential) force along a path.

From (1.2.19): elastic energy stored in linear spring at length l > 0

Eel =
∫ l

l0
F(τ)dτ =

1

2

κ

l0
(l − l0)

2 , [Eel] = 1J . (1.2.21)

The elastic energies stored in the individual springs of the mass-spring model can simply be summed up:

Total elastic energy of mass-spring model in configuration (u1, . . . , un) ∈ (R2)n:

(1.2.21) ⇒ J
(n)
el = J

(n)
el (u1, . . . , un) := 1

2

n

∑
i=0

κi

li
(
∥∥∥ui+1− ui

∥∥∥− li)
2

︸ ︷︷ ︸
elastic energy of i-th spring

, (1.2.22)

where u0 :=

[
a

ua

]
, un+1 :=

[
b

ub

]
(pinning positions according to (1.2.2)),

κi =̂ spring constant of i-th spring, i = 0, . . . , n, see (1.2.19)

li > 0 =̂ equilibrium length of i-th spring.

✎ notation: ‖x‖ =̂ Euclidean norm (length) of a vector x ∈ Rd, d ∈ N

(1.2.23) Potential energy in external acceleration field

Ass. 1.2.12 ➣ “gravitational energy” of i-th mass = −miV(ui)

Total “gravitational energy” of mass-spring model in configuration (u1, . . . , un) due to external

acceleration field:

J
(n)
f = J

(n)
f (u1, . . . , un) := −

n

∑
i=1

miV(ui) , (1.2.24)

where mi is mass of the i-th bead, i = 1, . . . , n.

The total potential energy of a mass spring system as introduced above is obtained by summing the elastic

contribution (1.2.22) and gravity potential contribution (1.2.24):

J(n) := J
(n)
el + J

(n)
f = 1

2

n

∑
i=0

κi

li
(
∥∥∥ui+1− ui

∥∥∥− li)
2 −

n

∑
i=1

miV(ui) . (1.2.25)

This total potential energy is key to formulating a selection criterium for the configuration of a mass-spring

system that will actually be obtained.

1. Case Study: A Two-point Boundary Value Problem, 1.2. A Model(ing) Problem 35



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Equilibrium principle

Known from classical mechanics, stationary case

systems attain configuration(s) of minimal (potential) energy

J(n)n := J
(n)
el + J

(n)
f

(Global) equilibrium configuration u1∗, . . . , un∗ of mass-spring system satisfies

(u1
∗, . . . , un

∗) = argmin
(u1,...,un)∈R2n

J(n)(u1, . . . , un) . (1.2.27)

Example 1.2.28 (Single mass system)

Mass-spring system with only one point mass

(non-dimensional l1 = l2 = 1, κ1 = κ2 = 1, u0 =[
0
0

]
, u2 =

[
1

0.2

]
, V(x) = x2: vertical gravity)

Plot of J(1)(u1) (“energy surface”) ✄

(“Nice” energy surface: convex and tending to ∞ as∥∥u1
∥∥→ ∞)

Fig. 18
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Remark 1.2.29 (Non-unique solutions)

➊ solutions of (1.2.27) need not be unique !

To see this, consider the case L :=
n

∑
i=0

li >
∥∥un+1− u0

∥∥ and f ≡ 0 (slack ensemble of springs without

external forcing = zero gravity). In this situation many crooked arrangements of the masses will have zero

total potential energy.

Experiment 1.2.30 (Computed minimal potential energy configurations of mass-spring sys-

tems)

Fig. 19

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

u(0)

u
(1

)

 

 

L = 0.5

L = 1

L = 1.5

✁ minimal energy configuration of a mass spring

system for variable L.

(n = 10, non-dimensional κi = 1, li = L/n, i =

0, . . . , 10, f =

[
0
−1

]
)

1.2.3 Continuum Limit

Our goal is to derive a truly “∞-dimensional” mathematical model of an elastic string under external load-

ing.
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Heuristics: elastic string = spring-mass system with “infinitely many infinitesimal masses”

and “infinitesimally short” springs.

(1.2.31) Continuum limit policy

✦ consider sequence (SMSn)n∈N
of spring-mass systems with n masses, n→ ∞.

✦ identify material coordinate (→ Rem. 1.2.9) of point masses.

✦ choose system parameters with meaningful limits for n→ ∞.

✦ derive expressions for energies as n→ ∞,

✦ use them to define the potential energy functional of a “continuous elastic string model”.

Assumption 1.2.32. Equal springs

Equal equilibrium lengths of all springs: li =
L

n + 1
, L > 0,

➣ Here, L =̂ equilibrium length of elastic string: L = ∑i li, [L] = 1m.

Experiment 1.2.33 (Mass-spring equilibrium configurations with increasing number of

masses)

Equilibrium configuration of mass-spring system ✄

(non-dimensional li =
L

n+1 , κi = 1, mi =
1
n , V(x) =[

0
1

]
· x, L = 1, n varying)

We observe a “visual limit” of the equilibrium config-

urations of the mass-spring systems for n → ∞: po-

sitions of mass points trace out a smooth curve.

Fig. 20
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(1.2.34) Connecting mass-spring model and continuum model

Fig. 21 ξξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8

u1

u2

m1

10

m2

m3 m4
m5

m6

m7

m8

masses are uniformly spaced on string curve

u : [0, 1] 7→ R2

➣ material coordinate of i-th mass in SMSn:

ξ
(n)
i :=

i

n + 1
: ui := u(ξ

(n)
i )

=̂ implicit arclength parameterization in force-free

state, recall § 1.2.8: constrains parameterization, re-

moves non-uniqueness.
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(1.2.35) Limit compatible choice of parameters in mass-spring model

In the spring-mass model each spring has its own stiffness κi and every mass point its own mass. When

considering the “limit” of a sequence of spring-mass models, we have to detach stiffness and mass from

springs and masses and attach them to material points, cf. Rem. 1.2.9. In other words, stiffness κi and

mass mi have to be induced by a stiffness function κ(ξ) and mass density function ρ(ξ). This linkage has

to be done in a way to allow for a meaningful limit n→ ∞ for the potential energies.

“Limit compatible” system parameters: (ξ
(n)
i+1/2 := 1

2(ξ
(n)
i+1 + ξ

(n)
i ))

✦ κi = κ(ξ
(n)
i+1/2) with stiffness function κ : [0, 1] 7→ R+ continuous at ξ

(n)
i+1/2 (string has a stiffness

at every point),

✦ mi =

ξ
(n)
i+1/2∫

ξ
(n)
i−1/2

ρ(ξ)dξ “lumped mass”, with integrable mass density ρ : [0, 1] 7→ R2 (units [ρ] =
kg
m )

For ρ ≡ 1 we find mi ∼ 1
n (as in Exp. 1.2.33)

“Limit compatible” potential energy contributions, see (1.2.22), (1.2.24):

J
(n)
el (u) = 1

2

n

∑
i=0

n + 1

L
κ(ξ

(n)
i+1/2)

(∥∥∥u(ξ
(n)
i+1)− u(ξ

(n)
i )

∥∥∥− L

n + 1

)2

,

J
(n)
f (u) = −

n

∑
i=1

ξ
(n)
i+1/2∫

ξ
(n)
i−1/2

ρ(ξ)dξ V(u(ξ
(n)
i )) .

(1.2.36)

(1.2.37)

Assumption 1.2.38.

u ∈ (C2([0, 1]))2 (twice continuously differentiable)

(1.2.39) Calculus tools for computing limits

✦ Riemann sums, see [6, Sect. 6.2]: for continuous f : [0, 1]→ R

∫ 1

0
f (ξ) dξ = lim

n→∞

1

n + 1

n

∑
j=0

f
( j + 1/2

n + 1

)
. (1.2.40)

✦ Taylor expansion: for f ∈ C2([0, 1]) holds

f (ξ) = f (ξ0) + (ξ − ξ0) f ′(ξ0) +
∫ ξ

ξ0

f ′′(τ)(ξ − τ)dξ , ∀ξ, ξ0 ∈ [0, 1] . (1.2.41)
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Also recall the Landau symbol O(·):
f (h) = O(g(h)) for h → 0 ⇔ | f (h)| ≤ C|g(h)| for sufficiently small |h| . (1.2.42)

It permits us to rewrite (1.2.41) as

f (ξ) = f (ξ0) + (ξ − ξ0) f ′(ξ) + O(|ξ − ξ0|2) ,

if the details of the remainder term are of no interest.

(1.2.43) Limits of contributions to potential energy

We apply the tools from § 1.2.39 to both energies in the spring-mass model for n→ ∞:

➊ Simple limit for potential energy due to external force (Riemann summation (1.2.40)):

Jf(u) = lim
n→∞

J
(n)
f (u) = lim

n→∞
−

n

∑
i=1

ξ
(n)
i+1/2∫

ξ
(n)
i−1/2

ρ(ξ)dξ ·V(u(ξn
i )) = −

1∫

0

ρ(ξ)V(u(ξ)) dξ , (1.2.44)

where V : R2 → R is the gravitational potential according to Ass. 1.2.12.

➋ Limit of elastic energy:

Tool: Taylor expansion (1.2.41): for u =

[
u1

u2

]
∈ C2 with derivative u′, 1≫ η → 0

‖u(ξ + η)− u(ξ − η)‖ =
√
(u1(ξ + η)− u1(ξ − η))2 + (u2(ξ + η)− u2(ξ − η))2

=
√
(2u′1(ξ)η + O(η2))2 + (2u′2(ξ)η + O(η2))2

= 2η
∥∥u(ξ)′

∥∥
√

1 + O(η) = 2η
∥∥u′(ξ)

∥∥+ O(η2) ,

(1.2.45)

because
√

1 + τ = 1 +
1

2
τ + O(τ2) for τ → 0 . (1.2.46)

Apply this to (1.2.36) with η = 1
2

1
n+1 → 0 for n→ ∞, “O-terms” vanish in the limit

J
(n)
el (u) = 1

2

n

∑
i=0

n + 1

L
κ(ξ

(n)
i+1/2)

(
1

n + 1

∥∥∥u′(ξ(n)i+1/2)
∥∥∥+ O(

1

(n + 1)2
)− L

n + 1

)2

=
1

2L

1

n + 1

n

∑
i=0

κ(ξ
(n)
i+1/2)

(∥∥∥u′(ξ(n)i+1/2)
∥∥∥+ O(

1

n + 1
)− L

)2
(1.2.47)

Recall that an integral can be obtained as the limit of Riemann sums, see (1.2.40),

q ∈ C0([0, 1]): lim
n→∞

1

n + 1

n

∑
j=0

q(
j + 1/2

n + 1
) =

∫ 1

0
q(ξ)dξ , (1.2.48)

which immediately gives us the limit of the elastic energy (1.2.47)

⇒ Jel(u) = lim
n→∞

J
(n)
el (u) =

1

2L

1∫

0

κ(ξ)
(∥∥u′(ξ)

∥∥− L
)2

dξ . (1.2.49)
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Equilibrium condition for elastic string model

Equilibrium condition for limit model (minimal total potential energy J(u) := Jf(u)+ Jel(u)):

u∗ = argmin

u∈(C1([0, 1]))2 & (1.2.2)

1∫

0

κ(ξ)

2L

(∥∥u′(ξ)
∥∥− L

)2 − ρ(ξ)V(u(ξ))dξ

︸ ︷︷ ︸
=:J(u)

. (1.2.51)

total potential energy functional, [J] = 1J
= a minimization problem in a function space !

Example 1.2.52 (Tense string without external forcing)

We pursue model validation of (1.2.51) by making sure that its predictions agree with observations in

simple situations.

Setting:

✦ no external force: f ≡ 0
✦ homogeneous string: κ = κ0 = const
✦ tense string: L < ‖u(0)− u(1)‖

(➣ positive elastic energy)

Fig. 22

(1.2.51) ⇔ u∗ = argmin
u∈(C1([0,1]))2 & (1.2.2)

κ0

2L

1∫

0

(∥∥u′(ξ)
∥∥− L

)2
dξ . (1.2.53)

Note: in (1.2.53) u enters J only through u′ !

Constraint on u′: by triangle inequality for integrals, see [6, Sect. 6.3]

ℓ := ‖u(1)− u(0)‖ =
∥∥∥∥
∫ 1

0
u′(ξ)dξ

∥∥∥∥ ≤
∫ 1

0

∥∥u′(ξ)
∥∥dξ . (1.2.54)

Note that u enters only through the norm of its derivative!

➥ Consider related minimization problem (w↔ ‖u′‖)

w∗ = argmin
w





κ0

2L

1∫

0

(w− L)2 dξ:

w ∈ C0([0, 1]) ,
∫ 1

0
w(ξ)dξ ≥ ℓ



 . (1.2.55)

⇒ unique solution w∗(ξ) = ℓ (constant solution)

‖u′(ξ)‖ = ℓ and the boundary conditions (1.2.2) are satisfied for the straight line solution of (1.2.53)

u∗(ξ) = (1− ξ)u(0) + ξu(1) .
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It is exactly the “straight string” solution that physical intuition suggests. This solution is unique.

?! Review question(s) 1.2.56. (Limits of discrete models)

1. Compute the limit

lim
n→∞

n

∑
j=1

√
n−2 + (sin(j/n)− sin(j−1/n))2 .

2. Some closed curves C winding around zero once can be written in polar coordinates (r, ϕ) as

C = {(r, ϕ) : r(ϕ) = F(ϕ) , 0 ≤ ϕ ≤ 2π} , F(0) = F(2π) ,

where F : [0, 2π] → R
+ is a continuous function. The area enclosed by C can be approximated

by summing up the areas of slender triangles and taking the limit

A = lim
n→∞

n

∑
j=1

1
2r(2π j/n)r(2π j−1/n) sin(2π/n) .

Compute an expression for the limit.

1.3 Variational Approach

We face the task of minimizing a functional over an ∞-dimensional function space. In this section neces-

sary conditions for the minimizer will formally be derived in the form of variational equations. This idea is

one of the cornerstone of a branch of analysis called calculus of variations.

We will not dip into this theory, but perform manipulations at a formal level. Yet, all considerations below

can be justified rigorously.

1.3.1 Virtual Work Equation

We focus on the elastic string model introduced in Section 1.2.3. In the case of the equilibrium condition

(1.2.51) we face a minimization problem for the functional J : V → R given by

J(u) :=

1∫

0

κ(ξ)

2L

(∥∥u′(ξ)
∥∥− L

)2 − ρ(ξ)V(u(ξ)) dξ (1.2.51)

on the infinite-dimensional function space

V := {u ∈ (C1([0, 1]))2, u satisfies boundary conditions (1.2.2)} :

find u∗ ∈ V such that u∗ = argmin
u∈V

J(u) .
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Remark 1.3.1 (Necessary conditions for minimizers in finite-dimensional setting)

From finite dimensional calculus we know that all partial/directional derivatives of a continuously smooth

functional J : Rn → R vanish at a minimum:

x∗ = argmin
x∈Rn

J(x) ⇒ grad J(x∗) = 0 ⇔ ∂J

∂xk
(x∗) = 0 , k = 1, . . . , n . (1.3.2)

We can view this from a different angle; we consider the section function ϕv(t) := J(x∗ + tv), v ∈ R
d.

If x∗ is a minimizer of J, then ϕv has a minimum at t = 0 for every v. Necessarily, the derivative of ϕv,
d
dt ϕv(t) = grad J(x∗ + tv) · v will be zero for t = 0 for every v:

d

dt
ϕv(0) = grad J(x∗) · v = 0 ∀v ∈ Rd . (1.3.3)

Hence, (1.3.2) boils down to the special case v = ek, ek =̂ k-th unit vector in Rd, k = 1, . . . , d.

Note: For obvious reasons, the expression grad J(x∗) · v is called a directional derivative of J in the

direction v.

Next we learn the analogue of (1.3.3) in an infinite-dimensional setting.

✎ notation: Ck
0([0, 1]) := {v ∈ Ck([0, 1]): v(0) = v(1) = 0}, k ∈ N0

Main “idea of calculus of variations”

u∗ solves (1.2.51) ⇒ J(u∗) ≤ J(u∗ + tv) ∀t ∈ R, v ∈ (C2
0([0, 1]))2 . (1.3.5)

ϕv(t) := J(u∗ + tv) has global minimum for t = 0

If ϕv is differentiable, then
dϕv

dt
(0) = 0

(1.3.5) expresses the fact that u∗ can only be a minimal energy configuration, if no admissible perturbation

leads to a decrease of the total energy. We conclude this in exactly the same way as we concluded (1.3.3)

in a finite-dimensional setting.

Note: We have to impose v(0) = v(1) = 0, because we must not tamper with the pinning conditions

(1.2.2); they must still hold for any perturbed curve.✞
✝

☎
✆Rule: Variation v must vanish where argument function u is fixed.

Parlance: The computation of
dϕ
dt (0) for J from (1.2.51) amounts to computing a “configurational deriva-

tive”/“directional derivative” in direction v:

dϕ

dt
(0) = lim

t→0

ϕ(t)− ϕ(0)

t
= lim

t→0

J(u∗ + tv)− J(u∗)
t

. (1.3.6)

We pursue a separate treatment of energy contributions (This also demonstrates a simple formal ap-

proach to computing configurational derivatives.):
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(1.3.7) Configurational derivatives of energies

➊ Potential energy (1.2.44) due to external force according to Ass. 1.2.12:

lim
t→0

Jf(u∗ + tv)− Jf(u∗)
t

= − lim
t→0

1

t

1∫

0

ρ(ξ)(V(u∗(ξ) + tv(ξ)) −V(u∗(ξ))) dξ

= −
1∫

0

ρ(ξ) grad V(u∗(ξ)) · v(ξ)dξ ,

(1.3.8)

where we used (multidimensional) Taylor expansion of V analoguous to (1.2.41)

V(x) = V(x0) + grad V(x0) · (x− x0) + O(‖x− x0‖2) for x→ x0 , x, x0 ∈ R
2 . (1.3.9)

➋ Computing the directional derivative of the elastic energy

Jel(u) =
1

2L

1∫

0

κ(ξ)
(∥∥u′(ξ)

∥∥− L
)2

dξ . (1.2.49)

is more difficult. It can be achieved using the Taylor expansion (1.2.41) as a tool, see also [6, Sect. 5.5]:

Analogous to (1.2.45), for x ∈ R2 \ {0}, h ∈ R2, and R ∋ t→ 0 we find

‖x + th‖ =
√
(x1 + th1)2 + (x2 + th2)2 =

√
‖x‖2 + 2tx · h + t2‖h‖2

= ‖x‖

√√√√1 + 2t
x · h
‖x‖2

+ t2
‖h‖2

‖x‖2
= ‖x‖+ t

x · h
‖x‖ + O(t2) ,

(1.3.10)

where we used Taylor expansion for
√

1 + x around 0

√
1 + δ = 1 + 1

2δ + O(δ2) for δ→ 0 . (1.3.11)

Use (1.3.10) with x := u′(ξ) and h := v′(ξ) in the perturbation analysis for the elastic energy:

(
∥∥u′(ξ) + tv′(ξ)

∥∥− L)2 =

(∥∥u′(ξ)
∥∥+ t

u′(ξ) · v′(ξ)
‖u′(ξ)‖ + O(t2)− L

)2

=
(∥∥u′(ξ)

∥∥− L
)2

+ 2t
(∥∥u′(ξ)

∥∥− L
)u′(ξ) · v′(ξ)
‖u′(ξ)‖ + O(t2) .

Jel(u + tv)− Jel(u) =
t

L

1∫

0

κ(ξ)
(∥∥u′(ξ)

∥∥− L
)u′(ξ) · v′(ξ)
‖u′(ξ)‖ + O(t2)dξ . (1.3.12)

lim
t→0

Jel(u∗ + tv)− Jel(u∗)
t

=

1∫

0

κ(ξ)

L

(∥∥u′(ξ)
∥∥− L

)u′(ξ) · v′(ξ)
‖u′(ξ)‖ dξ . (1.3.13)

Here we take for granted ‖u′(ξ)‖ 6= 0, which is an essential property of a meaningful parameterization

of the elastic string, see § 1.2.5.
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Theorem 1.3.14. Minimizer solves variational equation

Necessary condition to be satisfied for u∗ ∈ V solving (1.2.51)

1∫

0

κ(ξ)

L

(∥∥u′∗(ξ)
∥∥− L

)u′∗(ξ) · v′(ξ)
‖u′∗(ξ)‖

− ρ(ξ) grad V(u∗(ξ)) · v(ξ)dξ = 0 ∀v ∈ (C2
0([0, 1]))2 .

(1.3.15)

This is a non-linear variational equation on the domain Ω = [0, 1].

Example 1.3.16 (Differentiating a functional on a function space)

The directional derivative of a real-valued functional J : V → R defined on a vector space V is the plain

and simple derivative of a function (denoted by ϕ above) mapping R 7→ R. However, differentiating this

function can be challenging and usually involves multiple applications of chain rule and product rule [4,

§ 2.4.5].

Yet, the easiest way to do formal directional differentiation of functionals on a function space may rely on

repeated use of Taylor’s expansion.

Theorem 1.3.17. Multi-dimensional truncated Tayler expansion → [6, Satz 7.5.2]

Let F : D ⊂ Rn → R, n ∈ N, a function that is twice continuously differentiable in x ∈ Rn. Then

F(x + h) = F(x) + grad F(x) · h + O(‖h‖2) for h→ 0 . (1.3.18)

Now we give an example to demonstrate the approach. For a twice continuously differentiable (C2) function

F : Rd ×Rd 7→ R, d ∈ N, consider the functional

J : (C1([0, 1]))d 7→ R , J(u) :=
∫ 1

0
F(u′(ξ), u(ξ))dξ .

To determine the derivative of F we rely on Thm. 1.3.17

F(u + δu, v + δv) = F(u, v) + D1F(u, v)δu + D2F(u, v)δv + O(‖δu‖2 + ‖δv‖2) . (1.3.19)

Here, D1F and D2F are the partial derivatives of F w.r.t the first and second vector argument, respec-

tively. These are row vectors.

J(u + tv) = J(u) + t
∫ 1

0
D1F(u′(ξ), u(ξ))v′(ξ) + D2F(u′(ξ), u(ξ))v(ξ) dξ

︸ ︷︷ ︸
“directional derivative” (Dv J)(u)(v)

+O(t2) . (1.3.20)

The derivatives u′, v′ are just regular one-dimensional derivatives w.r.t. the parameter ξ. They yield

column vectors. Hence, we integrate over products of row vectors and column vectors, that is, we deal

with a scalar integrand.

Remark 1.3.21 (Virtual work principle)
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In statics, the derivation of variational equations from energy minimization (equilibrium principle, see

(1.2.27)) is known as the method of virtual work: Small admissible changes of the equilibrium configu-

ration of the system invariably entail active work, that is, energy has to be supplied to the system.

Now we unravel the structure behind the non-linear variational problem (1.3.15).

Recall essential terminology from linear algebra:

Definition 1.3.22. (Bi-)linear forms

Given an R-vector space V, a linear form (linear functional) ℓ is a mapping ℓ : V 7→ R that

satisfies

ℓ(αu + βv) = αℓ(u) + βℓ(v) ∀u, v ∈ V , ∀α, β ∈ R .

A bilinear form a on V is a mapping a : V ×V 7→ R, for which

a(α1v1 + β1u1, α2v2 + β2u2) =

α1α2 a(v1, v2) + α1β2 a(v1, u2) + β1α2 a(u1, v2) + β1β2 a(u1, u2)

for all ui, vi ∈ V, αi, βi ∈ R, i = 1, 2.

✎ notation: For bilinear forms we write a(·, ·), b(·, ·), etc.

In the case of (1.3.15) we make a very important observation, namely that, keeping u∗ fixed, the left hand

side is a linear functional (linear form) in the test function v:

We recall

1∫

0

κ(ξ)

L

(∥∥u′∗(ξ)
∥∥− L

)u′∗(ξ) · v′(ξ)
‖u′∗(ξ)‖

− ρ(ξ) grad V(u∗(ξ)) · v(ξ)dξ = 0 ∀v ∈ (C2
0([0, 1]))2 :

(1.3.15)

and find the following structure of (1.3.15):

Definition 1.3.23. Non-linear variational equation

An (abstract) non-linear variational equation is an equation of the form

u ∈ V: a(u; v) = 0 ∀v ∈ V0 , (1.3.24)

where

✦ V0 =̂ is (real) vector space of functions,

✦ V =̂ is an affine space of functions: V = u0 + V0, with offset function u0 ∈ V,

✦ a =̂ a mapping V ×V0 7→ R that is linear in the second argument v:

a(u; αv + βw) = αa(u; v) + βa(u; w) ∀u ∈ V , v, w ∈ V0 , α, β ∈ R . (1.3.25)

Terminology related to variational problem (1.3.24): V is called trial space

V0 is called test space
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Explanation of terminology:

• trial space =̂ the function space in which we seek the solution

• test space =̂ the space of eligible test functions v in a variational problem like (1.3.24) = space of

admissible variations (shape perturbations) in (1.3.5).

The two spaces need not be the same: V 6= V0 is common and already indicated by the notation. For

many variational problem, which are not studied in this course, they may even comprise functions with

different smoothness properties.

Example 1.3.26 (Elastic string model as non-linear variational problem)

In concrete terms, for elastic string continuum model in variational form (1.3.15), the entities in Def. 1.3.23

become:

✦ V0 := (C2
0([0, 1]))2 (infinite dimensional function space) ,

✦ V := {u ∈ (C2([0, 1]))2 : u(0) =

[
a

ua

]
, u(1) =

[
b

ub

]
}

= [ξ 7→ (1− ξ)u(0) + ξu(1)]︸ ︷︷ ︸
=:u0

+V0 , (1.3.27)

✦ a(u; v) :=

1∫

0

κ(ξ)

L

(∥∥u′(ξ)
∥∥− L

)u′(ξ) · v′(ξ)
‖u′(ξ)‖ − ρ(ξ) grad V(u(ξ)) · v(ξ)dξ . (1.3.28)

Thus, for variational problem (1.3.15) arising from the elastic string model we find the common pattern

V = V0 + u0, that is, the trial space is an affine space, arising from the test space V0 by adding an offset

function u0.

Remark 1.3.29 (Offset function technique)

Assume that both V and V0 are contained in a larger function space W.

If V = V0 + u0 with an offset function u0 ∈ W, , that is, V is an affine space, then there is a way

to recast the abstract variational problems (1.3.24) as a variational problem with the same trial and test

space V0:

u ∈ V = V0 + u0: a(u; v) = 0 ∀v ∈ V0

m
ũ ∈ V0: a(ũ + u0; v) = 0 ∀v ∈ V0 . (1.3.30)

Obviously, if solutions exist and are unique, then u = ũ + u0.

➣ Now, (1.3.30) is a variational problem, for which both trial and test spaces are vector spaces.

Remark 1.3.31 (Non-linear variational problem)

Despite the fact that a in (1.3.24) is linear in the second argument, the variational problem (1.3.24) is

generically non-linear, because a need not be linear in the first argument (and a from (1.3.28) obviously

is not).
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?! Review question(s) 1.3.32. (Calculus of variations)

1. For the following functionals J : C0([0, 1]) → R determine whether they are globally differentiable

on C0([0, 1]]) . If they are not, find open subsets of C0([0, 1]), where they are differentiable

(a) J(u) =
∫ 1

0 u2(x)dx,

(b) J(u) =
∫ 1

0 |u(x)|dx,

(c) J(u) = u(1
2 ),

(d) J(u) =
∫ 1

0

√
1 + u(x)2 dx

(e) J(u) =
∫ 1

0 cosh(u(x))dx

(f) J(u) =
∫ 1

0
1

1+u(x)
dx

2. For the functionals given in the previous task, compute their directional derivative in direction v ∈
C0([0, 1]) and for an argument u, in which they are differentiable

3. For the functional J(x) := exp(‖x‖)− x1, x ∈ R2, find the non-linear variational equation to be

satisfied by the components of a global minimizer. How is this related to the non-linear system of

equations spawned by (??)?

1.3.2 Regularity (Smoothness) Requirements

For the sake of simplicity we restrict ourselves to forces due to homogeneous gravitational field (linear

potentials), see § 1.2.11.

V(x) = g · x with g ∈ R
2 ⇒ grad V(x) = g . (1.3.33)

Issue: The derivation of the continuum models (1.2.51) (→ Sect. 1.2.3) and (1.3.15) was based on the

assumption u ∈ (C2([0, 1]))2.

Is u ∈ (C2([0, 1]))2 required to render the minimization problem (1.2.51) or the variational

problem 1.3.15) meaningful?

We will find that curves with less smoothness can still yield relevant solutions of (1.2.51)/(1.3.15).

Obvious (→ § 1.2.5): Minimal requirement u ∈ (C0([0, 1]))2

(string must not be torn)

Recall the minimization problem underlying the elastic string continuum model, here stated for homoge-

neous gravitational field as introduced above in (1.3.33):

u∗ = argmin
u∈(C1([0,1]))2 & (1.2.2)

∫ 1

0

κ(ξ)

2L

(∥∥u′(ξ)
∥∥− L

)2 − ρ(ξ) g · u(ξ)dξ . (1.3.34)
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Observations on required smoothness

✦ J(u) from (1.2.51) and a, from (1.3.28) remain well defined for merely continuous, piecewise

continuously differentiable functions u, v : [0, 1] 7→ R
2!

➣ In this case u′ will be piecewise continuous and can be integrated.

✦ Mere integrability of κ and ρ sufficient in both (1.2.51) and (1.3.28).

(1.3.36) Piecewise Ck-functions

Ck
pw([a, b]) =̂ globally Ck−1 and piecewise k-times continuously differentiable functions on [a, b] ⊂ R

for each v ∈ Ck
pw([a, b]) there is a finite partition {a = τ0 < τ1 < · · · < τm = b} such

that v |]τi−1,τi[
can be extended to a function ∈ Ck([τi−1, τi]). C0

pw([a, b]) =̂ piecewise

continuous functions with only a finite number of discontinuities.

u ∈ C1
pw([0, 1])

Fig. 23 τ1 τ2 τ3 · · ·0 1

v ∈ C0
pw([0, 1])

Fig. 24

τ1 τ2 τ3 · · ·0 1

Clear: If u ∈ C1
pw([0, 1]), then u′ ∈ C0

pw([0, 1])

Example 1.3.37 (Non-smooth external forcing)

Above we discovered that piecewise differentiability of the curve parameterization still permits us to obtain

a meaningful non-linear variational problem (1.3.15). Curves u∗ with kinks can be accommodated in the

variational approach. The question is, whether such curves can describe physically meaningful solutions

of the elastic string continuum model. This example will give a resounding YES as an answer.

Setting:
✦ κ = const, ρ = const (homogeneous string)

✦ Vertical force field grad V(x) =

[
0

g(x1)

]
,

Fig. 25

force

u1/ξ

a/0 b/1

(a, ua)

(b, ub)

u2/f(ξ)

✔ discontinuous g

Fig. 26 force

u1/ξ
a/0 b/1

(a, ua)

(b, ub)

u2/f(ξ)

ξ0

✔ point force g(x) = δ(x− xp), a < xp < b
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➩ u∗ 6∈ (C2([0, 1]))2 physically meaningful:

✦ u∗ ∈ (C1([0, 1]))2 for discontinuous g
✦ merely u∗ ∈ (C0([0, 1]))2 for point force con-

centrated in xp: kink at x1 = xp!

Such solutions must not be ruled out by too stringent

smoothness requirements on trial functions u.

Fig. 27

Bottom line: u, v ∈ (C1
pw([0, 1]))2 right choice for variational problem (1.3.15)

1.3.3 Elastic String Differential Equation

So far we have not seen a single differential equation, though we are supposed to pursue modelling based

on them! This section will disclose the connection between the variational problem from Thm. 1.3.14 and

a differential equation.

Again we consider only the simplified non-linear variational equation arising from (1.3.15) when assuming

linear potential (1.3.33) (g ∈ R
2):

1∫

0

κ(ξ)

L

(∥∥u′(ξ)
∥∥− L

)u′(ξ) · v′(ξ)
‖u′(ξ)‖ − ρ(ξ) g · v(ξ)dξ = 0 ∀v ∈ (C1

pw,0([0, 1]))2 . (1.3.38)

Assumption: u ∈ (C2([0, 1]))2 & κ ∈ C1([0, 1]) & ρ ∈ C0([0, 1]) (1.3.39)

Recall: integration by parts formula [6, Satz 6.1.2]:

1∫

0

u(ξ)v′(ξ)dξ = −
1∫

0

u′(ξ)v(ξ) + (u(1)v(1) − u(0)v(0))︸ ︷︷ ︸
boundary terms

∀u, v ∈ C1
pw([0, 1]) . (1.3.40)

Applying it to the elastic energy contribution in (1.3.15) yields

1∫

0

(
κ(ξ)

L

(∥∥u′(ξ)
∥∥− L

) u′(ξ)
‖u′(ξ)‖

)
· v′(ξ)− ρ(ξ) g · v(ξ)dξ

=

1∫

0

{
− d

dξ

(
κ(ξ)

L

(∥∥u′(ξ)
∥∥− L

) u′(ξ)
‖u′(ξ)‖

)
− ρ(ξ) g

}
· v(ξ)dξ .
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Well, boundary terms occur prominently in (1.3.40). Where are they? Note: v(0) = v(1) = 0 ⇒
boundary terms vanish !

(1.3.15) ⇒

1∫

0

{
− d

dξ

(
κ(ξ)

L

(∥∥u′(ξ)
∥∥− L

) u′(ξ)
‖u′(ξ)‖

)
− ρ(ξ)g

}

︸ ︷︷ ︸
∈C0

pw([0,1])

·v(ξ)dξ = 0

∀v ∈ (C1
0([0, 1]))2

Lemma 1.3.41. fundamental lemma of the calculus of variations

Let f ∈ C0
pw([a, b]), −∞ < a < b < ∞, satisfy

∫ b

a
f (ξ)v(ξ) dξ = 0 ∀v ∈ Ck([a, b]), v(a) = v(b) = 0 .

for some k ∈ N0. Then f ≡ 0.

This lemma can immediately be applied to the equation obtained before:

Ass. (1.3.39) & (1.3.15)
Lemma 1.3.41

=⇒ − d

dξ

(
κ(ξ)

L

(∥∥u′(ξ)
∥∥− L

) u′(ξ)
‖u′(ξ)‖

)
= ρ(ξ)g ∀0 ≤ ξ ≤ 1 .

Theorem 1.3.42. Differential equation for elastic string model

If κ ∈ C1, ρ ∈ C0, then a C2-minimizer of J or a C2-solution of (1.3.15), respectively, solve the

2nd-order ordinary differential equation

− d

dξ

(
κ(ξ)

L

(∥∥u′
∥∥− L

) u′

‖u′‖

)
= ρ(ξ)g on [0; 1] . (1.3.43)

(1.3.44) Summary: policy for obtaining a differential equation from a variational equation

✦ Use integration by parts to remove all derivatives from test functions and shift them onto expressions

containing only the trial function.

Thus recast variational equation into the form

u:
∫

T(u) v dx = 0 ∀v .

✦✦ Appeal to Lemma 1.3.41 to conclude T(u) = 0, which yields the differential equation. This differen-

tial equation is also known as Euler-Lagrange equation for the underlying functional J

✦ Boundary conditions (here = values of u at endpoints) from the definitions of the trial space.

Terminology:

ODE (1.3.43) + boundary conditions (1.2.2) = two-point boundary value problem (BPV)

(on domain Ω = [0, 1])
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Remark 1.3.45 (Different incarnations of elastic string model)

We have arrived at different ways to state the elastic string continuum model:

Minimization problem

(1.2.51)

u∗ = argmin
v∈V

J(v)

❶⇒

Variational problem

(1.3.15)

a(u; v) = 0 ∀v

❷⇒

Two-point BVP

F(u, u′, u′′) = 0 ,

u(0), u(1) fixed .

❶: equivalence (“⇔”) holds if minimization problem has unique solution

❷: meaningful two-point BVP stipulates extra regularity (smoothness) of u, see Rem. 1.3.47 below.

(1.3.46) Weak form and strong solutions of 2-point BVP

Terminology:

{
minimization problem (1.2.51)

variational problem (1.3.15)

}
is called the weak form of the string model,

Two-point boundary value problem (1.3.43), (1.2.2) is called the strong form of the string

model.

A solution u of (1.3.43), for which all occurring derivatives are continuous is called a

classical solution of the two-point BVP.

Remark 1.3.47 (Extra regularity requirements → Ex. 1.3.37)

Here we detail the extra smoothness requirements hinted a in Rem. 1.3.45 in order to ensure equivalence

of the variational problem and the 2-point BVP arising from integration by parts for the elastic string model.

Minimization problem

(1.2.51):

✦ κ, f integrable,

✦ u piecewise C1

=

Variational problem

(1.3.15):

✦ κ, f integrable,

✦ u piecewise C1

6=

Two-point BVP:

✦ κ ∈ C1([0, 1]),
✦ f ∈ (C0([0, 1]))2,

✦ u ∈ (C2([0, 1]))2.

☞ In light of the discussion in Ex. 1.3.37, the formulation as a classical two-point BVP imposes (unduly)

restrictive smoothness on solutions and coefficient functions.

Solutions of the two-point BVP with smoothness properties as listed in the right box ✷ above, are called

classical solutions of the elastic string continuum model.

Lemma 1.3.48. Classical solutions are weak solutions

For κ ∈ C1([0, 1]), any classical solution of (1.3.43) also solves (1.3.15).

Proof. (“Derivation of (1.3.43) reversed”)
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Multiply (1.3.43) with v ∈ C1
pw,0([0, 1]) and integrate over [0, 1]. The push a derivative onto v by using

(1.3.40).
✷

1.4 Simplified Models for Elastic String

The variational problem of Thm. 1.3.14 is non-linear (→ Rem. 1.3.31) and posed on a space of vector

valued functions. Now we discuss (approximate) simplified variants.

Again, for the sake of simplicity, we assume linear potential (1.3.33)

V(x) = g · x ⇒ grad V(x) = g . (1.3.33)

This leads to the minimization problem (1.3.34) and the non-linear variational equation (1.3.38).

1.4.1 Taut String

Taut string = elastic string stretched way beyond its equilibrium length

L≪ ‖u(0)− u(1)‖ . (1.4.1)

Recall formula for length of a parameterized curve form Rem. 1.2.6 and the discussion in Ex. 1.2.52, in

particular (1.2.54). ➥ expected: ‖u′∗(ξ)‖ ≫ L for all 0 ≤ ξ ≤ 1 for solution u∗ of (1.2.51)

“Intuitive asymptotics”:
✦ renormalize stiffness κ → κ̃ := κ

L , [κ̃] = Nm−1

✦ suppress equilibrium length: L = 0 in (1.2.51).

Simplified equilibrium model:

ũ∗ = argmin
u∈(C1

pw([0,1]))2 & (1.2.2)

1∫

0

1

2
κ̃(ξ)

∥∥u′(ξ)
∥∥2 − ρ(ξ) g · u(ξ)dξ

︸ ︷︷ ︸
=: J̃(u)

. (1.4.2)

The functional (= a mapping from a function space to R) J̃ from (1.4.2) has the structure

J̃(u) = 1
2a(u, u)− ℓ(u) ,

with a symmetric bilinear form

a : V ×V 7→ R , a(u, v) :=
∫ 1

0
κ̃(ξ) u′(ξ) · v′(ξ)dξ ,

and a linear form

ℓ : V 7→ R , ℓ(v) :=
∫ 1

0
ρ(ξ) g · v(ξ)dξ .
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This makes J̃ a representative of an important class of minimization problems:

Definition 1.4.3. Quadratic minimization problem

If a functional J : V → R on a vector space V can be written as

J(v) = 1
2a(v, v)− ℓ(v) + γ

with a symmetric bilinear form a : V ×V 7→ R, a linear form ℓ : V 7→ R, and γ ∈ R, then

u∗ = argmin
v∈V

J(v)

is called a quadratic minimization problem on V.

(1.4.2) = a quadratic minimization problem on a function space

(1.4.4) Variational problem corresponding to (1.4.2)

We use the “Taylor expansion” of the square of the Euclidean norm:

‖x + th‖2 = ‖x‖2 + 2tx · h + t2‖h‖2 = ‖x‖+ 2tx · h + O(t2) .

Following the same recipe as in § 1.3.7 we obtain the directional derivative:

lim
t→0

J̃(u + tv)− J̃(u)

t
=

1∫

0

κ̃(ξ)u′(ξ) · v′(ξ) − ρ(ξ) g · v(ξ) dξ = 0 , ∀v ∈ (C1
pw,0([0, 1]))2 .

Theorem 1.4.5. Variational equation for taut string model with linear potential

The solution ũ∗ of (1.4.2) solves the variational equation

∫ 1

0
κ̃(ξ)u′∗(ξ) · v′(ξ)dξ =

∫ 1

0
ρ(ξ)g · v(ξ)dξ ∀v ∈ (C1

pw,0([0, 1]))2 . (1.4.6)

(1.4.7) Linear variational problems ↔ Rem. 1.3.31

The left hand side of the variational problem (1.4.6) is not only linear in the test function argument v, but

also in the trial function argument u∗! This distinguishes a special class of variational problems:

Definition 1.4.8. Linear variational problem

A variational problem posed on an affine space V and a vector space V0 of the form

u ∈ V: a(u, v) = ℓ(v) ∀v ∈ V0 , (1.4.9)

is called a linear variational problem, if

• a : V ×V0 7→ R is a bilinear form, that is, linear in both arguments (→ Def. 1.3.22),

• and ℓ : V0 → R is a linear form.
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In general, quadratic minimization problems give rise to linear variational problems .

This can be confirmed by an elementary computation:

J(u) = 1
2a(u, u)− ℓ(u)

lim
t→0

J(u + tv)− J(u)

t
= lim

t→0

ta(u, v) + 1
2 t2

a(v, v)− tℓ(v)

t
= a(u, v)− ℓ(v) ,

where the bilinearity of a and the linearity of ℓ was crucial, see Def. 1.4.3.

(1.4.10) 2-point BVP corresponding to (1.4.2)

Perform integration by parts according to see (1.3.40) on (1.4.6) to shift derivatives off v. Boundary terms

do not interfere, because test functions vanish in endpoints.

1∫

0

κ̃(ξ)u′∗(ξ) · v′(ξ)− f(ξ) · v(ξ)dξ =

1∫

0

{
− d

dξ

(
κ̃(ξ)

d

dξ
u(ξ)

)
− ρ(ξ)g

}
· v(ξ)dξ

∀v ∈ (C1
pw,0([0, 1]))2 .

Then appeal to Lemma 1.3.41.

Theorem 1.4.11. 2-point boundary value problem for taut string model with linear potential

If κ ∈ C1, ρ ∈ C0, then a C2-solution of (1.4.6) solves the two-point BVP

− d

dξ

(
κ̃(ξ)

du

dξ
(ξ)

)
= ρ(ξ)g , 0 ≤ ξ ≤ 1 ,

u(0) =

[
a

ua

]
, u(1) =

[
b
ub

]
.

(1.4.12)

Remark 1.4.13 (Vertical force)

Special setting: “gravitational force” g = −
[

0
1

]
, see also Ex. 1.3.37

(1.4.2) decouples into two minimization problems for the components of u!

(1.4.2) ⇒
ũ1,∗ = argmin

u∈C1
pw([0,1]),u(0)=a,u(1)=b

1
2

1∫

0

κ̃(ξ)(u′(ξ))2 dξ ,

ũ2,∗ = argmin
u∈C1

pw([0,1]),u(0)=ua,u(1)=ub

1∫

0

1
2 κ̃(ξ)(u′(ξ))2 + ρ(ξ)u(ξ) dξ .

(1.4.14)
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The minimization problem for ũ1,∗ has a closed-form solution:

ũ1,∗(ξ) = a +
b− a

∫ 1
0 κ̃−1(τ)dτ

ξ∫

0

κ̃−1(τ)dτ , 0 ≤ ξ ≤ 1 . (1.4.15)

This solution can easily be found by converting the minimization problem to a 2-point boundary value

problem as was done above, cf. (1.4.6), (1.4.12). The minimization problem for ũ2,∗ leads to the linear

variational problem, cf. (1.4.6)

ũ2,∗ ∈ C1
pw([0, 1])

ũ2,∗(0) = ua, ũ2,∗(1) = ub

:

1∫

0

κ̃(ξ)ũ′2,∗(ξ)v
′(ξ)dξ = −

1∫

0

ρ(ξ)v(ξ) dξ ∀v ∈ C1
pw,0([0, 1]) .

(1.4.16)

1.4.2 Function Graph Models for String Shape

We aim for a reformulation of the elastic string model in terms of a minimization problem/variational prob-

lem for a real-valued function on an interval. Focus is on the taut string limit model discussed in Sec-

tion 1.4.1. We consider the special situation with a (scaled) linear potential V(x) = x2 which corresponds

to vertical gravitational force, see (1.4.15), (1.4.16) from Rem. 1.4.13. We also define g(ξ) := ρ(ξ) as a

“load function”.

Fig. 28

Load function ĝ(x)

x
a b

(a, ua)

(b, ub)

û(x)

u
Goal: Describe shape of string through graph of dis-

placement function û = û(x), û : [a, b] 7→ R, a < b
(physical units [û] = 1m).

boundary conditions:

û(a) = ua , û(b) = ub . (1.4.17)

û(x) = ũ2,∗(Φ−1(x)) with Φ(ξ) := ũ1,∗(ξ) . (1.4.18)

Here ũ1,∗(ξ), ũ2,∗(ξ) are the components of the curve description of the equilibrium shape of the string,

see Sect. 1.2.1:

u∗(ξ) =
[

ũ1,∗(ξ)
ũ2,∗(ξ)

]
, 0 ≤ ξ ≤ 1 .

Of course, the graph description is possible only for special string shapes. It also hinges on the choice of

suitable coordinates.

Assumption 1.4.19. Requirements for graph description

Assume that ξ 7→ ũ1,∗(ξ) is monotone, ũ′1,∗(ξ) > 0 for all 0 ≤ ξ ≤ 1, ũ1,∗(0) = a, ũ1,∗(1) = b.

In fact, this assumption will always be satisfied in the current setting and can be proved invoking the

so-called “maximum principle”.
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(1.4.20) Derivation of variational equation for graph model of taut elastic string

As above we set Φ(ξ) := ũ1,∗(ξ) and take for granted Φ(0) = a < Φ(1) = b, Φ ∈ C1
pw([0, 1]), and

that ξ → Φ(ξ) is strictly monotone.

By the chain rule [6, Thm. 5.1.3]:

u(ξ) = v̂(Φ(ξ)) ⇒ u′(ξ) =
dv̂

dx
(x)Φ′(ξ) , x := Φ(ξ) . (1.4.21)

Recall: transformation formula for integrals in one dimension (substitution rule [6, Thm. 6.1.5], x :=
Φ(ξ), “dx = Φ′(ξ)dξ”):

q ∈ C0
pw([0, 1]):

1∫

0

q(ξ)dξ =

b=Φ(1)∫

a=Φ(0)

q̂(x)| 1

Φ′(Φ−1(x))
|dx , q̂(x) := g(Φ−1(x)) . (1.4.22)

← (1.4.21) & (1.4.22)

Transformation of left hand bilinear form of variational problem of taut string problem described as a func-

tion of spatial coordinate x:

1∫

0

κ̃(ξ)ũ′2,∗(ξ)v
′(ξ)dξ =

b∫

a

κ̃(Φ−1(x))Φ′(ξ)
dû

dx
(x)Φ′(ξ)

dv̂

dx
(x)

1

|Φ′(ξ)| dx

=

b∫

a

κ̃(Φ−1(x))|Φ′(Φ−1(x))|︸ ︷︷ ︸
=:σ̂(x)

dû

dx
(x)

dv̂

dx
(x)dx .

Transformation of right hand side linear form:

−
1∫

0

g(ξ)v(ξ)dξ = −
b∫

a

g(Φ−1(x))

|Φ′(Φ−1(x))|︸ ︷︷ ︸
=:ĝ(x), [ĝ]=Nm−1

v̂(x)dx .

Note that in the case of pure gravitational loading, see (1.4.14), by (1.4.15) Φ is a linear function and

Φ′ is constant, which means that Φ′(Φ−1(x)) contributes only a constant to both sides of the variational

problem. These constants will be suppressed in the wake of rescaling.✬

✫

✩

✪

Linear variational problem in physical space coordinate on spatial domain Ω = [a, b]:

û∗ ∈ C1
pw([a, b]),

û∗(a) = ua, û∗(b) = ub

:

b∫

a

σ̂(x)
dû∗
dx

(x)
dv̂

dx
(x)dx = −

b∫

a

ĝ(x)v̂(x)dx ∀v̂ ∈ C1
pw,0([a, b]) .

(1.4.23)

(1.4.24) 2-point BPV from graph model for taut string

As in Section 1.3.3 use integration by parts (1.3.40) to remove derivatives from test function v̂ in (1.4.23).
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(assuming σ̂ ∈ C1([a, b])) Scalar two-point BVP

(1.4.23) ⇒
{ d

dx

(
σ̂(x)

dû∗
dx

(x)

)
= ĝ(x) , a ≤ x ≤ b ,

û∗(a) = ua , û∗(b) = ub .

(1.4.25)

?! Review question(s) 1.4.26. (Two-point boundary value problems)

1. What is a quadratic minimization problem posed on an affine space V?

2. Derive the (formal) two-point boundary value problems induced by the minimization of the following

functionals on C1
0,pw([−1, 1]):

(a) J(u) :=
∫ 1
−1 |(xu)′(x)|2 dx,

(b) J(u) :=
∫ 1
−1 u2(x)− β(x)u′(x)dx, with a function β ∈ C1([−1, 1]),

(c) J(u) :=
∫ 1
−1(u(x) + u′(x))2 dx,

(d) J(u) := 1
2

∫ 1
−1

1
1+u′(x)2 dx.

3. Which of the above functionals gives rise to a linear variational problem (→ Def. 1.4.8) as a neces-

sary conditions for its minimizers?

4. Find the solution of (1.4.25) for σ̂ ≡ 1, in which case the ODE reduces to d2û
dx2 = 0.

5. Determine the solution of (1.4.25) for σ̂ ≡ 1, ĝ ≡ 1, and ua = ub = 0.

6. Give an example for a variational problem (1.4.23), for which we cannot find a two-point boundary

value problem (1.4.25), which has the same solution, if derivatives in (1.4.25) are read in classical

sense.

1.5 Discretization

1.5.1 The Concept of Discretization

Goal: “computation” of a/the solution u : [0, 1] 7→ R2 of





minimization problem (1.2.51)

variational problem (1.3.15)

two-point BVP (1.3.43) & (1.2.2)

a function: infinite amount of information, see [4, Rem. 3.1.4].

Remark 1.5.1 (Analytic solutions)

! Well, just provide a formula for u (analytic solution): in general elusive

for the above problems
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☛
✡

✟
✠Only option:

Finitely many floating point operations

Numerical algorithm Computer−−−−−→ approximate solution

Computers are finite automata Numerical algorithms can only operate on discrete models

Definition 1.5.2. Discrete model

A discrete model for a physical system/phenomenon is a model, for which both data/parameters

and unknowns can be described by a finite number of real numbers.

The construction of meaningful discrete models from continuous models whose data/unknowns contain

an infinite amount of information is the task of discretization:

Continuous (PDE) model

(“∞-dimensional”)

Discretization−−−−−−→
Discrete model

(“finitely many degrees of freedom”)

as small as possible

(only a few unknowns)

as accurate as possible

(good approximation (∗) )

as faithful as as possible

(structure preserving)

(∗): needs a measure for quality of a solution, usually a norm of the error, error = difference of exact/an-

alytic and approximate solution.

Parlance: number of “degrees of freedom” =̂ number of reals required to describe discrete configuration

space (usually agrees with number of “unknowns” in the discrete model.)

Remark 1.5.3 (“Physics based” discretization)

Mass-spring model (→ Section 1.2.2) = discretization of the minimization problem (1.2.51) describing the

elastic string.

This discretization may be called “physics based”, because it is inspired by the (physical) context of the

model.

Note: Other approaches to discretization discussed below will lead to equations resembling the mass-

spring model, see Section 1.5.2.2.

Remark 1.5.4 (Timestepping for ODEs)
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For initial value problems for ODEs, whose solutions are functions, too, we also face the problem of

discretization: timestepping methods compute a finite number of approximate values of the solutions at

discrete instances in time, see [4, Chapter 11].

Remark 1.5.5 (Coefficients/data in procedural form)

For the elastic string model (→ Section 1.2.3) the stiffness κ(ξ), and force field f may not be available in

closed form (as formulas).

Instead they are usually given in procedural form, in MATLAB syntax as

function k = kappa(xi);,

function f = force(xi);,

in C++ as a function with signature double (double). This might be the only way to access the coeffi-

cient functions, because they may be obtained

✦ as results of another computation,

✦ by interpolation from a table.

viable discretizations must be able to deal with data in procedural form!

Preview. The remainder of this section will present a few strategies on how to derive discrete models

for the problem of computing the shape of an elastic string. The different approaches start from differ-

ent formulations, some target the minimization problem (1.2.51), or, equivalently, the variational problem

(1.3.15), while others tackle the ODE (1.3.43) together with the boundary conditions (1.2.2).

1.5.2 Ritz-Galerkin discretization

Simple idea of first step of Ritz-Galerkin discretization

In





minimization problem, e.g., (1.2.51)

⇓
variational problem, e.g. (1.3.15)

replace function space V/V0 with

finite dimensional subspace VN/VN,0

Note that a subscript tag N distinguishes “discrete functions/quantities”, that is, functions/operators etc.

that are associated with a finite dimensional space. In some contexts, N will also be an integer designating

the dimension of a finite dimensional space.

Formal presentation: V, V0 : (affine) function spaces, dim V0 = ∞,

VN, VN,0 : subspaces VN⊂V, VN,0⊂V0, N := dim VN,0, dim VN < ∞.

Ritz-Galerkin discretization of minimization problem for functional J : V 7→ R:
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Continuous minimization problem

u = argmin
v∈V

J(v) . (1.5.6) Galerkin disc.−−−−−−−→

Discrete minimization problem

uN = argmin
vN∈VN

J(vN) . (1.5.7)

Ritz-Galerkin discretization of abstract (non-linear) variational problem (1.3.24), see Rem. 1.3.31

Continuous variational problem

u ∈ V: a(u; v) = 0 ∀v ∈ V0 .
(1.5.8)

Galerkin disc.−−−−−−−→

Discrete variational problem

uN ∈ VN : a(uN ; vN) = 0

∀vN ∈ VN,0 . (1.5.9)

Terminology: uN ∈ VN satisfying (1.5.7)/(1.5.9) is called a Galerkin solution of (9.2.9)/(9.3.31)

VN is called the (Galerkin) trial space, VN,0 is the (Galerkin) test space.

(compare with terminology for variational equations→ Def. 1.3.23)

(1.5.10) Relationship between discrete minimization problem and discrete variational prob-

lem

In Sect. 1.3.1 we discovered the implication (equivalence for unique minimizer)

Continuous minimization problem

(9.2.9)
=⇒ Continuous variational problem

(9.3.31)

Now it seems that we have two different strategies for Galerkin discretization:

1. Ritz-Galerkin discretization via the discrete minimization problem (1.5.7),

2. Ritz-Galerkin discretization based on the discrete variational problem (1.5.9).

However, the above implication extends to the discrete problems!

More precisely, we have the commuting relationship:

minization problem
Galerkin discretization−−−−−−−−−−−→ discrete minimization problem

Configurational

derivative in V0

y
y Configurational

derivative in VN,0

variational problem
Galerkin discretization−−−−−−−−−−−→ discrete variational problem .

(1.5.11)

The commuting diagram means that the same discrete variational problem is obtained no matter whether

1. the minimization problem is first restricted to a finite dimensional subspace and the result is con-

verted into a variational problem according to the recipe of Sect. 1.3.1.
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2. or whether the variational problem derived from the minimization problem is restricted to the sub-

space.

To see this, understand that the manipulations of Sect. 1.3.1 can be carried out for infinite and finite

dimensional function spaces alike.

(1.5.12) Offset functions and Ritz-Galerkin discretization

Often: V = u0 + V0, with offset function u0 → Eq. (1.3.30), (1.3.27)

If u0 is sufficiently simple, we may choose a trial space VN = u0 + VN,0

➣ Discrete variational problem analogous to (1.3.30), same Galerkin trial and test space

wN ∈ VN,0: a(u0 + wN; vN) = 0 ∀vN ∈ VN,0 ➥ uN := wN + u0 . (1.5.13)

In the case of a linear variational problem (→ Def. 1.4.8, a(u, v) = ℓ(v) ∀v ∈ V0), that is, a bilinear form

a, we have

(1.5.13) ⇔ a(wN , vN) = ℓ(vN)− a(u0, vN) ∀vN ∈ VN,0 . (1.5.14)

Below we will always make the assumption V = u0 + V0 ➣ V is an affine space.

(1.5.15) Towards a (non-linear) system of equations

A computer is clueless about a concept like “finite dimensional subspace”. What it can process are arrays

of floating point numbers (vectors and matrices). Hence, all discretization methods must yield equations

connecting vectors = systems of equations. There is a tool from linear algebra that accomplishes this.

Definition 1.5.16. Basis of a finite dimensional vector space

Let V be a real vector space. A finite subset {b1, . . . , bN} ⊂ V, N ∈ N, is a basis of V, if for every

v ∈ V there are unique coefficients µℓ ∈ R, ℓ ∈ {1, . . . , N}, such that v = ∑
N
ℓ=1 µℓb

ℓ. Then N
agrees with the dimension of V.

Idea:
✦ choose basis BN = {b1

N , . . . , bN
N} of VN,0: VN,0 = Span{BN}

✦ insert basis representation into minimization problem (1.5.7)

vN ∈ VN,0 ⇒ vN = ν1b1
N + · · ·+ νNbN

N , νi ∈ R , (1.5.17)

and variational equation (1.5.9)

vN ∈ VN,0 ⇒ vN = ν1b1
N + · · ·+ νNbN

N , νi ∈ R , (1.5.18)

uN ∈ VN ⇒ uN = u0 + µ1b1
N + · · ·+ µNbN

N , µi ∈ R .
(1.5.19)
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Remark 1.5.20 (Ordered basis of test space)

Once we have chosen a basis B and ordered it, as already indicated in the notation above, the test space

VN,0 can be identified with RN: a coefficient vector~µ = (µ1, . . . , µN)
T ∈ RN provides a unique charac-

terization of a function uN ∈ VN,0 (basis property stated in Def. 1.5.16)

uN = ∑
N

j=1
µjb

j
N . (1.5.21)

✎ notation: ~ν, ~µ =̂ vectors of coefficients (νi)
N
i=1, (µi)

N
i=1, in basis representation of functions

vN, uN ∈ VN according to (1.5.17).

Discrete minimization problem

uN = argmin
vN∈VN

J(vN) . (1.5.7)
Basis−−−−−−−→

representation

Minimization problem on RN

~µ = argmin
~ν∈RN

F(~ν) , (1.5.22)

F(~ν) := J(u0 + ν1b1
N + · · ·+ νNbN

N) .

amenable to classical optimization

techniques

Discrete variational problem

uN ∈ VN : a(uN ; vN) = 0

∀vN ∈ VN,0 . (1.5.9)

Basis−−−−−−−→
representation

System of equations

a(u0 +
N

∑
j=1

µjb
j
N; bk

N) = 0

∀k = 1, . . . , N . (1.5.23)

apply numerical techniques for solving

linear/non-linear systems of equations (∗)
(∗): Some numerical methods designed for solving linear and non-linear systems of equations are pre-

sented in [4, Section 1.6], [4, Chapter 2].

Note that we owe the above equivalence of the discrete variational problem (left) and the system of equa-

tions (right) to the fact that a(u; v) is linear in its second argument, see (1.3.25). This is a consequence of

the following result.
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Lemma 1.5.24. Testing with basis vectors

For every linear form ℓ : V 7→ R (→ Def. 1.3.22) on a vector space V holds

ℓ(v) = 0 ∀v ∈ V ⇔ ℓ(b) = 0 ∀b ∈ B

for any basis B (→ Def. 1.5.16) of V.

To understand, why this lemma is relevant, observe that v 7→ a(u; v) is a linear form.

Every finite-dimensional vector space has infinitely many different bases. When choosing two different

bases of VN for the Galerkin discretization of a variational problem (9.3.31), then we obtain different sys-

tems of equations that have different (sets of) solution vectors. However, when forming linear combinations

according to (1.5.21) we obtain the same elements of VN.

Theorem 1.5.25. Independence of Galerkin solution of choice of basis

The choice of the basis B has no impact on the (set of) Galerkin solutions uN of (1.5.9).

(1.5.26) Recalled: Elastic string variational problems

Below, we apply Galerkin approaches to variational problems that we found in the context of the elastic

string problem. We list them for easier recollection:

• (1.4.23) as an example for the treatment of a linear variational problem:

u ∈ C1
pw([a, b]),

u(a) = ua, u(b) = ub

:

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx = −

b∫

a

g(x)v(x)dx ∀v ∈ C1
pw,0([a, b]) .

(1.4.23)

Here: spatial domain Ω = [a, b], linear offset function u0(x) =
b−x
b−a ua +

x−a
b−a ua,

function space V0 = C1
pw,0([a, b]).

• (1.3.15) to demonstrate its use in the case of a non-linear variational equation:

u ∈ C1
pw([0, 1])

u(0), u(1) from (1.2.2)
:

1∫

0

κ(ξ)

L

(∥∥u′(ξ)
∥∥− L

)u′(ξ) · v′(ξ)
‖u′(ξ)‖ − ρ(ξ) grad V(u(ξ)) ·v(ξ)dξ = 0

∀v ∈ (C1
pw,0([0, 1]))2 . (1.3.15)

Here: parameter domain Ω = [0, 1], linear offset function u0(ξ) = ξu(0) + (1− ξ)u(1),
function space V0 = (C1

pw,0([a, b]))2 .

?! Review question(s) 1.5.27. (Galerkin discretization)

1. Explain the main steps of the Ritz-Galerkin discretization of a variational problem posed on an infinite

dimensional space.

2. Describe in your own words the meaning of the commuting diagram (1.5.11).
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3. Let u ∈ V solve the (continuous) minimization problem (9.2.9), and uN be the solution of the discrete

minimization problem (1.5.7). What can be said about J(u) and J(uN).

4. Given a linear variational problem posed on an affine space V := V0 + u0, how can it be converted

to a linear variational problem posed on the vector space V0?

5. Assume that a variational problem posed on a finite-dimensional vector space VN,0 has a unique

solution. How does the choice of basis for VN,0 affect the solution?

1.5.2.1 Spectral Galerkin discretization

Now we look forward to learning about the first complete Galerkin discretization of the (simplified) elastic

string model.

When asked for a simple trial/test space the following will probably come to your mind (widely used for

interpolation, see [4, Chapter 3], and approximation, see [4, Section 4.1.2]): for interval Ω ⊂ R

VN,0 = Pp(R) ∩ C0
0(Ω)

=̂ space of univariate polynomials of degree ≤ p vanishing at endpoints of Ω ,

(1.5.28)

N := dim VN = p− 1 [4, Section 3.2.1] for more information.

Obvious: choice (1.5.28) guarantees VN ⊂ C1
pw,0(Ω) (even VN,0 ⊂ C∞(Ω))

Please note that VN,0 is a space of global polynomials on Ω.

Experiment 1.5.29 (Spectral Galerkin discretization of linear variational problem)

Targetted: linear variational problem (1.4.23) with

✦ a = 0, b = 1 ➣ domain Ω =]0, 1[,
✦ constant coefficient function σ ≡ 1,

✦ load g(x) = −4π(cos(2πx2)− 4πx2 sin(2πx2)),
✦ boundary values ua = ub = 0.

u(x) = sin(2πx2) , 0 < x < 1 .

because d2u
dx2 (x) = g(x).

Concrete variational problem

u ∈ C1
pw,0([0, 1]):

1∫

0

du
dx (x)

dv
dx (x) dx = −

1∫

0

g(x)v(x)dx ∀v ∈ C1
0,pw([0, 1]) . (1.5.30)
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Polynomial spectral Galerkin discretization, degree

p ∈ {4, 5, 6}.
Plots of approximate/exact solutions ✄

Observation: Higher polynomial degree leads to bet-

ter approximation in the “eyeball norm”.

Note that Thm. 1.5.25 permits us to discuss the dis-

crete solution without disclosing the actual basis of

VN,0.

Fig. 29
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Remark 1.5.31 (Choice of basis for polynomial spectral Galerkin methods)

In this remark we consider only the “reference interval” [−1, 1].

Sought: (ordered) basis of VN,0 := C1
0([−1, 1]) ∩ Pp(R)

➊ “Tempting”: monomial-type basis

VN,0 = Span{1− x2, x(1− x2), x2(1− x2), . . . , xp−2(1− x2)} . (1.5.32)
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✁ Monomial basis polynomials

Beware: ill-conditioned !

→ Exp. 1.5.59 below

“Visual instability”: for large degree the basis func-

tions look very much alike↔ “almost linearly depen-

dent”.

Note: in the extreme case of linear dependence

of basis functions, we certainly lose uniqueness of

solutions of the (non-)linear system of equations

(1.5.23).

➋ “Popular”: integrated Legendre polynomials

VN,0 = Span{x 7→ Mn(x) :=
∫ x

−1
Pn(τ)dτ, n = 1, . . . , p− 1} , (1.5.33)

where Pn =̂ n-th Legende polynomial.
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Fig. 31
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✁ integrated Legendre polynomials M1, . . . , M5

“Visual stability”: the basis functions are very much

distinct, that is, “not nearly linearly dependent”.

Integrated Legendre polynomials satisfy

Mn(−1) = Mn(1) = 0 ∀n ∈ N .

Definition 1.5.34. Legendre polynomials → [4, Def. 5.3.26]

The n-th Legendre polynomial Pn, n ∈ N0, is defined by (Rodriguez formula)

Pn(x) :=
1

n!2n

dn

dxn
[(x2 − 1)n] .

Legendre polynomials P0, . . . , P5

P0(x) = 1 ,

P1(x) = x ,

P2(x) =
3
2 x2− 1

2 ,

P3(x) =
5
2 x3− 3

2 x ,

P4(x) =
35
8 x4 − 15

4 x2 + 3
8 .
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Some facts about Legendre polynomials:
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Lemma 1.5.35. Properties of Legendre polynomials

The Legendre polynomials Pn according to Def. 1.5.34 satisfy

✦ Symmetry:

Pn is

{
even

odd
for

{
even n
odd n

, Pn(1) = 1 , Pn(−1) = (−1)n . (1.5.36)

✦ Orthogonality

∫ 1

−1
Pn(x)Pm(x)dx =

{
2

2n+1 , if m = n ,

0 else.
(1.5.37)

✦ 3-term recursion

Pn+1(x) :=
2n + 1

n + 1
xPn(t)−

n

n + 1
Pn−1(x) , P0 := 1 , P1(x) := x . (1.5.38)

The orthogonality (1.5.37) can be seen as a guarantee for “maximal linear independence”/“maximal sta-

bility” of a set of basis functions.

The 3-term recurrence formula (1.5.38) paves the way for an efficient evaluation of all Legendre polynomi-

als at many (quadrature) points, see Code 1.5.40.

C++11 code 1.5.39: Computation of Legendre polynomials based on 3-term recursion (1.5.38)

1 f u n c t io n V= legendre(n,x)

2 % Computes values of Legendre polynomials up to degree n

3 % in the points xj passed in the row vector x.

4 % Exploits the 3-term recursion (1.5.38) for Legendre polynomials

5 V = ones(s iz e(x)); V = [V; x];

6 f o r j=1:n-1

7 V = [V; ((2*j+1)/(j+1)).*x.*V(end,:) - j/(j+1)*V(end-1,:)];

8 end

C++ code 1.5.40: Computation of Legendre polynomials based on 3-term recursion (1.5.38)

1 // Compute Legendre polynomials Pi(x) for i = 0, · · · , n;

2 // computes values of Legendre polynomials up to degree n

3 // in the points xj passed in the row vector x.

4 // Exploits the 3-term recursion (1.5.38) for Legendre polynomials.

5 // n : degree of polynomials

6 // x: Points at which the polynomials have to be computed

7 // return value: Matrix of size n + 1 by x.cols() where i-th row is Pi(x)

8 Eigen : : MatrixXd

9 legendre ( i n t n , const Eigen : : RowVectorXd &x ) {

10 const s td : : size_t n_points = x . co ls ( ) ;

11 Eigen : : MatrixXd V = Eigen : : MatrixXd : : Zero ( n+1 , n_points ) ;

12 V. row ( 0 ) = Eigen : : RowVectorXd : : Ones ( n_points ) ;

13 V. row ( 1 ) = x ;

14 for ( i n t i = 1 ; i < n ; i ++) {

15 auto tmp = (2∗ i +1 . ) / ( i +1 . ) ∗ x . ar ray ( ) ∗ V. row ( i ) . a r ray ( )
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16 − i / ( i +1 . )∗V. row ( i −1) . a r ray ( ) ;

17 V. row ( i +1) = tmp . matr ix ( ) ;

18 }

19 return V;

20 }

Code 1.5.40 relies on the EIGEN template library for numerical linear algebra to handle matrices and

vectors, see [4, Section 1.2.3] for an introduction and the EIGEN home page for detailed documentation.

The 3-term recursion is implemented in Line 15 using componentwise vector operation accessible via the

EIGENarray data type.

✦ From the 3-term recursion formula (1.5.38) we can infer a particular representation of derivatives and

primitives of Legendre polynomials, cf. Code 1.5.44

Pn(x) = ( d
dx Pn+1(x)− d

dx Pn−1(x))/(2n + 1) , n ∈ N , (1.5.41)

Mn(x) =
1

2n + 1
(Pn+1(x)− Pn−1(x)) and

dMn

dx
= Pn . (1.5.42)

C++11 code 1.5.43: Computation of (integrated) Legendre polynomials using (1.5.38) and

(1.5.42)

1 f u n c t io n [V,M] = intlegpol(n,x)

2 % Computes values of the first n + 1 Legendre polynomials Pn (returned in

3 % matrix V) and the first n− 1 integrated Legendre polynomials

4 % Mn (returned in matrix M) in the points xj passed in the

5 % row vector x. Uses the recursion formulas (1.5.38) and

6 % (1.5.42)

7 V = ones(s iz e(x)); V = [V; x];

8 f o r j=1:n-1, V = [V; ((2*j+1)/(j+1)).*x.*V(end,:) -

j/(j+1)*V(end-1,:)]; end

9 M = diag(1./(2*(1:n-1)+1))*(V(3:n+1,:) - V(1:n-1,:));

C++ code 1.5.44: Computation of (integrated) Legendre polynomials using (1.5.38) and

(1.5.42)

1 // Computes values of the first n + 1 Legendre polynomials Pn

2 // and the first n− 1 integrated Legendre polynomials Mn

3 // in the points xj passed in the row vector x.

4 // Uses the recursion formulas (1.5.38) and (1.5.42)

5 // n: Degree of polynomials

6 // x: Points at which the polynomials have to be computed

7 // return value is a std::pair of matrices, with first one containing

8 // values of Legendre polynomials and the second one those of the

9 // integrated Legendre polynomials

10 s td : : pa i r <Eigen : : MatrixXd , Eigen : : MatrixXd >

11 int legendrepol ( i n t n , const Eigen : : RowVectorXd &x ) {
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12 const in t n_points = x . co ls ( ) ;

13 Eigen : : MatrixXd V = legendre ( n , x ) ;

14 Eigen : : MatrixXd M = Eigen : : MatrixXd : : Zero ( n−1, n_points ) ;

15 Eigen : : DiagonalMatrix <double , Eigen : : Dynamic> diag ( n−1) ;

16 diag . d iagonal ( ) =

17 1 . / ( 2 ∗ ( Eigen : : VectorXd : : LinSpaced ( n−1,1,n−1) ) . a r ray ( ) +1) ;

18 M = diag ∗ (V . bottomRows ( n−1) − V. topRows ( n−1) ) ;

19 return s td : : make_pair (V , M) ;

20 }

(1.5.45) Transformation of basis functions

The Legendre polynomials from Def. 1.5.34 are defined on [−1, 1]. However, the variational problems

(1.4.23) and (1.3.15) are defined on different domains. Can we use the Legendre polynomials on those?

The idea is borrowed from the transformation of quadrature formulas to general intervals as explained in [4,

Rem. 5.1.4]. Recipe: On a “general domain Ω = [a, b]”, we obtain the basis function by a so-called affine

transformation of the basis functions on [−1, 1], cf. [4, Rem. 5.1.4]. In the case of integrated Legendre

polynomials as basis functions on Ω = [a, b] we use the basis functions

bi
N(x) = Mi

(
2

x− a

b− a
− 1

)
, a ≤ x ≤ b . (1.5.46)

Note the effect of this transformation on the derivative (chain rule!):

dbi
N

dx
(x) =

dMi

dx

(
2

x− a

b− a
− 1

)
· 2

b− a
= Pi

(
2

x− a

b− a
− 1

)
· 2

b− a
. (1.5.47)

(1.5.48) Spectral Galerkin discretization with quadrature

Consider the linear variational problem, cf. (1.4.23),

u ∈ C1
0,pw([a, b]):

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

g(x)v(x)dx ∀v ∈ C1
0,pw([a, b]) . (1.5.49)

Assume: σ, g only given in procedural form, see Rem. 1.5.5:

MATLAB: function s = sigma(xi); , function g = gfunc(xi);, or

C++: auto sigma = [] (double xi)-> double { };

Analytic evaluation of integrals becomes impossible even if u, v polynomials !

Only remaining option: Numerical quadrature, see [4, Chapter 5]
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✬

✫

✩

✪

Replace integral with m-point quadrature formula on [a, b], m ∈ N → [4, Section 5.1]:

∫ b

a
f (t)dt ≈ Qm( f ) :=

m

∑
j=1

ωm
j f (ζm

j ) . (1.5.50)

ωm
j : quadrature weights , ζm

j : quadrature nodes ∈ [a, b] .

(1.5.49) & (1.5.50) ➣ discrete variational problem with quadrature:

uN ∈ VN :
m

∑
j=1

ωm
j σ(ζm

j )
duN

dx
(ζm

j )
dvN

dx
(ζm

j ) =
m

∑
j=1

ωm
j g(ζm

j )v(ζ
m
j ) ∀v ∈ VN,0 . (1.5.51)

A popular family of (global) quadrature formulas are the Gauss quadrature formulas [4, Section 5.3]. They

enjoy the following exceptional properties:

• The m-point Gauss quadrature formula is exact for polynomials up to degree 2m − 1, that is, it

features order 2m.

• All Gauss quadrature formulas have positive quadrature weights.

Often quadrature formulas are given only on a reference interval, usually [−1, 1] in the case of for Gauss

rules. A quadrature formula for a general interval can then be obtained by a simple affine transformation,

see also [4, Rem. 5.1.4]:

∫ b

a
f (t)dt ≈ 1

2(b− a)
n

∑
j=1

ωm
j f (ζ̂m

j ) with ζ̂m
j := 1

2(1− ζm
j )a +

1
2ζm

j b ,

where ωm
j and ζm

j are the weights and nodes, respectively, of the quadrature rule on [−1, 1].

Important: Accuracy of quadrature formula and computational cost (no. m of quadrature nodes) have to

be balanced, see below Code 1.5.57.

(1.5.52) Implementation of spectral Galerkin discretization for linear 2nd-order two-point BVP

Setting:

✦ linear variational problem (1.5.49) on [a, b] ➣ vanishing offset function u0 = 0,

✦ coefficients σ, g in procedural form, see Rem. 1.5.5,

✦ approximation of integrals by p-point Gaussian quadrature formula,

✦ polynomial spectral Galerkin discretization, degree ≤ p, p ≥ 2,

✦ basis B: integrated Legendre polynomials, see (1.5.33):

VN,0 = Span{M̃n, n = 1, . . . , p− 1} .

M̃n =̂ integrated Legendre polynomials transformed to [a, b] according to (1.5.46).
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Trial expression using basis expansion, cf. (1.5.17),

uN = µ1M̃1 + µ2M̃2 + · · ·+ µN M̃N , µi ∈ R , N := p− 1 . (1.5.53)

Note: By definition of integrated Legendre polynomials and transformation (1.5.47) of derivatives d
dx M̃n =

2
b−a P̃n, where P̃n is the n-th Legendre polynomial transformed to [a, b] according to (1.5.46).

From (1.5.51) with (1.5.53), ζm
j , ωm

j the nodes/weights of a quadrature formula on [a, b],

(
2

b−a

)2 m

∑
j=1

ωm
j σ(ζm

j )
N

∑
l=1

µl P̃l(ζ
m
j )P̃k(ζ

m
j ) =

m

∑
j=1

ωm
j g(ζm

j )M̃k(ζ
m
j )

︸ ︷︷ ︸
=:ϕk

, k = 1, . . . , N . (1.5.54)

m
(

2
b−a

)2 N

∑
l=1

(
m

∑
j=1

ωm
j σ(ζm

j )P̃l(ζ
m
j )P̃k(ζ

m
j )

)
µl = ϕk , k = 1, . . . , N . (1.5.55)

m

A~µ = ~ϕ with
(A)kl :=

(
2

b−a

)2 m

∑
j=1

ωm
j σ(ζm

j )P̃l(ζ
m
j )P̃k(ζ

m
j ) , k, l = 1, . . . , N ,

~µ = (µl)
N
l=1 ∈ R

N , ~ϕ = (ϕk)
N
k=1 ∈ R

N .

(1.5.56)

A linear system of equations !

The Galerkin discretization of a linear variational problem always leads to a linear system of equa-

tions, see Section 3.2 in Chapter 2.

C++11 code 1.5.57: Polynomial spectral Galerkin solution of (1.5.49)

1 f u n c t io n u = lin2pbvpspecgalquad(sigma,g,N,x)

2 % Polynomial spectral Galerkin discretization of linear 2nd-order
two-point BVP

3 % − d
dx (σ(x) du

dx ) = g(x), u(0) = u(1) = 0 on Ω = [0, 1]. Trial space of dimension

N.
4 % Values of approximate solution in points xj are returned in the row

vector u
5 m = N+1; % Number of quadrature nodes

6 [zeta,w] = gaussquad(m); % Get Gauss quadrature nodes/weights w.r.t

[−1, 1]
7 % Compute values of (integrated) Legendre polynomials at Gauss nodes

8 [V,M] = intlegpol(N+1,zeta’);

9 % Note that the 2-point boudary value problem is posed on [0, 1], which
entails

10 % transforming the quadrature rule to this interval, achieved by the
following

11 % transformation, see [4, Rem. 5.1.4] and the related Remark 1.5.45.

12 zeta = (zeta’+1)/2;

13 omega = w’.*sigma(zeta)*2; % Modified quadrature weights
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14 A = V(2:N+1,:)*diag(omega)*V(2:N+1,:)’; % Assemble Galerkin matrix

15 phi = M*(0.5*w’.*g(zeta)’; % Assemble right hand side vector

16 mu = A\phi; % Solve linear system

17 % Compute values of integrated Legendre polynomials at output points

18 [V,M] = intlegpol(N+1,2*x-1); u = mu’*M;

C++ code 1.5.58: Polynomial spectral Galerkin solution of (1.5.49)

1 // Polynomial spectral Galerkin discretization of linear 2nd-order

2 // two-point BVP

3 // − d
dx (σ(x) du

dx ) = g(x), u(0) = u(1) = 0 on Ω = [0, 1].

4 // Argument sigma: Function object for σ(x)

5 // Argument g: Function object for g(x)

6 // Argument N: Trial space dimension

7 // Argument x: Sampling points (where we want the solution)

8 // Return value: solution at the points in x

9 template <typename Function1 , typename Function2 >

10 Eigen : : RowVectorXd

11 lin2dBVPSpecGalQuad ( Function1 sigma , Function2 g , i n t N,

12 const Eigen : : RowVectorXd &x ) {

13 // Get the quadrature nodes

14 Eigen : : RowVectorXd gauss_nodes , gauss_weights ;

15 s td : : t i e ( gauss_nodes , gauss_weights ) = NPDE : : gaussQuad(N+1) ;

16 // Compute Legendre and integrated Legendre polynomials

17 // at quadrature nodes, see Code 1.5.44

18 Eigen : : MatrixXd V, M;

19 s td : : t i e (V, M) = NPDE : : int legendrepol (N+1 , gauss_nodes ) ;

20 // Note that the 2-point boudary value problem is posed on [0, 1],

21 // which entails transforming the quadrature rule to this

22 // interval, which is achieved by the following transformation,

23 // see [4, Rem. 5.1.4] and the related Remark 1.5.45.

24 gauss_nodes = gauss_nodes . unaryExpr ( [ ] ( double y ) { return ( y+1) / 2 . ;

} ) ;

25 // Modified quadrature weights along the diagonal matrix

26 Eigen : : MatrixXd omega = Eigen : : MatrixXd : : Zero (N+1 ,N+1) ;

27 omega . d iagonal ( ) = 2∗gauss_weights . cwiseProduct (

28 NPDE : : apply ( sigma , gauss_nodes ) ) ;

29 // Assemble Galerkin matrix

30 Eigen : : MatrixXd A = V. block (1 ,0 ,N, N+1)∗omega∗V. block (1 ,0 , N,

N+1) . transpose ( ) ;

31 // Assemble RHS vector

32 Eigen : : VectorXd ph i = 0.5∗M∗gauss_weights . cwiseProduct (

33 NPDE : : apply ( g , gauss_nodes ) ) . transpose ( ) ;

34 // Solve the linear system of equations

35 Eigen : : VectorXd mu = A. l u ( ) . so lve ( ph i ) ;

36 // Compute the value of the integrated Legendre polynomials

37 // at sampling points

38 s td : : t i e ( s td : : ignore , M) = int legendrepol (N+1 ,

x . unaryExpr ( [ & ] ( const double &y ) { return 2∗y−1.; } ) ) ;
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39 // Compute the approximate solution

40 return mu. transpose ( ) ∗ M;

41 }

• The function call NPDE:gaussQuad(N) returns nodes and weights of the N-point Gauss quadra-

ture formula on the reference interval [−1, 1]. They are computed by means of the Golub-Welsch

algorithm [4, Rem. 5.3.34], [4, Code 5.3.35].

• The terms (1.5.56) are evaluated in parallel using compact matrix-vector operations, see Line 27,

Line 30, Line 32.

Experiment 1.5.59 (Conditioning of spectral Galerkin system matrices)

Finally we can provide a rationale for preferring integrated Legendre polynomials to plain monomials for

polynomial spectral Galerkin discretization: the argument is based on condition number of the system

matrix from (1.5.56).

✦ Linear variational problem (1.5.30) with bilinear form

a(u, v) =
∫ 1

0

du
dx (x)

dv
dx (x) dx , u, v ∈ C1

pw,0([0, 1]) .

✦ Choice of basis functions for Galerkin trial/test space VN,0 := Pp(R) ∩ C0
0([0, 1]): monomial basis

(1.5.32), integrated Legendre polynomials (1.5.33).

Monitored: condition number (w.r.t. Euclidean ma-

trix norm→ [4, Def. 1.6.15]) of Galerkin matrices ✄

Exponential increase with polynomial degree of con-

dition number for monomial basis.

Fig. 33
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Recall from [4, Section 1.6.1.2], in particular [4, Thm. 1.6.13], that a condition number of 10m involves a

loss of m digits w.r.t. the precision guaranteed for the right hand side of the linear system. Thus, using the

monomial basis for N > 10 may no longer produce reliable results.

(1.5.60) Implementation of spectral Galerkin discretization for non-linear elastic string varia-

tional problem
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Now we target the following non-linear variational equation on domain Ω = [0, 1] arising from the equilib-

rium condition for the elastic string model: Seek u ∈ (C1
pw([0, 1]))2, u(0), u(1) fixed (pinning conditions),

such that

1∫

0

κ(ξ)

L

(
1− L

‖u′(ξ)‖

)
u′(ξ) · v′(ξ) − ρ(ξ)grad V(u(ξ)) · v(ξ)dξ = 0 (1.3.15)

for all v ∈ (C1
pw,0([0, 1]))2

For the sake of simplicity we suppress the dependence on u of the forces, and replace (1.3.15) with

Seek u ∈ (C1
pw([0, 1]))2, u(0), u(1) fixed, such that

1∫

0

κ(ξ)

L

(
1− L

‖u′(ξ)‖

)
u′(ξ) · v′(ξ)− f(ξ) · v(ξ)dξ = 0 ∀v ∈ (C1

pw,0([0, 1]))2 , (1.3.15)

with a suitable force function f ∈ (C0
pw([0, 1]))2.

✦ Data κ, f given in procedural form, see Rem. 1.5.5.

✦ Spectral Galerkin discretization of “curve space” (C1
pw,0([0, 1]))2: component-wise discretization

Represent each component of u based on the basis functions B =
{

M̃n

}K

n=1
, K ∈ N, of inte-

grated Legendre polynomials (transformed to [0, 1], cf. Rem. 1.5.45), see (1.5.33). This means that

as basis we use

B :=

{[
M̃1

0

]
, . . . ,

[
M̃K

0

]
,

[
0

M̃1

]
, . . .

[
0

M̃K

]}
, ♯B = 2K .

As in the linear case, the rationale for using these basis functions is their excellent stability proper-

ties, see Ex. 1.5.59, along with the possibility of fast evaluation by means of the 3-term recurrence

(1.5.38), cf. Code 1.5.40.

➣ basis representation, cf. (1.5.53)

uN(ξ) = u(0)(1− ξ) + u(1)ξ︸ ︷︷ ︸
=:u0(ξ) (offset function)

+

[
µ1

µK+1

]
M̃1(ξ) + · · ·+

[
µK

µ2K

]
M̃K(ξ) . (1.5.61)

✦ Approximate evaluation of integrals by m-point Gaussian quadrature on [0, 1], m := K + 1, (Below

we write ζ j for the nodes and ωj for the weights, j = 1, . . . , m).

Discrete variational problem with m-point Gauss quadrature on [0, 1] (nodes ζ j and weights ωj):

m

∑
j=1

ωj

κ(ζ j)

L

(
1− L∥∥u′N(ζ j)

∥∥

)
u′N(ζ j) · v′N(ζ j)− f(ζ j) · vN(ζ j) = 0 ∀vN ∈ Span{B} . (1.5.62)

In analogy to (1.5.54) we arrive at the non-linear system of equations: (M′k = 2Pk because of transfor-

mation, see § 1.5.45, (1.5.47)!)

x1-component (test (1.5.62) with

[
Mk

0

]
=̂ k-th basis function)
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m

∑
j=1

sj(b− a +
K

∑
l=1

µl2Pl(ζ j)) · 2Pk(ζ j) =
m

∑
j=1

ωj f1(ζ j) ·Mk(ζ j) , k = 1, . . . , K ,

x2-component (test (1.5.62) with

[
0

Mk

]
=̂ K + k-th basis function):

m

∑
j=1

sj(ub − ua +
K

∑
l=1

µK+l2Pl(ζ j)) · 2Pk(ζ j) =
m

∑
j=1

ωj f2(ζ j) ·Mk(ζ j) , k = 1, . . . , K ,

with sj := ωjκ(ζ j)

(
1

L
− 1∥∥u′N(ζ j)

∥∥

)
(
sj = sj(~µ) !

)
.

This amounts to N := 2K equations for the N unknowns µ1, . . . , µN as introduced in (1.5.61). Rewrite

in compact form:

(
R(~µ) 0

0 R(~µ)

)
~µ =

(
~ϕ1(~µ)
~ϕ2(~µ)

)
, (1.5.63)

with R(~µ) ∈ R
K,K , (R(~µ))k,l :=

m

∑
j=1

4sj(~µ)Pl(ζ j)Pk(ζ j) ,

(~ϕ1(~µ))k =
m

∑
j=1

ωj f1(ζ j) ·Mk(ζ j)− 2(b− a)
m

∑
j=1

sj(~µ)Pk(ζ j) ,

(~ϕ2(~µ))k =
m

∑
j=1

ωj f2(ζ j) ·Mk(ζ j)− 2(ub − ua)
m

∑
j=1

sj(~µ)Pk(ζ j) .

The non-linear system of equations (1.5.63) has to be solved iteratively [4, § 2.1.2]. Newton’s method [4,

Section 2.4] would be an option and the reader is invited to find the corresponding Newton iteration [4,

Eq. (2.4.1)]. However, here we prefer a simpler and widely used strategy to solve (1.5.63), a fixed point

iteration, which arises from “freezing” the coefficients~µ in the matrices R(~µ):

Initial guess~µ(0) ∈ RN; k = 0;

repeat

k← k + 1;

Solve the linear system of equations

(
R(~µ(k−1)) 0

0 R(~µ(k−1))

)
~µ(k) =

(
~ϕ1(~µ

(k−1))

~ϕ2(~µ
(k−1))

)
;

until

∥∥∥~µ(k) −~µ(k−1)
∥∥∥ ≤ tol ·

∥∥∥~µ(k)
∥∥∥

C++11 code 1.5.64: Polynomial spectral Galerkin discretization of elastic string variational

problem

1 f u n c t io n [vu,figsol] = stringspecgal(kappa,f,L,u0,u1,K,xi,tol)

2 % Solving the non-linear variational problem (1.3.15) for the elastic
string by means of polynomial

3 % spectral Galerkin discretization based on K integrated Legendre
polynomials. Approximate

4 % evaluation of integrals by means of Gaussian quadrature.

5 % kappa, f are handles of type @(xi) providing the coefficient function

6 % κ and the force field f. The column vectors u0 and u1 pass the

7 % pinning points. M is the number of mesh cells, tol specifies the
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tolerance for the
8 % fixed point iteration. return value: 2× length(xi)-matrix of node

9 % positions for curve parameter values passed in the row vector xi.

10 i f (nargin < 8), tol = 1E-2; end

11 m = K+1; % Number of quadrature nodes

12 [zeta,w] = gaussquad(m); % Obtain Gauss quadrature nodes w.r.t [−1, 1]

13 % Compute values of (integrated) Legendre polynomials at Gauss nodes
and evaluation points

14 [V,M] = intlegpol(m,zeta’);

15 [Vx,Mx] = intlegpol(m,2*xi-1); Mx = [1-xi;Mx;xi]; %

16 % Compute right hand side based on m-point Gaussian quadrature on [0, 1].

17 force = f((zeta’+1)/2); phi = M*(0.5*[w’;w’].*force)’;

18 sv = kappa((zeta’+1)/2); % Values of coefficient function κ at Gauss

points in [0, 1].
19 % mu is an 2× (K + 2)-matrix, containing the vectorial basis expansion

coefficients
20 % of uN. The first and last column are contributions of the two

functions
21 % ξ 7→ (1− ξ) and ξ 7→ ξ, which represent the offset function.

22 % Initial guess for fixed point iteration: straight string

23 mu = [u0,zeros(2,K),u1];

24 figsol = f i g u r e; hold on;

25 f o r k=1:100 % loop for fixed point iteration, maximum 100 iterations

26 % Plot shape of string

27 vu = mu*Mx; p l o t(vu(1,:),vu(2,:),’--g’); drawnow;

28 t i t l e ( s p r i n t f(’K = %d, iteration #%d’,K,k));

29 x l a b e l(’{\bf x_1}’); y l a b e l(’{\bf x_2}’);

30 % Compute values of derivatives of uN and ‖u′N‖ at Gauss points

31 up = mu(:,2:K+1)*V(2:K+1,:) + repmat(u1-u0,1,m);

32 lup = s q r t(up(1,:).^2 + up(2,:).^2);

33 s = 0.5*(w’).*sv.*(1/L - 1./lup); % Initialization of sj

34 % Modification of right hand side due to offset function

35 phi1 = phi(:,1) - (2*(u1(1)-u0(1))*V(2:K+1,:)*s’);

36 phi2 = phi(:,2) - (2*(u1(2)-u0(2))*V(2:K+1,:)*s’);

37 % Assemble K× K-matrix blocks R of linear system, see also Code 1.5.57

38 R = 4*V(2:K+1,:)*diag(s)*V(2:K+1,:)’;

39 mu_new = [u0,[(R\phi1)’;(R\phi2)’],u1];

40 % Check simple termination criterion for fixed point iteration.

41 i f (norm(mu_new - mu,’fro’) < tol*norm(mu_new,’fro’)/K)

42 vu = mu_new*Mx; fig = p l o t(vu(1,:),vu(2,:),’r--’);

43 legend(fig,’spectral Galerkin

solution’,’location’,’southeast’);break; end

44 mu = mu_new;

45 end

C++ code 1.5.65: Polynomial spectral Galerkin discretization of elastic string variational

problem

1 // Solving the non-linear variational problem (1.3.15) for the elastic
string by means of polynomial

2 // spectral Galerkin discretization based on K integrated Legendre
polynomials. Approximate
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3 // evaluation of integrals by means of Gaussian quadrature.

4 // kappa, f are arguments of a function type providing the coefficient
function

5 // κ and the force field f. The column vectors u0 and u1

6 // pass the pinning points,tol specifies the tolerance for the

7 // fixed point iteration.

8 // Return value: 2× length(xi)-matrix of node

9 // positions for curve parameter values passed in the row vector xi.

10 template <typename Function1 , typename Function2 >

11 Eigen : : MatrixXd

12 stringspecgal ( i n t K, double L , double t o l , const Eigen : : VectorXd &u0 ,

const Eigen : : VectorXd &u1 ,

13 Function1 kappa , Function2 f , const Eigen : : RowVectorXd

&x i ) {

14 i n t m = K+1; // Number of quadrature nodes

15 // Obtain Gauss quadrature nodes w.r.t [−1, 1]

16 Eigen : : RowVectorXd gauss_nodes , gauss_weights ;

17 s td : : t i e ( gauss_nodes , gauss_weights ) = gaussQuad(m) ;

18 // Compute values of (integrated) Legendre polynomials

19 // at Gauss nodes and evaluation points

20 Eigen : : MatrixXd V, M; s td : : t i e (V, M) = int legendrepol (m,

gauss_nodes ) ;

21 auto res= int legendrepol (m, (2∗ x i . a r ray ( )−1) . mat r ix ( ) ) ;

22 Eigen : : MatrixXd Vx = res . f i r s t ;

23 Eigen : : MatrixXd Mx = Eigen : : MatrixXd : : Zero (m+1 , x i . co ls ( ) ) ;

24

25 Mx. row ( 0 ) = (1 − x i . a r ray ( ) ) . mat r ix ( ) ;

26 Mx. block (1 , 0 , m−1, x i . co ls ( ) ) = res . second ;

27 Mx. row (m) = x i ;

28

29 // Scale the m-pointGaussian quadrature on [0, 1].

30 gauss_nodes = ( ( gauss_nodes . ar ray ( ) +1) / 2 ) . mat r ix ( ) ;

31

32 // Compute the right hand side

33 Eigen : : MatrixXd f o r ce = NPDE : : apply ( f , gauss_nodes ) ;

34 Eigen : : MatrixXd ph i = Eigen : : MatrixXd : : Zero (m−1, 2) ;

35 ph i . co l ( 0 ) = 0.5 ∗ M ∗
( gauss_weights . cwiseProduct ( fo r ce . row ( 0 ) ) ) . transpose ( ) ;

36 ph i . co l ( 1 ) = 0.5 ∗ M ∗
( gauss_weights . cwiseProduct ( fo r ce . row ( 1 ) ) ) . transpose ( ) ;

37

38 // Values of coefficient function κ at Gauss points in [0, 1].

39 // mu is an 2× (K + 2)-matrix, containing the vectorial basis expansion
coefficients

40 // of uN. The first and last column are contributions of the two
functions

41 // ξ 7→ (1− ξ) and ξ 7→ ξ, which represent the offset function.

42 Eigen : : MatrixXd sv = apply ( kappa , gauss_nodes ) ;

43

44 // Initial guess for fixed point iteration: straight string

45 Eigen : : MatrixXd mu(2 , K+2) ;
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46 mu << u0 , Eigen : : MatrixXd : : Zero ( 2 , K) , u1 ;

47 Eigen : : MatrixXd vu = mu ∗ Mx;

48

49 // Loop through at most 100 iterations

50 for ( i n t i t e r = 0 ; i t e r < 100; i t e r ++) {

51 vu = mu ∗ Mx;

52 // Compute values of derivatives of uN and ‖u′N‖ at Gauss points

53 Eigen : : MatrixXd up =

mu. b lock (0 ,1 ,2 ,K) ∗V. block (1 ,0 ,K,K+1) +(u1−u0 ) . rowwise ( ) . r e p l i c a t e (K+1) ;

54 Eigen : : MatrixXd lup = ( up . row ( 0 ) . cwiseAbs2 ( ) +

up . row ( 1 ) . cwiseAbs2 ( ) ) . cwiseSqr t ( ) ;

55

56 // Initialization of sj

57 Eigen : : RowVectorXd s = (0 .5 ∗ gauss_weights . a r ray ( ) ∗ sv . ar ray ( )

∗ ( 1 . / L − 1/ lup . ar ray ( ) ) ) . mat r ix ( ) ;

58

59 // Modification of right hand side due to offset function

60 Eigen : : VectorXd phi1 = ph i . co l ( 0 ) − 2∗( u1 ( 0 ) − u0 ( 0 ) ) ∗
(V . b lock (1 , 0 , K, K+1) ∗ s . transpose ( ) ) ;

61 Eigen : : VectorXd phi2 = ph i . co l ( 1 ) − 2∗( u1 ( 1 ) − u0 ( 1 ) ) ∗
(V . b lock (1 , 0 , K, K+1) ∗ s . transpose ( ) ) ;

62

63 // Assemble K× K-matrix blocks R of linear system,

64 // see also Code 1.5.58

65 Eigen : : MatrixXd omega = Eigen : : MatrixXd : : Zero (K+1 , K+1) ;

66 omega . d iagonal ( ) = s ;

67 Eigen : : MatrixXd R = 4 ∗ V. block (1 , 0 , K, K+1) ∗ omega ∗
V. block (1 , 0 , K, K+1) . transpose ( ) ;

68

69 // Solve the system of equations and build result vector

70 Eigen : : MatrixXd so l (2 , K) ;

71 so l << R. l d l t ( ) . so lve ( phi1 ) . transpose ( ) ,

R. l d l t ( ) . so lve ( phi2 ) . transpose ( ) ;

72

73 // Add boundary conditions

74 Eigen : : MatrixXd mu_new(2 , K+2) ;

75 mu_new << u0 , sol , u1 ;

76 // Compute relative error

77 double r e l _ e r r o r = (mu_new − mu) . norm ( ) /mu_new. norm ( ) ∗ K;

78 mu = mu_new;

79 // Check termination condtion for fixed point iterations

80 i f ( r e l _ e r r o r < t o l ) { vu = mu_new∗Mx; break ; }

81 }

82 return vu ;

83 }

Experiment 1.5.66 (Spectral Galerkin computation of elastic string shape)
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Test of polynomial spectral Galerkin method for elastic string problem, algorithm of § 1.5.60, Code 1.5.64,

with

✦ pinning positions u(0) =

[
0
0

]
, u(1) =

[
1

0.2

]
,

✦ equilibrium length L = 0.5,

✦ constant coefficient function κ ≡ 1N,

✦ gravitational force field f(ξ) = −
[

0
2

]
.

Fig. 34
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Observation: “Visual convergence” as polynomial degree is increased.

?! Review question(s) 1.5.67. (Spectral Galerkin discretization)

1. Determine the dimension of the space

V := {v ∈ Pp(R) :
∫ 1

−1
v(x)dx = 0} , p ∈ N ,

and describe a convenient and stable basis for Galerkin discretization.

2. What polynomials are integrated exactly by means of an n-point Gauss quadrature formula?

3. Give a formal definition of the finite-dimensional trial and test spaces used in the spectral Galerkin

discretization discussed in § 1.5.60.

4. Consider the setting of § 1.5.52 and σ ≡ 1. For which numbers m of Gauss quadrature points is the

Galerkin matrix A from (1.5.56) symmetric and positive definite?

1.5.2.2 Linear finite elements

From elementary numerical methods we know two ways to harness polynomials for the approximation of

functions: approximation by
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global polynomials

[4, Chapter 3]
←→ piecewise polynomials

[4, Section 4.5]

The spectral polynomial Galerkin approach presented in Sect. 1.5.2.1 relies on global polynomials. Now

let us examine the use of piecewise polynomials.

(1.5.68) Finite element mesh

Preliminaries: piecewise polynomials have to be defined w.r.t. partitioning of the domain Ω ⊂ R

➣ Ω = [a, b] equipped with nodes (M ∈ N)

X := {a = x0 < x1 < · · · < xM−1 < xM = b} .

➤ mesh/grid

M := {]xj−1, xj[: 1 ≤ j ≤ M} .

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

a b

Special case:

equidistant mesh: xj := a + jh , h :=
b− a

M
.

☞ [xj−1, xj], j = 1, . . . , M, =̂ cells ofM, cell size hj := |xj − xj−1|, j = 1, . . . , M
meshwidth hM := max

j
|xj − xj−1|

(1.5.69) Piecewise linear finite element trial space

Recall from Sect. 1.3.2: merely continuous, piecewise C1 trial and test functions provide valid trial/test

functions for the variational problems (1.3.15) and (1.4.23).

Fig. 36

1

x1 x2 x3 · · ·a b
⇑ function ∈ S0

1,0(M)

Simplest choice for test space

V0,N = S0
1,0(M)

:=

{
v ∈ C0([a, b]): v|[xi−1,xi]

linear,

i = 1, . . . , M, v(a) = v(b) = 0

}

➣ N := dim VN = M− 1

Choice of (ordered) basis BN of VN ?

1D “tent functions” [4, Ex. 3.1.8] ✄

B = {b1
N , . . . , bM−1

N } , (1.5.70)

b
j
N(xi) = δij :=

{
1 , if i = j ,

0 , if i 6= j ,
(1.5.71)

Fig. 37

1

a bx1 x2 x3 · · ·

db
j
N

dx
(x) =





1
hj

, if xj−1 ≤ x ≤ xj ,

− 1
hj+1

, if xj < x ≤ xj+1 ,

0 elsewhere. (piecewise derivative!)

(1.5.72)
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Remark 1.5.73 (Benefit of variational formulation of BVPs)

The possibility of using simple piecewise linear trial and test functions is a clear benefit of the variational

formulations derived in Sections 1.3 and 1.4, since they still make sense for merely piecewise continuously

differentiable functions, also remember Section 1.3.2.

Below, in Section 1.5.3 we will learn about a method that targets the strong form of the 2-point BVP and,

thus, has to impose more regularity on the trial functions.

(1.5.74) Simplest case: Linear variational problem with constant coefficients

We apply Galerkin discretization by means of linear finite elements to the linear variational problem (1.4.23)

with constant stiffness coefficient σ:

u ∈ C1
pw,0([a, b]):

b∫

a

du

dx
(x)

dv

dx
(x)dx =

b∫

a

g(x)v(x)dx ∀v ∈ C1
pw,0([a, b]) .

Follow the policy of Galerkin discretization elaborated in Section 1.5.2, plug in trial functions from the

finite element space S0
1 (M), expand them as a linear combination of tent functions, and test with all tent

functions as explained in § 1.5.15. Using uN = µ1b1
N + · · ·+ µNbN

N we arrive as a discrete variational

problem with

b∫

a

N

∑
l=1

µl
dbl

N

dx
(x)

dbk
N

dx
(x)dx =

b∫

a

g(x)bk
N(x)dx , k = 1, . . . , N .

m
N

∑
l=1




b∫

a

dbl
N

dx
(x)

dbk
N

dx
(x)dx


µl =

b∫

a

g(x)bk
N(x)dx

︸ ︷︷ ︸
=:ϕk

, k = 1, . . . , N .

m
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A~µ = ~ϕ with
(A)kl :=

b∫

a

dbl
N

dx
(x)

dbk
N

dx
(x)dx , k, l = 1, . . . , N ,

~µ = (µl)
N
l=1 ∈ R

N , ~ϕ = (ϕk)
N
k=1 ∈ R

N .

A linear system of equations, cf. § 1.5.52!

✄ system matrix A = (aij) ∈ RM−1,M−1, aij :=

b∫

a

dbi
N

dx (x)
db

j
N

dx (x) dx, 1 ≤ i, j ≤ N

piecewise derivatives

✄ r.h.s. vector ~ϕ ∈ RM−1, ϕk :=

b∫

a

g(x)bk
N(x)dx, k = 1, . . . , N .

(1.5.75) Computation of entries of Galerkin matrix

We rely on the tent functions b
j
N as basis elements on a mesh as described in § 1.5.68. The detailed

computations start with the evident fact that

|i− j| ≥ 2 ⇒ b
j
N

dx
(x) · bi

N

dx
(x) = 0 ∀x ∈ [a, b] ,

because there is no overlap of the supports of the two basis functions.

Definition 1.5.76. Support of a function

The support of a function f : Ω 7→ R is defined as

supp( f ) := {x ∈ Ω: f (x) 6= 0} .

In addition, we use that the gradients of the tent functions are piecewise constant, see (1.5.72).

1∫

0

db
j
N

dx
(x)

dbi
N

dx
(x)dx =





0 , if |i− j| ≥ 2 →
0 1

1

− 1
hi+1

, if j = i + 1 →
0 1

1 bi
N b

j
N

− 1
hi

, if j = i− 1 →
0 1

1 b
j
N bi

N

1
hi
+ 1

hi+1
, if 1 ≤ i = j ≤ M− 1 →

0 1

1
b

j
N
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➡ A symmetric, positive definite and tridiagonal:

A =




1
h1
+ 1

h2
− 1

h2
0 0

− 1
h2

1
h2
+ 1

h3
− 1

h3

0
. . .

. . .
. . .

. . . 0
. . .

. . . − 1
hM−1

0 0 − 1
hM−1

1
hM−1

+ 1
hM




∈ R
N,N , N := M− 1 . (1.5.77)

✍ notation: hj := |xj − xj−1| =̂ local meshwidth, cell size

(1.5.78) Properties of linear finite element Galerkin matrix

How can we tell that A is positive definite?

Application of [4, Lemma 1.8.12] that tells us that a diagonally dominant, regular, and symmetric matrix

with positive diagonal is positive definite. Diagonal dominance of A in the sense of [4, Def. 1.8.8] is

obvious.

(1.5.79) Computation of right hand side vector for linear finite element Galerkin discretization

The right hand side linear form of (1.4.23) involves a general coefficient function g = g(x), which may be

available only in procedural form, recall Rem. 1.5.5.

Mandatory: computation of right hand side vector by numerical quadrature

Natural choice: piecewise polynomial trial/test spaces ←→ composite quadrature rule

e.g, composite trapezoidal rule:

b∫

a

f (t)dt ≈
M

∑
l=1

1
2hl( f (xl−1) + f (xl)) , (1.5.80)

ϕk =

b∫

a

g(x)bk
N(x)dx ≈ 1

2(hk + hk+1)g(xk) , 1 ≤ k ≤ N .

because of property (1.5.71) of bk
N.

Remark 1.5.81 (Special case: Linear system of equations for linear finite element discretiza-

tion of equidistant mesh)
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From (1.5.77): for equidistant mesh with uniform cell size h > 0 we arrive at the linear system of equa-

tions:

1

h




2 −1 0 0
−1 2 −1

0
. . .

. . .
. . .

. . .
. . .

. . . 0
−1 2 −1

0 0 −1 2







µ1

...

µN




= h




g(x1)

...

g(xN)




. (1.5.82)

This is a symmetric positive definite Töplitz matrix, that is, a matrix with constant entries on diagonals. Its

eigenvectors, indexed by ℓ = 1, . . . , N, have the components

ηℓ
j = sin(2π

ℓj

N + 1
) , j = 1, . . . , N . (1.5.83)

(1.5.84) Linear finite element Galerkin discretization of (1.4.23) for general stiffness coeffi-

cient σ

We generalize the considerations of § 1.5.74 and perform a piecewise linear finite element Galerkin dis-

cretization of the linear variational problem arising from the function graph model for a taut elastic string

(1.4.23):

u ∈ C1
pw,0([a, b]):

b∫

a

σ(x)
du

dx
(x)

dv

dx
(x)dx =

b∫

a

g(x)v(x)dx ∀v ∈ C1
pw,0([a, b]) .

As above plug in basis expansion of trial function uN ∈ S0
1,0(M), uN = µ1b1

N + · · ·+ µNbN
N , and test

with all tent functions bk
N:

b∫

a

σ(x)
N

∑
l=1

µl
dbl

N

dx
(x)

dbk
N

dx
(x)dx =

b∫

a

g(x)bk
N(x)dx , k = 1, . . . , N . (1.5.85)

In light of Rem. 1.5.5 numerical quadrature will be required for the (approximate) evaluation of both

integrals. We use different quadrature rules.

Quad. rules:
✦ composite midpoint rule for left hand side integral → [4, Section 5.4]

∫ b

a
f (x)dx ≈

M

∑
j=1

hj f (mj) , mj := 1
2(xj + xj−1) . (1.5.86)

✦ composite trapezoidal rule [4, Eq. (5.4.4)] for right hand side integral, see (1.5.80).

Assumption 1.5.87. Smoothness requirement for stiffness coefficient

σ is piecewise continuous, σ ∈ C0
pw([a, b]), with jumps only at grid nodes xj
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Numerical quadrature applied to (1.5.85)

⇓
N

∑
l=1

(
M

∑
j=1

hjσ(mj)
dbl

N

dx
(mj)

dbk
N

dx
(mj)

)

︸ ︷︷ ︸
=(A)k,l

µl =
1
2(hk+1 + hk)g(xk)︸ ︷︷ ︸

=:ϕk

, k = 1, . . . , N ,

m
A~µ = ~ϕ .

Resulting linear system of equations equidistant mesh with uniform cell size h > 0:

1

h




σ1 + σ2 −σ2 0 0
−σ2 σ2 + σ3 −σ3

0
. . .

. . .
. . .

. . .
. . .

. . . 0
−σM−2 σM−2 + σM−1 −σM−1

0 0 −σM−1 σM−1 + σM







µ1

...

µN




= h




g(x1)

...

g(xN)




, (1.5.88)

with σj = σ(mj), j = 1, . . . , m.

Remark 1.5.89 (Offset function for finite element Galerkin discretization)

Recall the device of an offset function as discussed in Rem. 1.3.29, where it enabled us to return to a

vector space as trial space, if the original linear variational problem was posed on an affine space. We

face this situation for the variational problem (1.4.23) unless the boundary values ua and ub are both

zero. What are computationally convenient offset functions in the context of linear finite element Galerkin

discretization?

In the case of general boundary conditions

u(a) = ua , u(b) = ub

use piecewise linear offset function

Fig. 38

1

a bx1 x2 x3 · · ·

ua

ub

u0(x) =





ua(1− x−a
h1

) , if a ≤ x ≤ x1 ,

ub(1− b−x
hM

) , if xM−1 ≤ x ≤ b ,

0 elsewhere.

(1.5.90)
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Of course, we could have used a linear offset function

u0(x) =
b− x

b− a
ua +

x− a

b− a
ua , x ∈ [a, b] ,

as well, but the above choice (1.5.90) has considerable benefits:

• u0 is a simple function (since p.w. linear),

• u0 is locally supported : contributions from u0 will alter only first and last component of right hand

side vector. To understand why, recall (1.5.14) and verify that a(u0, b
j
N) 6= 0 only for j = 1, M− 1.

(1.5.91) Linear finite element Galerkin discretization for non-linear elastic string model

Many issues faced in the linear finite element Galerkin discretization of the elastic string variational problem

have already been discussed in connection with the spectral Galerkin discretization with global polynomi-

als in § 1.5.60. Understanding that paragraph is essential for this one.

For the sake of simplicity in (1.3.15) we assume a linear gravity potential

V(x) = g · x ⇒ grad V(x) = g , g ∈ R
2 given , (1.3.33)

and for ease of notation we set f(ξ) := ρ(ξ)g. Thus, we target the non-linear variational equation on

domain Ω = [0, 1]

1∫

0

κ(ξ)

L

(
1− L

‖u′(ξ)‖

)
u′(ξ) · v′(ξ)dξ =

1∫

0

f(ξ) · v(ξ)dξ ∀v ∈ (C1
pw,0([0, 1]))2 . (1.3.15)

✦ Data κ, f given in procedural form, see Rem. 1.5.5.

✦ trial space VN,0 = (S0
1,0(M))2 (→ § 1.5.69) on equidistant meshM, meshwidth h := 1

M , M ∈ N.

✦ Basis: 1D tent functions from (1.5.70), lexikographic ordering,

B =

{[
b1

N
0

]
,

[
b2

N
0

]
, . . . ,

(
bM−1

N

0

)
,

(
0

b1
N

)
,

(
0

b2
N

)
, . . . ,

(
0

bM−1
N

)}
,

uN =
M−1

∑
j=1

[
µj

µj+M−1

]
b

j
N with coefficients µk , k = 1, . . . , 2M− 2 .

✦ Evaluation of right hand side by composite trapezoidal rule (1.5.80).

✦ Evaluation left hand side by composite midpoint rule (1.5.86).

Discrete variational problem with quadrature: for all vN ∈ Span{B}
M

∑
j=1

hj

κ(mj)

L

(
1− L∥∥u′N(mj)

∥∥

)
u′N(mj) · v′N(mj) =

1
2

M

∑
j=1

hl(f(xl−1) · vN(xl−1) + f(xl) · vN(xl)) .

(1.5.92)

Again as in § 1.5.60 we temporarily treat the term
κ(ξ)

L

(
1− L

‖u′(ξ)‖

)
as a coefficient function like σ̂ in

(1.4.23), and temporarily ignore its dependence on the solution u. Then we arrive at two decoupled linear
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variational problems for each component of u, whose discretization by means of linear finite elements can

be accomplished as elaborated in § 1.5.84. Details are given now.

Preliminary consideration: the derivative of

uN := u0 + µ1

[
b1

N
0

]
+ · · ·+ µM−1

[
bM−1

N
0

]
+ µM

[
0

b1
N

]
+ · · ·+ µ2M−2

[
0

bM−1
N

]
(1.5.93)

with locally supported offset function u0 according to Rem. 1.5.89 (u(0), u(1) given by pinning conditions

(1.2.2)) is piecewise constant onM:

in ]xj−1, xj[: sj(~µ) := u′N(ξ) =
uN(xj)− uN(xj−1)

h

=
1

h
·





[
µj − µj−1

µj+M−1− µj+M−2

]
, if 2 ≤ j ≤ M− 1 ,

[
µ1

µM

]
− u(0) , if j = 1 ,

u(1)−
[

µM−1

µ2M−2

]
, if j = M ,

(1.5.94)

because

uN(xj) =





u(0) , if j = 0 ,[
µj

µM+j−1

]
, if j ∈ {1, . . . , M− 1} ,

u(1) , if j = M .

For the green expression in (1.5.92) we use the abbreviation

rj = rj(~µ) := h
κ(mj)

L

(
1− L∥∥sj(~µ)

∥∥

)
(1.5.95)

and note the dependence rj = rj(~µ), which renders the system of equations non-linear. Thus, we can

write (1.5.92) as

M

∑
j=1

hjrj(~µ) u′N(mj) · v′N(mj) =
1
2

M

∑
j=1

hl(f(xl−1) · vN(xl−1) + f(xl) · vN(xl)) . (1.5.96)

Now, we temporarily treat rj as a mere coefficient. Then we make the important observation that in each

component (1.5.96) agrees with the (fully, with quadrature) discrete linear variational problem examined

in § 1.5.84! Thus we need only recall the Galerkin matrix (1.5.88) for that setting to conclude that a single

row of non-linear system of equations arising from Galerkin finite element discretization of (1.3.15) reads

row 1: (r1 + r2)µ1 − r2µ2 = h f1(h) + r1a , (1.5.97)

row j: − rjµj + (rj + rj+1)µj+1 − rj+1µj+2 = h f1(jh) , 2 ≤ j < M− 1 , (1.5.98)

row M− 1: − rM−1µM−2 + (rM−1 + rM)µM−1 = h f1((M − 1)h) + rMb , (1.5.99)

row M: (r1 + r2(~µ))µM − r2µM+1 = h f2(h) + r1ua , (1.5.100)

row j: − rjµj+M−1 + (rj + rj+1)µj+M − rj+1µj+M+1 = h f2(jh) , 2 ≤ j < M− 1 , (1.5.101)

row M− 1: − rM−1µ2M−3 + (rM−1 + rM)µ2M−2 = h f2((M− 1)h) + rMub . (1.5.102)
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Here the dependence rj = rj(~µ) has been suppressed to simplify the notation.

Please study the derivation of (1.5.88) in order to understand how (1.5.97)-(1.5.102) arise.

These equations can be written in a more compact form, analogous to (1.5.63):

(1.5.97)-(1.5.102) ⇔
(

R(~µ) 0
0 R(~µ)

)
~µ =

(
~ϕ1(~µ)
~ϕ2(~µ)

)
. (1.5.103)

with

R(~µ) :=




r1 + r2 −r2 0 0
−r2 r2 + r3 −r3

0
. . .

. . .
. . .

. . .
. . .

. . . 0
−rM−2 rM−2 + rM−1 −rM−1

0 0 −rM−1 rM−1 + rM




∈ R
M−1,M−1 ,

(~ϕ1)j := h f1(hj) , (~ϕ2)j := h f2(hj) , j = 1, . . . , M− 1 .

Dependence of the right hand side vector on the solution ~µ is due to the offset function technique, see

Rem. 1.5.89.

C++11 code 1.5.104: Linear finite element discretization of elastic string variational problem

1 f u n c t io n [vu,Jrec,figsol,figerg] =

stringlinfem(kappa,f,L,u0,u1,M,tol)

2 % Solving the non-linear variational problem (1.3.15) for the elastic
string by means of piecewise

3 % linear finite elements on an equidistant mesh with M− 1 interior
nodes.

4 % kappa, f are handles of type @(xi) providing the coefficient function

5 % κ and the force field f. u0 and u1 pass the pinning points.

6 % M is the number of mesh cells, tol specifies the tolerance for the
fixed point

7 % iteration. return value: 2× (M + 1)-matrix of node positions

8 i f (nargin < 7), tol = 1E-2; end

9 h = 1/M; % meshwidth

10 phi = h*f(h*(1:M-1)); % Right hand side vector

11

12 % Initial guess: straight string, condition L > ‖u(0)− u(1)‖.
13 i f (L >= norm(u1-u0)), e r r o r(’String must be tense’); end

14 vu_new = u0*(1-(0:1/M:1))+u1*(0:1/M:1);

15 % Meaning of components of vu: vu(1,2:M) ↔ µ1, . . . , muM−1, vu(2,2:M) ↔
µM, . . . , µ2M−2.

16 figsol = f i g u r e; Jrec = []; hold on;

17 f o r k=1:100 % loop for fixed point iteration, maximum 100 iterations

18 vu = vu_new;

19 % Plot shape of string

20 p l o t(vu(1,:),vu(2,:),’--g’); drawnow;

21 t i t l e ( s p r i n t f(’M = %d, iteration #%d’,M,k));
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22 x l a b e l(’{\bf x_1}’); y l a b e l(’{\bf x_2}’);

23 %Compute the cell values sj, rj, j = 1, . . . , M, see (1.5.94).

24 d = (vu(:,2:end) - vu(:,1:end-1))/h; % derivative, piecewise

constant, see (1.5.94)

25 s = s q r t(d(1,:).^2 + d(2,:).^2); % norm of derivative

26 r = kappa(h*((1:M)-0.5)).*(1/L - 1./s)/h; % values rj

27 % Compute total potential energy

28 % elastic energy of uN (1.2.49)

29 Jel = h/(2*L)*kappa(h*((1:M)-0.5))*((s-L).^2)’;

30 % graviational energy (1.2.44)

31 Jf = - (phi(1,:)*vu(1,2:M)’+phi(2,:)*vu(2,2:M)’);

32 Jrec = [Jrec; k , Jel, Jf, Jel+Jf];

33 % Assemble triadiagonal matrix R = R(~µ), see (1.5.103)

34 R = g a l l e r y(’tridiag’,-r(2:M-1),r(1:M-1)+r(2:M),-r(2:M-1));

35 % modify right hand side in order to take into account pinning
conditions

36 phi1 = phi(1,:); phi1(1) = phi1(1) + r(1)*u0(1); phi1(M-1) =

phi1(M-1) + r(M)*u1(1);

37 phi2 = phi(2,:); phi2(1) = phi2(1) + r(1)*u0(2); phi2(M-1) =

phi2(M-1) + r(M)*u1(2);

38 % Solve linear system by direct elimination and compute new iterate

39 vu_new = [u0,[(R\phi1’)’;(R\phi2’)’],u1];

40 % Check simple termination criterion for fixed point iteration.

41 i f (norm(vu_new - vu,’fro’) < tol*norm(vu_new,’fro’)/M)

42 p l o t(vu(1,:),vu(2,:),’r-*’); break; end

43 end

44 % Plot of total potential energy in the course of the iteration

45 figerg = f i g u r e(’name’,’total potential energy’);

46 t i t l e ( s p r i n t f(’elastic string, M = %d’,M));

47 p l o t(Jrec(:,1),Jrec(:,4),’m-*’,...

48 Jrec(:,1),Jrec(:,2),’b-+’,...

49 Jrec(:,1),Jrec(:,3),’g-^’);

50 x l a b e l(’{\bf no. of iteration step}’); y l a b e l(’{\bf energy}’);

51 legend(’total potential energy’,’elastic energy’,’energy in

force field’,’location’,’east’);

C++ code 1.5.105: Class implementing the linear finite element discretization of the elastic

string model

1 // Class template, template parameters supply types for coefficient
functions κ

2 // (stiffness) and f (force)

3 template <typename Function1 , typename Function2 >

4 class StringLinearFEM {

5 public :

6 // Constructor for passing model parameter and data, L =̂ length of

7 // string, u0, u1 =̂ pinning positions

8 StringLinearFEM ( Function1 kappa , Function2 f , double L ,

9 const Eigen : : VectorXd &u0 , const Eigen : : VectorXd &u1 )

10 : kappa ( kappa ) , f ( f ) ,L ( L ) , u0 ( u0 ) , u1 ( u1 ) { }

11 // Actual solution of the discrete non-linear variational problem
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12 // based on linear finite elements and an equidistant mesh

13 // with M cells.

14 Eigen : : MatrixXd solve ( i n t M, double t o l =1e−2) ;

15 pr ivate :

16 Function1 kappa ; Function2 f ;

17 Eigen : : VectorXd u0 , u1 ;

18 double L ;

19 } ;

C++ code 1.5.106: Linear finite element discretization of non-linear elastic string variational

problem

1 template<typename Function1 , typename Function2>

2 Eigen : : MatrixXd StringLinearFEM <Function1 , Function2 > : : solve ( i n t M, double

t o l =1e−2) {

3 double h = 1 . /M; // meshwidth

4 // Compute the rhs vector

5 Eigen : : MatrixXd ph i = h∗NPDE: : apply ( f ,

h∗Eigen : : RowVectorXd : : LinSpaced (M−1, 1 , M−1) ) ;

6 // Initial guess: straight string, condition L > ‖u(0)− u(1)‖.
7 Eigen : : MatrixXd vu = u0 ∗ (1 − Eigen : : RowVectorXd : : LinSpaced (M+1 , 0 ,

1) . a r ray ( ) ) . mat r i x ( ) +

8 u1 ∗ Eigen : : RowVectorXd : : LinSpaced (M+1 , 0 , 1) ;

9 // Fixed point iteration

10 for ( i n t k = 0 ; k < 100; k++) {

11 // derivative, piecewise constant, see (1.5.94)

12 auto d = ( vu . r i g h t Co l s (M) − vu . l e f t C o l s (M) ) / h ;

13 // Compute the cell values sj, rj, j = 1, . . . , M, see (1.5.94).

14 // Norm of derivative

15 Eigen : : RowVectorXd s = ( d . row ( 0 ) . cwiseAbs2 ( ) +

d . row ( 1 ) . cwiseAbs2 ( ) ) . cwiseSqrt ( ) ;

16 // values of rj

17 Eigen : : RowVectorXd r = NPDE: : apply ( kappa ,

h∗Eigen : : RowVectorXd : : LinSpaced (M, 0 .5 , M−0.5) ) . cwiseProduct ( ( 1 . / L

− 1 / s . a r ray ( ) ) . mat r i x ( ) ) / h ;

18 // Assemble triadiagonal matrix R = R(~µ), see (1.5.103)

19 auto R = NPDE: : t r id iagonal (− r . b lock (0 , 1 , 1 , M−2) ,

20 r . l e f t C o l s (M−1)+ r . row ( 0 ) . r i g h t Co l s (M−1) ,

21 −r . b lock (0 , 1 , 1 , M−2) ) ;

22 // modify right hand side in order to take into account pinning
conditions

23 Eigen : : RowVectorXd phi1 = ph i . row ( 0 ) ;

24 Eigen : : RowVectorXd phi2 = ph i . row ( 1 ) ;

25

26 phi1 ( 0 ) = phi1 ( 0 ) + r ( 0 ) ∗ u0 ( 0 ) ;

27 phi1 (M−2) = phi1 (M−2) + r (M−1) ∗ u1 ( 0 ) ;

28

29 phi2 ( 0 ) = phi2 ( 0 ) + r ( 0 ) ∗ u0 ( 1 ) ;

30 phi2 (M−2) = phi2 (M−2) + r (M−1) ∗ u1 ( 1 ) ;

31

32 // Solve linear system and compute new iterate, do
LU-decomposition once
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33 Eigen : : S impl ic ia lLDLT <Eigen : : SparseMatr ix<double> > so l ve r ;

so l ve r . compute (R) ;

34

35 auto so l1 = so l ve r . solve ( ph i1 . transpose ( ) ) ;

36 auto so l2 = so l ve r . solve ( ph i2 . transpose ( ) ) ;

37

38 Eigen : : MatrixXd so l (2 , M−1) ;

39 so l << sol1 . transpose ( ) , so l2 . transpose ( ) ;

40

41 // Add the pinning boundary values to the solutions

42 Eigen : : MatrixXd vu_new = Eigen : : MatrixXd : : Zero (2 , M+1) ;

43 vu_new << u0 , so l , u1 ;

44

45 // Compute the relative error

46 double r e l _ e r r o r = ( vu_new − vu ) . norm ( ) / vu_new . norm ( ) ∗ M;

47 vu = vu_new ;

48 i f ( r e l _ e r r o r < t o l ) break ;

49 }

50 return vu ;

51 }

Remark 1.5.107 (Fixed point iteration for solving non-linear system of equations)

Iterative solution of (1.5.103) by fixed point iteration, see § 1.5.60 and Code 1.5.104.

Initial guess~µ(0) ∈ R
N; k = 0;

repeat

k← k + 1;

Solve the linear system of equations

(
R(~µ(k−1)) 0

0 R(~µ(k−1))

)
~µ(k) =

(
~ϕ1(~µ

(k−1))

~ϕ2(~µ
(k−1))

)
;

until

∥∥∥~µ(k) −~µ(k−1)
∥∥∥ ≤ tol ·

∥∥∥~µ(k)
∥∥∥

Simple termination criterion: stop, when relative change of Euclidean norm of coefficient vector below a

prescribed tolerance. Another and better option is to monitor the relative change of the potential energy.

Experiment 1.5.108 (Elastic string shape by finite element discretization)

✦ Linear finite element discretization of (1.3.15), see § 1.5.91, Code 1.5.104.

✦ κ ≡ 1, L = 0.5, u(0) =

[
0
0

]
, u(1) =

[
1

0.2

]

✦ gravitational force field f(ξ) = −
[

0
2

]
.
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Piecewise linear finite element solution of (1.3.15),

equidistant meshes with M cells, M = 5, 10, 20 ✄

“Visual convergence” of computed polygon approxi-

mating the string shape.
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?! Review question(s) 1.5.109. (Galerkin discretization)

1. Argue, why the basis (1.5.32) is notoriously unstable, whereas the integrated Legendre polynomials

(1.5.33) provide much more stable bases. N-dimensional

2. How can you obtain a quadrature formula on [a, b] from an m-point quadrature formula on [0, 1]
with nodes ζ j, j = 1, . . . , m, and weights ωj, j = 1, . . . , m. How are the oders of both quadrature

formulas related?

3. Explain the important consequence of using basis functions for linear finite element Galerkin dis-

cretization whose support span two adjacent mesh cells only.

4. For a mesh of [0, 1] with M cells, what is the dimension of the space

VN,0 := {v ∈ C0([0, 1]) : v |[xi−1,xi]
∈ Cp1, i = 1, . . . , M} ? (1.5.110)

Propose a basis of VN,0 consisting of basis functions with smallest possible local supports.

5. On a meshM with nodes xi, i = 0, . . . , M, consider the space

VN,0 := {v ∈ C0
0([0, 1]) : v |[xi−1,xi]

∈ P2, i = 1, . . . , M} . (1.5.111)

Determine dim VN,0 and propose a basis of locally supported functions that contains all tent func-

tions from (1.5.70)–(1.5.71).
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6. Given an equidistant meshM of [a, b] as introduced in § 1.5.68, we consider the finite-dimensional

space

VN,0 :=

{
v ∈ C0([a, b]) : v |[xi−1,xi]

∈ P1(R),
∫ b

a

}
.

What is dim VN,0? Describe a basis of VN,0 consisting of functions with minimal supports.

1.5.3 Collocation

Targeted: Two-point BVP = ODE L(u) = f + boundary conditions

(1.5.112) Some differential operators of string models

Above, L(u) stands for a differential operator. For instance, for the elastic string model, Thm. 1.3.42 yields

L(u) = − d

dξ

(
κ(ξ)

L

(∥∥u′
∥∥− L

) u′

‖u′‖

)
, (1.5.113)

whereas the taut string graph model (1.4.25) yields

L(u) = d

dx

(
σ(x)

dû

dx
(x)

)
. (1.5.114)

This latter differential operator is scalar, linear and second-order, cf. (1.5.124) below. The one from

(1.5.113) is non-linear.

Note: In contrast to the Galerkin approach, collocation techniques do not tackle the weak form of a bound-

ary value problem, but rather the “classical”/strong form (ODE/PDE).
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Idea of collocation discretization

Idea: ➊ seek solution in finite-dimensional trial space VN,0,

N := dim VN,0 < ∞

➋ pick collocation nodes N := {x1, . . . , xN} ⊂ Ω such that

the point values v(xj), j = 1, . . . , N
uniquely determine a v ∈ VN,0

m
the points v(xj), j = 1, . . . , N are suitable

for interpolation into v ∈ VN,0

(1.5.116)

Collocation conditions: uN ∈ VN : L(uN)(xj) = f (xj) , j = 1, . . . , N .

(1.5.117)

➌ choose ordered basis B = {b1
N , . . . , bN

N} of VN,0 & plug basis representation

uN = u0 + µ1b1
N + · · ·+ µNbN

N (u0=̂ offset function, cf. Rem. 1.5.12 )

into collocation conditions (1.5.117)

~µ = (µl)
N
l=1: L(u0 + µ1b1

N + · · ·+ µNbN
N)(xj) = f (xj) , j = 1, . . . , N .

(1.5.118)

In general: (1.5.118) is a non-linear system of equation (N equations for N unknowns µ1, . . . , µN).

It is natural to chose N = dim VN collocation points to make the number of unknowns, which agrees with

the dimension of the trial space VN, agree with the number of equations, which is the same as the number

of collocation points.

More abstract: bijectivity of point evaluation (1.5.116) ⇒ ♯{nodes} = dim VN,0

In the sequel we present a detailed discussion of the collocation approach for the linear two point boundary

value problem

L(u) := − d

dx

(
σ(x)

du

dx
(x)

)
= g(x) , a ≤ x ≤ b ,

u(a) = ua , u(b) = ub ,

(1.5.119)

on domain Ω = [a, b], related to variational problem (1.4.23).

This linear model boundary value problem was obtained from the graph description of the taut string

model, see Sect. 1.4.

Remark 1.5.120 (Smoothness requirements for collocation trial space)

The collocation equations (1.5.118) will make sense only if the action of the (differential) operator L is well

defined for elements of the trial space VN. For the differential operator from (1.5.119) with σ ∈ C1([a, b])
this entails VN,0 ⊂ C2

pw([a, b]), that is the trial functions have to be at least continuously differentiable.
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Bearing in mind that the collocation conditions are based on point evaluations, it is natural to demand even

L(uN) ∈ C0([a, b]), which implies the condition VN,0 ⊂ C2([a, b]), cf. Sect. 1.5.3.2.

Impact in a concrete case: For the two-point BVP (1.5.119) it is not possible to build a collocation method

on the trial space VN,0 := S0
1,0(M) of M-piecewise linear finite element functions (→ Sect. 1.5.2.2),

because vN ∈ S0
1,0(M) is not differentiable in nodes xj of the mesh, which renders L(vN) undefined.

Trial spaces for collocation methods have to comply with more stringent smoothness condi-

tions that those suitable for Galerkin discretization.

Remark 1.5.121 (Collocation: smoothness requirements for coefficients)

For 2-point BVP (1.5.119): σ must be differentiable in collocation collocation nodes, with known values
dσ
dx (xj), j = 1, . . . , N, in the sense of Rem. 1.5.5: extra difficulty when σ given in procedural form.

Inability to cope with discontinuous coefficients is another drawback of collocation methods compared to

the Galerkin approach.

1.5.3.1 Spectral collocation

Focus: linear two point boundary value problem (1.5.119)

Trial space for polynomial spectral collocation:

VN,0 = Pp(R) ∩ C2
0([a, b]) , p ≥ 2 . (1.5.122)

= polynomials of degree ≤ p, vanishing at endpoints of domain

No. of degrees of freedom N := dim VN,0 = p− 1

➣ same trial space as for polynomial spectral Galerkin approach, see Sect. 1.5.2.1.

(1.5.123) polynomial spectral collocation for (linear) two-point BVP (1.5.119)

Discussion: polynomial spectral collocation for (linear) two-point BVP (1.5.119)

✦ offset function u0(x) := b−x
b−a ua +

x−a
b−a ub.

✦ Basis B := {bj
N := Mj} consisting of integrated Legendre polynomials, see (1.5.33).

The rationale for this choice is the same as for the spectral Galerkin method presented in Section 1.5.2.1:

the basis must enjoy good stability properties in order to avoid adverse impact of roundoff errors, see

Ex. 1.5.59.
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Note: L from (1.5.119) is a linear differential operator!

Terminology: A differential operator is a mapping on a function space involving only values of the func-

tion argument and some of its derivatives in the same point.

A differential operator L is linear, if

L(αu + βv) = αL(u) + βL(v) ∀α, β ∈ R, ∀functions u, v (1.5.124)

(1.5.118)
(1.5.124)
=⇒

N

∑
l=1

L(bl
N)(xk)µl = f (xk)−L(u0)(xk) , k = 1, . . . , N . (1.5.125)

m

A~µ = ~ϕ ,
(A)k,l := L(bl

N)(xk) , k, l ∈ {1, . . . , N} ,

ϕk := f (xk)−L(u0)(xk) , k ∈ {1, . . . , N} .
(1.5.126)

An N × N linear system of equations

For BVPs featuring linear differential operators, collocation invariably leads to a linear system of equa-

tions for the unknown coefficients of the basis representation of the collocation solution.

Remark 1.5.127 (Bases for polynomial spectral collocation)

Same choices as for spectral Galerkin methods, see Rem. 1.5.31, same stability considerations apply.

Remark 1.5.128 (Collocation nodes for polynomial spectral collocation)

Rule of thumb (without further explanation, see [3]):

choose collocation points xj, j = 1, . . . , N such that the induced Lagrangian interpolation op-

erator (→ [4, Cor. 3.2.15]) has a small ∞-norm (Lebesgue constant), see [4, Lemma 3.2.67].

Popular choice (due to [4, Eq. (4.1.82)]): Chebychev nodes (in [a, b])

xk := a + 1
2(b− a)

(
cos
(2k− 1

2N
π
)
+ 1

)
, k = 1, . . . , N . (1.5.129)
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Fig. 42

construction of Chebychev nodes
Fig. 43
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C++11 code 1.5.130: Computation of derivatives of Legendre polynomials using (1.5.41)

1 f u n c t io n [V,M,D] = dilegpol(n,x)

2 % Computes values of the first n + 1 Legendre polynomials (returned in
matrix V)

3 % the first n− 1 integrated Legendre polynomials (returned in matrix
M), and the

4 % first n + 1 first derivatives of Legendre polyomials in the points xj
passed

5 % in the row vector x.

6 % Uses the recursion formulas (1.5.38) and (1.5.33)

7 V = ones(s iz e(x)); V = [V; x];

8 % recursion (1.5.38) for Legendre polynomials

9 f o r j=1:n-1, V = [V; ((2*j+1)/(j+1)).*x.*V(end,:) -

j/(j+1)*V(end-1,:)]; end

10 % Formula (1.5.33) for integrated Legendre polynomials

11 M = diag(1./(2*(1:n-1)+1))*(V(3:n+1,:) - V(1:n-1,:));

12 % Recursion formula (1.5.41) for derivatives of Legendre polynomials

13 i f (nargout > 2)

14 D = [zeros(s iz e(x)); ones(s iz e(x))];

15 f o r j=1:n-1, D = [D;(2*j+1)*V(j+1,:)+D(j,:)]; end

16 end

C++ code 1.5.131: Computation of derivatives of Legendre polynomials using (1.5.41)

1 //Compute Legendre and integrated Legendre polynomials and

2 // derivatives of Legendre polynomials

3 // n =̂ Degree of polynomials

4 // x =̂ Points at which the polynomials have to be computed

5 // return value 3-std::tuple of Eigen::MatrixXd containing

6 // values of Legendre polynomials, integrated Legendre polynomials,

7 // and derivatives, respectively

8 s td : : tup le <Eigen : : MatrixXd , Eigen : : MatrixXd , Eigen : : MatrixXd >

9 dilegendrepol ( i n t n , const Eigen : : RowVectorXd &x ) {

10 const in t n_points = x . co ls ( ) ;
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11 Eigen : : MatrixXd V,M;

12 s td : : t i e (V, M) = int legendrepol ( n , x ) ; // see Code 1.5.44

13 Eigen : : MatrixXd D( n+1 , n_points ) ;

14 D. row ( 0 ) = Eigen : : RowVectorXd : : Zero ( n_points ) ;

15 D. row ( 1 ) = Eigen : : RowVectorXd : : Constant ( n_points , 1) ;

16 for ( i n t i = 1 ; i < n ; i ++) {

17 D. row ( i +1) = (2∗ i +1)∗V. row ( i ) +D. row ( i −1) ;

18 }

19 return s td : : make_tuple (V, M, D) ;

20 }

C++11 code 1.5.132: Spectral collocation for linear 2nd-order two-point BVP

1 f u n c t io n u = linspeccol(g,N,x)

2 % Polynomial spectral collocation discretization of linear 2nd-order
two-point BVP

3 % − d2u
dx2 = g(x), u(0) = u(1) = 0

4 % on Ω = [0, 1]. Trial space of dimension N, collocation in Chebychev
nodes.

5 % Values of approximate solution in points xj are returned in the row
vector u

6 cn = cos((2*(1:N)-1)*p i/(2*N)); % Chebychev nodes, see
(1.5.129)

7 [V,M,D] = dilegpol(N+1,cn); % Obtain values of (2nd

derivatives) of Mm

8 mu = (-4*D(2:N+1,:))’\(g(0.5*(cn+1))’); % Solve collocation system

9 % Compute values of integrated Legendre polynomials at output points

10 [V,M] = dilegpol(N+1,2*x-1); u = mu’*M;

C++ code 1.5.133: Spectral collocation for linear 2nd-order two-point BVP

1 // Polynomial spectral collocation discretization of linear 2nd-order
two-point BVP

2 // − d2u
dx2 = g(x), u(0) = u(1) = 0

3 // on Ω = [0, 1]. Trial space of dimension N, collocation in Chebychev
nodes.

4 // Values of approximate solution in points xj are returned in the row
vector u

5 template <typename Function >

6 s t a t i c Eigen : : RowVectorXd solve ( Funct ion g , i n t N, const

Eigen : : RowVectorXd& x ) {

7 // Obtain the collocation nodes

8 Eigen : : RowVectorXd cn = C o l l o c a t i o n : : nodes (N) ;

9 // Obtain values of 2nd derivative of integrated Legendre
polynomials

10 Eigen : : MatrixXd V, M, D;

11 s td : : t i e (V, M, D) = NPDE : : dilegendrepol (N+1 , cn ) ;

12 // Assemble matrix

13 Eigen : : MatrixXd R = −4∗D. block (1 , 0 , N, N) . transpose ( ) ;

14 // Compute the right hand side

15 Eigen : : RowVectorXd rhs = NPDE : : apply ( g ,

0 .5∗ ( cn . a r ray ( ) +1) . mat r ix ( ) ) ;
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16 // Solve the collocation system

17 Eigen : : VectorXd mu = R. l u ( ) . solve ( rhs . transpose ( ) ) ;

18 // Compute values of integrated Legendre polynomials at output
points

19 s td : : t i e ( s td : : ignore , M) = in t l e g e n d r e p o l (N+1 ,

(2∗x . ar ray ( )−1) . mat r ix ( ) ) ;

20 return mu. transpose ( ) ∗ M;

21 }

Example 1.5.134 (Polynomial spectral collocation for 2-point BVP)

Setting of Ex. 1.5.29, spectral polynomial collocation, on , N = 5, 7, 10, basis from integrated Legendre

polynomials, plot of solution uN .

Fig. 44
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Collocation in equidistant nodes

1.5.3.2 Spline collocation

Analogous to Sect. 1.5.2.2: collocation based on piecewise polynomials

Rem. 1.5.120 ➣ for BVP (1.5.119) smoothness VN,0 ⊂ C2([a, b]) is required.

Which piecewise polynomial spaces offer this kind of smoothness ?

Recall [4, Def. 3.5.1], cf. [4, Section 3.5.1]:

Definition 1.5.135. Cubic spline

A function s : [a, b] 7→ R is a cubic spline function w.r.t. the

ordered knot set T := {a = x0 < x1 < x2 < . . . < xM−1 < xM = b},
if

(i) s ∈ C2([a, b]) (twice continuously differentiable),

(ii) s|]xj−1,xj[
∈ P3(R) (piecewise cubic polynomial)
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✎ notation: S3,T =̂ vector space of cubic splines on knot set T

Known: dimS3,T = ♯T + 2 = M + 3

Spline based trial space for collocation for 2-point BVP(1.5.119)

natural cubic splines: VN,0 :=

{
s ∈ S3,T :

s′′(a) = s′′(b) = 0 ,

s(a) = s(b) = 0

}
⇒ N := dim VN = M− 1 ,

Choice of collocation nodes:

collocation nodes for cubic spline collocation = interior spline nodes xj: N = T \ {a, b}

Example 1.5.136 (Cubic spline collocation discretization of 2-point BVP)

Setting of Exp. 1.5.29

Cubic spline collocation with equidistant nodes,

M = 5, 7, 12

Solution uN ✄

Fig. 46
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1.5.4 Finite differences

As collocation methods (→ Section 1.5.3), finite difference scheme target the strong form (ODE/PDE) of a

boundary value problem. Here we discuss their derivation and implementation for the linear scalar linear

2-point boundary value problem that serves as our model problem.

Focus: 2nd-order linear two-point BVP

L(u) := − d

dx

(
σ(x)

du

dx
(x)

)
= g(x) , a ≤ x ≤ b , (1.5.119)

u(a) = ua , u(b) = ub ,
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Construction of finite difference discretization

Idea:

Replace derivatives −→ difference quotients

(in finitely many special points = nodes of a mesh/grid)

E.g.
d2u

dx2
(x) ≈ u(x + h)− 2u(x) + u(x− h)

h2
, h > 0 “small” .

(1.5.138)

Remark 1.5.139 (Types of difference quotients)

✦ Symmetric difference quotient at anchor point x0

du

dx
(x0) ≈

u(x0 + h)− u(x0 − h)

2h
, with span h > 0 . (1.5.140)

✦ One-sided difference quotients at anchor point x0

du

dx
(x0) ≈

u(x0 + h)− u(x0)

h
≈ u(x0)− u(x0 − h)

h
, with span h > 0 . (1.5.141)

(1.5.142) Grid for finite difference method as in Sect. 1.5.2.2

➣ Ω = [a, b] equipped with nodes (M ∈ N)

X := {a = x0 < x1 < · · · < xM−1 < xM = b} .

➤ mesh/grid

M := {]xj−1, xj[: 1 ≤ j ≤ M} .

Fig. 47
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Special case:

equidistant mesh: xj := a + jh , h :=
b− a

M
.

☞ [xj−1, xj], j = 1, . . . , M, =̂ cells ofM, cell size hj := |xj − xj−1, j = 1, . . . , M
meshwidth hM := max

j
|xj − xj−1|

(1.5.143) Difference quotient approximation

➊ replacement of outer derivative (xj−1/2 =
1
2(xj + xj−1)):

d

dx

(
σ(x)

du

dx
(x)

)

|x=xj

≈ 2

hj−1 + hj

(
σ(xj+1/2)

du

dx
(xj+1/2)− σ(xj−1/2)

du

dx
(xj−1/2)

)
.

Essential: possibility for point evaluation of coefficient function σ: σ ∈ C0(]a, b[) required.

➋ replacement of inner derivative, e.g.,

du

dx
(xj+1/2) ≈

u(xj+1)− u(xj)

hj
.
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− d

dx

(
σ(x)

du

dx
(x)

)

|x=xj

=

σ(xj−1/2)
u(xj)− u(xj−1)

hj−1
− σ(xj+1/2)

u(xj+1)− u(xj)

hj

1
2(hj−1 + hj)

. (1.5.144)

Fig. 48

xj−1 xj+1xj

Construction of (1.5.144):

magenta: outer difference quo-

tient

green: inner difference quo-

tients

From now assume equidistant mesh, uniform meshwidth hj = h > 0, j = 1, . . . , M:

− d

dx

(
σ(x)

du

dx
(x)

)

|x=xj

=
1

h2

(
−σ(xj+1/2)u(xj+1) + (σ(xj+1/2) + σ(xj−1/2))u(xj)− σ(xj−1/2)u(xj−1)

)
. (1.5.145)

Unknowns in finite difference method: µl = u(xl), l = 1, . . . , M− 1

Remark 1.5.146 (Imposing boundary condition in finite difference method)

In (1.5.145) the values u(x0) and u(xM) are replaced with the prescribed boundary values ua and ub,

respectively. Below this is realized by formally setting µ0 := ua and µM := ub.

− d

dx

(
σ(x)

du

dx
(x)

)
= g(x) ,a ≤ x ≤ b .

← restriction to X , use (1.5.145)

−σ(xj+1/2)µj+1 + (σ(xj+1/2) + σ(xj−1/2))µj − σ(xj−1/2)µj−1

h2
= g(xj) , j = 1, . . . , M− 1 .

(1.5.147)

m

A~µ = ~ϕ , with

(A)jl = h−2 ·





0 , if |j− l| > 1 ,

−σ(xj+1/2) , if j = l − 1 ,

σ(xj−1/2) + σ(xj−1/2) , if j = l ,

−σ(xl+1/2) , if l = j− 1 .

ϕj =





g(x1) + σ(x1/2)ua , if j = 1 ,

g(xj) , if 1 < j < M− 1 ,

g(xM−1) + σ(xM−1/2)ub , if j = M− 1 .

(1.5.148)
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An (M− 1)× (M− 1) tridiagonal linear system of equations with

A =
1

h2




σ1
2
+ σ3

2
−σ3

2

−σ3
2

σ3
2
+ σ5

2
−σ5

2
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . −σM− 3

2

−σM− 3
2

σM− 1
2
+ σM− 3

2




, (1.5.149)

where σ∗ := σ(x∗).

(Up to scaling with h) the finite difference approach and the linear finite element Galerkin scheme

(→ Sect. 1.5.2.2) yield the same system matrix for the BVP (1.5.119) and its associated variational

problem (1.4.23), cf. (1.5.148) and (1.5.88).

1.6 Convergence of Discrete Solutions

After discretization and solution of the resulting system of finitely many equations we obtain an approxi-

mate solution. This section discusses how to assess the quality of approximate solutions quantitatively.

For the full elastic string model (1.2.51)/(1.3.15) or the taut string model in graph description (1.4.23) there

is an exact solution, a function u : [0, 1] 7→ R
2 or u : [a, b] 7→ R, respectively. In general, no algorithm

will be able to find it. Instead, we can only approximate it based on discretization.

Discretization schemes

(Galerkin approach, Sect. 1.5.2

collocation methods, Sect. 1.5.3)

−→
Approximate solution

uN : [0, 1] 7→ R2/uN : [a, b] 7→ R

(functions ∈ trial space VN)

Desirable: approximation uN “close to” exact solution u: rigorous meaning ?

l
How to measure discretization error u− uN ?

In this section we will learn ways to measure the distance of u/u and uN /uN , the “size” of the discretization

error. In numerical experiments we will explore the behavior of discretization errors for various discretiza-

tion schemes.

Remark 1.6.1 (Related: Convergence of approximations of functions)

In the course “Numerical Methods for CSE” [4] a whole chapter was devoted to the approximation of

functions in 1D [4, Chapter 4]. There, given a function f : I ⊂ R → R, I a finite interval, we built a

“simple” function f̃ : I → R that could be described by a finite number N of degrees of freedom. For

instance, f̃ could be a global polynomial encoded through its expansion coefficients with respect to a basis

of the space of polynomials [4, Section 4.1]. In this context the counterpart of the discretization error is

the approximation error f − f̃ , also a function on I.

The size of f − f̃ was naturally measured by computing a suitable norm [4, § 3.2.61]. The supremum

norm, the L2-norm, and L1-norm were introduced as most important specimens of relevant norms.
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Remark 1.6.2 (“Convergence” in other settings)

We encountered the issue of convergence of approximate solutions before:

✦ Numerical quadrature [4, Chapter 5]: study of asymptotic behavior of quadrature error

✦ Numerical integration [4, Chapter 11]: discretization error of single step methods

Remark 1.6.3 (Grid functions)

Note: for finite differences (→ Sect. 1.5.4) we get no solution function, only a grid function X 7→ R

(“point values”). How can we compare u and uN in this case?

We have two options:

➊ reconstruction of a function uN through postprocessing, e.g., linear interpolation, or other techniques

introduced in [4, Chapter 3].

➋ use of a mesh-depedent norm, for instance, the maximum difference of point values on X (discrete

supremum norm).

1.6.1 Norms on function spaces

Tools for measuring discretization errors: norms on function spaces/grid function spaces

Recall from analysis or the introduction to numerical methods:

Definition 1.6.4. Norm (on a vector space) → [4, Def. 1.5.65]

A norm ‖·‖V on an R-vector space V is a mapping ‖·‖V : V 7→ R
+
0 , such that

(definiteness) ‖v‖V = 0 ⇐⇒ v = 0 ∀v ∈ V (N1)

(homogeneity) ‖λv‖V = |λ|‖v‖V ∀λ ∈ R, ∀v ∈ V , (N2)

(triangle inequality) ‖w + v‖V ≤ ‖w‖V + ‖v‖V ∀w, v ∈ V . (N3)

Next we recall important norms on function spaces, cf. [4, Eq. (3.2.62)], [4, Eq. (3.2.63)], [4, Eq. (3.2.64)]:

Definition 1.6.5. Supremum norm

The supremum norm of an (essentially) bounded function u : Ω 7→ Rn is defined as

‖u‖∞

(
= ‖u‖L∞(Ω)

)
:= sup

x∈Ω

‖u(x)‖ , u ∈ (L∞(Ω))n . (1.6.6)

✦ L∞(Ω) denotes the vector space of essentially bounded functions. It is the instance for p = ∞ of

an Lp-space.

✦ The notation ‖·‖∞ hints at the relationship between the supremum norm of functions and the maxi-

mum norm for vectors in Rn.
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✦ For n = 1 the Euclidean vector norm in the definition reduces to the modulus |u(x)|.
✦ The norm ‖u− uN‖L∞(Ω) measures the maximum distance of the function values of u and uN.

✦ ‖u− uN‖L∞(Ω) =̂ maximal pointwise error

Definition 1.6.7. Mean square norm/L2-norm

For a function u ∈ (C0
pw(Ω))n the mean square norm/L2-norm is given by

‖u‖0

(
= ‖u‖L2(Ω)

)
:=

(∫

Ω
‖u(x)‖2 dx

)1/2

, u ∈ (L2(Ω))n .

✦ L2(Ω) designates the vector space of square integrable functions, another Lp-space (for p = 2)

and a Hilbert space.

✦ The “0” in the notation ‖·‖0 refers to the absence of derivatives in the definition of the norm.

✦ Obviously, the L2-norm is weaker than the supremum norm:

‖v‖L2([a,b]) ≤
√
|b− a|‖v‖L∞([a,b]) ∀v ∈ C0

pw([a, b]) .

In particular, the L2-norm of the discretization error may be small despite large deviations of uN

from u, provided that these deviations are very much localized.

✦ Parlance: ‖u− uN‖L2(Ω) =̂ mean square error.

✞
✝

☎
✆Relevant error norms are suggested by application context/physics!

(1.6.8) Energy norm

We consider the model for a homogeneous taut string in physical space, see (1.4.23), with associated

total potential energy functional

J(u) :=

b∫

a

1
2

∣∣∣∣
du

dx
(x)

∣∣∣∣
2

+ ĝ(x)u(x)dx , u ∈ C1
pw,0([a, b]) , (1.6.9)

where, for the sake of simplicity, we assume ua = ub = 0.

A manifestly relevant error quantity of interest is the deviation of energies

EJ := |J(u)− J(uN)| .

We adopt the concise notations introduced for abstract (linear) variational problems in Rem. 1.3.31,

§ 1.4.7:

J(u) = 1
2a(u, u)− ℓ(u) , a(u, v) :=

b∫

a

du

dx
(x)

dv

dx
(x)dx , ℓ(v) := −

b∫

a

ĝ(x)v(x)dx ,

where a is a symmetric bilinear form, see Def. 1.3.22.
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Assumption: uN ∈ VN,0 =̂ Galerkin solution based on discrete trial space VN,0⊂V0.

a(u, v) = ℓ(v) ∀v ∈ V0 := C1
pw,0([a, b]) ,

a(uN , vN) = ℓ(vN) ∀vN ∈ VN,0 ⊂ V0 .
(1.6.10)

We can use the defining variational equations for u and uN to express

J(u)− J(uN) = − 1
2(a(u, u) − a(uN , uN))

(∗)
= − 1

2a(u + uN , u− uN) . (1.6.11)

(∗): this is a straightforward consequence of the bilinearity of a, see Def. 1.3.22, c.f. the well known

identity a2 − b2 = (a + b)(a − b) for a, b ∈ R. These manipulations will be revisited in Remark 2.4.35.

Concretely,

|J(u)− J(uN)| = 1
2

∣∣∣∣
∫ b

a

d

dx
(u + uN) ·

d

dx
(u− uN)dx

∣∣∣∣
(∗)
≤ 1

2

(∫ b

a
| d

dx
(u + uN)|2 dx

)1/2 (∫ b

a
| d

dx
(u− uN)|2 dx

)1/2

.

(1.6.12)

(∗): due to Cauchy-Schwarz inequality for inner products

∫

Ω
u(x)v(x)dx ≤ ‖u‖L2(Ω)‖v‖L2(Ω) ∀u, v ∈ L2(Ω) . (1.6.13)

Definition 1.6.14. H1-seminorm

For a function u ∈ C1
pw([a, b]) the H1-seminorm reads

|u|2H1([a,b]) :=
∫ b

a
|du

dx
(x)|2 dx . (1.6.15)

✦ |·|H1([a,b]) is merely a semi-norm, because it only satisfies norm axioms (N2) and (N3), but fails to

be definite: |·|H1([a,b]) = 0 for constant functions.

✦ In the setting of the homogeneous taut string model, we have

|u|2H1([a,b]) = a(u, u) |·|H1([a,b]) is called the energy norm for the model.

More explanations will be given in Sect. 2.2.3.

✦ On C1
pw,0([a, b]) the semi-norm |·|H1([a,b]) is a genuine norm → Def. 1.6.4. See proof of Thm. 2.3.31.

From (1.6.12)

‖u− uN‖H1(Ω) ≤ ǫ |J(u)− J(uN)| ≤ |u + uN |H1(Ω)|u− uN |H1(Ω)

(N3)

≤ (2|u|H1(Ω) + ǫ) ǫ .

(1.6.16)

☛ estimate of the energy norm of the discretization error paves the way for bounding the energy devi-

ation.
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Remark 1.6.17 (Norms on grid function spaces)

To measure the discretization error for finite difference schemes (→ Sect. 1.5.4) one may resort to mesh-

dependent norms, for instance

(discrete) l2-norm : ‖~µ‖2
l2(X ) :=

M

∑
j=0

1
2(hj + hj+1)|µj|2 , (1.6.18)

(under convention h0 := 0, hM+1 := 0) ,

(discrete) maximum norm : ‖~µ‖l∞(X ) := max
j=0,...,M

|µj| . (1.6.19)

Remark 1.6.20 (Approximate computation of norms)

A standard approach to testing implementations of numerical methods for 2-point BVP: Examine norm of

discretization error for test cases with (analytically) known exact solution u.

Even for numerical methods computing uN ∈ VN ⊂ V (Galerkin methods → Sect. 1.5.2, collocation

methods→ Sect. 1.5.3):

usually the exact computation of ‖u− uN‖ is impossible or very difficult.

Option: approximate evaluation of norm ‖u− uN‖
✦ supremum norm ‖·‖∞: approximation by sampling on discrete point set.

✦ L2-norm, energy norm: numerical quadrature [4, Chapter 5]

(Gauss quadrature for spectral schemes, composite quadrature for mesh based schemes)

! Error introduced by approximation of norm must be smaller than discretization error

(➣ use “overkill” quadrature/sampling, cost does not matter much when testing).

1.6.2 Algebraic and exponential convergence

In Rem. 1.6.1 we pointed out parallels between studying approximation errors and discretization errors.

In the case of approximation errors we discovered rather regular behavior when adopting an asymptotic

perspective, which was introduced, e.g., in [4, Section 4.1.2]. It regards suitable norms of approximation

errors as functions of the number N of parameters for families of approximation schemes and examines

their decay as N → ∞. We do the same for discretization errors.

Convergence: asymptotic perspective

Crucial: convergence is an asymptotic notion !

sequence of discrete models ⇒ sequence of approximate solutions (u
(i)
N )i∈N

⇒ study sequence (‖u(i)
N − u‖)i∈N

created by variation of a discretization parameter:

(1.6.22) Discretization parameters
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The most general discretization parameter is the total number of unknowns (= degrees of freedom) in the

discrete model. Often, this is controlled by other discretization parameters, of which the following two are

widely used:

✦ meshwidth h > 0 for finite differences (→ Section 1.5.4), p.w. linear finite elements

(→ Section 1.5.2.2), spline collocation (→ Section 1.5.3.2)
✦ polynomial degree for spectral collocation (→ Section 1.5.3.1),

spectral Galerkin discretization (→ Section 1.5.2.1)

Experiment 1.6.23 (Numerical studies of convergence)

Focus: Linear 2-point boundary value problem − d2u
dx2 = g(x), u(0) = u(1) = 0 on Ω =]0, 1[, varia-

tional form (1.5.30),

exact solution u(x) = sin(2πx2) (→ setting of Exp. 1.5.29)

❶ finite difference discretization on equidistant mesh, meshwidth h > 0 (→ Sect. 1.5.4)

Fig. 49
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What is plotted are the discrete versions of the L2-norm and supremum norm, see Rem. 1.6.17.

The energy norm of the error was computed approximately by means of the midpoint quadrature formula,

cf. (1.5.86),

energy norm(error)2 :=
M

∑
j=1

hj

∣∣∣∣∣
µj − µj−1

hj
− du

dx
(xj−1/2)

∣∣∣∣∣

2

.

→ Rem. 1.6.20 on the approximate computation of norms of the discretization error.

❷ Spectral collocation, polynomial degree p ∈ N → Section 1.5.3.1

Monitored: supremum norm (1.6.6), L2-norm (1.6.1) of discretization error u− uN (approximated by

“overkill” Gaussian quadrature with 104 nodes)
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Fig. 51
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❸ Spline collocation on equidistant mesh, meshwidth h > 0 (→ Section 1.5.3.2)

Monitored: supremum norm (1.6.6), L2-norm (1.6.1) of u− uN (approximated by sampling on fine grid

with 104 points)

Fig. 53
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Fig. 54
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❹ Spectral Galerkin based on degree p ∈ N polynomials → Section 1.5.2.1

Monitored: supremum norm (1.6.6), L2-norm (1.6.1) of discretization error u− uN (approximated by

trapezoidal rule on fine grid with 104 points)

Fig. 55
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Fig. 56
2 4 6 8 10 12 14 16 18 20

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 N

 e
rr

or
 n

or
m

Spectral Galerkin error convergence

 

 

L
∞

−norm

L
2
−norm

Observation: ✄ ‘Empiric convergence” in all cases

✄ different qualitative behavior (of norm of discretization error)
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How to compare different discretizations ?

Unified view:

☛
✡

✟
✠Study ‖u− uN‖ as function of number

measure for costs incurred by method

N of unknowns (degrees of freedom)

Definition 1.6.24. Types of convergence → [4, Section 4.1.2], [4, Def. 4.1.31]

‖u− uN‖ = O(N−α), α > 0 :⇐⇒ algebraic convergence with rate α

‖u− uN‖ = O(exp(−γNδ)), with γ, δ > 0 :⇐⇒ exponential convergence

(asymptotically for N → ∞)

✍ recall notation (Landau-O):

f (N) = O(g(N)) :⇔ ∃N0 > 0, ∃C > 0 independent of N

such that | f (N)| ≤ Cg(N) for N > N0 .
(1.6.25)

Definition 1.6.26. Rate of convergence

In the case of algebraic convergence the exponent α in Def. 1.6.24 is called the rate of (algebraic)

convergence.

The following plots illustrate the qualitative behavior of error norms implied by the two different types of

convergence for various parameters.
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Linear plot of qualitative convergence behavior: algebraic/exponential convergence rates

Exponential convergence will always win (asymptotically)
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Log-linear plot of decrease of discretization error for algebraic/exponential convergence rates
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Log-log plot of decrease of discretization error for algebraic/exponential convergence rates

(1.6.27) Exploring convergence empirically → [4, Rem. 4.1.33]

When (in homework problems) you are asked to “investigate the (asymptotic) convergence of a method”

in a numerical experiment, you are expected to make a
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qualitative and quantitative statement

about the asymptotic behavior of a suitable norm (∗) of the discretization error in the sense of Defini-

tion 1.6.24:

☛ “qualitative”: does algebraic or exponential convergence prevail, or none of these?

☛ “quantitative”: the rate α in the case of algebraic convergence, γ, δ in the case of exponential

convergence.

(∗): the norm of interest and its evaluation in the sense of Remark 1.6.20 has to be specified as part of

the question!

How to tease qualitative/quantitative information about asymptotic convergence out of raw norms of dis-

cretization error?

Given: data tuples (Ni, ǫi), i = 1, 2, 3, . . ., Ni =̂ problem sizes, ǫi =̂ error norms

1. Conjecture: algebraic convergence: ǫi ≈ CN−α
i

log(ǫi) ≈ log(C)− α log Ni (affine linear in log-log scale).

➤ (almost) linear error plot in doubly logarithmic scale

➤ linear regression on data (log Ni, log ǫi), i = 1, 2, 3, . . . to determine rate α, see Code 1.6.30.

2. Conjecture: exponential convergence: ǫi ≈ C exp(−γNδ
i )

log ǫi ≈ log(C)− γNδ
i . (1.6.28)

log ǫi − log ǫi−1 ≈ −γ(Nδ
i − Nδ

i−1) , (1.6.29)

log ǫi+1 − log ǫi

log ǫi − log ǫi−1
≈ Nδ

i+1 − Nδ
i

Nδ
i − Nδ

i−1

.

Special case: geometric increase/decrease of problem size parameters: Ni = QNi−1 for some

known Q > 0.

log ǫi+1 − log ǫi

log ǫi − log ǫi−1
≈ Qδ − 1

1− Q−δ
.

From this you can determine δ by solving a quadratic equation. Then you get γ from (1.6.29) or, as

above, by linear regression from (1.6.28).

Alternative: non-linear least squares fit (→ [4, Section 6.5]) to determine δ:

(c, γ, δ) = argmin

{

∑
i

| log ǫi − c + γNδ
i |2
}

,

residual↔ validity of conjecture. This can be done by a short MATLAB code (→ exercise)

MATLAB code 1.6.30: Probing for algebraic convergence

1 f u n c t io n alpha = eoc(N,err,fromindex,filename)

2 % Function for the investigation of algebraic convergence of error
norms as a
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3 % function of a problem size parameter. The argument N has to pass and

4 % vector of length L > 1 of problem size parameter values, whereas the

5 % L-vector err contains the corresponding error norms. The

6 % argument fromindex∈ {1, . . . , L− 1} restricts the relevant

7 % data to fromindex, . . . , L} in order to suppress the impact of

8 % possible pre-asymptotic behavior, see Example 1.6.34.

9 L = l ength(N); i f (L ~= l ength(err)), e r r o r(’length mismatch’);

end

10 i f (nargin < 3), fromindex = 1; end

11 N = reshape(N,L,1); err = reshape(err,L,1);

12 i f ((min(N) <= 0) || (min(abs( d i f f (N))) == 0.0)), e r r o r(’Invalid

sieze parameters’); end

13 i f (min(err) < 0), e r r o r(’Negative data’); end

14 % Perform linear regression, aka least squares fitting to a line.
polyfit

15 % returns the coefficients of the linear polynomial, the first of which
is its slope

16 p = polyfit( log(N(fromindex:end)), log(err(fromindex:end)),1);

alpha = -p(1);

17 % Additional graphical output; the “ideal curve” is added as a black
solid line

18 f i g u r e(’name’,’error plot’);

19 log log(N,err,’r-*’); hold on; % plot data

20 ordcurve = N(fromindex:end).^(-alpha);

21 ordcurve = ordcurve*err(fromindex)/ordcurve(1);

22 log log(N(fromindex:end),ordcurve,’k-’); % plot calibration line

23 x l a b e l(’problem size N’,’fontsize’,14);

24 y l a b e l(’error norm’,’fontsize’,14);

25 legend(’error’, s p r i n t f(’O(N^{%f})’,alpha));

26 i f (nargin > 3), p r i n t(’-depsc2’, s p r i n t f(’%s.eps’,filename)); end

C++ code 1.6.31: Estimating the rate of algebraic convergence

1 double eoc ( const Eigen : : VectorXd &N, const Eigen : : VectorXd &er r ,

2 unsigned f romindex = 0 , s td : : s t r i n g f i lename = " conv . eps " ) {

3 // The argument N has to pass a sorted vector of length L > 1 of

4 // problem size parameter values, whereas the L-vector err

5 // contains the corresponding error norms. The argument

6 // fromindex∈ {1, . . . , L− 1} restricts the relevant data to

7 // fromindex, . . . , L} in order to suppress the impact of

8 // possible pre-asymptotic behavior, see Example 1.6.34.

9 // Returns the estimated rate of convergence.

10 const unsigned dim = N. s ize ( ) ;

11 // Consistency check for arguments

12 assert ( dim > 1) ;

13 assert ( fromindex + 1 < dim ) ;

14 assert ( e r r . s ize ( ) == dim ) ;

15

16 //check if data is proper, that is, positive

17 assert ( s td : : none_of (N. data ( ) , N. data ( ) +dim ,
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18 [ ] ( double d ) { return d <= 0; } ) ) ;

19 assert ( s td : : none_of ( e r r . data ( ) , e r r . data ( ) +dim ,

20 [ ] ( double d ) { return d <= 0; } ) ) ;

21

22 //check no two elements in N are equal, sorting assumed!

23 assert ( s td : : i s_so r ted (N. data ( ) , N. data ( ) +dim ) ) ;

24 assert (N. data ( ) +dim == std : : ad jacen t_ f ind (N. data ( ) , N. data ( ) +dim ) ) ;

25

26 //truncate preasymptotic behavior if desired:

27 const unsigned in t newdim = dim − f romindex ;

28

29 //compute log(N) and log(err) componentwise

30 auto log fun = [ ] ( double d ) { return s td : : log ( d ) ; } ;

31 Eigen : : VectorXd Nlog ( newdim ) , e r r l o g ( newdim ) ;

32 s td : : t rans form (N. data ( ) +fromindex ,N. data ( ) +dim , Nlog . data ( ) , log fun ) ;

33 s td : : t rans form ( e r r . data ( ) +fromindex , e r r . data ( ) +dim , e r r l o g . data ( ) , log fun ) ;

34

35 // perform linear regression, aka least squares fitting to a line.
linearFit

36 // returns the coefficients of the linear polynomial, the second of
which is its slope

37 Eigen : : VectorXd p o l y f i t = NPDE : : l i n e a r F i t ( Nlog , e r r l o g ) ;

38 double alpha = −p o l y f i t [ 1 ] ;

39 double o f f s e t = s td : : exp ( p o l y f i t [ 0 ] ) ;

40

41 //evaluate the polynomial

42 Eigen : : VectorXd po lyva l ( dim ) ;

43 s td : : t rans form (N. data ( ) , N. data ( ) +dim , po lyva l . data ( ) ,

44 [& ] ( double d ) { return o f f s e t ∗s td : : pow( d,−alpha ) ; } ) ;

45

46 //plot the error as red stars and fitted line as blue solid line and
save the plot

47 mgl : : F igure f i g ; f i g . p l o t (N, er r , " r ∗ " ) . l a b e l ( " e r r o r " ) ;

48 s td : : s t r i n g l b l = "O(N^{− " + std : : t o _ s t r i n g ( alpha ) + " } ) " ;

49 f i g . p l o t (N, po lyva l , " b −" ) . l a b e l ( l b l ) ;

50 f i g . x l a b e l ( " p rob lem s i z e N" ) ; f i g . y l a b e l ( " e r r o r norm " ) ;

51 f i g . se t log ( true , true ) ; f i g . legend (1 , 1) ; f i g . save ( f i lename ) ;

52

53 return alpha ;

54 }

Linear fitting of a data vector (xi, yi), i = 1, . . . , n, means to solve the least squares problem

(β∗, α∗) := argmin
α,β∈R

n

∑
i=1

(yi − αxi − β)2 . (1.6.32)

The task of finding (α∗, β∗) is called linear regression. Numerical methods for solving (1.6.32) are covered

in [4, Chapter 6].
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C++11 code 1.6.33: Linear regression of data

1 // Linear fitting of data passed in vectors x and y of equal length.

2 // Returns the 2-vector [β∗, α∗]⊤, cf. (1.6.32).

3 Eigen : : VectorXd

4 l i n e a r F i t ( const Eigen : : VectorXd& x , const Eigen : : VectorXd& y ) {

5 assert ( x . rows ( ) == y . rows ( ) ) ;

6 Eigen : : Matr ixXd X( x . rows ( ) , 2) ;

7 // Set up matrix of overdetermined system of equations

8 X. co l ( 0 ) = Eigen : : VectorXd : : Constant ( x . rows ( ) , 1) ;

9 X. co l ( 1 ) = x ;

10 // Solve 2× 2 linear system (normal equations)

11 return (X . transpose ( ) ∗ X) . inverse ( ) ∗ X. transpose ( ) ∗ y ;

12 }

Experiment 1.6.34 (Asymptotic nature of convergence)

Fig. 57
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✦

2-point BVP − d2u
dx2 = g(x), u(0) = u(1) = 0,

Ω =]0, 1[,
✁ u(x) = sin(50πx2)

❶ finite difference discretization on equidistant

mesh, meshwidth h > 0 (→ Sect. 1.5.4)
❷ Spectral Galerkin based on degree p ∈ N

polynomials → Sect. 1.5.2.1

Evaluations as in Ex. 1.6.23

Fig. 58
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❶ Finite Difference Method

Fig. 59
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❷ Spectral Galerkin Method

Observation: for h→ 0, p→ ∞, algebraic convergence of the finite difference solution and exponential convergence

of the spectral Galerkin solution become conspicuous. This is the “typical” asymptotic behavior of the dis-

cretization error norms for these discretization methods.
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However, the onset of asymptotic convergence occurs only for rather small meshwidth or large p, respec-

tively, beyond thresholds that may never be reached in a computation. During a long pre-asymptotic phase

the error is hardly reduced when increasing the resolution of the discretization.

Experiment 1.6.35 (Convergence and smoothness of solutions)

✦ Ω =]0, 1[ (for finite differences), Ω =]− 1, 1[ (for spectral Galerkin),

exact solution of 2-point BVP for ODE − d2u
dx2 = g(x),

u(x) =

{
3
4 − x2 , if |x| < 1

2 ,

1− |x| , if |x| ≥ 1
2 .
↔ g(x) =

{
2 , if |x| < 1

2 ,

0 elsewhere .

☞ Solution is still continuous, but no longer smooth: u ∈ C1
pw([0, 1]) only!

Fig. 60
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❶ Finite Difference Method

Fig. 61
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❷ Spectral Galerkin Method

Observations: • no more exponential convergence of spectral Galerkin

• FD: different rate of algebraic convergence for even/odd M !

This is a rather familiar observation: For instance, interpolation error estimates for polynomial interpolation

of functions in 1D hinge on smoothness assumptions and the interpolation error decays more slowly, when

the function enjoys little global smoothness.

Type of asymptotic convergence also depends on data !

?! Review question(s) 1.6.36. (Convergence of Galerkin solutions)

1. What is the relationship between the following norms for v ∈ C0([0, 1]): ‖0‖L,()1[]v2, ‖v‖L∞(]0,1[),

and ‖v‖L1(]0,1[) :=
∫ 1

0 |v(x)|dx?

2. Explain how to conclude asymptotic algebraic convergence from tabulated error norms.
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3. Consider Chebychev interpolation of a continuous function on a bounded interval. When can you

expect exponential convergence, when merely algebraic convergence? Give an example for each

case in the form of a non-polynomial continuous function on [0, 1].

4. The L2-norm ǫ2 of the error of a polynomial spectral Galerkin method as a function of the polynomial

degree p behaves like

p 2 3 4 5 6 7 8 9 10

ǫ2 8.2e-01 4.4e-01 2.9e-01 2.1e-01 2.3e-15 2.4e-15 2.3e-15 2.4e-15 2.3e-15

What can cause such a behavior of the error?

Learning Outcomes

You should be able to ...

• formulate simple mechanical problems as energy minimization problems

• derive variational formulations using the calculus of variations

• know that quadratic minimization problems lead to linear variational equations

• derive a two-point boundary value problem from a variational equation

• understand different smoothness requirements on the solutions for different problem formulations

• understand the principle of Ritz-Galerkin discretization and appreciate the impact of choice of basis.

• apply Ritz-Galerkin approach based on both piecewise polynomials and global polynomials to dis-

cretize variational problems in one dimension.

• obtain the linear system of equation that arises from a prescribed Ritz-Galerkin discretization of a

linear variational problem.

• Know the principal ideas behind collocation methods and finite difference discretization

• list the advantages of the Galerkin method compared to the collocation approach

• understand the physical relevance of the H1 semi-norm

• detect algebraic and exponential convergence in numerical experiments.
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2.1 Introduction

(2.1.1) Outline

The previous chapter discussed the transformation of a minimization problem on a function space via

a variational problem to a differential equation. To begin with, in Section 2.2–Section 2.5, this chapter

revisits this theme for models that naturally rely on function spaces over domains in two and three spatial

dimensions. Thus the transformation leads to genuine partial differential equations.
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Section 2.3 ventures into the realm of Sobolev spaces, which provide the framework for rigorous mathe-

matical investigation of variational equations. However, we will approach Sobolev spaces as “spaces of

physically meaningful solutions” or “spaces of solutions with finite energy”. From this perspective dealing

with Sobolev spaces will be reduced to dealing with their norms.

In Section 2.6, we change tack and consider a physical phenomenon (heat conduction) where modelling

naturally leads to partial differential equations. On this occasion, we embark on a general discussion of

boundary conditions in Section 2.7.

Then the fundamental class of second-order elliptic boundary value problems is introduced. Appealing to

“intuitive knowledge” about the physical systems underlying the models, key properties of their solutions

are presented in Section 2.8.

In Section 2.7 in the context of stationary heat conduction we introduce the whole range of standard

boundary conditions for 2nd-order elliptic boundary value problems. The discussion of various variational

formulations will be resumed in Section 2.10.

Supplementary reading. An excellent mathematical introduction to partial differential equations

is Evans’ book [3]. Chapter 2 gives a very good idea about fundamental properties of various simple

PDEs. Chapters 6 and 7 fit the scope of this course chapter, but go way beyond it in terms of

mathematical depth.

(2.1.2) Boundary value problems (BVPs)

The traditional concept of a boundary value problem for a partial differential equation (strong form, cf.

§ 1.3.46):

Boundary value problem (BVP)

Given a partial differential operator L, a domain Ω ⊂ Rd, a boundary differential operator B,

boundary data g, and a source term f , seek a function u : Ω 7→ Rn such that

L(u) = f in Ω ,

B(u) = g on part of (or all) boundary ∂Ω .

Terminology: boundary value problem is scalar :⇔ n = 1
(in this case the unknown is a real valued function)

(2.1.3) Elliptic boundary value problems

What does elliptic mean ?

Mathematical theory of PDEs distinguishes three main classes of boundary value problems (BVPs) for

partial differential equations (PDE):

• Elliptic BVPs (➣ “equilibrium problems”, as discussed in Section 1.2.3, Section 2.2.1, Section 2.2.2)

• Parabolic initial boundary value problems (IBVPs) (➣ evolution towards equilibrium, see Sec-

tion 6.1)
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• Hyperbolic IBVPs, among them wave propagation problems and conservation laws (➣ trans-

port/propagation, see ??)

The rigorous mathematical definition is complicated and often fails to reveal fundamental properties of,

e.g., solutions that are intuitively clear against the backdrop of the physics modelled by a certain PDE.

Further discussion of classification in [1, § 1] and [4, Ch. 1].

➣ In the spirit of Section 1.1

Structural properties of a BPV inherited from the modelled system are more important than

formal mathematical classification.

2.2 Equilibrium models

We only consider stationary systems. Then, frequently, see Section 1.2.2

equilibrium = minimal energy configuration of a system

Example: elastic string model of Section 1.2 (minimization of energy functional J(u), see (1.2.51))

In this section we study minimization problems for energy functional on spaces of functions Ω 7→ R,

where Ω ⊂ Rd is a bounded (spatial) domain and d = 2, 3.

2.2.1 Taut membrane

Recall: energy functional for pinned taut string under gravitational load ĝ, see (1.4.14), in terms of

displacement (function graph model), see Fig. 28:

J(u) := 1
2

b∫

a

σ̂(x)

∣∣∣∣
du

dx
(x)

∣∣∣∣
2

− ĝ(x)u(x)dx ,
u ∈ C1

pw([a, b]) ,

u(a) = ua , u(b) = ub .
(2.2.1)

“2D generalization” of an elastic string

➣ elastic membrane.

Taut drum membranes ✄

Fig. 62

(2.2.2) Configuration space for taut membrane graph model
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As in the case of the elastic string (→ § 1.2.1) identifying a suitable configuration space is an essential

part of mathematical modeling. Again, we rely on a space of functions, scalar valued for a graph model,

cf. Fig. 28.

Shape of membrane

m
Graph of u : Ω 7→ R

“membrane” on spatial domain Ω =]0, 1[2 ✄

(– – – =̂ boundary data)

Fig. 63
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(2.2.3) Spatial domains

As explained in § 2.2.2 the configuration space for the membrane is a space of functions defined on a

spatial domain Ω. In one dimension this was a connected interval and there is not much more to say

about it, but in higher dimensions, the boundaries of domains can have special properties, which may

affect the well-posedness of boundary value problems and features of their solutions.

General assumptions on spatial domains Ω ⊂ Rd:

✎ d = 1, 2, 3 =̂ “dimension” of domain

✦ Ω is bounded

diam(Ω) := sup{‖x− y‖: x, y ∈ Ω} < ∞ ,

✦ Ω has piecewise smooth boundary ∂Ω ✄

(“curvilinear polygon/polyhedron”)

For d = 2 we can distinguish corners (•) and edges

(—) of the boundary ∂Ω.

Fig. 64

Ω

(2.2.4) Boundary conditions

In the case of the elastic string model we introduced pinning conditions at the endpoint (boundary condi-

tions), cf. (1.2.2), (1.4.17). Counterparts for the membrane model:

fix

u(x) = g(x) x ∈ ∂Ω

m
u |∂Ω = g on ∂Ω .

for some g ∈ C0(∂Ω) . (2.2.5)

✎ notation: ∂Ω =̂ boundary of Ω
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(2.2.5) means that the displacement of the membrane over ∂Ω is provided by a prescribed continuous

function g : ∂Ω 7→ R: the membrane is clamped into a rigid frame as illustrated in Fig. 63.

Intuition: g has to be continuous, unless the membrane is to be torn!

(Further discussion in § 2.10.6)

✗
✖

✔
✕

configuration space V =

{
continuous functions u ∈ C0(Ω),

with u |∂Ω = g.

}

In the notation C0(Ω) the bar above Ω indicates that the functions are supposed to be continuous up to

the boundary. To understand, why this is important, observe that x → 1
x belongs to C0(]0, 1[), but not to

C0(]0, 1[), because ]0, 1[ = [0, 1].

Think of the membrane as a grid of taut strings. In light of the considerations of Section 1.4.2 this justifies

the following expression for its total potential energy. A detailed derivation can be carried out as for the

string model in Section 1.2.3 starting from a mass-spring model.

Taut membrane model: Potential energy functional

Potential energy of a taut membrane (described by graph of u ∈ C0(Ω)) under vertical loading:

JM(u) :=
∫
Ω

1
2 σ(x)‖grad u‖2 − f (x)u(x)dx . (2.2.7)

elastic energy potential energy in force field

Here
✦ u : Ω 7→ R =̂ displacement function, see Fig. 63, [u] = m,

✦ f : Ω 7→ R =̂ force density (pressure), [ f ] = N m−2,

✦ σ : Ω 7→ R
+ =̂ stiffness, [σ] = J.

Supplement 2.2.8 (Gradient, see also § 0.10.11).

Concept from analysis: recall the definition of the gradient of a function F : Ω ⊂ Rd 7→ R,F(x) =
F(x1, . . . , xd), see [7, Kap. 7], [5, Eq. (8.1.8)]:

grad F(x) :=




∂F
∂x1
...

∂F
∂xd


 ∈ R

d , x ∈ Ω .

Note: the gradient at x is a column vector of first partial derivatives,

read grad F(x) as (grad F)(x); grad F is a vector valued function Ω 7→ Rd.

Also in use (but not in this course) is the “∇-notation”: ∇F(x) := grad F(x).

Obviously, as a straightforward consequence of the mean value theorem, a vanishing gradient means that

the function has be constant:

F ∈ C1(Ω) and grad F(x) = 0 ∀x ∈ Ω ⇒ ∃c ∈ R: F(x) = c ∀x ∈ Ω . (2.2.9)
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△

Note that

σ(x)‖grad u‖2 = σ(x1, x2)

∣∣∣∣
∂u

∂x1
(x1, x2)

∣∣∣∣
2

+ σ(x1, x2)

∣∣∣∣
∂u

∂x2
(x1, x2)

∣∣∣∣
2

,

compare this with the potential energy functional for a taut thin elastic string (graph description)

J(u) :=

b∫

a

σ̂(x)

∣∣∣∣
du

dx
(x)

∣∣∣∣
2

+ ĝ(x)u(x)dx , u ∈ C1
pw([a, b]) , (2.2.10)

which justifies calling the taut membrane a “two-dimensional string under tension”.

Equilibrium principle

Displacement of taut membrane in equilibrium achieves minimal potential energy, cf. (1.2.51)

Equilibrium state u∗ = argmin
u∈V

JM(u) . (2.2.12)

Remark 2.2.13 (Minimal regularity of membrane displacement)

Least smoothness required for u, f to render JM(u) from (2.2.7) meaningful, cf. discussion in Sec-

tion 1.3.2:

✦ u ∈ C1
pw(Ω) is sufficient for displacement u,

✦ σ, f ∈ C0
pw(Ω) already allows integration.

The question what is the largest possible function space on which JM can still be defined will be examined

again in Section 2.3.

2.2.2 Electrostatic fields

In this section we see another important example of a mathematical model

✦ whose configuration space is a space of functions on a spatial domain,

✦ and governed by a minimal energy principle as equilibrium condition.
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Typical arrangement:

✦ metal body in metal box

✦ prescribed voltage drop body—box
✄

Sought: electric field E : Ω 7→ R3 in Ω ⊂ R3

(Ω =̂ blue region ✄)

Fig. 65 U0

Ω

Γ1

Γ0

metal

Fig. 66

From Maxwell’s equations, static case:

E = − grad u , (2.2.14)

where u : Ω 7→ R =̂ electric (scalar) potential,

[u] = 1V

✁ Electric potential in technical device

Electromagnetic field energy: (electrostatic setting)

JE(E) =
1
2

∫

Ω
(ǫ(x)E(x)) · E(x)dx = 1

2

∫

Ω
(ǫ(x) grad u(x)) · grad u(x)dx , (2.2.15)

where ǫ : Ω 7→ R3,3 =̂ dielectric tensor, ǫ(x) symmetric, [ǫ] = A s
V m .

(2.2.16) Dielectric tensor

• Symmetry of the dielectic tensor, a matrix valued function on the spatial domain, can always be

assumed: if ǫ(x) was not symmetric, then replacing it with 1
2(ǫ(x)

T + ǫ(x)) will yield exactly the

same field energy.

• In terms of partial derivatives and tensor components ǫ(x) =
(
ǫij

)3

i,j=1
we have

(ǫ(x) grad u(x)) · grad u(x) =
3

∑
i=1

3

∑
j=1

ǫij(x)
∂u

∂xi
(x)

∂u

∂xj
(x) .

Fundamental property of dielectric tensor (for “normal” materials):

∃0 < ǫ− ≤ ǫ+ < ∞: ǫ−‖z‖2 ≤ (ǫ(x)z) · z ≤ ǫ+‖z‖2 ∀z ∈ R
3, ∀x ∈ Ω . (2.2.17)

Terminology: (2.2.17) :⇔ ǫ is bounded and uniformly positive definite
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Definition 2.2.18. Uniformly positive (definite) tensor field

An matrix-valued function A : Ω 7→ Rn,n, n ∈ N, is called uniformly positive definite, if

∃α− > 0: (A(x)z) · z ≥ α−‖z‖2 ∀ z ∈ R
n (2.2.19)

for almost all x ∈ Ω, that is, only with the exception of a set of volume zero.

If A(x) is symmetric, then we have the equivalence, cf. [5, Rem. 8.1.19],

(2.2.19) ⇔ A(x) s.p.d. (→ [5, Def. 1.1.8]) and λmin(A(x)) ≥ α− ,

where λmin stands for the smallers eigenvalue of a matrix.

(2.2.20) Boundary conditions for electrostatic potential

In order to characterize the configuration space for electrostatic field problems completely, we have to

identify proper boundary conditions for the scalar potential V. To do so, we have to appeal to physics.

Recall: in electrostatics surfaces of conducting bodies are equipotential surfaces

Fig. 67 U0

Ω

Γ1

Γ0

u = 0

u = U0

In the situation of Fig. 65:

Boundary conditions

u = 0 on Γ0 ,

u = U0 on Γ1 .
(2.2.21)

★

✧

✥

✦

Configuration space

V =
{

u ∈ C1
pw(Ω) , u satisfies (2.2.21)

}
.

to render JE(u) well defined, cf. Section 1.3.2.

Below, the notation u = U will designate the boundary conditions (2.2.21).

Remark 2.2.22 (Electromagnetic field problems on R3)

Generically, Maxwell’s equations are posed on the entire unbounded space R3.

Electrostatic field problems are often posed on unbounded domains, for instance the entire space

exterior to an electrode.

In this case, boundary conditions for the electric potential have to be replaced with decay conditions “at

∞”: we demand

|u(x)| ≤ C‖x‖−1
uniformly for ‖x‖ → ∞ . (2.2.23)
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Electromagnetic theory (Maxwell’s equation) provides a criterion for selecting a unique electric scalar

potential from the configuration space:

Equilibrium condition in electrostatic setting: minimal electromagnetic field energy

u∗ = argmin
u∈V

JE(u) . (2.2.24)

2.2.3 Quadratic minimization problems

Structure of minimization problems (equilibrium problems) encountered above:

Section 2.2.1

[taut membrane]
u∗ = argmin

u∈C1
pw(Ω)

u=g on ∂Ω

∫

Ω

1
2σ(x)‖grad u(x)‖2 − f (x)u(x)dx

︸ ︷︷ ︸
=:JM(u), see (2.2.7)

, (2.2.25)

Section 2.2.2

[electrostatics]
u∗ = argmin

u∈C1
pw(Ω)

u=U on ∂Ω

∫

Ω

1
2(ǫ(x) grad u(x)) · grad u(x)dx

︸ ︷︷ ︸
=:JE(u), see (2.2.15)

. (2.2.26)

Evidently, (2.2.25) and (2.2.26) share a common structure. It is the same structure we have already come

across in the minimization problem (1.4.2) for the taut string model in Section 1.4. There we identified it

as a quadratic minimization problem, see Def. 1.4.3. In Section 1.4.1 we also determined the variational

equation (1.4.6) arising from the quadratic minimization and saw that it belongs to the class of linear

variational problems.

In this section we repeat and elaborate the considerations of Section 1.4.1 adopting a more abstract

perspective than before.

Definition 2.2.27. Quadratic functional → Def. 1.4.3

A quadratic functional on a real vector space V0 is a mapping J : V0 7→ R of the form

J(u) := 1
2a(u, u)− ℓ(u) + c , u ∈ V0 , (2.2.28)

where a : V0 × V0 7→ R is a symmetric bilinear form (→ Def. 1.3.22), ℓ : V0 7→ R a linear form,

and c ∈ R.

Recall: A bilinear form a : V0 ×V0 7→ R is symmetric, if

a(u, v) = a(v, u) ∀u, v ∈ V0 . (2.2.29)

Remark 2.2.30 (Quadratic functionals on RN)
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If V0 = RN (finite-dimensional case), then a quadratic functional has the general representation

J(u) = 1
2uTAu− bTu + c , A = AT ∈ R

N,N , b ∈ R
N , c ∈ R . (2.2.31)

Reminder: quadratic functionals of this forms occur in derivation of steepest descent and conjugate

gradient methods for linear systems of equations, see [5, Section 8.1.1].

Further discussion of quadratic functionals on Rn → [5, Section 8.1.1]

Definition 2.2.32. Quadratic minimization problem (II) → Def. 1.4.3

A minimization problem

w∗ = argmin
w∈V0

J(w)

is called a quadratic minimization problem, if J is a quadratic functional on a real vector space V0.

(2.2.33) Offset functions → Rem. 1.3.29, § 1.5.12

Objection! Both (2.2.25) and (2.2.26) are not genuine quadratic minimization problems, because they are

posed over affine spaces (= “vector space + offset function”, cf. (1.3.24))!

Proper quadratic minimization problems can be recovered by the “offset function trick”, c.f. (1.3.30): for

quadratic form J from (2.2.28)

J(u + u0) =
1
2a(u + u0, u + u0)− ℓ(u + u0) + c

= 1
2a(u, u) + a(u, u0)− ℓ(u)︸ ︷︷ ︸

=:ℓ̃(u)

+ 1
2a(u0, u0)− ℓ(u0) + c
︸ ︷︷ ︸

=:c̃

=: J̃(u) ,

due to the bilinearity of a and the linearity of ℓ.

argmin
u∈u0+V0

J(u) = u0 + argmin
w∈V0

J(w + u0) = u0 + argmin
w∈V0

J̃(w) . (2.2.34)

Thus, in the sequel we can focus on quadratic minimization problems posed on genuine vector spaces as

in Def. 2.2.32, cf. also § 1.5.12.

Both (2.2.25) and (2.2.26) involve quadratic functionals. To see this apply the “offset function trick” from

(2.2.34) in this concrete case: write u = u0 + w with an offset function u0 that satisfies the boundary

conditions and w ∈ C1
pw,0(Ω), cf. (1.3.30).

(2.2.25) ➥ quadratic minimization problem (→ Def. 2.2.32) with, cf. (2.2.28),

a(w, v) =
∫

Ω

σ(x)grad w(x) · grad v(x)dx , ℓ(v) :=
∫

Ω

f (x)v(x)dx− a(u0, v) . (2.2.35)

(2.2.26) ➥ quadratic minimization problem (→ Def. 2.2.32) with, cf. (2.2.28),

a(w, v) =
∫

Ω

grad w(x)Tǫ(x)grad v(x)dx , ℓ(v) := a(u0, v) . (2.2.36)
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In both cases: V0 = C1
pw,0(Ω)

(temporarily before we are going to make a different choice in Section 2.3)

The next issue we have to tackle is the well-posedness of the concrete quadratic minimization prob-

lems posed on infinite-dimensional configuration spaces: Can we conclude existence and uniqueness

of solutions of the minimization problems (2.2.25) and (2.2.26) ? If not, this would cast a doubt on the

mathematical model of physical reality.

The following property of the bilinear form a is necessary for the existence of a minimizer of a quadratic functional.

Definition 2.2.37. Positive semi-definite bilinear form

A (symmetric) bilinear form a : V0×V0 7→ R on a real vector space V0 is positive semi-definite, if

a(u, u) ≥ 0 ∀u ∈ V0 . (2.2.38)

Necessity of (2.2.38) for the existence of a minimizer can be concluded as follows: In case (2.2.38) fails to

hold there is a u ∈ V0 for which a(u, u) < 0. Hence, for a quadratic functional J : V0 → R as in (2.2.28)

we find

J(tu) = 1
2 t2

a(u, u)︸ ︷︷ ︸
<0

−tℓ(u) + c , t ∈ R ,

such that J(tu) → −∞ for t→ ∞: J has no minimum. The next corollary summarizes this insight.

Corollary 2.2.39. Necessary condition for existence of minimizer

The quadratic functional J(v) := 1
2a(v, v)− ℓ(v) (→ Def. 2.2.27) on a vector space V0 is bounded

from below, only if the bilinear form a : V0 ×V0 → R is positive semi-definite.

Next, let us tackle the issue of uniqueness of the minimizer of the quadratic functional J from (2.2.28).

There is a necessary and sufficient condition in terms of a simple property of a, see also ?? below.

Definition 2.2.40. Positive definite bilinear form

A (symmetric) bilinear form a : V0 ×V0 7→ R on a real vector space V0 is positive definite, if

u ∈ V0 \ {0} ⇐⇒ a(u, u) > 0 .

Remark 2.2.41 (Positive definite matrices)

For the special case V0 = RN any matrix A ∈ RN,N induces a bilinear form via

a(u, v) := uTAv = (Av) · u , u, v ∈ R
N . (2.2.42)

This connects the concept of a symmetric positive definite bilinear form to the more familiar concept of

s.p.d. matrices (→ [5, Def. 1.1.8])

A s.p.d. ⇔ a from (2.2.42) is symmetric, positive definite.
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Definition 2.2.43. Energy norm cf. [5, Def. 8.1.1]

A symmetric positive definite bilinear form a : V0 × V0 7→ R (→ Def. 2.2.40) induces the energy

norm

‖u‖
a

:= (a(u, u))
1/2 .

Origin of the term “energy norm” is clear from the connection with potential energy (e.g., in membrane

model and in the case of electrostatic fields, see (2.2.35), (2.2.36)), see above.

Next, we have to verify the norm axioms (N1), (N2), and (N3) from Def. 1.6.4:

• (N1) is immediate from Def. 2.2.40,

• (N2) follows from bilinearity of a,

• (N3) is a consequence of the Cauchy-Schwarz inequality: for any symmetric positive definite bilinear

form

|a(u, v)| ≤ (a(u, u))
1/2(a(v, v))

1/2 . (2.2.44)

Example 2.2.45 (Quadratic functionals with positive definite bilinear form in 2D)

Analogy between quadratic functionals with positive

definite bilinear form and parabolas:

J(v) = 1
2 a(v, v) − ℓ(v)

l l l
f (x) = 1

2 ax2 − bx

with a > 0!

graph of quadratic functional R
2 7→ R ✄

Geometric intuition suggests unique global and local

minimum.

Fig. 68

Theorem 2.2.46. Uniqueness of solutions of quadratic minimization problems

If the bilinear form a : V0 ×V0 7→ R is positive definite (→ Def. 2.2.40), then any solution of

u∗ = argmin
u∈V0

J(u) , J(u) := 1
2a(u, u)− ℓ(u) + c ,

is unique for any linear form ℓ : V0 7→ R.

Proof. (indirect) Assume that both u∗ ∈ V0 and w∗ ∈ V0, u∗ 6= w∗ are global minimizers of J on V0.

➊ ϕ(t) := J(tu∗ + (1− t)w∗) has two distinct global minima in t = 0, 1.
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➋ However ϕ(t) = 1
2 t2

a(u∗ −w∗, u∗ −w∗)︸ ︷︷ ︸
>0

+t . . . is a non-degenerate parabola opening towards +∞,

which clearly has a unique global minimum at its apex.

Contradiction between ➊ and ➋ ⇒ assumption wrong.
✷

Under the assumptions of the theorem, the quadratic functional J is convex, cf. [5, Def. 3.3.5]:

Definition 2.2.47. Convexity of a real-valued function → [7, Def. 5.5.2]

A function F : V0 → R on a vector space V0 is called convex, if

F(λx + (1− λ)y) ≤ λF(x) + (1− λ)F(y) ∀x, y ∈ V0 . (2.2.48)

A function is concave, if its negative is convex.

It is well known that a twice continuously differentiable function F : R → R is convex if and only if it

second derivative F′′ is non-negative everywhere. Thus, the convexity of a quadratic functional based

on a positive definite quadratic bilinear form is easily seen by considering the second derivative of the

function

ϕ(t) := J(u + tv) ⇒ ϕ̈(t) = a(v, v) > 0 , if v 6= 0 .

(2.2.49) Positive definite bilinear form for electrostatic variational problem

? Is a(u, v) :=
∫

Ω

(ǫ(x) grad u(x)) · grad v(x)dx positive definite on V0 := C1
pw,0(Ω)?

❶: Since ǫ bounded and uniformly positive definite (→ Def. 2.2.18, (2.2.17))

ǫ−
∫

Ω
‖grad u(x)‖2 dx ≤ a(u, u) ≤ ǫ+

∫

Ω
‖grad u(x)‖2 dx ∀u . (2.2.50)

Hence, it is sufficient to examine the simpler bilinear form

d(u, v) :=
∫

Ω
grad u(x) · grad v(x)dx , u, v ∈ C1

pw,0(Ω) . (2.2.51)

❷: Obviously d(u, u) = 0 ⇒ grad u = 0
(2.2.9)
=⇒ u ≡ const in Ω

Observe: u = 0 on ∂Ω ⇒ u = 0

Zero boundary conditions are essential; otherwise one could add constants to the arguments of a without

changing its value.

Next issue: Existence of solutions of quadratic minimization problems (→ Def. 2.2.32) with positive definite

bilinear form a.

In a finite dimensional setting this is not a moot point, see Fig. 68 for a “visual proof”.
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Theorem 2.2.52. Existence of unique minimizer in finite dimensions

Let J(u) := 1
2a(u, u) − ℓ(u) + c with symmetric positive definite (→ Def. 2.2.40) bilinear form

a : V0 ×V0 → R (→ Def. 1.3.22), linear form ℓ : V0 → R, c ∈ R, be a quadratic functional on the

vector space V0.

If V0 has finite dimension, then the quadratic minimization problem (→ Def. 2.2.32)

u∗ = argmin
u∈V0

J(u)

always possesses a unique solution.

However, infinite dimensional spaces hold a lot of surprises and existence of solutions of quadratic mini-

mization problems becomes a subtle issue, even if the bilinear form is positive definite. Next, we state a

necessary condition for the existence of a minimizer. Yet, an example will demonstrate that it may not be

sufficient.

(2.2.53) A necessary condition for the existence of a minimizer of a quadratic functional

Consider a quadratic minimization problem (→ Def. 2.2.32) for a quadratic functional (→ Def. 2.2.27)

J : V0 7→ R , J(u) = 1
2a(u, u)− ℓ(u) ,

based on a symmetric positive definite (s.p.d.) bilinear form a → Def. 2.2.40.

Lemma 2.2.54. Boundedness condition on linear form

The quadratic functional J is bounded from below on V0, if and only if

∃C > 0: |ℓ(u)| ≤ C‖u‖
a
∀u ∈ V0 , (2.2.55)

where ‖·‖
a

is the energy norm induced by a, see Def. 2.2.43.

Assertion (2.2.55) is written in a way customary in numerical analysis and theory of partial differential

equations. It should be read as “there is a constant C > 0 such that for all u ∈ V0 the estimate |ℓ(u)| ≤
C‖u‖

a
holds true.”. In logic the quantors would be arranged differently:

(2.2.55) ⇔ ∃C > 0: {∀u ∈ V0: |ℓ(u)| ≤ C‖u‖
a
} .

Proof. (of Lemma 2.2.54)

➊ Condition (2.2.55) ensures that J is bounded from below:

J(u) = 1
2a(u, u)− ℓ(u) ≥ 1

2‖u‖
2
a
− C‖u‖

a
≥ −1

2
C2 .

➋ The proof of the other implication is indirect (proof by contradiction). Assume that (2.2.55) does not

hold. Then, for every n ∈ N, we can find un ∈ V0 such that

ℓ(un) ≥ n‖un‖a .
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By rescaling un ← un
‖un‖a

, we can assume without loss of generality that ‖un‖a = 1, which implies

J(un) ≤ 1
2 − n→ −∞ for n→ ∞ .

Hence J can attain values below any threshold.
✷

Parlance: In mathematical terms (2.2.55) means that ℓ is continuous w.r.t. the energy norm ‖·‖
a
.

Definition 2.2.56. Continuity of a linear form and bilinear form

Consider a normed vector space V0 with norm ‖·‖. A linear form ℓ : V0 → R (→ Def. 1.3.22) is

continuous or bounded on V0, if

∃C > 0: |ℓ(v)| ≤ C‖v‖ ∀v ∈ V0 .

A bilinear form a : V0 ×V0 → R (→ Def. 1.3.22) on V0 is continuous, if

∃K > 0: |a(u, v)| ≤ K‖u‖‖v‖ ∀u, v ∈ V0 .

Remark 2.2.57 (Necessary continuity of linear form)

Note that, due to the variational formulation, see Section 2.4 below, we have

|ℓ(v)| = |a(u∗, v)| ≤ ‖u∗‖a‖v‖a = C‖v‖
a
∀v ∈ V0 , (2.2.58)

where u∗ is solution of the minimization problem and C := ‖u∗‖a.

Whenever a finite energy solution u∗ to a quadratic optimization problem exists, then l must be

continuous with C = ‖u∗‖a < ∞!

Under the conditions that a is positive definite and ℓ is bounded the quadratic minimization problem for J
should have a (unique, due to Thm. 2.2.46) solution, if it is considered on a space that is “large enough”.

However, on infinite-dimensional function spaces this remains a subtle issue, as is strikingly illustrated by

the next example.

Example 2.2.59 (Non-existence of solutions of positive definite quadratic minimization prob-

lem)

We consider the quadratic functional

J(u) :=
∫ 1

0

1
2u2(x)− u(x)dx = 1

2

∫ 1

0

{
(u(x)− 1)2 − 1

}
dx ,

on the space V0 := C0
0([0, 1])

It fits the abstract form from Def. 2.2.27 with

a(u, v) =
∫ 1

0
u(x)v(x)dx , ℓ(v) =

∫ 1

0
v(x)dx .
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The function ϕ(ξ) = 1
2ξ2 − ξ = 1

2 ξ(1 − 2ξ) = 1
2(ξ − 1)2 − 1

2 has a global minimum at ξ = 1 and

ϕ(ξ) − ϕ(1) = 1
2(ξ − 1)2.

➤ |η − 1| > |ξ − 1| ⇒ ϕ(η) > ϕ(ξ).

Assume that u ∈ V0 is a global minimizer of J. Then

w(x) := min{1, 2 max{u(x), 0}} ,

0 ≤ x ≤ 1 ,

is another function ∈ C0
0([0, 1]), which satisfies

u(x) 6= 1 ⇒ |w(x)− 1| < |u(x)− 1|
⇒ J(w) < J(u) !

Fig. 69
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Hence, whenever we think we have found a minimizer ∈ C0
0([0, 1]), the formula provides another eligible

function for which the value of the functional is even smaller! Therefore we can find sequences (un)n of

functions in C0
0([0, 1]) for which J(un) tends to the minimum, whereas the sequence itself has no limit in

C0
0([0, 1]).

The problem in this example seems to be that we have chosen “too small” a function space, c.f. Section 2.3

below.

?! Review question(s) 2.2.60. (Quadratic minimization problems)

1. What is a quadratic functional on a vector space V0?

2. Why can we always assume the bilinear forms to be symmetric when considering the minimization

of quadratic quadratic functionals?

3. Argue why a quadratic functional can have a unique minimizer, if and only if its bilinear form is

positive definite (→ Def. 2.2.40).

4. Show that the continuity condition ∃C > 0: ℓv ≤ C‖v‖
a
∀v ∈ V0 is necessary for the existence of

a minimizer of the quadratic functional J(v) := 1
2a(v, v)− ℓ(v) on the vector space V0.

5. State the Cauchy-Schwarz inequality for a symmetric positive definite bilinear form a on a real vector

space V0.

6. Which of the following mappings defined on C1(Ω), Ω ⊂ R2 are linear?

(a) v 7→ v(x)− v(y), x, y ∈ Ω,

(b) v 7→
∫
Ω

grad v(x)dx

(c) v 7→
∫
Ω

1 + a · grad v(x)dx, a ∈ R2,

(d) v 7→
∫
Ω

v(x) grad v(x)dx.
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2.3 Sobolev spaces

(2.3.1) Preview

Mathematical theory is much concerned about proving existence of suitably defined solutions for mini-

mization problems. As demonstrated in Ex. 2.2.59 this can encounter profound problems.

In this section we will learn about a class of abstract function spaces that has been devised to deal with

the question of existence of solutions of quadratic minimization problems like (2.2.25) and (2.2.26). We

can only catch of glimpse of the considerations; thorough investigation is done in the mathematical field of

functional analysis.

2.3.1 Function spaces for variational problems

Now we return to the question of how to choose the right function space for a linear variational problem.

Bounded energy norm will be the linchpin of the argument:

Guideline: for a quadratic minimization problem (→ Def. 2.2.32) with

✦ symmetric positive definite (s.p.d.) bilinear form a,

✦ a linear form ℓ that is continuous w.r.t. ‖·‖
a
, see (2.2.55),

posed over a function space follow the advice:

consider it on the largest space of functions

for which a still makes sense !

(and which complies with boundary conditions)

In the concrete case of quadratic minimization problems like (2.2.25) (minimization of potential energy of

a membrane) and (2.2.26) (minimization of the energy of an electrostatic field) we arrive at the following

recommendation:☛
✡

✟
✠Choose “V0 := {functions v on Ω: a(v, v) < ∞}”

➤ “Reasoning turned upside down”: now we first look at the quadratic functional J or, equivalently,

the bilinear form a, they determine the function space on which the minimization problem/variational

problem is posed!

2.3.2 The function space L2(Ω)

Consider the quadratic functional (related to J from Ex. 2.2.59)

J(u) :=
∫

Ω

1
2 |u(x)|2 − u(x)dx .

(
u ∈ C0

pw(Ω) ?
)

(2.3.2)
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In Section 1.3.2 we came to the conclusion that the space of piecewise continuous functions might

provide the right setting for treating this functional. Now we follow the above recipe, which suggests that

we choose

V0 := {v : Ω 7→ R integrable:
∫

Ω
|v(x)|2 dx < ∞} (2.3.3)

Definition 2.3.4. Space L2(Ω) → Def. 1.6.7

The function space defined in (2.3.3) is the space of square-integrable functions on Ω and denoted

by L2(Ω).

It is a normed space with norm

(
‖v‖0 :=

)
‖v‖L2(Ω) :=

(∫

Ω
|v(x)|2 dx

)1/2

.

✎ Notation: L2(Ω)
← superscript “2”, because square in the definition of norm ‖·‖0

Note: obviously C0
pw(Ω) ⊂ L2(Ω).

Remark 2.3.5 (Mathematical notion of L2(Ω))

Here, we do make an attempt to provide a rigorous mathematical definition of L2(Ω). This is done the

measure theory and involves quotient spaces; a rather accessible presentation is given in [6, Ch. 3].

Remark 2.3.6 (Boundary conditions and L2(Ω))

Ex. 2.2.59 vs. Eq. (2.3.3): Something has been forgotten! (boundary conditions u(0) = u(1) = 0 in

Ex. 2.2.59, but none in Eq. (2.3.3)!)

Consider u ∈ C0([0, 1]) and try to impose boundary

values u0, u1 ∈ R by “altering” u:

Fig. 70

u0

u1

u(x)

u(x)

10

ũ(x) =





u(x) + (1− nx)(u0 − u(0)) , for 0 ≤ x ≤ 1
n ,

u(x) , for 1
n < x < 1− 1

n ,

u(x)− n(1− 1
n − x)(u1 − u(1)) , for 1− 1

n < x ≤ 1 .
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ũ(0) = u0 , ũ(1) = u1 , ‖ũ− u‖2
L2(]0,1[) =

1
3n (u0 + u1 − u(0)− u(1))→ 0 for n→ ∞ .

Tiny perturbations of a function u ∈ L2(]0, 1[) (in terms of changing its L2-norm) can make it attain

any value at x = 0 and x = 1.

Mathematically this means that the space V =
{

u ∈ L2(]0, 1[) : u(0) = u(1) = 0
}

is not closed

in the energy space L2(]0, 1[), meaning that there exist functions which are not in V but which can

be arbitrarily well approximated by elements of V. Ex. 2.2.59 makes this concrete: the solution is

approximated better and better but it is never reached because the trial space is too small.

Boundary conditions cannot be imposed in L2(Ω) !

2.3.3 Quadratic minimization problems on Hilbert spaces

In this section we let you catch a glimpse of the rigorous functional analytic treatment of minimization prob-

lems on infinite dimensional spaces. We review the mathematical arguments that confirm the existence of

minimizers of quadratic minimization problems

u∗ = argmin
v∈V0

J(v) , J(v) = 1
2a(v, v)− ℓ(v) , (2.3.7)

where

✦ V0 is a real vector space, possibly of infinite dimension,

✦ a : V0 × V0 → R is a symmetric positive definite bilinear form (→ Def. 2.2.40) inducing an energy

norm (→ Def. 2.2.43) ‖·‖
a

on V0,

✦ ℓ : V0 → R is a linear form, which is bounded with respect to the energy norm (→ Def. 2.2.56).

(2.3.8) Completeness of normed vector spaces

The entire theory is based on a key matching condition for the space V0 and its energy norm. To express

this, we need a fundamental concept from analysis:

Definition 2.3.9. Cauchy sequence → [7, Def. 3.5.1]

Consider a normed vector space V0 equipped with a norm ‖·‖ (→ Def. 1.6.4). A sequence (vn)n∈N

of vectors of V0 is called a Cauchy sequence, if

∀ǫ> 0: ∃n = n(ǫ) ∈ N: ‖vk − vm‖ ≤ ǫ ∀k, m ≥ n .

Clearly, every convergent sequence is a Cauchy sequence. The converse is true only in exceptional

cases, which are of enormous importance in mathematical modelling, however, which has earned them a

particular name.

Definition 2.3.10. Complete normed vector spaces and Hilbert spaces → [8,

Def. I.1.2 & V.1.4]

A normed vector space is called complete, if every Cauchy sequence converges. A complete

normed vector space is known as Banach space.

If the norm of a complete normed vector space V0 is an energy norm (→ Def. 2.2.43) associated

with a symmetric positive definite bilinear form (→ Def. 2.2.40), then V0 is called a Hilbert space.
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Example 2.3.11 (Important Banach spaces and Hilbert spaces)

• The real numbers R equipped with the modulus as norm | · | are complete.

• Every finite dimensional normed real or complex vector space is complete.

• For every bounded (⇒ compact) domain Ω ⊂ Rd the space C0(Ω), equipped with the supremum

norm ‖·‖∞ (→ Def. 1.6.5) is a Banach space [8, I.1 Bsp. (c)].

• For any domain Ω ⊂ Rd the function space L2(Ω) (→ Def. 2.3.4) is a Hilbert space [8, I.1 Bsp. (h)].

The main existence theorem is given next.

Theorem 2.3.12. Existence of minimizers in Hilbert spaces

On a real Hilbert space V0 with (energy) norm ‖·‖
a

for any ‖·‖
a
-bounded linear functional ℓ : V0 →

R the quadratic minimization problem

u∗ = argmin
v∈V0

J(v) , J(v) := 1
2‖v‖

2
a
− ℓ(v) , (2.3.13)

has a unique solution.

Proof. Owing to the assumptions on ℓ, by Lemma 2.2.54 the quadratic functional J is bounded from

below. Hence, there is a minimizing sequence (vn)n∈N
, which satisfies

|J(vn)− µ| ≤ 1/n where µ := inf
v∈V0

J(v) . (2.3.14)

Write a(·, ·) for the bilinear form spawning ‖·‖
a
, that is ‖v‖2

a
= a(v, v). From (bi-)linearity it is immediate

that

1
2(J(v) + J(w))− J(1

2(v + w)) = 1
4

(
a(v, v) + a(w, w)− 2a(1

2(v + w), 1
2(v + w))

)
= 1

8‖v− w‖2
a

.

This implies

1
8‖vk − vm‖2

a
≤ 1

2(J(vk) + J(vm))− J(1
2 (vk + vm))︸ ︷︷ ︸
≥µ

(2.3.14)

≤ 1
2(

1/k + 1/m) ≤ max{1/k, 1/m} .

Hence, (vn)n∈N
is a Cauchy sequence (→ Def. 2.3.9) and

u∗ := lim
n→∞

vn ∈ V0

exists and satisfies

J(uast) = inf
v∈V0

J(v) .

In other words, the limit u∗ is a global minimizer of J on V0. Its uniqueness is established by the arguments

of the proof of Thm. 2.2.46.
✷
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Remark 2.3.15 (Quadratic minimization problem in L2(Ω))

Since L2(Ω) is a Hilbert space, the previous theorem guarantees that the quadratic minimization problem

for the quadratic functional from (2.3.2) on the function space V0 = L2(Ω), Ω :=]0, 1[, possesses a

solution.

Conversely, though the minimization problem of Ex. 2.2.59 was considered on the Banach space V0 :=
C0

0([0, 1]), the bilinear form in the quadratic functional failed to be related to the (supremum) norm, which

rules out the application of Thm. 2.3.12.

(2.3.16) Completion of a normed vector space

The powerful Thm. 2.3.12 is available only in Hilbert spaces, which makes it very desirable to put quadratic

minimization problems in a Hilbert space setting. Surprisingly, this can always be achieved by the proce-

dure of completion.

Completion can be used to “fill the pores” of any normed vector spaces with potential limits of Cauchy

sequences so that the resulting augmented space is complete in the sense of Def. 2.3.10.

Theorem 2.3.17. Completion of a normed vector space

For every normed vector space V0 there is a unique (up to isomorphism) complete vector space Ṽ0

that contains V0 as a dense subspace.

Definition 2.3.18. Dense subset

A subset U ⊂ V0 is said to be dense in a normed vector space V0, if every element of V0 is the limit

of a sequence in U.

Hence, when tackling the minimization of a quadratic functional (2.3.7) with positive definite bilinear form

a on a vector space V0, we can first switch to the completion Ṽ0 of V0 with respect to the energy norm

‖·‖
a

induced by a. Them, Thm. 2.3.12 will ensure the existence of a unique minimizer in Ṽ0; the existence

issue is no longer moot.

What will we get when we apply the completion trick to the quadratic functional of Ex. 2.2.59, for which

V0 = C0
0([0, 1]) and a(u, v) =

∫ 1
0 u(x)v(x)d)x? The next theorem gives an answer.

Theorem 2.3.19. L2(Ω) by completion

For any domain Ω ⊂ Rd the completion of C0
0(Ω) equipped wit the norm ‖·‖L2(Ω) is the function

space L2(Ω).

As a consequence, when we resort to completion in Ex. 2.2.59, we end up in L2(]0, 1[), inevitably loose

the boundary conditions, cf. Rem. 2.3.6, but get the unique solution u ≡ 1.

Remark 2.3.20 (Boundary conditions and density)
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In Rem. 2.3.6 we have seen that we cannot impose boundary conditions in L2(Ω). This is evident from ??:

Since functions that vanish on the boundary ∂Ω are dense in L2(Ω), any v ∈ L2(Ω) can be approximated

to arbitrary precision (in L2(Ω)-norm, of course) by a function, which is zero on ∂Ω. This was, what ũ did

in ??.

2.3.4 The Sobolev space H1(Ω)

Now consider a quadratic minimization problem for the functional, c.f. (2.2.25),

J(u) :=
∫

Ω

1
2‖grad u‖2 − f (x)u(x)dx

(
u ∈ C1

pw,0(Ω) ?
)

(2.3.21)

What is the natural function space for this minimization problem? In Section 1.3.2 we would have opted

for C1
pw,0(Ω). Now, again, we follow the above recipe, which suggests that we choose

V0 := {v : Ω 7→ R integrable: v = 0 on ∂Ω,
∫

Ω
| grad v(x)|2 dx < ∞} (2.3.22)

Definition 2.3.23. Sobolev space H1
0(Ω)

The space of integrable functions on Ω with square integrable gradient that vanish on the boundary

∂Ω,

V0 := {v : Ω 7→ R integrable: v = 0 on ∂Ω,
∫

Ω
| grad v(x)|2 dx < ∞} , (2.3.22)

is the Sobolev space H1
0(Ω) with norm

|v|H1(Ω) :=

(∫

Ω
‖grad v‖2 dx

)1/2

.

Notation: H1
0(Ω)

← superscript “1”, because first derivatives occur in norm

← subscript “0”, because zero on ∂Ω

Note: |·|H1(Ω) is the energy norm (→ Def. 2.2.43) associated with the bilinear form in the quadratic

functional J from (2.3.21), cf. (2.2.28).

☛ See § 1.6.8 for a discussion of the relevance of the energy norm.

Remark 2.3.24 (Boundary conditions in H1
0(Ω))

Rem. 2.3.6 explained why imposing boundary conditions on functions in L2(Ω) does not make sense.

Yet, in (2.3.22) zero boundary conditions are required for v !
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Discussion parallel to Rem. 2.3.6, but now with the norm |·|H1(Ω) in mind: Consider u ∈ C1([0, 1]) and

try to impose boundary values u0, u1 ∈ R by “altering” u, see Fig. 70:

ũ(x) =





u(x) + (1− nx)(u0 − u(0)) , for 0 ≤ x ≤ 1
n ,

u(x) , for 1
n < x < 1− 1

n ,

u(x)− n(1− 1
n − x)(u1 − u(1)) , for 1− 1

n < x ≤ 1 .

ũ(0) = u0 , ũ(1) = u1 , BUT |ũ− u|2H1(]0,1[) = n(u0 + u1 − u(0)− u(1))→ ∞ for n→ ∞ .

Enforcing boundary values at x = 0 and x = 1 cannot be done without significantly changing the

“energy” of the function.

However, the solutions of the quadratic minimization problems (2.2.25), (2.2.26) are to satisfy non-zero

boundary conditions. The belong to an affine space u0 + V0 for a suitable offset function u0, see § 2.2.33.

This affine space will be contained in a larger Sobolev space, which arises from H1
0(Ω) by dispensing

with the requirement “v = 0 on ∂Ω”.

Definition 2.3.25. Sobolev space H1(Ω)

The Sobolev space

H1(Ω) := {v : Ω 7→ R integrable:
∫

Ω
| grad v(x)|2 dx < ∞}

is a normed function space with norm

‖v‖2
H1(Ω) := ‖v‖2

0 + |v|2H1(Ω) .

H1(Ω) is the “maximal function space” on which both JM and JE from (2.2.25), (2.2.26) are

defined.

Remark 2.3.26 (H1(Ω) through completion)

In § 2.3.16 we elaborated how one can build a complete function space as suitable setting for a quadratic

minimization problem. In fact, the heuristic construction of H1
0(Ω) and H1(Ω) given above fits this tech-

nique.

Theorem 2.3.27. Sobolev spaces by completion

For domains as described in § 2.2.3 the function space H1(Ω) can be obtained through completion

(→ Thm. 2.3.17) of C∞(Ω) equipped with the norm ‖·‖H1(Ω).

For any domain Ω ⊂ R
d, the space H1

0(Ω) arises from the completion of C∞
0 )(Ω) under the norm

‖·‖H1(Ω).

As a consequence, the spaces of smooth functions C∞(Ω) and C∞
0 (Ω) are dense (→ Def. 2.3.18) in

H1(Ω) and H1
0(Ω), respectively.

Remark 2.3.28 (|·|H1(Ω)-seminorm)
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Note that |·|H1(Ω) alone is no longer a norm on H1(Ω), because for v ≡ const obviously |v|H1(Ω) = 0,

which violates (N1), cf. the discussion after Def. 1.6.14.

Lemma 2.2.54 tells us that a quadratic functional with s.p.d. bilinear form a is bounded from below, if

its linear form ℓ satisfies the continuity (2.2.55). Now, we discuss this for the quadratic functional J from

(2.3.21) in lieu of JM and JE.

J(u) :=
∫

Ω

1
2‖grad u‖2 − f (x)u(x)dx u ∈ H1

0(Ω) . (2.3.21)

This quadratic functional J involves the linear form

ℓ(u) :=
∫

Ω
f (x)u(x)dx . (2.3.29)

f =̂ load function ➣ f ∈ C0
pw(Ω) should be admitted.

Crucial question: Is ℓ as given in (2.3.29) continuous on H1
0(Ω) ?

m (c.f. (2.2.55))

∃C > 0: |ℓ(u)| ≤ C|u|H1(Ω) ∀u ∈ H1
0(Ω) ? .

(Again, recall Lemma 2.2.54 to appreciate the importance of this continuity: it is a necessary condition for

the existence of a minimizer.)

To answer the question, we use the Cauchy-Schwarz inequality (2.2.44) for integrals in the form (1.6.13),

which implies

|ℓ(u)| =

∣∣∣∣∣∣

∫

Ω

f (x)u(x)dx

∣∣∣∣∣∣
≤


∫

Ω

| f (x)|2dx




1/2

∫

Ω

|u(x)|2dx




1/2

= ‖ f‖0︸︷︷︸
<∞

‖u‖0 . (2.3.30)

This reduces the problem to bounding ‖u‖0 in terms of |u|H1(Ω).

Theorem 2.3.31. First Poincaré-Friedrichs inequality

If Ω ⊂ Rd, d ∈ N, is bounded, then

‖u‖0 ≤ diam(Ω) ‖grad u‖0 ∀u ∈ H1
0(Ω) .

Proof. The proof employs a powerful technique in the theoretical treatment of function spaces: exploit

density of smooth functions (which, by itself, is a deep result).

It boils down to the insight:

In order to establish inequalities between continuous functionals on Sobolev spaces of functions on Ω

it often suffices to show the target inequality for smooth functions in C∞
0 (Ω) or C∞(Ω), respectively.

✎ notation: C∞
0 (Ω) =̂ smooth functions with (compact) support (→ Def. 1.5.76) inside Ω

In the concrete case (note the zero boundary values inherent in the definition of H1
0(Ω)) we have to

establish the first Poincaré-Friedrichs inequality for functions u ∈ C∞
0 (Ω) only.
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For the sake of simplicity the proof is elaborated for d = 1, Ω = [0, 1]. It merely employs elementary

results from calculus throughout, namely the Cauchy-Schwarz inequality (2.3.30) and the fundamental

theorem of calculus [7, Satz 6.3.4], see (2.5.2):

∀u ∈ C∞
0 ([0, 1]): u(x) = u(0)︸︷︷︸

=0

+

x∫

0

du

dx
(τ)dτ , 0 ≤ x ≤ 1 .

‖u‖2
0 =

1∫

0

∣∣∣∣∣∣

x∫

0

du

dx
(τ)dτ

∣∣∣∣∣∣

2

dx
(2.3.30)

≤
1∫

0




x∫

0

1 dτ ·
x∫

0

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ


dx ≤

∥∥∥ du
dx

∥∥∥
2

0
.

Taking the square root finishes the proof in 1D.
✷

The elementary proof in higher dimensions can be found in [4, Sect. 6.2.2] and in even greater generality

in [3, Sect. 5.6.1].

Corollary 2.3.32. Admissible right hand side functionals for linear 2nd-order elliptic problems

If f ∈ L2(Ω), then ℓ(u) =
∫

Ω
f u dx is a continuous linear functional on H1

0(Ω).

In this lemma “continuity” has to be read as

∃C > 0: |ℓ(u)| ≤ C|u|H1(Ω) ∀u ∈ H1
0(Ω) . (2.2.55)

How to “work with” Sobolev spaces

Most concrete results about Sobolev spaces boil down to relationships between their norms. The

spaces themselves remain intangible, but the norms are very concrete and can be computed and

manipulated as demonstrated above.✓
✒

✏
✑

Do not be afraid of Sobolev spaces!

It is only the norms that matter for us, the ‘spaces” are irrelevant!

Sobolev spaces = “concept of convenience”: the minimization problem seeks its own function space.

Minimization problem

u = argmin
v:Ω 7→R

J(v)
“Maximal” function space

on which J is defined

(Sobolev space)

“seek”↔ in more rigorous terms: completion with respect to energy norm, see § 2.3.16.

Remark 2.3.34 (Justification for teaching Sobolev spaces)

Then, why do you bother me with these uncanny “Sobolev spaces” after all ?
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✦ Anyone involved in CSE must be able to understand mathematical publications on numerical meth-

ods for PDEs, Those regularly resort to the concept of Sobolev spaces to express their findings

Fig. 71

✦ The statement that a function belongs to a certain Sobolev space can be regarded as a concise way

of describing quite a few of its essential properties.

The next result elucidates the second point:

Theorem 2.3.35. Compatibility conditions

for piecewise smooth functions in H1(Ω)

Let Ω be partitioned into sub-domains Ω1 and

Ω2. A function u that is continuously differ-

entiable in both sub-domains and continuous

up to their boundary, belongs to H1(Ω), if and

only if u is continuous on Ω.

Fig. 72

Ω1

Ω2

Ω

The proof of this theorem requires the notion of weak derivatives that will not be introduced in this course.

Example 2.3.36 (Piecewise linear functions (not) in H1
0(]0, 1[))

We conclude from Thm. 2.3.35 applied in 1D:

2. Second-order Scalar Elliptic Boundary Value Problems, 2.3. Sobolev spaces 144



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

u

x

11/2

u ∈ H1
0(]0, 1[)

u

x

11/2

u 6∈H1
0(]0, 1[)

(2.3.37) Piecewise smooth functions contained in Sobolev space

From Thm. 2.3.35 we conclude that the function spaces we opted for in Section 1.3.2 were not far off:

• C1
pw([a, b]) ⊂ H1(]a, b[) and C1

pw,0([a, b]) ⊂ H1
0(]a, b[),

• but C0
pw([a, b]) 6⊂ H1(]a, b[).

On more general domains Ω ⊂ R
d still holds true

• C1
pw(Ω) ⊂ H1(Ω) and C1

pw,0(Ω) ⊂ H1
0(Ω) ,

• but C0
pw(Ω) 6⊂ H1(Ω) .

Thm. 2.3.35 also provides a simple recipe for computing the norm |u|H1(Ω) of a piecewise C1-function

that is continuous in all of Ω.

Corollary 2.3.38. H1-norm of piecewise smooth functions

Under the assumptions of Thm. 2.3.35 we have for a continuous, piecewise smooth function u ∈
C0(Ω)

|u|2H1(Ω) = |u|2H1(Ω1)
+ |u|2H1(Ω2)

=
∫

Ω1

| grad u(x)|2 dx +
∫

Ω2

| grad u(x)|2 dx .

Actually, this is not new, see Section 1.3.2: earlier we already evaluated the elastic energy functionals

(1.2.49), (1.4.2) for functions in C1
pw([0, 1]) by “piecewise differentiation” followed by integration of the

resulting discontinuous function.

Example 2.3.39 (Non-differentiable function in H1
0(]0, 1[))

d = 1, Ω =]0, 1[:

“Tent function” u(x) =

{
2x for 0 < x < 1/2 ,

2(1− x) for 1/2 < x < 1 .

u

x
11/2
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Compute |u|2H1(Ω) =
∫ 1

0
|u′(x)|2 dx = 4 < ∞ .

Example for a u ∈ H1
0(]0, 1[), which is not globally differentiable.

Recall: we cheerfully computed the derivative of a piecewise smooth function already in Section 1.5.2.2

when differentiating the basis functions, cf. (1.5.72). Now this “reckless” computations have found their

rigorous justification, because Thm. 2.3.35 tells us that for u ∈ H1(Ω) ∩ C1
pw(Ω) we can compute

its gradient grad u ∈ (L2(Ω))d by means of piecewise differentiation, that is, grad u agrees with the

classical gradient wherever u is differentiable.

☞ The (generalized) gradient is a continuous mapping

grad : H1(Ω)→ L2(Ω) ,

which can be computed by patching together “classical gradients” on a partition of Ω.

If you are still feeling uneasy when dealing with Sobolev spaces, do not hesitate to resort to the following

substitutions in your thinking:

L2(Ω) → C0
pw(Ω) , H1

0(Ω) → C1
pw,0(Ω) .

?! Review question(s) 2.3.40. (Sobolev spaces)

1. Which of the following functions belong to the spaces L2(]− 1, 1[) and H1(]0, 1[), respectively?

• f (x) = |x| • f (x) = log |x| • f (x) = sgn(x) • f (x) =
√
|x|+ x.

2. Show that the point evaluation v 7→ v(1
2) is an unbounded lineare functional on L2(]0, 1[).

3. Define the Sobolev space fitting the quadratic minimization problem for the functional

J(v) :=
∫

Ω
|div v(x)|2 + ‖v‖2 dx , v = (C1(Ω))2 .

2.4 Variational formulations

In this section we establish variational formulations for the minimization problems of Section 2.2, namely

(2.2.12) and (2.2.24). Concepts and techniques from Section 1.3 will be discussed and used again. Thus,

the reader is advised to repeat

• the main idea of the calculus of variations: (1.3.5) from Section 1.3.1 (“virtual work principle”),

• the computation of configurational derivatives of functionals defined on vector spaces of functions,

see § 1.3.7,

• the notion of a linear variational problem, see Def. 1.4.8.
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2.4.1 Linear variational problems

(2.4.1) Configurational derivative

Recall: derivation of variational formulation (1.4.6) from taut string minimization problem (1.4.2) in Sec-

tion 1.4.

No surprise: (2.2.25) & (2.2.26) are amenable to the same approach:

Calculus of variations→ Section 1.3.1: Compute “Directional/configurational derivative” of JE:

JE(u + tv)− JE(u) =
1
2

∫

Ω

(ǫ(x) grad(u + tv)) · grad(u + tv)dx

− 1
2

∫

Ω

(ǫ(x) grad u) · grad u dx

(∗)
= 1

2

∫

Ω

(ǫ(x) grad u) · grad u + 2t(ǫ(x) grad u) · grad v+

t2(ǫ(x) grad v) · grad v− (ǫ(x) grad u) · grad u dx

= t
∫

Ω

(ǫ(x) grad u) · grad v dx + O(t2) for t→ 0 .

(∗): due to the symmetry of ǫ(x): (ǫ grad u) · grad v = (ǫ grad v) · grad u !

lim
t→0

JE(u + tv)− JE(u)

t
=
∫

Ω

(ǫ(x) grad u(x)) · grad v(x)dx ,

for perturbation/test functions v ∈ H1
0(Ω) , see Def. 2.3.23

The requirement v = 0 on ∂Ω reflects the fact that we may not perturb u on the boundary, lest the

prescribed boundary values be violated ↔ whereas the configuration u may belong to an affine space,

the test functions must always be chosen from a vector space, see ?? and the considerations on offset

functions in Rem. 1.3.29 and § 2.2.33.

(2.4.2) Linear 2nd-order elliptic variational problem

As explained in Section 1.3.1 (“idea of calculus of variations”), setting the configurational derivative to zero

leads to the following variational problem equivalent (∗) to (2.2.26)

u ∈ H1(Ω) ,

u = U on ∂Ω
:
∫

Ω

(ǫ(x) grad u(x)) · grad v(x)dx = 0 ∀v ∈ H1
0(Ω) . (2.4.3)

For the membrane problem (2.2.25) we arrive at

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

σ(x) grad u(x) · grad v(x)dx =
∫

Ω

f (x)v(x) ∀v ∈ H1
0(Ω) . (2.4.4)
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(∗) equivalence of minimization problem and variational problem in the sense of equal sets of solutions

holds, if existence and uniqueness of a minimizer is known.

Both, (2.4.3) and (2.4.4) have a common structure, expressed in the following variational problem:

Variational formulation of 2nd-order elliptic (Dirichlet (∗)) minimization problems:

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) . (2.4.5)

Symmetric uniformly positive definite material tensor α : Ω 7→ Rd,d

(∗) The attribute “Dirichlet” refers to a setting, in which the function u is prescribed on the entire boundary.

This is a particular type of boundary condition, which will be studied in detail in Section 2.7.

Some more explanations and terminology:

✦ Ω ⊂ Rd, d = 2, 3 =̂ (spatial) domain, bounded, piecewise smooth boundary

✦ g ∈ C0(∂Ω) =̂ boundary values (Dirichlet data)

✦ f ∈ C0
pw(Ω) =̂ loading function, source function

✦ α : Ω 7→ Rd,d =̂ material tensor, stiffness function, diffusion coefficient

(uniformly positive definite, bounded → Def. 2.2.18):

∃0 < α− ≤ α+: α−‖z‖2 ≤ (α(x)z) · z ≤ α+‖z‖2 ∀z ∈ R
d , (2.4.6)

for almost all x ∈ Ω.

Rewriting (2.4.5), using offset function u0 with u0 = g on ∂Ω, cf. (2.2.34),

w ∈ H1
0(Ω):

∫

Ω

(α(x) grad w(x)) · grad v(x)dx

=
∫

Ω

f (x)v(x)− (α(x) grad u0(x)) · grad v(x)dx ∀v ∈ H1
0(Ω) . (2.4.7)

➥ (2.4.7) is a linear variational problem, see Def. 1.4.8

(2.4.8) Linear variational problem from quadratic minimization problem

We can lift the above discussion to an abstract level, cf. discussion in § 1.4.7 after Def. 1.4.8. Variational

formulation of a quadratic minimization problem (→ Def. 2.2.32)

J(u) := 1
2a(u, u)− ℓ(u) + c ⇒ J(u + tv) = J(u) + t(a(u, v)− ℓ(v)) + 1

2 t2
a(v, v) ,

for all u, v ∈ V0.

For a quadratic functional (→ Def. 2.2.32) on the real vector space V0 holds

lim
t→0

J(u + tv)− J(u)

t
= a(u, v)− ℓ(v) . (2.4.9)
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Linear variational problem (→ § 1.4.7) arising from quadratic minimization problem for functional

J(u) := 1
2a(u, u)− ℓ(u) + c:

w ∈ V0: a(w, v)− ℓ(v) = 0 ∀v ∈ V0 . (2.4.10)

Concretely, for (2.4.7): V0 = H1
0(Ω) and

a(w, v) =
∫

Ω

(α(x) grad w(x)) · grad v(x)dx , (2.4.11)

ℓ(v) =
∫

Ω

f (x)v(x) + (α(x) grad u0(x)) · grad v(x)dx . (2.4.12)

2.4.2 Well-posedness of linear variational problems

Generic notion of a well-posed mathematical problem according to Jacques Hadamard (1902):

Definition 2.4.13. Well-posed mathematical problem

A mathematical problem of the form F(x) = y based on a mapping F : X0 ⊂ X 7→ Y0 ⊂ Y, where

X and Y are normed vector spaces, and the solution space X0 and data space Y0 are suitable open

subsets thereof, is called well-posed, if the following properties are satisfied.

➊ Existence: for all y ∈ Y0 there exists a solution x ∈ X0.

➋ Uniqueness: for all y ∈ Y0 the solution is unique.

➌ Continuous dependence: for all y ∈ Y0 there is a δ = δ(y) and L = L(y) > 0 such that

‖x̃− x‖X ≤ L(y)‖y− ỹ‖Y ∀ỹ ∈ Y0: ‖ỹ− y‖Y ≤ δ(y) ,

where x̃ ∈ X0 is the solution for data vector ỹ ∈ Y0.

The requirement ➌ (continuous dependence) means that

small perturbations of the data cause only “small” (∗) perturbations of the solution.

(∗): “small” in the sense that there is only a finite amplification of the perturbation, whatever practical

significance this carries.

If ➌ is violated, arbitrarily small perturbations of the data, which are usually inevitable in numerical com-

putations owing to round-off [5, ??], can lead to big changes in the solution. In this case any attempt to

solve the problem numerically with finite precision machine arithmetic is pointless.

Note: It might be possible to endow solution and data spaces with different norms. This choice may

determine, whether the problem is well-posed or not, because ➌ will depend on it.

(2.4.14) Well-posedness of linear operator equations

Special case: linear problem (X0 = X, Y0 = Y, F linear mapping)

From Def. 2.4.13 we conclude that a linear problem is well-posed, if
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1. the linear mapping F : X 7→ Y is bijective,

2. its inverse is bounded:

∃L > 0:
∥∥∥F−1(y)− F−1(ỹ)

∥∥∥
X
≤ L‖y− ỹ‖Y ∀y, ỹ ∈ Y ,

m← by linearity

∃L > 0:
∥∥∥F−1(y)

∥∥∥
X
≤ L‖y‖Y ∀y ∈ Y .

(2.4.15)

(2.4.16) Choice of norms for linear 2nd-order elliptic BVPs

In this section we study well-posedness in the case of the linear variational (model) problem, cf. (2.4.5)

and the related quadratic minimization problems (2.2.36), (2.2.35)

u ∈ H1
0(Ω):

∫

Ω

grad u(x) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) . (2.4.17)

Of course, this is a linear problem. For solution and data spaces we make the following (natural) choices,

also fixing the norms in the process

✦ solution space X = H1
0(Ω) for u (norm given in Def. 2.3.23),

✦ data space Y = L2(Ω) for loading function/source function f (norm given in Def. 2.3.4)

2.4.2.1 Existence and uniqueness of solutions

As discussed in Section 2.4.1, pp. 132, (2.4.17) is a linear variational problem of the form (2.4.10)

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (2.4.10)

posed on the Hilbert space V0 = H1
0(Ω), with a symmetric, positive definite (→ Def. 2.2.40) bilinear form,

cf. (2.4.11),

a(u, v) :=
∫

Ω

grad u(x) · grad v(x)dx ,

and linear form, cf. (2.4.12) and (2.3.29)

ℓ(v) :=
∫

Ω

f (x)v(x)dx .

Next, recall the discussion in the beginning of Section 2.3 about the existence of solutions of quadratic minimization prob

Thanks to the equivalence of quadratic minimization problems and linear variational problems these in-

sights also apply to (2.4.10).

(2.4.18) Linear variational problems in Hilbert spaces

Thm. 2.3.12 ensures the existence of unique solutions of quadratic minimization problems of the form

(2.3.13) on a Hilbert space V0 (equipped with the nergy norm ‖·‖
a
)), provided that the linear functional

2. Second-order Scalar Elliptic Boundary Value Problems, 2.4. Variational formulations 150



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

ℓ is continuous. By the arguments given in § 1.4.7 every minimizer u ∈ V0 of J must satisfy (necessary

condition!) the variational equation

a(u, v) = ℓ(v) ∀v ∈ V0 . (2.4.19)

Thus we get an existence result for (2.4.19) for free:

Corollary 2.4.20. Riesz representation theorem

For any bounded (→ Def. 2.2.56) linear functional ℓ : V0 → R on a real Hilbert space (→
Def. 2.3.10) V0 (with inner product a(·, ·) and induced norm ‖·‖

a
) there exists a unique u ∈ V0

such that

a(u, v) = ℓ(v) ∀v ∈ V0 , (2.4.19)

and ‖u‖
a
= sup

v∈V0\{0}

|ℓ(v)|
‖v‖

a

.

Since H1
0(Ω) is a Hilbert space by Thm. 2.3.27, we can apply this result to (2.4.5)/(2.4.7). Here, recall

that for (2.4.17) the energy norm is equivalent to the norm |·|H1(Ω) on H1
0(Ω), see Def. 2.3.23.

Theorem 2.4.21. Existence and uniqueness of solutions of s.p.d. linear variational problems

The linear variational problem (2.4.7) has a unique solution in H1
0(Ω) provided that f ∈ L2(Ω) and

u0 ∈ H1(Ω).

The continuity of right hand side linear functionals ℓ(v) of the form ℓ(v) =
∫

Ω
f (x)v(x)dx has already

been investigated in Section 2.3, pp. 142: the Cauchy-Schwarz estimate (2.3.30) together with the first

Poincaré-Friedrichs inequality showed that

if f ∈ L2(Ω), then ℓ is continuous on H1
0(Ω).

The next example will show that the use of source “functions” (rather, distributions) outside L2(Ω) can

really destroy existence and uniqueness of solutions:

Example 2.4.22 (Needle loading)

Now we inspect a striking manifestation of instability for a 2nd-order elliptic variational problem caused by

a right hand side functional that fails to satisfy (2.2.55).

Consider the taut membrane model, see Section 2.2.1 for details, (2.2.25) for the related minimization

problem, and (2.4.4) for the associated variational equation.

Let us assume that a needle is poked at the membrane: loading by a force f “concentrated in a point y”,

often denoted by f = δy, y ∈ Ω, where δ is the so-called Dirac delta function (delta distribution).

In the variational formulation this can be taken into account as follows (u|∂Ω = 0, σ ≡ 1 is assumed):

u ∈ H1
0(Ω):

∫

Ω
grad u(x) · grad v(x)dx

︸ ︷︷ ︸
=:a(u,v)

= v(y)︸︷︷︸
=:ℓ(v)

∀v ∈ H1
0(Ω) . (2.4.23)
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Recall the discussion of Section 2.3: is the linear functional ℓ on the right hand side continuous w.r.t. the

H1
0(Ω)·-norm (= energy norm, see Def. 2.2.43) in the sense of (2.2.55)?

Consider the function v(x) = log | log‖x‖|, x 6= 0, on Ω = {x ∈ R2: ‖x‖ < 1
e }.

(2.4.24) Polar coordinates

First, we express this function in polar coordinates

(r, ϕ)

x1 = r cos ϕ , x2 = r sin ϕ v(r, ϕ) = log | log r| .
(2.4.25)

Then we recall the expression for the gradient in po-

lar coordinates

grad v(r, ϕ) =
∂v

∂r
(r, ϕ)er +

1

r

∂v

∂ϕ
(r, ϕ)eϕ ,

(2.4.26)

where er and eϕ are orthogonal unit vectors in the

polar coordinate directions. Fig. 73

x1

x2

ϕ

r

eϕ

er

Also recall integration in polar coordinates, see [7, Bsp. 8.5.3]:

∫

Ω

v(x)dx =

1/e∫

0

2π∫

0

v(r, ϕ)r dϕdr . (2.4.27)

Using polar coordinates and (2.4.27), we compute |v|H1(Ω) by evaluating an improper integral,

∫

Ω

‖grad v(x)‖2 dx =

1/e∫

0

2π∫

0

∥∥∥∥−
1

log r r
er

∥∥∥∥
2

r dϕdr = 2π

1/e∫

0

1

log2 r
· 1

r
dr

= 2π[−1/log r]
1/e

0 =
2π

log e
= 2π < ∞ .

This is allowed, because the improper integral has a finite value. This means that v has “finite elastic

energy” , that is v ∈ H1(Ω), see Def. 2.3.25.

On the other hand, v(0) = ∞ !

H1(Ω) contains unbounded functions !

Corollary 2.4.28. Point evaluation on H1(Ω)

The point evaluation v 7→ v(y), y ∈ Ω is not a continuous linear form on H1(Ω).
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In view of (2.2.58), this means that no solution of (2.4.23) with finite energy can exist. The energy must

blow up which results in a bursting of the membrane.

This is the mathematics behind the observation that a

needle can easily prick a taut membrane: a point load

leads to configurations with “infinite elastic energy”.

Of course, this does not correspond to “real physics”,

but indicates that point loads are outside the scope

of the simple linear continuum membrane model.

Fig. 74

Another implication of Cor. 2.4.28:

The quadratic functional J(u) :=
∫
Ω

‖grad u‖2 dx− u(y), y ∈ Ω

is not bounded from below on H1
0(Ω)!

Thus, it is clear that the attempt to minimize J will run into difficulties. Yet, this is the quadratic functional

underlying the variational problem (2.4.23).

2.4.2.2 Continuous dependence

Again we study continuous dependence of the solution u on the data f , see Def. 2.4.13 and the paragraphs

after it for this notion, in the case of the model elliptic variational problem (2.4.17).

Recall the Cauchy-Schwarz estimate

|ℓ(u)| =

∣∣∣∣∣∣

∫

Ω

f (x)u(x)dx

∣∣∣∣∣∣
≤


∫

Ω

| f (x)|2dx




1/2

∫

Ω

|u(x)|2dx




1/2

= ‖ f‖L2(Ω)︸ ︷︷ ︸
<∞

‖u‖L2(Ω) , (2.3.30)

which, when combined with (2.4.17) for v = u, immediately yields

a(u, u) = |u|2H1(Ω) = |ℓ(u)| ≤ ‖ f‖L2(Ω)‖u‖L2(Ω) . (2.4.29)

Next, we combine this with the first Poincaré-Friedrichs inequality of Thm. 2.3.31 and obtain

|u|H1(Ω) ≤ diam(Ω)‖ f‖L2(Ω) . (2.4.30)

↔ (2.4.15) with L = diam(Ω) for the particular problem (2.4.17).

(2.4.31) Sensitivity of elliptic BVP

Recall a notion introduced in [5, Section 1.6.1.2]:

Sensitivity of a problem (for given data) gauges

impact of small perturbations of the data on the result.
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We first study the propagation of perturbations of the source function f (data) to the solution u for the linear

variational problem (2.4.17) on a Hilbert space V0. Denote by δ f and δu the respective perturbations and

adopt the abstract notation of (2.4.10).

a(u, v) = ℓ(v) ∀v ∈ V0 ,
a(u + δu, v) = (ℓ+ δℓ)(v) ∀v ∈ V0 .

(2.4.32)

a bilinear !
=⇒ a(δu, v) = (δℓ)(v) =

∫
Ω

(δ f )(x)v(x) ∀v ∈ V0 . (2.4.33)

The perturbation δu solves the same variational problem with source function δ f !

Now we can directly apply the estimate (2.4.30) and get

|δu|H1(Ω) ≤ diam(Ω)‖δ f ‖L2(Ω) . (2.4.34)

There is an abstract principle behind these manipulations:

More general: propagation of perturbations from the data to the solution for an abstract linear problem,

see p. 150. Here, as well, linearity enables sweeping simplifications:

As in (2.4.15) we write F−1 for the linear solution operator and observe

data y → solution x : x = F−1y ,
perturbed data y + δy → perturbed solution x + δx : x + δx = F−1(y + δy) .

Linearity !
=⇒ δx = F−1δy

(2.4.15)
=⇒ ‖δx‖X ≤ L‖δy‖Y .

(2.4.35) Sensitivity of energy

Again consider the perturbation of the right hand side of the linear variational problem (2.4.10) as in

(2.4.32).

Now we study the impact of a perturbation of the right hand side functional on the energy J(u) =
1
2a(u, u)− ℓ(u) of the solution. By computations analogous to those in § 1.6.8 we find

{
a(u, v) = ℓ(v) ∀v ∈ V0 ,

a(u + δu, v) = (ℓ+ δℓ)(v) ∀v ∈ V0 ,
⇒

{
J(u) = − 1

2a(u, u) ,

J(u + δu) = − 1
2a(u + δu, u + δu) .

J(u + δu)− J(u) = 1
2(a(u, u)− a(u + δu, u + δu))

(1.6.11)
= 1

2a(2u+δu, δu) .

(2.2.44)

|J(u + δu)− J(u)| ≤ 1
2‖2u + δu‖

a
‖δu‖

a
≤ (2‖u‖

a
+ ‖δu‖) · ‖δu‖

a
.

The concrete meaning for the elliptic model problem (2.4.17) is

|J(u + δu)− J(u)| ≤
(

2|u|H1(Ω) + |δu|H1(Ω)

)
|δu|H1(Ω)

(2.4.34)

≤ diam(Ω)2
(

2‖ f‖L2(Ω) + ‖δ f ‖L2(Ω)

)
‖δ f ‖L2(Ω) .

(2.4.36)

The bottom line is that small perturbations of the source function/load f causes only small perturbations

of the energy, with 2 diam(Ω)2‖ f‖L2(Ω) providing the amplification factor.
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?! Review question(s) 2.4.37. (Linear variational problems)

1. State the linear variational problems arising as necessary conditions for the minimizers of the fol-

lowing functionals on H1(Ω) for av bounded domain Ω ⊂ R2

(a) J(v) :=
∫

Ω

∣∣∣ ∂u
∂x1

(x)
∣∣∣
2
+ γ

∣∣∣ ∂u
∂x1

(x)
∣∣∣
2

dx−
∫

Ω
f (x)u(x)dx, γ > 0, f ∈ L2(Ω),

(b) J(v) :=
∫

Ω
‖gradu(x)− a‖2 dx, a ∈ R

2,

(c) J(v) :=
∫

Ω
|grad u(x) · a− 1|2 dx, a ∈ R2.

2. For what values of α ∈ R will x 7→ xα belong to the spaces L1(]0, 1[)?

3. For what values of α ∈ R will v 7→
∫ 1

0 xαv(x)dx be a continuous linear functional on H1
0(]0, 1[)?

2.5 Equilibrium Models: Boundary Value Problems

Recall the derivation of an ODE from a variational problem on a 1D domain (interval) in Section 1.3.3:

Tool: Integration by parts (1.3.40)

This section elucidates how to extend this approach to domains Ω ⊂ Rd, d ≥ 1 (usually d = 2, 3).

Crucial issue: Integration by parts in higher dimensions ?

(2.5.1) Integration by parts in 1D → (1.3.40)

Remember the origin of integration by parts: fundamental theorem of calculus [7, Satz 6.3.4]: for F ∈
C1

pw([a, b]), a, b ∈ R,

∫ b

a
F′(x)dx = F(b)− F(a) , (2.5.2)

where ′ stands for differentiation w.r.t x. This formula is combined with the product rule [7, Satz 5.2.1 (ii)]

F(x) = f (x) · g(x) ⇒ F′(x) = f ′(x)g(x) + f (x)g′(x) . (2.5.3)

∫ b

a
f ′(x)g(x) + f (x)g′(x)dx = f (b)g(b) − f (a)g(a) ,

which amounts to (1.3.40).
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2.5.1 Integration by parts in higher dimensions

There is a product rule in higher dimensions, see [7, Sect. 7.2]

Lemma 2.5.4. General product rule

For all j ∈ (C1(Ω))d, v ∈ C1(Ω) holds

div(jv) = v div j + j · grad v . (2.5.5)

Supplement 2.5.6 (Divergence operator, see also § 0.10.11).

From § 0.10.11 recall the definition of another important first-order differential operator, see also [7,

Def. 8.8.1]:

The divergence of a C1-vector field j = ( f1, . . . , fd)
T : Ω 7→ Rd is

div j(x) :=
∂ f1

∂x1
(x) + · · ·+ ∂ fd

∂xd
(x) , x ∈ Ω .

A widely used “∇-notation” for the divergence is: ∇ · j(x) := div j(x).

The importance of the divergence for the mathematical modelling of flow fields will be explained in Sec-

tion 7.1.3. △

A truly fundamental result from differential geometry provides a multidimensional analogue of the funda-

mental theorem of calculus:

Theorem 2.5.7. Gauss’ theorem → [7, Sect. 8.8]

With n : ∂Ω 7→ Rd denoting the exterior unit normal vectorfield on ∂Ω and dS indicating integration

over a surface, we have

∫

Ω

div j(x)dx =
∫

∂Ω

j(x) · n(x)dS(x) ∀j ∈ (C1
pw(Ω))d . (2.5.8)

Note: In (2.5.8) integration again allows to relax smoothness requirements, cf. Section 1.3.2.

Theorem 2.5.9. Green’s first formula

For all vector fields j ∈ (C1
pw(Ω))d and functions v ∈ C1

pw(Ω) holds

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (2.5.10)

Note that the dependence on the integration variable x is suppressed in the formula (2.5.10) to achieve a

more compact notation. The first Green formula could also have been written as

∫

Ω
j(x) · (grad v)(x)dx = −

∫

Ω
(div j)(x) v(x)dx +

∫

∂Ω
j(x) · n(x) v(x)dS(x) . (2.5.10)

Proof. (of Thm. 2.5.9) Straightforward from Lemma 2.5.4 and Thm. 2.5.7. ✷
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2.5.2 Scalar Second-order elliptic partial differential equations

Now we apply Green’s first formula to the variational problem (2.4.5), which covers the membrane model

and electrostatics:

The role of j in (2.5.10) is played by the vector field α grad u : Ω 7→ Rd.

∫

Ω

α(x) grad u(x)︸ ︷︷ ︸
=:j(x)

· grad v(x)dx

= −
∫

Ω

div(α(x) grad u(x)) v(x)dx +
∫

∂Ω

(α(x) grad u(x)) · n(x) v(x)dS(x) .

(2.4.5) −
∫

Ω

div(α(x) grad u(x)) v(x)dx

+
∫

∂Ω

(α(x) grad u(x)) · n(x) v(x)dS(x)

︸ ︷︷ ︸
=0 , since v|∂Ω=0

=
∫

Ω

f (x)v(x)dx ∀v ∈ C1
pw,0(Ω) ,

(2.5.11)

where we have to assume that u, α are sufficiently smooth: α grad u ∈ C1
pw(Ω)

∫

Ω

(div(α(x) grad u(x)) + f (x)) v(x)dx = 0 ∀v ∈ C1
pw,0(Ω) .

Now we can invoke the multidimensional analogue of the fundamental lemma of the calculus of variations,

see Lemma 1.3.41

Lemma 2.5.12. Fundamental lemma of calculus of variations in higher dimensions

If f ∈ L2(Ω) satisfies

∫

Ω
f (x)v(x)dx = 0 ∀v ∈ C∞

0 (Ω) ,

then f ≡ 0 can be concluded.

(2.4.5)

α grad u∈C1
pw(Ω) Partial differential equations (PDE)

− div(α(x) grad u) = f in Ω .
(2.5.13)
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Again, for the sake of brevity, dependence grad u = grad u(x), f = f (x) is not made explicit in the PDE

in (2.5.13).

Remark 2.5.14 (Laplace operator)

If α agrees with a positive constant, by rescaling of (2.6.10) we can achieve

−∆u = f in Ω . (2.5.15)

∆ = div ◦ grad =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

= Laplace operator

(2.5.15) is called Poisson equation, ∆u = 0 in Ω is called Laplace equation

Finally: PDE (2.5.13) + boundary conditions

− div(α(x) grad u) = f in Ω , u = g on ∂Ω . (2.5.16)

(2.5.16) = second-order elliptic BVP with Dirichlet boundary conditions Short name for BVPs of the

type (2.5.16): “Dirichlet problem”

Remark 2.5.17 (Extra smoothness requirement for PDE formulation)

Same situation as in Section 1.3.3, cf. Assumption (1.3.39):

Transition from variational equation to PDE requires

extra assumptions on smoothness of solution and coefficients.

For instance, in the case of (2.5.13) we demand div(α(x) grad u) ∈ C0(Ω), which is an implicit smooth-

ness requirement for u, provided that the smoothness of the coefficient σ is known.

Terminology:

Terminology: A function u ∈ C1(Ω), for which the partial differential equation (2.5.13) holds pointwise in

Ω and all derivatives exist in the sense of classical analysis, is called a classical solution,

cf. § 1.3.46.

Example 2.5.18 (Taut membrane with free boundary values)
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(Graph description of membrane shape by u : Ω 7→
R, see Section 2.2.1 )

Now: taut membrane clamped only on a part

Γ0 ⊂ ∂Ω of its edge.

– – – : prescribed boundary values here (Γ0)

——-: “free boundary”

Fig. 75
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

 u
(x

)

Configuration space V := {u ∈ H1(Ω): u|Γ0
= g} → Def. 2.3.25

The expression for the total potential energy remains the same as in (2.2.7):

JM(u) :=
∫
Ω

1
2 σ(x)‖grad u‖2 − f (x)u(x) dx . (2.2.7)

Next we we derive the variational formulation for the quadratic minimization problem for JM. The only

change compared to Section 2.4.1 concerns a modified test and trial space. To understand the choice

of the test space V0 remember that it may contain only “admissible perturbations” of configurations, cf.

Section 1.3.1. Concretely, adding any variation from the test space V) to a configuration ∈ V must yield

another valid configuration ∈ V. Therefore test functions have to vanish on Γ0!

test space in variational formulation V0 := {u ∈ H1(Ω): u|Γ0
= 0}

Variational formulation, c.f. (2.4.4)

u ∈ H1(Ω) ,

u = g on Γ0
:
∫

Ω

σ(x) grad u(x) · grad v(x)dx =
∫

Ω

f (x)v(x) ∀v ∈ V0 . (2.5.19)

Our goal is to extract a second-order boundary value problem from this variational formulation. To begin

with, an application of Green’s first formula (2.5.10) to (2.5.19) leads to

−
∫

Ω

(div(σ(x) grad u(x)) + f (x)) v(x)dx

+
∫

∂Ω\Γ0

((σ(x) grad u(x)) · n(x)) v(x)dS(x) = 0 ∀v ∈ V0 . (2.5.20)

Note that, unlike in (2.5.11), the boundary integral term cannot be dropped entirely, because the test

function v need not vanish on all of ∂Ω: v 6= 0 on ∂Ω \ Γ0 is possible!

In the sequel we assume (→ Rem. 2.5.17) extra smoothness u ∈ C2
pw(Ω), σ ∈ C1

pw(Ω)

How to deal with the boundary term in (2.5.20) ?
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(Note that test functions in Lemma 2.5.12 vanish on ∂Ω.)

Idea: ➊ First restrict test function v to C∞
0 (Ω) ⊂ V

➣ Boundary term vanishes !

Then, apply Lemma 2.5.12.

PDE: div(σ(x) grad u(x)) + f (x) = 0 in Ω . (2.5.21)

➋ Then test (2.5.20) with generic v ∈ V0 and make use of (2.5.21). More precisely, plugging (2.5.21) into

(2.5.20) makes the domain integral
∫

Ω
. . . disappear and only boundary terms remain.

∫

∂Ω\Γ0

((σ(x) grad u(x)) · n(x)) v(x)dS(x) = 0 ∀v ∈ V0 .

Lemma 2.5.12 on ∂Ω \ Γ0
=⇒ (σ(x) grad u(x)) · n(x) = 0 on ∂Ω \ Γ0 . (2.5.22)

When removing pinning conditions on ∂Ω \ Γ0 the equilibrium conditions imply the (homogeneous)

Neumann boundary conditions (σ(x) grad u(x)) · n(x) = 0 on ∂Ω \ Γ0.

Boundary value problem for membrane clamped at Γ0 ⊂ ∂Ω

− div(σ(x) grad u) = f in Ω ,
u = g on Γ0 ,

(σ(x) grad u) · n = 0 on ∂Ω \ Γ0 .
(2.5.23)

(2.5.23) = Second-order elliptic BVP with Neumann boundary conditions on ∂Ω \ Γ0 Short name

for BVPs of the type (2.5.23): “Mixed Neumann–Dirichlet problem”

?! Review question(s) 2.5.24. (Elliptic boundary value problems)

1. State Gauss’ theorem for a vector field j ∈ (C1(Ω))d on a domain Ω ⊂ Rd.

2. State the 2-point boundary value problem satisfied by the solution of the variational equation

u ∈ H1(]0, 1[):
∫ 1

0
(1 + x2)

du

dx
(x)
( dv

dx
(x)− v(x)

)
= v(0) ∀v ∈ H1(]0, 1[) .

3. We consider the variational problem

u : Ω→ R
2:

∫

Ω
div u(x)div v(x) + u(x) · v(x)dx =

∫

∂Ω

v(x) · n(x)dx ∀v : Ω→ R
2 .

(2.5.25)

What is a suitable Sobolev space and what boundary value problem is satisfied by the vector field

u?

4. Which boundary value problem does the minimizer of the functional

J(v) =
∫

Ω

∣∣∣∣
∂u

∂x1
(x)− ∂u

∂x2
(x)

∣∣∣∣
2

+ |u(Bx)|2 − ‖x‖u(x)dx , v ∈ H1
0(Ω) ,

solve? Here, Ω ⊂ R2 is a bounded domain.
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2.6 Diffusion models (Stationary heat conduction)

Now we look at a class of physical phenomena, for which models are based on two building blocks

1. a conservation principle (of mass, energy, etc.),

2. a potential driven flux of the conserved quantity.

Mathematical modelling for these phenomena naturally involves partial differential equations in the first

steps, which are supplemented with boundary conditions. Hence, second-order elliptic boundary value

problems arise first, while variational formulations are deduced from them, thus reversing the order of

steps followed for equilibrium models in Section 2.2 through Section 2.5.

(2.6.1) Heat flux

In order to keep the presentation concrete, the discussion will target heat conduction, about which every-

body should have a sound “intuitive grasp”.

✎ notation: Ω ⊂ R3: bounded open region occupied by solid object

(=̂ Ω→ computational domain)

Fundamental concept: heat flux, modelled by vector field j : Ω 7→ R
3

Heat flux = power flux: [j] = W
m2

Vector field j : Ω :=]0, 1[2 7→ R3
✄

normal vector n
Σ

Total heat flux through oriented surface Σ ⊂ R3

Power PΣ =
∫

Σ
j · n dS . (2.6.2)

Fig. 76
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PΣ ([PΣ] = 1W): directed total power flowing through the oriented surface Σ per unit time. Note that the

sign of PΣ will change when flipping the normal of Σ!

★

✧

✥

✦

Conservation of energy

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V . (2.6.3)

power flux through surface of V heat production inside V
f = heat source/sink ([ f ] = W

m3 ), f = f (x) and f can be discontinuous ( f ∈ C0
pw(Ω))
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(2.6.4) Flux law

A flow of heat is triggered by temperature differences. Now we aim to quantify this relationship.

Intuition:
✦ heat flows from hot zones to cold zones

✦ the larger the temperature difference, the stronger the heat flow

Experimental evidence supports this intuition and, for many materials, yields the following quantitative

relationship:★

✧

✥

✦

Fourier’s law

j(x) = −κ(x) grad u(x) , x ∈ Ω . (2.6.5)

Meaning of the quantities:

j = heat flux ([j] = 1 W
m2 )

u = temperature ([u] = 1K)

κ = heat conductivity ([κ] = 1 W
Km )

(all functions of x ∈ Ω)

(2.6.5)⇒ Heat flow from hot to cold regions is linearly proportional to gradient of temperature

Some facts about the heat conductivity κ:

☞ • κ = κ(x) for non-homogeneous materials. (spatially varying heat conductivity)

• κ can even be discontinuous for composite materials.

• κ may be R3,3-valued (heat conductivity tensor).

The most general form of the heat conductivity (tensor) enjoys the very same properties as the dielectric

tensor introduced in Section 2.2.2:

From thermodynamic principles, cf. (2.2.17):

∃κ−,κ+ > 0: 0 < κ− ≤ κ(x) ≤ κ+ < ∞ for almost all x ∈ Ω . (2.6.6)

Terminology: (2.6.6) ↔ κ is bounded and uniformly positive, see Def. 2.2.18.

(2.6.7) Derivation of 2nd-order linear elliptic PDE

From (2.6.3) by Gauss’ theorem Thm. 2.5.7
∫

V

div j(x)dx =
∫

V

f (x)dx for all “control volumes” V ⊂ Ω .

Now appeal to another version of the fundamental lemma of the calculus of variations, see Lemma 2.5.12,

this time sporting piecewise constant test functions.
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local form of energy conservation:

div j = f in Ω . (2.6.8)

︸ ︷︷ ︸ (2.6.9)

Combine equations (2.6.8) & (2.6.5)

j = −κ(x) grad u (2.6.5) + div j = f (2.6.8)

− div(κ(x) grad u) = f in Ω . (2.6.10)

Linear scalar second order elliptic PDE (for unknown temperature u)

?! Review question(s) 2.6.11. (Stationary heat conduction)

1. Why is Fourier’s law called a linear material law?

2. What is the physical meaning of the right hand side function f of the stationary heat equation.

3. Consider the functions

2.7 Boundary conditions

In the examples from Section 2.2.1, Section 2.2.2 we fixed the value of the unknown function u : Ω 7→ R

on the boundary ∂Ω: Dirichlet boundary conditions in (2.5.16)

u = g on ∂Ω for given g ∈ C0(∂Ω) .

Exception: free edge of taut membrane, see Ex. 2.5.18: (homogeneous) Neumann boundary conditions

in (2.5.23):

(σ(x) grad u) · n = 0 on ∂Ω .

In this section we resume the discussion of boundary conditions and examine them for stationary heat

conduction, see previous section. This has the advantage that for this everyday physical phenomenon

boundary conditions have a very clear intuitive meaning.

Fundamental boundary conditions for 2nd-order elliptic BVPs

Boundary conditions on surface/boundary ∂Ω of Ω:
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(i) Temperature u is fixed: with g : ∂Ω 7→ R prescribed

u = g on ∂Ω . (2.7.2)

Dirichlet boundary conditions

(ii) Heat flux j through ∂Ω is fixed: with h : ∂Ω 7→ R prescribed (n : ∂Ω 7→ R
3 exterior unit

normal vectorfield) on ∂Ω

j · n = −h on ∂Ω . (2.7.3)

Neumann boundary conditions
(iii) Heat flux through ∂Ω depends on (local) temperature: with increasing function Ψ : R 7→ R

j · n = Ψ(u) on ∂Ω (2.7.4)

radiation boundary conditions

Example 2.7.5 (Convective cooling (simple model))

Heat is carried away from the surface of the body by a fluid at bulk temperature u0. A crude model

assumes that the heat flux depends linearly on the temperature difference between the surface of Ω and

the bulk temperature of the fluid.

j · n = q(u− u0) on ∂Ω , where 0 < q− ≤ q(x) ≤ q+ < ∞ for almost all x ∈ ∂Ω .

When combined with Fourier’s law (2.6.5), the convective cooling boundary conditions become

κ(x) grad u(x) + q(u(x)− u0) = 0 , x ∈ ∂Ω ,

and in this form they are known as Robin boundary conditions.

Example 2.7.6 (Radiative cooling (simple model))

A hot body emits electromagnetic radiation (blackbody emission), which drains thermal energy. The radia-

tive energy loss is roughly proportional to the 4th power of the temperature difference between the surface

temperature of the body and the ambient temperature.

j · n = α|u− u0|(u− u0)
3 on ∂Ω , with α > 0

→ Non-linear boundary condition

Terminology: If g = 0 or h = 0→ homogeneous Dirichlet or Neumann boundary conditions

Remark 2.7.7 (Mixed boundary conditions)
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Different boundary conditions can be prescribed on different parts of ∂Ω

(→ mixed boundary conditions, cf. Ex. 2.5.18)

Example 2.7.8 (“Wrapped rock on a stove”)

We consider a solid cylinder mounted on a heating plate whose temperature can be controlled. The

vertical walls of the cylinder are covered with an insulating layer, which is assumed to be perfect. The top

face is in contact with air and, thus, heat is transported away by convective cooling, see Ex. 2.7.5.

Fig. 77

ΓN

ΓD

ΓR

Ω

• Non-homogeneous Dirichlet boundary conditions on ΓD ⊂ ∂Ω

• Homogeneous Neumann boundary conditions on ΓN ⊂ ∂Ω

• Convective cooling boundary conditions on ΓR ⊂ ∂Ω

Partition: ∂Ω = ΓD ∪ ΓN ∪ ΓR, ΓD, ΓN, ΓR mutually disjoint

︸ ︷︷ ︸

− div(κ(x) grad u) = f + boundary conditions ⇒ elliptic boundary value problem (BVP)✎
✍

☞
✌

For second order elliptic boundary value problems exactly one boundary condition is needed on any

part of ∂Ω.

Remark 2.7.9 (Linear BVP)

Observe that the solution mapping

(
f

g

)
7→ u for (2.6.10), (2.7.2) is linear.

This means that if ui solves the Dirichlet problem with source function fi and Dirichlet data gi, i = 1, 2,

then u1 + u2 solves (2.6.10) & (2.7.2) for source f1 + f2 and boundary values g1 + g2.

?! Review question(s) 2.7.10. (Boundary conditions for 2nd-order elliptic BVPs)

In this quizz we consider stationary electric currents in a conducting body occupying Ω ⊂ R
3. In this

model a vector field j : Ω→ R3 describes the electric current density (units [j] = A
m2 ) obeying Ohm’s law

j = −σ grad u, which corresponds to Fourier’s law (2.6.5). Here, u is the electric potential, cf. (2.2.14)

(units [u] = V), and σ : Ω→ R+ stands for the uniformly positive conductivity (units [σ] = A
Vm ).

1. What is the meaning of div j?

2. Argue, why the normal component of j has to be continuous across any smooth surface.

3. What is the physical meaning of Dirichlet and Neumann boundary conditions in the stationary current

model?

4. What could be described by a linear radiation boundary condition (2.7.3) for the stationary current

model.
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2.8 Characteristics of elliptic boundary value problems

Some qualitative insights gained from heat conduction model:

✦ continuity: the temperature u must be continuous (jump in u→ j = ∞).

✦ normal component of j across surfaces inside Ω must be continuous

(jump in j · n→ heat source f of infinite intensity).

✦ interior smoothness of u: u smooth where f and D smooth.

✦ non-locality: local alterations in f , g, h affect u everywhere in Ω.

✦ quasi-locality: If local changes in f , g, h confined to Ω′ ⊂ Ω, their effects decay away from Ω′.

✦ maximum principle: (in the absence of heat sources extremal temperatures are on the boundary)✎
✍

☞
✌

if f ≡ 0, then inf
y∈∂Ω

u(y) ≤ u(x) ≤ sup
y∈∂Ω

u(y) for all x ∈ Ω

︸ ︷︷ ︸

Typical features of solutions of 2nd-order scalar elliptic boundary value problems

Example 2.8.1 (Scalar elliptic boundary value problem in one space dimension)

In one dimension the properties of solutions claimed above are obvious. Consider the Poisson equation

(2.5.15) in 1D, which boils down to −u′′ = f . Solutions of the associated two-point boundary value

problems can be obtained by integrating f twice.

➣ f discontinuous, piecewise C0 ⇒ u ∈ C1, piecewise C2

Example 2.8.2 (Smoothness of solution of scalar elliptic boundary value problem)

Here we give “visual evidence” in 2D that solutions of Poisson’s equation (2.5.15) enjoy enhanced smooth-

ness compared to that of the right hand side f . We consider the following boundary value problem:

−∆u = f (x) in Ω :=]0, 1[2 , u = 0 on ∂Ω , (2.8.3)

f (x) := sign(sin(2πk1x1) sin(2πk2x2)) , x ∈ Ω , k1, k2 ∈ N .

Approximate solution computed by means of linear Lagrangian finite elements + lumping

(→ Chapter 3 below, details in Section 3.3, Section 3.6.5)
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Solution of (2.8.3)

➣ “Smooth” u despite “rough” f !

Example 2.8.4 (Quasi-locality of solution of scalar elliptic boundary value problem)

Now we give a demonstration that the influence of a local heat source decays away from its support. We

look at Poisson problem, where the source function f is non-zero only on a small disk.

−∆u = fδ(x) in Ω :=]0, 1[2 , u = 0 on ∂Ω , (2.8.5)

fδ(x) =

{
δ−2 , if

∥∥∥x− (
1/2
1/2
)
∥∥∥

2
≤ δ ,

0 elsewhere.
, δ > 0 . (2.8.6)
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2.9 Second-order elliptic variational problems

In Chapter 1 and Section 2.2 through Section 2.5 we pursued the derivation:
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Minimization problem

(e.g., (2.2.12), (2.2.24))

➣ Variational problem

(e.g., (2.4.3), (2.4.4))

➣ BVP for PDE

(e.g., (2.5.16), (2.5.23))

Now we are proceeding in the opposite direction:

PDE

(e.g. (2.6.10))
+

boundary conditions

(e.g., (2.7.2), (2.7.3), (2.7.4))
➣ variational problem

Formal transition from boundary value problem for PDE to variational problem

STEP 1: test PDE with smooth functions

(do not test, where the solution is known, e.g., on the boundary)

STEP 2: integrate over domain

STEP 3: perform integration by parts

(e.g. by using Green’s first formula, Thm. 2.5.9)

STEP 4: [optional] incorporate boundary conditions into boundary terms

STEP 5: Choose suitable function spaces (Sobolev spaces)

(Section 2.3.1: largest function space on which variational problem well posed)

Example 2.9.2 (Variational formulation for heat conduction with

Dirichlet boundary conditions)

Targeted BVP: − div(κ(x) grad u) = f in Ω , u = g on ∂Ω . (2.9.3)

Here the solution is fixed on ∂Ω. Therefore, we test with functions that vanish there.

STEP 1 & 2: test the PDE with v ∈ C∞
0 (Ω) and integrate over Ω

−
∫

Ω
div(κ(x) grad u) v dx =

∫

Ω
f v dx . (2.9.4)

Again note: v|∂Ω = 0 for test function, because u already fixed on ∂Ω.

STEP 3: use Green’s formula from Thm. 2.5.9 on Ω ⊂ Rd (multidimensional integration by parts):

Apply

∫

Ω
j · grad v dx = −

∫

Ω
div j v dx +

∫

∂Ω
j · n v dS . (2.5.10)

to (2.9.4) choosing the vector field as j := κ(x) grad u:

∫

Ω
κ(x) grad u · grad v dx−

∫

∂Ω
κ(x) grad u · n v dS

︸ ︷︷ ︸
=0,because v|∂Ω=0

=
∫

Ω
f v dx ∀v ∈ C∞

0 (Ω) .
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This gives the variational formulation after we switch to “maximal admissible function spaces” (Sobolev

spaces, see Section 2.3, as spaces of functions with finite energy).✬

✫

✩

✪

Variational form of (2.9.3): seek

u ∈ H1(Ω)

u = g on ∂Ω
:
∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

0(Ω) . (2.9.5)

Example 2.9.6 (Variational formulation: heat conduction with general radiation boundary

conditions)

In this case the appropriate treatment of boundary conditions in STEP 4 can be demonstrated.

BVP: − div(κ(x) grad u) = f in Ω , − κ(x) grad u · n = Ψ(u) on ∂Ω . (2.9.7)

STEP 1 & 2: u|∂Ω not fixed ⇒ test with v ∈ C∞(Ω)

−
∫

Ω
div(κ(x) grad u) v dx =

∫

Ω
f v dx ∀v ∈ C∞(Ω) .

STEP 3 & 4: apply Green’s first formula (2.5.10) and incorporate boundary conditions:

∫

Ω
κ(x) grad u · grad v dx−

∫

∂Ω
κ(x) grad u · n︸ ︷︷ ︸
=−Ψ(u) (STEP 4)

v dS =
∫

Ω
f v dx ∀v ∈ C∞(Ω) .

★

✧

✥

✦

Variational formulation of (2.9.7): seek

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx +

∫

∂Ω
Ψ(u) v dS =

∫

Ω
f v dx ∀v ∈ H1(Ω) . (2.9.8)

Theorem 2.9.9. Classical solutions are weak solutions

If κ ∈ C1(Ω), classical solutions u ∈ C2(Ω) of the boundary value problems (2.9.3) and (2.9.7)

also solve the associated variational problems.

Proof. Apply Thm. 2.5.9 as in the derivation of the weak formulations.
✷

Example 2.9.10 (Variational formulation for Neumann problem)

2nd-order elliptic (inhomogeneous) Neumann problem

BVP:
− div(κ(x) grad u) = f in Ω ,

κ(x) grad u · n = h(x) on ∂Ω .
(2.9.11)
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We confront Neumann boundary conditions (2.7.3) (prescribed heat flux) on the whole boundary.

Variational formulation derived as in Ex. 2.9.6, with Ψ(u) = −h.

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx−

∫

∂Ω
h v dS =

∫

Ω
f v dx ∀v ∈ H1(Ω) . (2.9.12)

Observation: when we test (2.9.8) with v ≡ 1 −
∫

∂Ω
h dS =

∫
Ω

f dx (2.9.13)

This is a compatibility condition for the existence of (variational) solutions of the Neumann problem!

Interpretation of (2.9.13) against the backdrop of the stationary heat conduction model:

conservation of energy→ (2.6.3): Heat generated inside Ω (↔ f ) must be offset by heat flux

through ∂Ω (→ h).

Remark 2.9.14 (Uniqueness of solutions of Neumann problem)

Observation: if compatibility condition (2.9.13) holds true, then

v ∈ H1(Ω) solves (2.9.8) ⇐⇒ v + γ solves (2.9.8) ∀γ ∈ R ,

we say, “the solution is unique only up to constants”.

Complementary observation: a(u, v) :=
∫

Ω
κ(x) grad u · grad v dx is not s.p.d (→ Def. 2.2.40) on

H1(Ω).

Idea: Restore uniqueness of solutions by

enforcing average temperature to be zero

∫

Ω
u(x)dx = 0

This amounts to posing the variational problem (2.9.8) over the constrained function space

H1
∗(Ω) := {v ∈ H1(Ω):

∫

Ω
v(x)dx = 0} . (2.9.15)

The norm on H1
∗(Ω) is the same as on H1

0(Ω), see Def. 2.3.25. Obviously (why ?), the norm property

(N1) is satisfied. These arguments also show that a is s.p.d (→ Def. 2.2.40) on H1
∗(Ω), cf. Thm. 2.9.20.

Uniquely solvable variational formulation of Neumann problem:

u ∈ H1
∗(Ω):

∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx +

∫

∂Ω
h v dS ∀v ∈ H1

∗(Ω) . (2.9.16)
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Remark 2.9.17 (Well-posedness of variational Neumann problem)

For the sake of simplicity we consider the homogeneous Neumann problem with constant coefficients, that

is (2.9.16) with vanishing Neumann data h = 0 and κ ≡ 1:

u ∈ H1
∗(Ω):

∫

Ω
grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

∗(Ω) . (2.9.18)

General Neumann data will be discussed below in § 2.10.7.

Question (→ Section 2.4.2.2): How do perturbations δ f in the source function f , measured in L2(Ω)-
norm, affect the energy norm (= |·|H1(Ω)) of the solution. As in Section 2.4.2.2, see (2.4.32) and (2.4.33),

we find that the induced perturbation δu of the solution complies with the variational equations

δu ∈ H1
∗(Ω):

∫

Ω
grad δu · grad v dx =

∫

Ω
δ f v dx ∀v ∈ H1

∗(Ω) . (2.9.19)

Recall: (2.4.30) was a consequence of the first Poincaré-Friedrichs inequality of Thm. 2.3.31, which

makes a statement about norms on H1
0(Ω). However, now we deal with a variational problem posed on

H1
∗(Ω). Thus, we need a counterpart of Thm. 2.3.31 on that space:

Theorem 2.9.20. Second Poincaré-Friedrichs inequality

If Ω ⊂ Rd, d ∈ N, is bounded, then

∃C = C(Ω) > 0: ‖u‖0 ≤ C diam(Ω)‖grad u‖0 ∀u ∈ H1
∗(Ω) .

✎ notation: C = C(Ω) indicates that the constant C may depend on the shape of the domain Ω.

Proof. (for d = 1, Ω = [0, 1] only, technically difficult in higher dimensions, see [2, Thm. 1.6.6])

As in the proof of Thm. 2.3.31, we employ a density argument and assume that u is sufficiently smooth,

u ∈ C1([0, 1]).

By the fundamental theorem of calculus (2.5.2)

u(x) = u(y) +

x∫

y

du

dx
(τ)dτ , 0 ≤ x, y ≤ 1 .

u(x) =

1∫

0

u(x)dy =

1∫

0

u(y)dy

︸ ︷︷ ︸
=0

+

1∫

0

x∫

y

du

dx
(τ)dτ dy .

Then use the Cauchy-Schwarz inequality (2.3.30)

u(x)2 ≤
1∫

0

x∫

y

1 dτ dy

1∫

0

x∫

y

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ dy ≤
1∫

0

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ .
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Integrate over Ω yields the estimate

‖u‖2
0 =

1∫

0

u2(x)dx ≤
1∫

0

∣∣∣∣
du

dx
(τ)

∣∣∣∣
2

dτ = |u|2H1(Ω) .

By (2.3.30), Thm. 2.9.20 implies the continuity of the first term in ℓ.
✷

An immediate consequence of Thm. 2.9.20 and the Cauchy-Schwarz inequality (2.2.44) for integrals in the

form (1.6.13) is

|δu|H1(Ω) ≤ diam(Ω)C ‖δ f ‖L2(Ω) ,

where δu solves (2.9.19) and C > 0 depends on the shape of Ω only.

?! Review question(s) 2.9.21. (Elliptic variational problems)

1. Consider the partial differential equation

grad div u + c(x)u = f in Ω ⊂ R
3 ,

where c : Ω → R is a bounded and uniformly positive definite coefficient function. Derive the

formal variational formulations for boundary value problems for this PDE when equipped with the

boundary conditions

(a) u · n = 0 on ∂Ω, where n is the exterior unit normal vectorfield on ∂Ω.

(b) div u = 0 on ∂Ω.

2. What is the meaning and relationship of classical and weak solutions of 2nd-order elliptic boundary

value problems?

2.10 Essential and natural boundary conditions

(2.10.1) A synopsis of scalar 2nd-order linear elliptic boundary value problems

BVPs in strong and weak form, see Section 2.7 for a discussion of boundary conditions and both Sec-

tion 2.9 and Section 2.5 for how to connect weak and strong forms.

☛ 2nd-order elliptic Dirichlet problem:

− div(α(x) grad u) = f in Ω , u = g on ∂Ω . (2.5.16)

with variational formulation

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) . (2.4.5)
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☛ 2nd-order elliptic Neumann problem:

− div(α(x) grad u) = f in Ω , (α(x) grad u) · n = −h on ∂Ω . (2.10.2)

with variational formulation

u ∈ H1
∗(Ω):

∫

Ω
α(x) grad u · grad v dx =

∫

Ω
f v dx +

∫

∂Ω
h v dS ∀v ∈ H1

∗(Ω) . (2.9.16)

☛ 2nd-order elliptic mixed Neumann-Dirichlet problem, see Ex. 2.5.18:

− div(α(x) grad u) = f in Ω ,
u =g on Γ0 ⊂ ∂Ω ,

(α(x) grad u) · n = −h on ∂Ω \ Γ0 .
(2.10.3)

with variational formulation

u ∈ H1(Ω) ,

u = g on Γ0
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx +
∫

∂Ω\Γ0

h v dS (2.10.4)

for all v ∈ H1(Ω) with v|Γ0
= 0.

Natural and essential boundary conditions

A pattern emerges: In the variational formulations of 2nd-order elliptic BVPs of Section 2.9:

Dirichlet boundary conditions are directly imposed on trial space and (in homogeneous form) on

test space.

Terminology: essential boundary conditions

Neumann boundary conditions are enforced only through the variational equation.

Terminology: natural boundary conditions

The attribute “natural” has been coined, because Neumann boundary conditions “naturally” emerge when

removing constraints on the boundary, as we have seen for the partially free membrane of Ex. 2.5.18.

(2.10.6) Admissible Dirichlet data

Requirement for “Dirichlet data” g : ∂Ω 7→ R in (2.5.16):

there is u ∈ H1(Ω) such that u|∂Ω = g

Analogous to Thm. 2.3.35:✎
✍

☞
✌

If g : ∂Ω 7→ R is piecewise continuously differentiable (and bounded with bounded piecewise deriva-

tives), then it can be extended to an u0 ∈ H1(Ω), if and only if it is continuous on ∂Ω.

Bottom line: Dirichlet boundary values have to be continuous
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This is also stipulated by physical insight, e.g. in the case of the taut membrane model of Section 2.2.1:

discontinuous displacement on ∂Ω would entail ripping apart the membrane.

(2.10.7) Admissible Neumann data

In the variational problem (2.9.16) Neumann data h : ∂Ω 7→ R enter through the linear form on the right

hand side

ℓ(v) :=
∫

Ω

f (x)v(x)dx +
∫

∂Ω

h(x)v(x)dS(x) .

Remember the discussion in the beginning of Section 2.3, also Ex. 2.4.22: we have to establish that

ℓ is continuous on H1
∗(Ω) defined in (2.9.15). This is sufficient, because the coefficient function κ is

uniformly positive and bounded, see (2.6.6). Thus, the energy ‖·‖
a

associated with the bilinear form

a(u, v) =
∫

Ω
κ(x) grad u · grad v dx

can be bounded from above and below by |·|H1(Ω).

Continuity of the boundary contribution to the right hand side linear functional ℓ is ensured by a trace

theorem:

Theorem 2.10.8. Multiplicative trace inequality

∃C = C(Ω) > 0: ‖u‖2
L2(∂Ω) ≤ C‖u‖L2(Ω) · ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

Proof. (for d = 1, Ω = [0, 1] only, technically difficult in higher dimensions)

As in the proof of Thm. 2.3.31 and Thm. 2.9.20, we employ a density argument and assume that u is

sufficiently smooth, u ∈ C1([0, 1]).

By the fundamental theorem of calculus (2.5.2):

u(1)2 =

1∫

0

dw

dξ
(x)dx , with w(ξ) := ξu2(ξ) ,

u(1)2 =

1∫

0

u2(x) + 2u(x)
du

dx
(x)x dx .

Then use the Cauchy-Schwarz inequality (2.3.30):

u(1)2 ≤
1∫

0

u2(x)dx + 2

1∫

0

|x||u(x)|
∣∣∣∣
du

dx
(x)

∣∣∣∣ dx ≤ ‖u‖2
0 + 2‖u‖0

∥∥∥∥
du

dx

∥∥∥∥
0

.

A similar estimate holds for u(0)2.
✷

Now we can combine

✦ the Cauchy-Schwarz inequality (2.3.30) on ∂Ω,
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✦ the 2nd Poincaré-Friedrichs inequality of Thm. 2.9.20,

✦ the multiplicative trace inequality of Thm. 2.10.8:

∫

∂Ω

hv dS
(2.3.30)

≤ ‖h‖L2(∂Ω)‖v‖L2(∂Ω)

Thm. 2.10.8

≤ C‖h‖L2(∂Ω)‖v‖H1(Ω)

Thm. 2.9.20

≤ C‖h‖L2(∂Ω)|v|H1(Ω) ∀v ∈ H1
∗(Ω) .

☛
✡

✟
✠h ∈ L2(∂Ω) provides valid Neumann data for the 2nd order elliptic BVP (2.10.2).

In, particular Neumann data h can be discontinuous.

?! Review question(s) 2.10.9. (Essential and natural boundary conditions)

1. For a scalar 2nd-order elliptic boundary value problem for − div(α(x) grad u) = f the Robin

boundary conditions read, cf. Ex. 2.7.5,

α(x) grad u + γ(x)u = 0 on ∂Ω ,

with γ : ∂Ω→ R uniformly positive. Are these boundary conditions essential or natural.

2. Describe the minimal regularity of Dirichlet and Neumann data for scalar 2nd-order elliptic BVPs on

Ω ⊂ Rd in terms of classical smoothness spaces Ck
pw(∂Ω).

3. In the case of the PDE − grad div u + u = f on Ω ⊂ R3, what are essential, what are natu-

ral boundary conditions. To answer this questions apply Thm. 2.5.9 and determine and study the

boundary terms arising from it.

Learning outcomes

After having studied this chapter you should (be able to)

• convert a quadratic minimization problem into a linear variational problem

• use the formal calculus of variations to find the variational problem induced by a minimization prob-

lem posed on a space of functions in two or three dimensions.

• know the norms of the Sobolev spaces L2(Ω), H1(Ω), and H1
0(Ω) and how to use them in the

statement of variational problems.

• state the continuity featured by piecewise smooth functions in a Sobolev space.

• appreciate the importance of the continuity in the energy norm of right hand side functionals of

variational problems.

• extract a PDE and boundary conditions from a variational problem using integration by parts.
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• recast a boundary value problem for a 2nd-order PDE in variational form (using suitable Sobolev

spaces).

• tell which boundary conditions make sense for a given 2nd-order PDE.

• distinguish essential and natural boundary conditions for a PDE in variational form.

• know sufficient conditions for admissible Dirichlet- and Neumann data in the case of scalar 2nd-order

elliptic variational problems.

• know the compatibility conditions for the data in the case of a pure Neumann problem.
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3.1 Introduction

(3.1.1) Focus, goals, and prerequisites

Problem : linear scalar second-order elliptic boundary value problem → Chapter 2

Perspective : variational interpretation in Sobolev spaces → Section 2.9

Objective : algorithm for the computation of an approximate numerical solution as a

: function belonging to a subspace of the variational function space

This chapter heavily relies on the material covered in Section 2.3, Section 2.9, and Section 2.10. The

reader will not be able to understand what follows, unless she or he is familiar with these earlier sections

of the course.

(3.1.2) Outline

Section 1.5.2 introduced the fundamental ideas of the Galerkin discretization of variational problems, or,

equivalently, of minmization problems, posed over function spaces. A key ingredient are suitably chosen

finite-dimensional trial and test spaces, equipped with ordered bases.

In Section 1.5.2.2 the abstract approach was discussed for two-point boundary value problems and the

concrete case of piecewise linear trial and test spaces, built upon a partition (mesh/grid → § 1.5.68) of

the interval (domain). In this context the locally supported tent functions (→ Fig. 37) lent themselves as

natural basis functions.

This chapter is devoted to extending the linear finite element method in 1D to

✦ 2nd-order linear variational problems on bounded spatial domains Ω in two and three dimensions,

✦ piecewise polynomial trial/test functions of higher degree.

The leap from d = 1 to d = 2 will encounter additional difficulties and many new aspects will emerge.

This chapter will elaborate on them and present details of algorithms that tackle them. The discussion will

even dip into details of implementation in C++.

In Section 3.2 we review the ideas and crucial steps of the abstract Galerkin discretization of a general

linear variational problem. This refreshes ??.

(3.1.3) Targeted boundary value problems

Except for Section 3.8, we will restrict ourselves to linear 2nd-order elliptic variational problems on spatial

domains Ω ∈ Rd, d = 2, 3, with the properties listed in § 2.2.3.

☛ 2nd-order elliptic Dirichlet problem:

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) , (2.4.5)
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with continuous (→ § 2.10.6) Dirichlet data g ∈ C0(∂Ω).

☛ 2nd-order elliptic Neumann problems:

u ∈ H1
∗(Ω):

∫

Ω
(α(x) grad u) · grad v dx =

∫

Ω
f v dx +

∫

∂Ω
h v dS ∀v ∈ H1

∗(Ω) , (2.9.16)

posed on the constrained Sobolev space

H1
∗(Ω) := {v ∈ H1(Ω):

∫

Ω
v(x)dx = 0} , (2.9.15)

and with piecewwise continuous (→ § 2.10.7) Neumann data h ∈ C0
pw(∂Ω) that satisfy the compatibility

condition

−
∫

∂Ω
h dS =

∫

Ω
f dx . (2.9.13)

A simpler version with homogeneous Neumann data and reaction term reads

u ∈ H1(Ω):
∫

Ω
α(x) grad u · grad v + c(x)u v dx =

∫

Ω
f v dx ∀v ∈ H1(Ω) , (3.1.4)

with uniformly positive reaction coefficient c : Ω 7→ R+, c ∈ C0
pw(Ω), cf. (2.2.17), Def. 2.2.18:

∃0 < γ− ≤ γ+ < ∞: γ− ≤ c(x) ≤ γ+ for almost all x ∈ Ω .

Supplement 3.1.5 (Almost all/almost everywhere).

In (mathematical) articles on function spaces and variational formulations in them you will often encounter

phrases like “almost all” or “almost everywhere”. The designate statements about point values of functions

that remain true, if the function is changed on sets of points that “do not matter for integration”.

For instance, since above c occurs only in an integrand, we do not care about it being positive on “sets

of measure zero” like lines in 2D or surfaces in 3D. Whether domains of integration are open or closed is

immaterial, too. △

The benefit of (3.1.4) is that no compatibility condition like (2.9.13) is needed to ensure existence of

solutions.

The considerations in Section 2.9 and Section 2.10 established the following key properties of these vari-

ational problems:

The linear variational problems (→ Def. 1.4.8) (2.4.5), (2.9.16), and (3.1.4) feature symmetric posi-

tive definite bilinear forms (→ Def. 2.2.40) and right hand side linear forms that are continuous (→
Def. 2.2.56) with respect to the energy norm (→ Def. 2.2.43).

existence and uniqueness of solutions (→ Rem. 2.3.15)

Please remember that all the variational problems are connected with quadratic minimization problems,

see Section 2.2.3, Def. 2.2.32.

Remark 3.1.6 (Data in procedural form)
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Rem. 1.5.5 still applies: all functions (coefficient α, source function f , Dirichlet data g, Neumann data h)

may be given only in procedural form.

E.g., in MATLAB, as function function y = f(x) whose implementation is kept secret.

In C++ functions are encapsulated into function objects [14, Section 0.2.3]:

template <typename ReturnType,typename PointCoordinates>

c lass Function {

using value_type = ReturnType;

using arg_type = PointCoordinates;

Function(void);

// evaluation operator

value_type opera tor ()(const PointCoordinates &x) const;

};

Recall the discussion of the consequences this procedural form in § 1.5.48 and Section 1.5.2.2

3.2 Galerkin Discretization

(3.2.1) Recalled: concept of discretization

Recall the concept of “discretization”, see Section 1.5:

Not a moot point: any computer can handle only a finite amount of information (reals)

Variational boundary value

problem
DISCRETIZATION−−−−−−−−−−−−−−→

System of a finite number of

equations for (real) unknowns

(3.2.2) Recalled: linear variational problems

Abstract target of discretization in this chapter: linear variational problem (1.4.9)

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (3.2.3)

✦ V0 =̂ vector space (Hilbert space) (usually a Sobolev space→ Section 2.3) with norm ‖·‖V ,

✦ a(·, ·) =̂ bilinear form, continuous on V0, which means

∃C > 0: |a(u, v)| ≤ C‖u‖V‖v‖V ∀u, v ∈ V . (3.2.4)

✦ ℓ =̂ continuous linear form in the sense of Def. 2.2.56, cf. (2.2.55),

∃C > 0: |ℓ(v)| ≤ C‖v‖V ∀v ∈ V0 . (3.2.5)

The importance of this continuity is discussed in the beginning of Section 2.3, see also Ex. 2.4.22. (The

Cs in (3.2.4) and (3.2.5) are so-called “generic constants”, whose values need not agree though they are

designated by the same symbol, see Rem. 5.3.58 below.)
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If a is symmetric and positive definite (→ Def. 2.2.40), we may choose ‖·‖V := ‖·‖
a
, “energy norm”, see

Def. 2.2.43. Continuity of a w.r.t. ‖·‖
a

is clear.

In § 1.4.7 and also in (2.4.5) we encountered more general linear variational problems posed on an affine

space

u ∈ u0 + V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (3.2.6)

This can be converted into the form (3.2.3) with a modified right hand side functional through the “offset

function trick”, already discussed in § 1.5.12, on page 148, and page 128 in the context of quadratic

minimization problems.

Recall: Galerkin discretization → Section 1.5.2

Idea of Galerkin discretization:

Replace V0 in (3.2.3) with a finite dimensional subspace.

(V0,N ⊂ V0 called Galerkin (or discrete) trial space/test space)

Notation: Twofold nature of symbol “N”, cf. Section 1.5.2:

✦ N = formal index, tagging “discrete entities” (→ “finite amount of information”)

✦ N = dim VN,0 ∈ N =̂ dimension of Galerkin trial/test space

Discrete variational problem, cf. (1.5.9),

uN ∈ V0,N : a(uN , vN) = ℓ(vN) ∀vN ∈ V0,N . (3.2.8)

Galerkin solution

We begin with a simple consequence of Thm. 2.2.52 and ??, respectively.

Theorem 3.2.9. Existence and uniqueness of solutions of discrete variational problems

If the bilinear form a : V0 × V0 7→ R is symmetric and positive definite (→ Def. 2.2.40) and the

linear form ℓ : V0 7→ R is continuous in the sense of

∃Cℓ > 0: |ℓ(u)| ≤ Cℓ‖u‖a ∀u ∈ V0 , (2.2.55)

then the discrete variational problem has a unique Galerkin solution uN ∈ V0,N that satisfies the

stability estimate (→ Section 2.4.2)

‖uN‖a ≤ Cℓ . (3.2.10)

Proof. Uniqueness of uN is clear:

a(uN , vN) = ℓ(vN) ∀vN ∈ V0,N

a(wN , vN) = ℓ(vN) ∀vN ∈ V0,N
⇒ a(uN − wN, vN) = 0 ∀vN ∈ VN,0

vN :=uN−wN∈V0,N
=⇒ ‖uN −wN‖a = 0

a s.p.d.
=⇒ uN − wN = 0 .
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The discrete linear variational problem (3.2.8) is set in the finite-dimensional space V0,N. Thus, unique-

ness of solutions is equivalent to existence of solutions (→ linear algebra).

If you do not like this abstract argument, wait and see the equivalence of (3.2.8) with a linear system of

equations. It will turn out that under the assumptions of the theorem, the resulting system matrix will be

symmetric and positive definite in the sense of [14, Def. 1.1.8].

The estimate (3.2.10) is immediate from setting vN := uN in (3.2.8)

|a(uN , uN)| = |ℓ(uN)| ≤ Cℓ(a(uN , uN))
1/2 .

Then cancel a square root of a(uN , uN).
✷

Recalled: second step of Galerkin discretization

Recall from Section 1.5.2: 2nd step of Galerkin discretization:

Introduce (ordered) basis BN of V0,N:

BN := {b1
N, . . . , bN

N} ⊂ VN , V0,N = Span{BN} , N := dim(V0,N) .

Unique basis representations:

uN = µ1b1
N + · · ·+ µNbN

N , µi ∈ R

vN = ν1b1
N + · · ·+ νNbN

N , νi ∈ R
: plug into (3.2.8).

Of course, there are infinitely many ways to choose the basis BN . On the one hand, Thm. 1.5.25 tells us

that

the choice of the basis does do not make a difference for the Galerkin solution uN .

On the other hand, we saw in Exp. 1.5.59 that different bases lead to (non-)linear systems with vastly

different properties.

Later in this chapter, we will take a close look at the impact of different choices of bases, see Rem. 3.2.15.

Now we repeat the derivation of (1.5.23) and, in particular, (1.5.56). Key is the bi-linearity of a,

a(α1v1 + β1u1, α2v2 + β2u2) =
α1α2 a(v1, v2) + α1β2 a(v1, u2) + β1α2 a(u1, v2) + β1β2 a(u1, u2) ,

for all ui, vi ∈ V0, αi, βi ∈ R, and the linearity of ℓ

ℓ(αu + βv) = αℓ(u) + βℓ(v) ,

for all u, v ∈ V0, α, β ∈ R, see Def. 1.3.22.

uN ∈ V0,N : a(uN , vN) = ℓ(vN) ∀vN ∈ V0,N . (3.2.8)

m[
uN = µ1b1

N + · · ·+ µNbN
N ,µi ∈ R

vN = ν1b1
N + · · ·+ νNbN

N ,νi ∈ R
]

N

∑
k=1

N

∑
j=1

µkνja(b
k
N , b

j
N) =

N

∑
j=1

νjℓ(b
j
N) ∀ν1, . . . , νN ∈ R ,
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m
N

∑
j=1

νj

(
N

∑
k=1

µka(b
k
N , b

j
N)− ℓ(b

j
N)

)
= 0 ∀ν1, . . . , νN ∈ R ,

m(∗)
N

∑
k=1

µka(b
k
N , b

j
N) = ℓ(b

j
N) for j = 1, . . . , N .

m[~µ = (µ1, . . . , µN)
⊤ ∈ RN]

A linear system of equations

A~µ = ~ϕ , with

A =
(
a(bk

N , b
j
N)
)N

j,k=1
∈ R

N,N ,

~ϕ =
(
ℓ(b

j
N)
)N

j=1
.

Note that equivalence (∗) amounts to the statement of Lemma 1.5.24.

Summary: notions connected with Galerkin discretization

Linear discrete variational problem

uN ∈ V0,N : a(uN , vN) = ℓ(vN) ∀vN ∈ V0,N

Choosing basis BN−−−−−−−−−−→
Linear system

of equations

A~µ = ~ϕ

Galerkin matrix: A =
(
a(bk

N , b
j
N)
)N

j,k=1
∈ R

N,N ,

Right hand side vector: ~ϕ =
(
ℓ(b

j
N)
)N

j=1
∈ R

N ,

Coefficient vector: ~µ = (µ1, . . . , µN)
⊤ ∈ R

N ,

Recovery of solution: uN = ∑
N

k=1
µk bk

N .

(3.2.13) Alternative (legacy) terminology

(Legacy) terminology for FEM: Galerkin matrix = stiffness matrix

Right hand side vector = load vector

Galerkin matrix for (u, v) 7→
∫

Ω
uv dx = mass matrix

This hails from the times (lates 60s and early 70s), when finite element methods were mainly applied to

solid mechanics (linear elasticity).

A consequence of the equivalence of the linear system of equations A~µ = ~ϕ and the discrete variational problem

(3.2.8).

Corollary 3.2.14.

(3.2.8) has unique solution ⇔ A nonsingular

Remark 3.2.15 (Recalled: impact of choice of basis)
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✞
✝

☎
✆Thm. 1.5.25: choice of BN in theory does not affect uN ⇒ No impact on discretization error !✞

✝
☎
✆But: Key properties (e.g., conditioning) of matrix A crucially depend on basis BN!

We have seen a striking example of the impact of the choice of basis functions in Exp. 1.5.59 (for a poly-

nomial spectral Galerkin discretization), where the “unstable” monomial basis (1.5.32) made the condition

number of the Galerkin matrix source exponentially in the problem size parameter B, whereas the stable

basis composed of integrated Legendre polynomials (1.5.33) gave only mildly growing condition numbers.

For different bases BN we get different Galerkin matrices. How are these matrices related? What do they

have in common? The next lemma gives answers:

Lemma 3.2.16. Effect of change of basis on Galerkin matrix

Consider (3.2.8) and two bases of V0,N,

BN := {b1
N , . . . , bN

N} , B̃N := {b̃1
N , . . . , b̃N

N} ,

related by the basis transformation matrix S according to

b̃
j
N =

N

∑
k=1

sjkbk
N with S = (sjk)

N
j,k=1 ∈ R

N,N regular. (3.2.17)

Then the Galerkin matrices A, Ã ∈ RN,N, the right hand side vectors~ϕ,~̃ϕ ∈ RN,

and the coefficient vectors~µ,~̃µ ∈ RN, respectively, satisfy

Ã = SAST , ~̃ϕ = S~ϕ , ~̃µ = S−T~µ . (3.2.18)

Proof. Make use of the bilinearity of a (→ Def. 1.3.22), (3.2.17) and the definition of the entries of the

Galerkin matrix:

Ãlm = a(b̃m
N , b̃l

N) =
N

∑
k=1

N

∑
j=1

smka(b
k
N , b

j
N)sl j =

N

∑
k=1

( N

∑
j=1

sl jAjk

︸ ︷︷ ︸
(SA)lk

)
smk = (SAST)lm ,

where we used the rules for the product of square matrices.
✷

Reminder of linear algebra:

Definition 3.2.19. Congruent matrices

Two matrices A ∈ RN,N, B ∈ RN,N, N ∈ N, are called congruent, if there is a regular matrix

S ∈ RN,N such that B = SAST .

Congruence is an equivalence relation on square matrices

Lemma 3.2.20. Congruent Galerkin matrices

Matrix property invariant under

congruence
⇔ Property of Galerkin matrix invariant

under change of basis BN
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(3.2.21) Properties of congruent matrices

Matrix properties invariant under congruence :

• regularity → [14, Def. 1.6.8]

• symmetry

• positive definiteness → [14, Def. 1.1.8]

Proving the invariance of these properties is straightforward from the definition of congruence.

Not invariant are ✦ sparsity and bandstructure, cf. linear finite elements (→ Section 1.5.2.2) and

spectral Galerkin (→ Section 1.5.2.1)

✦ conditioning, cf. Exp. 1.5.59

Nevertheless, these latter properties have fundamental consequences for the numerical solution of the

linear system of equations (required storage, computational effort, and impact of roundoff errors), as was

already remarked above.

?! Review question(s) 3.2.22. (Abstract Galerkin discretization)

1. Let VN ⊂ V be a finite-dimensional subspace of a normed vector space V. Show that that any best

approximant

uN ∈ argmin
vN∈VN

‖u− vN‖V

satisfies ‖uN‖V ≤ 2‖u‖V .

2. Give the formulas for the entries of the Galerkin matrix and the right hand side vector arising from

the Galerkin discretization of a linear variational problem (3.2.3).

3. Using the notations of (3.2.3) and (3.2.8) and under the assumptions of Thm. 3.2.9, show that

a(u− uN , vN) = 0 ∀vN ∈ V0 .

4. Show that the solutions u and uN of (3.2.3) and (3.2.8), respectively, satisfy

1
2a(u, u)− ℓ(u) ≤ 1

2a(uN , uN)− ℓ(uN) ,

if a is symmetric positive definite.

5. Explain the offset function trick converting (3.2.6) into the form (3.2.3); derive the modified right hand

side functional.

6. We consider a linear variational problem: seek u ∈ V0, a(u, v) = ℓ(v) for all v ∈ V0, with s.p.d.

bilinear form a(·, ·). Show that for every finite dimensional subspace V0,N ⊂ V0 there is a basis that

yields a diagonal Galerkin matrix.

7. We consider the Galerkin discretization of a linear variational: seek u ∈ V0, a(u, v) = ℓ(v) for all

v ∈ V0, with s.p.d. bilinear form a(·, ·). How do you have to modify the basis B = {b1
N, . . . , bN

N}
of a finite-dimensional subspace V0,N so that you obtain a Galerkin matrix with all diagonal entries

= 1?
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3.3 Case Study: Triangular Linear FEM in Two Dimensions

This section elaborates how to extend the linear finite element Galerkin discretization of Section 1.5.2.2 to

two dimensions. Familiarity with the 1D setting is essential for understanding the current section.

Parts of the presentation are based on a simple C++ finite element code that is available on the course Git

repository in lecture_codes/SimpleLinearFEM2D.

(3.3.1) Model problem

Initial focus: well-posed 2nd-order linear variational problem posed on H1(Ω) (→ Def. 2.3.25)

Example: Neuman problem with homogeneous Neumann data and reaction term

u ∈ H1(Ω):
∫

Ω
α(x) grad u · grad v + c(x)u v dx =

∫

Ω
f v dx ∀v ∈ H1(Ω) , (3.1.4)

m← see Section 2.5

BVP:
− div(α(x) grad u) + c(x)u = f in Ω ,

grad u · n = 0 on ∂Ω .

Remember that the reaction coefficient c = c(x) is supposed to be uniformly positive definite, see (2.2.17)

and Def. 2.2.18.

(3.3.2) Polygonal computational domain

For assumptions on the domain Ω ⊂ R
2 see § 2.2.3:

Here: Ω is a polygon

polygon with 10 corners ✄

By default, the domain Ω is assumed to be an open

set, that is, x ∈ Ω implies x 6∈ ∂Ω!

Fig. 82

Ω

3.3.1 Triangulations

Question: What is the 2D counterpart of the 1D mesh/gridM from Sect. (1.5.2.2) ?
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Fig. 83

Ω

✬

✫

✩

✪

TriangulationM of Ω satisfies

(i) M = {Ki}M
i=1, M ∈ N, Ki =̂ open triangle

(ii) disjoint interiors: i 6= j⇒ Ki ∩ Ki = ∅

(iii) tiling/partition property:

M⋃

i=1

Ki = Ω

(iv) intersection Ki ∩ K j, i 6= j,
is – either ∅

– or an edge of both triangles

– or a vertex of both triangles

✎ notation: X =̂ a subset of Rd together with its boundary (“closure”)

Parlance: vertices of triangles = nodes of mesh (= set V(M))
triangles of the mesh = cells or elements of mesh (= setM)

A mesh that does not comply with

the property (iv) from above. ✄

Parlance: • =̂ “hanging node”

Fig. 84

Ω

(3.3.3) Data describing a (triangular) triangulation in 2D

Thanks to the constraints imposed on the triangles of a triangulation with M ∈ N triangles and N vertices,

its full description requires only two matrices, see Code 3.3.4:

(I) Coordinates =̂ N × 2 matrix ∈ R
N,2 , i-th row containing the coordinates of the i-th vertex,

i ∈ {0, . . . , N − 1}
(II) Elements =̂ M× 3-matrix ∈ NM,3, j-th row containing the index numbers of the vertices of the

j-th triangle, j ∈ {0, . . . , M− 1}.
Note: A local ordering/numbering of the vertices of every triangle of the triangulation

is implicitly provided by this data structure.

(Here we follow the C++ convention of numbering objects from 0.)

The following C++ class TriaMesh2D stores this minimal information of a planar triangular mesh. This

is a rudimentary implementation; a proper object oriented design would call for many more access and
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manipulation methods. For this and all other C++ codes listed in this document a using namespace

std; is tacitly assumed.

C++ code 3.3.4: Class handling planar triangular mesh ➺ GITLAB

1 using t_Tr iGeo = Eigen : : Matrix <double ,3 ,2 > ;

2 st ruct TriaMesh2D

3 {

4 // Constructor: reads mesh data from file

5 TriaMesh2D ( const s t r i n g &f i lename ) ;

6 v i r t u a l ~TriaMesh2D ( void ) { }

7

8 // Creates EPS rendering of mesh geometry using MathGL

9 void plotMesh ( const s t r i n g &e p s f i l e , i n t drawver t ices =0) const ;

10

11 // Retrieve coordinates of vertices of a triangles as rows of a 3x2
matrix

12 t_Tr iGeo getVtCoords ( size_t i ) const ;

13

14 // Data members describing geometry and topolgy

15 Eigen : : Matrix <double , Eigen : : Dynamic ,2 > Coordinates ;

16 Eigen : : Matrix < in t , Eigen : : Dynamic ,3 > Elements ;

17 } ;

The constructor defined in Line 5 reads the mesh from a file with this

format ✄

1st line: positive integer N followed by keyword vertices, N =̂
number of vertices.

line 2↔N+1: pairs x y of reals =̂ coordinates of vertices

line N+2: positive integer M and keyword triangles, M =̂ number

of triangles.

line N+3↔N+2+M: triplets v1 v2 v3 of positive integers ∈
{1, . . . , N}, indices of vertices of triangles.

1 N vertices

2 x y

3 ....

4 x y

5 M triangles

6 v1 v2 v3

7 ....

8 v1 v2 v3

C++11 code 3.3.5: Constructor of TriaMesh2D reading mesh from file ➺ GITLAB

1 TriaMesh2D : : TriaMesh2D ( const s td : : s t r i n g &f i lename )

2 {

3 s td : : i f s t r e a m mesh_f i le ( f i lename , s td : : i f s t r e a m : : i n ) ;

4 i f ( ! mesh_f i le . good ( ) ) {

5 throw s td : : r un t ime_er ro r ( " Cannot open mesh f i l e ! F i l e n o t found " ) ;

6 return ;

7 }

8 // Read number of vertices

9 i n t nVer t ices ; mesh_f i le >> nVer t ices ;

10 char keyword [LINEMAX ] ;

11 mesh_f i le . g e t l i n e ( keyword ,LINEMAX) ;

12 i f ( ! strcmp ( keyword , " V e r t i c e s " ) ) {

13 throw s td : : r un t ime_er ro r ( " Keyword ’ V e r t i c e s ’ n o t found . Wrong

f i l e f o r m a t " ) ;

14 return ;
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15 }

16 // Read vertex coordinates

17 Coordinates . res ize ( nVer t ices , 2 ) ; i n t nV=0;

18 while ( nV<nVer t ices ) {

19 mesh_f i le >> Coordinates (nV , 0 ) ;

20 mesh_f i le >> Coordinates (nV , 1 ) ;

21 nV++;

22 }

23 // Read number of elements

24 i n t nElements ; mesh_f i le >> nElements ;

25 mesh_f i le . g e t l i n e ( keyword ,LINEMAX) ;

26 i f ( ! strcmp ( keyword , " E lements " ) ) {

27 throw s td : : r un t ime_er ro r ( " Keyword ’ E lements ’ n o t found . Wrong

f i l e f o r m a t " ) ;

28 return ;

29 }

30 // Read vertex indices of triangles

31 Elements . res ize ( nElements , 3 ) ; i n t nE=0;

32 while ( nE<nElements ) {

33 mesh_f i le >> Elements (nE , 0 ) ;

34 mesh_f i le >> Elements (nE , 1 ) ;

35 mesh_f i le >> Elements (nE , 2 ) ;

36 nE++;

37 }

38 mesh_f i le . c lose ( ) ;

39 }

The member function getVtCoords stores the coordinates

of the three vertices of a triangle in the rows of a 3× 2-

matrix:




a1
1 a1

2
a2

1 a2
2

a3
1 a3

2


 .

This format is used in the C++ code below and the fixed

size matrix data type t_triGeo is introduced for storing

triplets of triangle vertex coordinates.

Fig. 85

a1 =
[
a1

1, a1
2

]T
a2 =

[
a2

1, a2
2

]T

a3 =
[
a3

1, a3
2

]T

n1n2

n3

C++ code 3.3.6: Retrieve coordinates of vertices of a triangles as rows of a 3x2-matrix

➺ GITLAB

1 t_Tr iGeo TriaMesh2D : : getVtCoords ( size_t i ) const {

2 // Check whether valid cell index (starting from zero!)

3 assert ( i < Elements . rows ( ) ) ;

4 // Obtain numbers of vertices of triangle i

5 const Eigen : : RowVector3i i dx = Elements . row ( i ) ;

6 // Build matrix of vertex coordinates
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7 t_Tr iGeo v tc ;

8 v tc << Coordinates . row ( i dx [ 0 ] ) ,

9 Coordinates . row ( i dx [ 1 ] ) ,

10 Coordinates . row ( i dx [ 2 ] ) ;

11 return v tc ;

12 }

Example 3.3.7 (Internal array representation of 2D triangular mesh)

We consider the triangulation of the square Ω =]− 1, 1[2 drawn in Fig. 86.

Fig. 86

1

1

8

2

2

0

0

5

5

6

6

3

3

7

7

4

4

(−1, 1)

(−1,−1) (1,−1)

(1, 1)

i (xi
1, xi

2)
0 -1 1

1 -1 0

2 -1 -1

3 0 -1

4 0 0

5 1 -1

6 1 0

7 1 1

8 0 1

Matrix Coordinates

Kj Vertex indices

0 0 1 8

1 1 4 8

2 4 7 8

3 4 6 7

4 2 3 1

5 3 4 1

6 3 6 4

7 3 5 6

Matrix Elements

(Here: C++ counting, starts from 0!)

3.3.2 Linear finite element space

Recall the spline space S0
1 (M) ⊂ H1([a, b]) of piecewise linear functions on a 1D gridM with M cells,

see § 1.5.69, that was used as Galerkin trial/test space in 1D in Section 1.5.2.2.

Fig. 87

1

x1 x2 x3 · · ·a b
⇑ function ∈ S0

1,0(M)

1D linear finite element trial space on mesh M :=
{]xj−1, xj[: j = 1, . . . , M} of Ω :=]a, b[⊂ R:

V0,N = S0
1,0(M)

:=

{
v ∈ C0([a, b]): v|[xi−1,xi]

linear,

i = 1, . . . , M, v(a) = v(b) = 0

}

The goal is to generalize this space to 2D and 3D. To do so we first extend the concept of (affine) linear

scalar-valued functions.
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d = 1 d = 2

Grid/mesh cells: intervals ]xi−1, xi[, i = 1, . . . , M triangles Ki, i = 1, . . . , M

Linear functions: x ∈ R 7→ α + β · x, α, β ∈ R x ∈ R2 7→ α + β · x, α ∈ R, β ∈ R2

V0,N = S0
1 (M) :=

{
v ∈ C0(Ω): ∀K ∈ M:

v|K(x) = αK + βK · x,

αK ∈ R, βK ∈ R2, x ∈ K

}
⊂H1(Ω)

see Thm. 2.3.35

Recall that Thm. 2.3.35 tells us that a function that is piecewise (w.r.t to a “nice” partition of Ω) smooth

and bounded belongs to H1(Ω), if and only if it is continuous on the entire domain Ω. This accounts for

the requirement v ∈ C0 in the above definition.

Parlance: Functions of the form x 7→ αK + βK · x, αK ∈ R, βK ∈ R2 are called (affine) linear.

✎ notation: S0
1(M)

continuous functions, cf. C0(Ω)
Scalar functions

locally 1st degree polynomials

Fig. 88

✁ continuous piecewise affine linear function ∈
S0

1 (M) on a triangular meshM.

(Created with MATLAB function trisurf)

Remark 3.3.8 (Piecewise gradient → Section 2.3, p. 146)

Functions in S0
1 (M) will usually have kinks across intercell interfaces, which rules out global differentia-

bility. However, we can differentiate them nevertheless:

Thm. 2.3.35 ⇒ S0
1 (M) ⊂ H1(Ω), because S0

1 (M) ⊂ C0(Ω) and piecewise smooth.

⇒ for uN ∈ S0
1 (M) the gradient grad uN can be computed on each triangle as piece-

wise constant function, cf. Ex. 2.3.39.

(Easy: on K ∈ M: grad(αK + βK · x) = βK)

3.3.3 Nodal basis functions

Next goal: generalization of “tent functions”, see (1.5.70).
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1D “tent functions” [14, Ex. 3.1.8] ✄

B = {b1
N , . . . , bM−1

N } , (1.5.70)

b
j
N(xi) = δij :=

{
1 , if i = j ,

0 , if i 6= j ,
(1.5.71)

Fig. 89

1

a bx1 x2 x3 · · ·

The “nodal (value) property” condition (1.5.71) already defines a tent function in the space S0
1 (M). This

approach carries over to 2D.

Fig. 90

Idea: define (?) basis function bx
N,

x ∈ V(M), by “nodal condi-

tions”

bx
N(y) =

{
1 , if y = x ,

0 , if y ∈ V(M) \ {x} .
(3.3.9)

Is this possible ?

(3.3.10) Fixing a piecewise affine linear function

Heuristic reasoning: there is exactly one plane through three non-collinear points in R3. Moreover, the

graph of a linear function R2 7→ R is a plane.

This can be made rigorous by a little linear algebra. Let x→ α+ β · x describe the plane through (a1, v1),
(a2, v2), (a

3, v3), vi ∈ R, ai ∈ R2 not collinear. Then α, β1, β2 satisfy the linear system of equations




1 a1
1 a1

2
1 a2

1 a2
2

1 a3
1 a3

2






α
β1

β2


 =




v1

v2

v3


 , (3.3.11)

where ai =

[
ai

1
ai

2

]
. Since the points ai do not lie on a line, the vectors a2 − a1 and a3 − a1 are linearly
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independent, which ensures that (3.3.11) always has a unique solution.

➣ On a triangle K with vertices a1, a2, a3: an

(affine) linear scalar function q : K 7→ R is

uniquely determined by the values q(ai).

Fig. 91

a1 a2

a3

x1

x2

q(x)

q(a1)
q(a2)

q(a3)

Issue: Is aM-piecewise affine linear function v : Ω→ R continuous, when its vertex values are fixed?

Yes, because on each edge e of M v|e is linear and, thus, uniquely determined by its values in the

endpoints of e, see Fig. 91 for an illustration. As a consequence, v has the same value on e no matter

from which side it is approached.

vN ∈ S0
1 (M) uniquely determined by {vN(x), x node ofM}!

dimS0
1 (M) = ♯V(M) (V(M) = set of nodes (= vertices of triangles) ofM)

Note: it is the condition (iv) on a valid triangulation that has made possible the construction of the basis

function bx
N for each x ∈ V(M); no simple basis functions could be associated with the red vertices in

Fig. 84.

Now we have found the perfect 2D counterpart of the tent function basis (→ Fig. 37, (1.5.71)) of the linear

finite element space in 1D:

Nodal basis of S0
1 (M): “tent functions”

Writing V(M) = {x1, . . . , xN}, the nodal basis BN := {b1
N, . . . , bN

N} of

S0
1 (M) is defined by the conditions

bi
N(x

j) =

{
1 , if i = j ,

0 else,
i, j ∈ {1, . . . , N} .

(3.3.13)

Ordering (↔ numbering) of nodes assumed !
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Piecewise linear nodal basis function

(“hat function”/ “tent function”)

uN =
N

∑
i=1

µib
i
N ∈ S0

1 (M)

coefficient µj = “nodal value” of uN at j-th
node ofM

uN(x
j) = µj

Fig. 92

1

(3.3.14) Linear finite element space for homogeneous Dirichlet problem

Recall that the Dirichlet problem with homogeneous boundary conditions u|∂Ω = 0 is posed on the

Sobolev space H1
0(Ω) (→ Def. 2.3.23), see (2.4.5), Ex. 2.9.2.

This leads to a “formal” characterization:

Galerkin space for homogeneous Dirichlet b.c.: V0,N = S0
1,0(M) := S0

1 (M)∩H1
0(Ω)

Notation: S0
1,0(M) zero on ∂Ω, cf. H1

0(Ω)

Fortunately, this space can immediately be obtained from S0
1 (M) by dropping basis functions on the

boundary:

S0
1,0(M) = Span{bj

N : xj ∈ Ω (interior node !)}

dimS0
1,0(M) = ♯{x ∈ V(M): x 6∈ ∂Ω}

Fig. 93

Ω

✁ “Location” of nodal basis functions:

(meshM→ Fig. 83)

•, • → nodal basis functions of S0
1 (M)

• → nodal basis functions of S0
1,0(M)

Bottom line: the linear finite element trial/test space contained in H1
0(Ω) is obtained by dropping all

“tent functions” that do not vanish on ∂Ω from the basis.
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3.3.4 Sparse Galerkin matrix

Already for linear finite element Galerkin discretization in one dimension in Section 1.5.2.2 the tridiagonal

structure of the Galerkin matrices (1.5.88) caught our attention. Will Galerkin matrices in 2D also turn out

to be banded?

Thus, now we study the filling pattern of the Galerkin matrix arising from the discretization of a 2nd-order

scalar linear elliptic variational problem with linear finite elements. By filling pattern we mean the number

and location of non-zero entries of that matrix. It will turn out that Galerkin matrices are always sparse,

that is, most of their entries vanish.

(3.3.15) Model variational problem

Now: a =̂ any (symmetric) bilinear form occurring in a linear 2nd-order variational problem, most general

form

a(u, v) :=
∫

Ω

(α(x) grad u) · grad v + c(x)u v dx =
∫

∂Ω

h v dS , u, v ∈ H1(Ω) . (3.3.16)

b
j
N =̂ nodal basis function assciated with vertex xj of triangulationM of Ω, see Section 3.3.3.

Note: a symmetric ⇒ symmetric Galerkin matrix

Now, for the “tent” basis functions bi
N of S0

1 (M) from (3.3.13), we study the sparsity (→ [14, ??]) of the

Galerkin matrix

A :=
(
a(b

j
N , bi

N)
)N

i,j=1
∈ R

N,N , N := dimS0
1 (M) = ♯V(M) ,

as introduced in Section 3.2.

The consideration are fairly parallel to those that made us understand that the Galerkin matrix for the 1D

case was tridiagonal, see (1.5.77). Again, a key concept is that of the support of a function as defined in

Def. 1.5.76. We first examine the possible relative locations of the supports of two nodal basis functions.

Fig. 94

xi

xj

Ω

Fig. 95

Ω

xi

xj
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{
Nodes xi, xj ∈ V(M)

not connected by an edge
⇔ Vol(supp(bi

N) ∩ supp(b
j
N)) = 0

}
⇒ (A)ij = 0 .

Lemma 3.3.17. Sparsity of Galerkin matrix

There is constant C > 0 depending only on the topology of Ω, that is, the number of “holes” in it,

such that for any triangular meshM of Ω (N := ♯V(M) = number of vertices)

♯{(i, j) ∈ {1, . . . , N}2: (A)ij 6= 0} ≤ 7 · N + C ,

where A is any Galerkin matrix arising from a discretization of a 2nd-order linear scalar elliptic

variational problem with linear finite elements.

Proof. We rely on Euler’s formula for triangulations.

♯M− ♯E(M) + ♯V(M) = χΩ , χΩ = Euler characteristic of Ω .

Note that χΩ is a topological invariant (alternating sum of Betti numbers).

By combinatorial considerations (traverse edges and count triangles):

2 · ♯EI(M) + ♯EB(M) = 3 · ♯M ,

where EI(M), EB(M) stand for the sets of interior and boundary edges ofM, respectively.

♯EI(M) + 2♯EB(M) = 3(♯V(M) − χΩ) .

Then use

N = ♯V(M) , nnz(A) ≤ N + 2 · ♯E(M) ≤ 7 · ♯V(M)− 6χΩ ,

which yields the assertion for any triangulation.
✷

Recall from [14, Notion 1.7.1] (not a definition in a rigorous mathematical sense):

Notion 3.3.18. Sparse matrix

A ∈ K
m,n, m, n ∈ N, is sparse, if

nnz(A) := #{(i, j) ∈ {1, . . . , m} × {1, . . . , n}: aij 6= 0} ≪ mn .

Sloppy parlance: matrix sparse :⇔ “almost all” entries = 0 /“only a few percent of” entries 6= 0

Galerkin discretization of a 2nd-order linear variational problems

utilizing the nodal basis of S0
1 (M)/S0

1,0(M)
leads to sparse linear systems of equations.

Example 3.3.19 (Sparse Galerkin matrices)
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M = triangular mesh, V0,N = S0
1,0(M), homogeneous Dirichlet boundary conditions, linear 2nd-order

scalar elliptic differential operator.

Fig. 96
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nz = 2670

Resulting sparsity pattern of Galerkin matrix

Recall: visualization of sparsity pattern by means of MATLAB’s spy-command, by which Fig. 97 was

created.

3.3.5 Computation of Galerkin matrix

Now we learn efficient algorithm for computing the non-zero entries of the sparse finite element Galerkin

matrix.

(3.3.20) Model variational prolem

For sake of simplicity consider

a(u, v) :=
∫

Ω

grad u · grad v dx , u, v ∈ H1
0(Ω) .

and Galerkin discretization based on

• triangular mesh, see Section 3.3.1, set of vertices {xi} = V(M),

• discrete trial/test space S0
1,0(M) ⊂ H1

0(Ω),

• nodal basis BN =
{

b
j
N

}
according to (3.3.9).

Entries of the Galerkin matrix A:

(A)i,j = a(b
j
N, bi

N) =
∫

Ω

grad b
j
N · grad bi

N dx

Section 3.3.4: when computing (A)i,j we need deal only with the situations, where xi, xj ∈ V(M)
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(i) are connected by an edge of the triangulation,

(ii) coincide,

because in all other cases the matrix entries are known to vanish a priori. We first elaborate the case (i):

Idea:
“Assembly”

(add up cell contributions)

(A)ij =
∫

K1

grad b
j
N |K1
· grad bi

N |K1
dx+

∫

K2

grad b
j
N |K2
· grad bi

N |K2
dx

Fig. 98

K1

K2

xi

xj

Zero in on single triangle K ∈ M:

aK(b
j
N , bi

N) :=
∫

K
grad b

j
N |K · grad bi

N |K dx , xi, xj vertices of K . (3.3.21)

Use analytic representation for bi
N |K: if a1, a2, a3 vertices of K, λi := b

j
N |K, ai = xj

(i↔ local vertex number, j↔ global node number)

Fig. 99

Restrictions λ1, λ2, λ3 of p.w. linear nodal basis functions of S0
1 (M) to triangle K

The functions λ1, λ2, λ3 on the triangle K are also known as barycentric coordinate functions. They owe

their name to the fact that they can be regarded as “coordinates of a point with respect to the vertices of a

triangle” in the sense that

x = λ1(x)a
1 + λ2(x)a

2 + λ3(x)a
3 .

The attribute “barycentric” is related to barycenter = center of gravity, which has barycentric coordinates

(1
3 , 1

3 , 1
3).

They provide the nonzero restrictions of 2D tent functions to triangles, see Fig. 92.
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λ1(x) =
1

2|K|
(

x− a2
)
·
(

a2
2 − a3

2
a3

1 − a2
1

)
= − |e1|

2|K| (x− a2) · n1 ,

λ2(x) =
1

2|K|
(

x− a3
)
·
(

a3
2 − a1

2
a1

1 − a3
1

)
= − |e2|

2|K| (x− a3) · n2 ,

λ3(x) =
1

2|K|
(

x− a1
)
·
(

a1
2 − a2

2
a2

1 − a1
1

)
= − |e3|

2|K| (x− a1) · n3 .

(ei = edge opposite vertex ai, see Figure for numbering

scheme ✄)
Fig. 100

a1 =
[
a1

1, a1
2

]⊤
a2 =

[
a2

1, a2
2

]⊤

a3 =
[
a3

1, a3
2

]⊤

ω1
ω2

ω3
n1n2

n3

From the distance formula for a point w.r.t. to a line given in Hesse normal form:

(ai − a j) · ni = dist(ai; ei) = hi (hi =̂ height) and 2|K| = |ei|hi ⇒ λi(a
i) = 1.

This shows that the λi really provide the restrictions of p.w. linear nodal basis functions (tent functions) of

S0
1 (M) to triangle K, because they are clearly (affine) linear and comply with (3.3.9).

grad λ1 = − |e1|
2|K| n1 =

1

2|K| (a
2 − a3)⊥ =

1

2|K|

[
a2

2 − a3
2

a3
1 − a2

1

]
,

grad λ2 = − |e2|
2|K| n2 =

1

2|K| (a
3 − a1)⊥ =

1

2|K|

[
a3

2 − a1
2

a1
1 − a3

1

]
,

grad λ3 = − |e3|
2|K| n3 =

1

2|K| (a
1 − a2)⊥ =

1

2|K|

[
a1

2 − a2
2

a2
1 − a1

1

]
.

Here x⊥ for x ∈
[

x1

x2

]
indicates rotation by π/2 clockwise: x⊥ :=

[
x2

−x1

]
.

grad λ1 · grad λ2 =
1

4|K|2 (a
3 − a2) · (a1− a3) , grad λ1 · grad λ1 =

1

4|K|2 (a
3 − a2) · (a3 − a2) ,

grad λ1 · grad λ3 =
1

4|K|2 (a
3 − a2) · (a2− a1) , grad λ2 · grad λ2 =

1

4|K|2 (a
1 − a3) · (a1 − a3) ,

grad λ2 · grad λ3 =
1

4|K|2 (a
1 − a3) · (a2− a1) , grad λ3 · grad λ3 =

1

4|K|2 (a
2 − a1) · (a2 − a1) .

(3.3.22)

Use area formula |K| = 1
2 |e2||e3| sin ω1 = 1

2 |e1||e3| sin ω2 = 1
2 |e1||e2| sin ω3:

(∫

K
grad λi · grad λj dx

)3

i,j=1

=

1

2




cot ω3 + cot ω2

element (stiffness) matrix AK

− cot ω3 − cot ω2

− cot ω3 cot ω3 + cot ω1 − cot ω1

− cot ω2 − cot ω1 cot ω2 + cot ω1


 .

(3.3.23)

The local numbering and naming conventions are displayed in Fig. 100.
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Derivation of (3.3.23), see also [15, Lemma 3.47]: obviously, because the gradients grad λi are constant

on K,

a(λi, λj) =
∫

K

grad λi · grad λj dx =
1

4|K| |ei||ej| ni · nj .

Then use:
✦ ni · nj = cos(π − ωk) = − cos ωk, (i 6= j)

✦ |K| = 1

2
|ei||ej| sin ωk, (i 6= j).

Case i = j employs a trick:

3

∑
i=1

λi = 1 ⇒
3

∑
i=1

aK(λi, λj) = 0 ⇒ a(λi, λi) = −∑
j 6=i

a(λi, λj) .

Remark 3.3.24 (Alternative computation of element matrix for −∆)

From (3.3.11) we conclude that the coefficients in the representation λi(x) = αi + βi · x of the barycentric

coordinate functions λ1, λ2, λ3 on a triangle with vertices a1, a2, a3 satisfy




1 a1
1 a1

2
1 a2

1 a2
2

1 a3
1 a3

2






α1 α2 α3

β1
1 β2

1 β3
1

β1
2 β2

2 β3
2


 =




1 0 0
0 1 0
0 0 1


 . (3.3.25)

Observe that grad λi = βi, which explains, why Code 3.3.26 computes the gradients of the barycentric

coordinate functions:

C++ code 3.3.26: Computation of gradients of barycentric coordinate functions on a triangle

➺ GITLAB

1 Eigen : : Matrix <double , 2 , 3> gradbarycoordinates ( const t_Tr iGeo&

Ver t i ces )

2 {

3 // Argument Vertices passes the vertex positions of the triangle

4 // as the rows of a 3× 2-matrix, , see Code 3.3.6..

5 // The function returns the components of the gradients as the

6 // columns of a 2× 3-matrix

7

8 // Computation based on (3.3.25), solving for the

9 // coefficients of the barycentric coordinate functions.

10 Eigen : : Matrix <double , 3 , 3> X; // Temporary matrix

11 X. block <3 , 1 >(0 , 0) = Eigen : : Vector3d : : Ones ( ) ;

12 X. block <3 , 2 >(0 , 1) = Ver t i ces ;

13 return X. inverse ( ) . block <2 , 3 >(1 , 0) ;

14 }

This suggests an efficient way to compute the element matrix AK given in (3.3.23). That formula should

not be implemented, because computing the angles and, subsequently, their cot is very expensive.
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C++ code 3.3.27: Computation of element matrix for −∆ on a triangle and for linear La-

grangian finite elements ➺ GITLAB

1 Eigen : : Matr ix3d ElementMatrix_Lapl_LFE ( const t_Tr iGeo& V)

2 {

3 // Argument V same as Vertices in Code 3.3.26.

4 // The function returns the 3× 3 element matrix as a fixed size

5 // EIGEN matrix.

6

7 // Evaluate (3.3.21), exploiting that the gradients are constant.

8 // First compute the area of triangle by determinant formula

9 const double area = 0.5∗ s td : : abs (

10 (V(1 ,0 )−V(0 ,0 ) ) ∗ (V(2 ,1 )−V(1 ,1 ) )−(V(2 ,0 )−V(1 ,0 ) ) ∗ (V(1 ,1 )−V(0 ,1 ) ) ) ;

11 // Get gradients of barycentric coordinate functions, see Code 3.3.26

12 const Eigen : : Matrix <double ,2 ,3 > X = gradbarycoordinates (V) ;

13 // Compute inner products of gradients through matrix multiplication

14 return area∗X. transpose ( ) ∗X;

15 }

Remark 3.3.28 (Scaling of entries of element matrix for −∆)

When we scale a mesh, we subject all cells to a uniform dilation. Let us elaborate, how entries of the

Galerkin matrix change in the process.

An observation:

(3.3.23) ➣ AK does not depend on the “size” of triangle K!

(more precisely, element matrices are equal for similar triangles)

This can be seen by the following reasoning:

• Obviously translation and rotation of K does not change. AK

• Scaling of K by a factor ρ > 0 has the following effect that

– the area |K| is scaled by ρ2,

– the gradients grad λi are scaled by ρ−1 (the barycentric coordinate functions λi become

steeper when the triangle shrinks in size.).

Both effects just offset in aK from (3.3.21) such that AK remains invariant under scaling.

Note, however: it is different in 3D (what is the scaling there?)

Now we tackle the computation of the big Galerkin matrix. This so-called “assembly” of (A)ij starts from

the sum

(A)ij =
∫

K1

grad b
j
N |K1
· grad bi

N |K1
dx +

∫

K2

grad b
j
N |K2
· grad bi

N |K2
dx .
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➣ (A)ij can be obtained by summing respective(∗) entries of the elements matrices of the elements

adjacent to the edge connecting xi and xj

(∗): watch correspondence of local and global vertex numbers !

When we use (3.3.23), we origin of the matrix entry (A)ij, i 6= j, can be visualized as follows:

Fig. 101

➊

➋

➌

➊

➋

➌

K1

K2

xi

xj



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗






∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




+

(A)ij by summing entries of two element matrices

Next we look at the “assembly” of the diagonal entry (A)ii of the Galerkin matrix A. It can be obtained by

summing corresponding diagonal entries of element matrices belonging to triangles adjacent to node xi.

Fig. 102



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗






∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗






∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗






∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗






∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




➀

➁

➂

➀

➁

➂

➀

➁

➂

➀

➁

➂

➀ ➁

➂

xi

(A)ii by summing diagonal entries of element matrices of adjacent triangles
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(3.3.29) Assembly algorithm for linear Lagrangian finite elements

Assume:
✦ numbering of nodal basis functions ↔ numbering of mesh vertices ∈ V(M)
✦ numbering of triangles (cells) of meshM = {K1, . . . , KM}, M := ♯M
✦ (local) numbering of the vertices of every triangle K ∈ M

The adding up of entries of element matrices illustrated in Fig. 101 and Fig. 102 might suggest the following

implementation (pseudo-code) of the “collect approach” visualized in Fig. 101 and Fig. 102.

Pseudocode 3.3.30: Vertex-centered assembly of Galerkin matrix for linear finite elements

foreach e ∈ E(M) (✎ notation: E(M) =̂ set of edges ofM)

(i, j) =̂ vertex numbers of endpoints of e
(A)i,j ← 0, (A)j,i ← 0,

foreach triangle K adjacent to e
find local numbers l, m ∈ {1, 2, 3} of endpoints of e
(A)i,j ← (A)i,j + (AK)l,m → Fig. 101, AK from (3.3.23)

(A)j,i ← (A)j,i + (AK)m,l → Fig. 101, AK from (3.3.23)

endfor

endfor

foreach v ∈ V(M)
j =̂ number of vertex v
(A)j,j ← 0
foreach triangle K adjacent to v

l =̂ local number of v in K
(A)j,j ← (A)j,j + (AK)l,l → Fig. 102, AK from (3.3.23)

endfor

endfor

This algorithm will strain the capabilities of the simple data structures available in a mesh object of type

TriaMesh2D, because it requires information about the edges of the mesh. There is a dual way of orga-

nizing assembly, which needs only the basic topology and geometry information stored in TriaMesh2D,

see Code 3.3.4.

Cell oriented assembly

However, a much simpler implementation can be achieved by adopting the perspective of cell ori-

ented assembly (“collect scheme”): instead of traversing edges and vertices as in the above algo-

rithm and collecting entries of element matrices of adjacent triangles, we loop over all triangles and

distribute entries of their element matrices to their vertices and edges.

(3.3.32) Index mapping for linear finite elements on triangular mesh

Invariably, cell oriented assembly entails knowing the global number of the basis functions associated with

the vertices of each triangle. This information must be provided in an easily accessible form:

Data structure: dofh ∈ N♯M,3: local→global index mapping array: “d.o.f. mapper”

dofh(k, l) = global number of vertex l of k-th cell

xdofh(k,l) = al when a1, a2, a3 are the vertices of Kk ,
(3.3.33)
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for l ∈ {1, 2, 3}, k ∈ {1, . . . , N}, N = ♯V(M) (“mathematical indexing”!).

We assume that the triangulation is encoded in the data members Coordinates∈ RN,2 and Elements

∈ NM,3 of an object Mesh of type TriaMesh2D as explained in § 3.3.3.

➣ simple realization of index mapping: dofh(k,l) := Mesh.Elements(k-1,l-1)

(C++ indexing used for accessing entries of EIGEN matrices!)

The use of index mapping in the context of assembly of a finite element Galerkin matrix will be discussed

in more generality and detail in Section 3.6.4.

Example 3.3.34 (Index mapping by d.o.f. mapper)

Fig. 103 displays a small planar triangulation, complete with all local and global index numbers of the

vertices and the index numbers of the triangles. On the right the corresponding dofh-array complying

with (3.3.33) is displayed (“mathematical indexing”).

Fig. 103
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K1

K2

K3

K4

K5 K6

K7

K8

K9 K10

K11 K12

K13 K14

K15 K16

K17

K18
1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

dofh:

K1 1 2 5

K2 2 5 6

K3 2 3 6

K4 4 5 8

K5 8 9 5

K6 9 5 10

K7 5 6 10

K8 10 6 11

K9 6 7 11

K10 7 11 12

K11 9 10 13

K12 13 10 14

K13 10 11 14

K14 14 11 15

K15 11 12 15

K16 12 15 16

K17 1 4 5

K18 6 3 7

In Fig. 103, for cell K8: element matrix AK contributes to A([10 6 11],[10 6 11])
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The algorithmic details of cell-oriented as-

sembly are remarkably simple and illus-

trated by the following pseudocode. It

takes for granted information about a tri-

angular mesh to be available in an ob-

ject named mesh of a type similar to Tri-

aMesh2D, see § 3.3.3 and, in particular,

Code 3.3.4.

• ↔ edges, to which we can formally as-

sociate off-diagonal entires of the

Galerkin matrix. ✄

• ↔ vertices, carrying diagonal entries of

the Galerkin matrix, local numbering

given. ✄

→ =̂ “contributes to”
Fig. 104

➊

➋

➌




a11 a12 a13

a21 a22 a23

a31 a32 a33




Pseudocode 3.3.35: Assembly of finite element Galerkin matrix for linear finite elements

SparseMatrix A ∈ RN,N, N := ♯V(M) (number of vertices)

A := O;

for i = 1 to N do

K ← mesh.getVtCoords(i)
AK ← getElementMatrix(K);
A(dofh(i, :), dofh(i. :)) + = AK;

endfor

We have resorted to MATLAB syntax to express the filling of the matrix A in a compact manner:

A(dofh(i, :), dofh(i. :)) is the 3× 3 submatrix of A corresponding to the vertices of triangle ♯i.

Note: Homogeneous Dirichlet boundary conditions are not taken into account in Code 3.3.35

Code 3.3.35 demonstrates a fundamental paradigm in the implementation of finite element Galerkin

schemes for variational problems connected with partial differential equations: loops generally run

over the mesh cells and, if possible, computations are carried out on the level of the mesh cells,

which usually, results in optimal (∗) computational effort. For Code 3.3.35 this means the following.

Computational effort = O(♯M)

(∗): computational cost for assembly that is linearly proportional to the number of nonzero entries

of the Galerkin matrix is considered optimal.

A concrete C++ implementation of Code 3.3.35 is given next. The function argument Mesh refers to

an object of TriaMesh2D describing the triangulation in the form of the Coordinates and Elements

matrices according to § 3.3.3. The parameter getElementMatrixmust contain a function that expects

a 3× 2-matrix of vertex coordinates and returns a 3× 3 element matrix. The function returns a sparse

N × N-matrix, where N = ♯V(M) is the number of vertices of the mesh.
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C++ code 3.3.36: Cell-oriented assembly of Galerkin matrix for linear finite elements on a

triangular mesh ➺ GITLAB

1 // Functor referencing a function for the computation of the element

2 // matrices like ElementMatrix_Lapl_LFE from Code 3.3.27.

3 typedef f unc t ion <Eigen : : Matr ix3d ( const t_Tr iGeo &)>

LocalMatr ixHandle_t ;

4

5 Eigen : : SparseMatr ix <double> assembleGalMatLFE (

6 const TriaMesh2D& Mesh ,

7 const LocalMatr ixHandle_t & getElementMatrix ) {

8 // Fetch the number of vertices

9 i n t N = Mesh . Coordinates . rows ( ) ;

10 // Fetch the number of elements/cells, see § 3.3.3

11 i n t M = Mesh . Elements . rows ( ) ;

12 //create empty sparse Galerkin matrix A

13 Eigen : : SparseMatr ix <double> A(N,N) ;

14 // Loop over elements and “distribute” local contributions

15 for ( i n t i = 0 ; i < M; i ++) {

16 //get local→global index mapping for current element, cf.

(3.3.33)

17 Eigen : : Vec to r3 i dofhk = Mesh . Elements . row ( i ) ;

18 t_Tr iGeo Ver t i ces ;

19 //extract vertices of current element, see § 3.3.3

20 for ( i n t j = 0 ; j < 3 ; j ++)

21 Ver t i ces . row ( j ) = Mesh . Coordinates . row ( dofhk ( j ) ) ;

22 // Compute 3× 3 element matrix AK

23 Eigen : : Matr ix3d Ak = getElementMatrix ( Ve r t i ces ) ;

24 // Add local contribution to Galerkin matrix

25 for ( i n t j = 0 ; j < 3 ; j ++)

26 for ( i n t k = 0; k < 3; k++)

27 A. coef fRef ( dofhk ( j ) , dofhk ( k ) ) += Ak ( j , k ) ;

28 }

29 A. makeCompressed ( ) ;

30 return A;

31 }

! Regard Code 3.3.36 as “C++ pseudo-code”: in actual implementation A must be initialized differently

(→ Rem. 3.3.37), because random Lvalue access to entries of a sparse matrix in CRS format in Line 27

might be inefficient.

Remark 3.3.37 (Efficient assembly of sparse Galerkin matrices (in MATLAB))

Entry-by-entry initialization of a sparse matrix as in Code 3.3.35 involves huge hidden effort for moving data

in memory, because sparse matrices are usually stored in CRS/CCS format, which exploits knowledge

about vanishing matrix entries. An more detailed presentation is given in [14, Section 1.7.3] and [12].

More efficient initialization can be achieved by using an intermediate triplet/coordinate list (COO) format,

see [14, § 1.7.6]. first store the N × N matrix as a vector of triplets (i, j, aij), i, j ∈ {1, . . . , N}, which

allows adding entries with little effort, and finally compute the more economical CRS/CCS format. How to
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do it in EIGEN is explained in [14, Section 1.7.3]. Triplet initialization is used in the following assembly code

Code 3.3.38, which is an algebraically equivalent implementation of the function assembleGalMatLFE

from Code 3.3.36.

C++ code 3.3.38: Efficient assembly of Galerkin matrix for linear finite elements on a triangu-

lar mesh ➺ GITLAB

1 Eigen : : SparseMatr ix <double> assembleGalMatLFE (

2 const TriaMesh2D& Mesh ,

3 const LocalMatr ixHandle_t & getElementMatr ix ) {

4 //obtain the number of vertices

5 i n t N = Mesh . Coordinates . rows ( ) ;

6 //obtain the number of elements/cells

7 i n t M = Mesh . Elements . rows ( ) ;

8 vector <Eigen : : T r i p l e t <double> > t r i p l e t s ;

9 //loop over elements and add local contributions

10

11 for ( i n t i = 0 ; i < M; i ++) {

12 //get local→global index mapping for current element, cf.

(3.3.33)

13 Eigen : : Vec to r3 i element = Mesh . Elements . row ( i ) ;

14 t_Tr iGeo Ver t i ces ;

15 //extract vertices of current element, see § 3.3.3

16 for ( i n t j = 0 ; j < 3 ; j ++) {

17 Ver t i ces . row ( j ) = Mesh . Coordinates . row ( element ( j ) ) ;

18 }

19 //compute element contributions

20 Eigen : : Matr ix3d Ak = getElementMatr ix ( Ve r t i ces ) ;

21 //build triplets from contributions

22 for ( i n t j = 0 ; j < 3 ; j ++) {

23 for ( i n t k = 0; k < 3; k++) {

24 t r i p l e t s . push_back ( { element ( j ) , element ( k ) , Ak ( j ,

k ) } ) ;

25 }

26 }

27 }

28 //build sparse matrix from triplets

29 Eigen : : SparseMatr ix <double> A(N, N) ;

30 A. se tF romTr ip le ts ( t r i p l e t s . begin ( ) , t r i p l e t s . end ( ) ) ;

31 A. makeCompressed ( ) ;

32 return A;

33 }

As demonstrated in [11], even an utterly loop-free implementation is possible!

Example 3.3.39 (Impact of efficient initialization of sparse Galerkin matrix)

Code 3.3.35 is algebraically equivalent to Code 3.3.38, but much slower.

3. Finite Element Methods (FEM), 3.3. Case Study: Triangular Linear FEM in Two Dimensions 208

https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/assemblyStiffness.cpp


NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Comparison of runtimes of assembly of Galerkin ma-

trices for −∆ (bilinear form from § 3.3.20) on triangu-

lar meshes with different numbers of elements.

Computation of element matrices by Code 3.3.38

and Code 3.3.36, timing by C++ sys/time.h rou-

tines, minimal time over 10 runs,

(OS: Linux Fedora 22, CPU: AMD Opteron 6174,

Compiler: c++, optimization flag -O3.)

Fig. 105

We observe that for large matrices the triplet based initialization is significantly faster.

3.3.6 Computation of right hand side vector

(3.3.40) Model right hand side linear form

We consider the linear form (right hand side of linear variational problem), see (2.4.5), (3.1.4):

ℓ(v) :=
∫

Ω
f (x) v(x)dx , v ∈ H1(Ω) , f ∈ L2(Ω) .

Recall formula for right hand side vector, N = dim VN,0, B = {b1
N , . . . , bN

N} =̂ tent function basis, see

(3.3.13),

(~ϕ)j = ℓ(b
j
N) =

∫

Ω
f (x) b

j
N(x)dx , j = 1, . . . , N . (3.3.41)

Considerations parallel to Section 3.3.5: splitting of right hand side linear form into cell contributions, cf.

(3.3.21), page 199, for similar approach to the bilinear form a.

Idea: “Assembly”

(~ϕ)j =

Nj

∑
l=1

∫

Kl

f (x) b
j
N |Kl

(x)dx ,

where K1, . . . , KNj
=̂ triangles

adjacent to node xj.

(Integration confined to

supp(b
j
N)!) Fig. 106

K1

K2 K3

K4

K5

xj

Zero in on single triangle K ∈ M:

ℓK(b
j
N) :=

∫

K

f (x) b
j
N |K(x)dx = ℓK(λi) , xj vertex of K , (3.3.42)
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where λi is the barycentric coordinate function associated with (local) vertex i of the triangle and j =
dofh(k, i), with k the (global) number of the triangle K and dofh defined in (3.3.33) on page 204. Recall

that in this case b
j
N |K = λi.

As above in Fig. 102: Entries of the right hand side vector can be obtained by summing up the values

that the localized right hand side functionals ℓK return for barycentric coordinate functions: This can be

expressed through the vertex-oriented formula (“collect scheme”)

(~ϕ)j = ∑
K,i:dofh(k,i)=j

ℓK(λi) . (3.3.43)

Here: k↔ global index of triangle K

Fig. 107
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However, implementation according to this formula would emulate the cumbersome algorithm on page

204 for the computation of the Galerkin matrix.

As in Section 3.3.5, § 3.3.29, we aim to compute ~ϕ in a cell-oriented fashion (“distribute scheme”), as in

Code 3.3.35.

To that end we need a counterpart of the element (stiffness) matrix from (3.3.23), the

element (load) vector : ~ϕK := (ℓK(λi))
3
i=1 ∈ R

3 , (3.3.44)

which is obtained by plugging the restrictions of basis functions to an element into that part of the right

hand side linear form belonging to the element.
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Cell-oriented “assembly” of (~ϕ)j by summing

up contributions from element vectors of trian-

gles adjacent to xj (Nj =̂ no. of triangles abut-

ting xj)

(~ϕ)j =

Nj

∑
l=1

ℓKl
(b

j
N |Kl

) =

Nj

∑
l=1

(~ϕK)i(l,j) , (3.3.45)

where i(l, j) is the local vertex index of the node xj

(global index j) in the triangle Kl .

Note: with index array dofh from § 3.3.29:

dofh(l, i(l, j)) = j
Fig. 108
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Remark 3.3.46 (Assembly of right hand side vector for linear finite elements → § 3.3.29)

Entries of element load vectors from triangles sharing a vertex are summed up, see Fig. 107 for illustration

and Code 3.3.47 for implementation of this cell-oriented assembly.

The argument Mesh passes a reference to an object of type TriaMesh2D, see Code 3.3.4 for the class

definition, the argument getElementVector is a functor whose evaluation operator

(i) takes the geometry of a triangle in the form of a 3× 2 coordinate matrix and returns the element

load vector as defined in (3.3.45),

(ii) accepts a handle to a function R2 → R, which provides the source function f .

C++ code 3.3.47: Cell-oriented assembly of right hand side vector for linear finite elements,

see (3.3.45) ➺ GITLAB

1 typedef f unc t ion <double ( const Eigen : : Vector2d &)> FHandle_t ;

2 typedef f unc t ion <Eigen : : Vector3d ( const t_Tr iGeo &,FHandle_t ) >

LocalVectorHandle_t ;

3

4 Eigen : : VectorXd assemLoad_LFE ( const TriaMesh2D &Mesh ,

5 const LocalVectorHandle_t &getElementVector ,

6 const FHandle_t &FHandle )

7 {

8 // Obtain the number of vertices and cells (elements)

9 i n t N = Mesh . Coordinates . rows ( ) ;

10 i n t M = Mesh . Elements . rows ( ) ;

11 // Initialize right hand side vector with zero.

12 Eigen : : VectorXd ph i = Eigen : : VectorXd : : Zero (N) ;

13

14 // Loop over elements and “distribute” local contributions

15 for ( i n t i = 0 ; i < M; i ++) {

16 // get local→global index mapping for current element,

17 // cf. (3.3.33)

18 Eigen : : Vector3i dofhk = Mesh . Elements . row ( i ) ;

19 t_Tr iGeo Ver t i ces ;

20 // Extract geometry of current element, see § 3.3.3
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21 for ( i n t j = 0 ; j < 3 ; j ++)

22 Ver t i ces . row ( j ) = Mesh . Coordinates . row ( dofhk ( j ) ) ;

23 //compute element right hand side vector

24 Eigen : : Vector3d p h i l o c = getElementVector ( Ver t ices , FHandle ) ;

25 //add contributions to global load vector

26 for ( i n t j = 0 ; j < 3 ; j ++)

27 ph i ( dofhk ( j ) ) += p h i l o c ( j ) ;

28 }

29 return ph i ;

30 }

Same as in Code 3.3.35, also Code 3.3.47 employs only a loop over all cells of the mesh (cell oriented

assembly ), again resulting in optimal computational effort O(♯M).

(3.3.48) Numerical quadrature for assembly of right hand side vector

Recall Rem. 1.5.5: f : Ω 7→ R given in procedural form

t ypedef function<double(const Eigen::Vector2d &)> FHandle_t;

Mandatory: use of numerical quadrature for approximate evaluation of ℓK(b
j
N), cf. (1.5.80).

In the 1D setting of Section 1.5.2.2 we used composite quadrature rules based on low order Gauss/Newton-

Cotes quadrature formulas on the cells [xj−1, xj] of the grid, e.g. the composite trapezoidal rule (1.5.80).

What is the 2D counterpart of the composite trapezoidal rule ?

Recall:

trapezoidal rule [14, Eq. (5.2.5)] integrates linear in-

terpolant of integrand based on endpoint values

Fig. 109
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Idea: 2D trapezoidal rule

for triangle K with vertices a1, a2, a3

∫

K
f (x)dx ≈ |K|

3
( f (a1) + f (a2) + f (a3)) . (3.3.49)

=̂ integration of linear interpolant ∑
3
i=1 f (ai)λi of f .
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element (load) vector: ~ϕK :=
(
ℓK(b

j(i)
N

∣∣∣
K
)
)3

i=1
= (ℓK(λi))

3
i=1 ≈

|K|
3




f (a1)
f (a2)
f (a3)


 , (3.3.50)

where xj(i) = ai, i = 1, 2, 3 (global node number↔ local vertex number).

The following code relies on (??) to compute the element load vector for an arbitrary triangle, whose vertex

coordinates are passed as rows of a 3× 2-matrix, cf. ??. The source function f is made available through

a functor object.

C++ code 3.3.51: (Approximate) computation of element load vector by means of 2D trape-

zoidal local quadrature rule (3.3.50) ➺ GITLAB

1 // Functor type for right hand side source function

2 typedef f unc t ion <double ( const Eigen : : Vector2d &)> FHandle_t ;

3

4 Eigen : : Vector3d localLoadLFE ( const t_Tr iGeo& V, const FHandle_t&

FHandle )

5 {

6 // Compute area of triangle, cf. ??

7 double area =

0 .5∗ ( (V(1 ,0 )−V(0 ,0 ) ) ∗ (V(2 ,1 )−V(1 ,1 ) )−(V(2 ,0 )−V(1 ,0 ) ) ∗ (V(1 ,1 )−V(0 ,1 ) ) ) ;

8 // Evaluate source function for vertex location

9 Eigen : : Vector3d p h i l o c = Eigen : : Vector3d : : Zero ( ) ;

10 // Implements (3.3.50)

11 for ( i n t i = 0 ; i < 3 ; i ++) p h i l o c ( i ) = FHandle (V . row ( i ) ) ;

12 // Scale with 1
3 ·area of triangle

13 p h i l o c ∗= area / 3 . 0 ;

14 return p h i l o c ;

15 }

?! Review question(s) 3.3.52. (Linear finite elements in 2D)

1. Chop up a square Ω ⊂ R2 into n2 congruent small squares and create a triangular meshM of Ω

by splitting each small square along parallel diagonals. What is dimS0
1 (M) and dimS0

1,0(M) in

terms of n?

2. For the domain and mesh from Item 1 determine the maximal number of non-zerp entries of the

Galerkin matrix obtained when discretizing (3.1.4) with trial and test space S0
1,0(M) (sharp bound).

3. We are provided with an TriaMesh2D object describing a planar triangulation M of a polygon Ω

with N nodes and vector<bool> bdflags; where bdflags[k] == true, if the node with number k is

located on ∂Ω. Modify Code 3.3.36 so that it assembles a Galerkin matrix w.r.t. the trial/test space

S0
1,0(M).

4. Write AK for the element matrix for linear finite elements, the bilinear form a(u, v) :=
∫

Ω
grad u ·

grad v dx, and a triangle K. We use numerical quadrature base on the 2D trapezoidal rule to

compute the element matrix BK for the bilinear form b̃(u, v) :=
∫

Ω
σ(x) grad u · grad v dx, σ ∈

C0(Ω). How can BK be computed from AK?
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3.4 Building Blocks of General Finite Element Methods

(3.4.1) Overview

The previous section explored the details of a simple finite element discretization of 2nd-order elliptic

variational problems. Yet, it already introduced key features and components that distinguish the finite

element approach to the discretization of linear boundary value problems for partial differential equations:

✦ a focus on the variational formulation of a boundary value problem→ Section 2.9,

✦ a partitioning of the computational domain Ω by means of a meshM (→ Section 3.3.1)

✦ the use of Galerin trial and test spaces based on piecewise polynomials w.r.t. M (→ Section 3.3.2),

✦ the use of locally supported basis functions for the assembly of the resulting linear system of equa-

tions (→ Section 3.3.3).

In this section a more abstract point of view is adopted and the components of a finite element method for

scalar 2nd-order elliptic boundary value problems will be discussed in greater generality. However, prior

perusal of Section 3.3 is strongly recommended.

3.4.1 Meshes

First main ingredient of FEM: triangulation/mesh of Ω → Section 3.3.1

Definition 3.4.2. Finite element mesh/triangulation

A mesh (or triangulation) of Ω ⊂ Rd is a finite collection {Ki}M
i=1, M ∈ N, of open non-degenerate

(curvilinear) polygons (d = 2)/polyhedra (d = 3) such that

(A) Ω =
⋃
{Ki, i = 1, . . . , M},

(B) Ki ∩ Kj = ∅ ⇔ i 6= j,

(C) for all i, j ∈ {1, . . . , M}, i 6= j, the intersection Ki ∩ K j is either empty or a vertex, edge, or

face of both Ki and Kj.

Requirement (C) rules out “hanging nodes”, cf. condition (iv) on the triangulation introduced in Sec-

tion 3.3.1, page 188. Fig. 84 depicts the “hanging node” situation.

(3.4.3) Finite element meshes: customary terminology

• Entities = geometric entities “vertex”, ”edge”, ”face” of polygon/polyhedron: meaning of these terms

corresponds to geometric intuition.

Entities can be classified by their dimension or co-dimension, which add up to the world dimension

d:

3. Finite Element Methods (FEM), 3.4. Building Blocks of General Finite Element Methods 214



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

geometric entity dimension codimension

2D, d = 2:

triangles 2 0
edges 1 1
vertices 0 2
3D, d = 3:

tetrahedra 3 0
faces 2 1
edges 1 2
vertices 0 3

• Given a meshM := {Ki}M
i=1: Ki called cell or element = entities of co-dimension 0

• Vertices of a mesh are often called nodes (✎ notation for set of nodes: V(M))

(3.4.4) Types of meshes

Meshes according to Def. 3.4.2 can be classified further:

Fig. 110

Triangular mesh in 2D

Fig. 111

Quadrilateral mesh in 2D

Fig. 112

✁ 2D hybrid mesh comprising

• triangles

• quadrilaterals

• curvilinear cells (at ∂Ω)

(Curved) tetrahedral meshes in 3D (created with NETGEN):

Fig. 113

Fig. 114
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Tensor product mesh = grid ✄

in 2D: a = x0 < x1 < . . . < xn = b ,

c = y0 < y1 < . . . < ym = d .

M = {]xi−1, xi[×]yj−1, yj[: (3.4.5)

1 ≤ i ≤ n, 1 ≤ j ≤ m} .

☞ Restricted to tensor product domains Fig. 115 a b

c

d

Terminology: Simplicial mesh =
triangular mesh in 2D

tetrahedral mesh in 3D

Remark 3.4.6 (Finite element meshes with hanging nodes)

If (C) does not hold

Triangular non-conforming mesh

(with hanging nodes)

Ki ∩ K j is only part of an edge/face for at most one

of the adjacent cells.

(However, this mesh is conforming, if degenerate quadri-

laterals are admitted.) Fig. 116

3.4.2 Polynomials

Second main ingredient of FEM:

In FEM: Galerkin trial/test space compriseM-locally polynomial functions on Ω

Polynomials are attractive, because

• they allow fast and easy evaluation [14, ??]and straightforward analytic differentiation and integra-

tion,

• (smooth) functions can be approximated efficiently by means of polynomials [14, Section 4.1].

Known: polynomials of degree ≤ p, p ∈ N0, in 1D (univariate polyomials), see (1.5.28)

Pp(R) := {x 7→ c0 + c1x + c2x2 + . . . cpxp} .

In higher dimensions this concept allows various generalizations, one given in the following definition, one

given in Def. 3.4.13.

(3.4.7) Multivariate Polynomials
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Definition 3.4.8. Multivariate polynomials

Space of multivariate (d-variate) polynomials of (total) degree p ∈ N0:

Pp(R
d) := {x ∈ R

d 7→∑α∈Nd
0 , |α|≤p

cαxα , cα ∈ R} .

Def. 3.4.8 relies on multi-index notation:

α = (α1, . . . , αd): xα := xα1
1 · · · · · x

αd
d , (3.4.9)

|α| = α1 + α2 + · · ·+ αd . (3.4.10)

Special case:

d = 2: Pp(R
2) =



 ∑

α1,α2≥0
α1+α2≤p

cα1,α2 xα1
1 xα2

2 , cα1,α2 ∈ R





.

Examples: P2(R
2) = Span{1, x1, x2, x2

1, x2
2, x1x2},

P1(R
2) = affine linear functions R2 7→ R, see Section 3.3.2

Lemma 3.4.11. Dimension of spaces of polynomials

dimPp(R
d) =

(
d + p

p

)
for all p ∈ N0, d ∈ N

Proof. Distribute p “powers” to the d independent variables or discard them ✄ d + 1 bins.

Combinatorial model: number of different linear arrangements of p identical items and d separators

=

(
d + p

p

)
.

✷

Leading order for p→ ∞: dimPp(R
d) = O(pd)

(3.4.12) Tensor product polynomials

Definition 3.4.13. Tensor product polynomials

Space of tensor product polynomials of degree p ∈ N in each coordinate direction

Qp(R
d) := {x 7→ p1(x1) · · · · · pd(xd), pi ∈ Pp(R), i = 1, . . . , d} .

Example: Q2(R
2) = Span{1, x1, x2, x1x2, x2

1, x2
1x2, x2

1x2
2, x1x2

2, x2
2}

Lemma 3.4.14. Dimension of spaces of tensor product polynomials

dimQp(R
d) = (p + 1)d for all p ∈ N0, d ∈ N

Terminology: Pp(Rd)/Qp(Rd) = complete spaces of polynomials/tensor product polynomials
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3.4.3 Basis functions

Third main ingredient of FEM: locally supported basis functions

(see Section 3.2 for role of bases in Galerkin discretization)

Basis functions b1
N, . . . , bN

N for a finite element trial/test space V0,N built on a meshM must satisfy:

(a) BN := {b1
N , . . . , bN

N} is basis of V0,N ➣ N = dim V0,N,

(b) each bi
N is associated with a single geometric entity (cell/edge/face/vertex) ofM,

(c) supp(bi
N) =

⋃
{K: K ∈ M, p ⊂ K}, if bi

N associated with cell/edge/face/vertex p.

Finite element terminology: bi
N = global shape functions/global basis functions

MeshM + global shape functions ➨ complete description of finite element space

The specification of the global shape functions is considered an integral part of the description of a finite

element method. However, remember from Thm. 1.5.25 and Section 3.2 that it is the sheer finite element

space, that is, the span of the global shape functions, that determines the Galerkin solution.

Example 3.4.15 (Supports of global shape functions in 1D → Section 1.5.2.2)

✦ Ω =]a, b[ =̂ interval

✦ Equidistant mesh

M := {]xj−1, xj[, j = 1, . . . , M} ,

xj := a + hj, h := (b− a)/M, M ∈ N.

Support (→ Def. 1.5.76) of global shape function (tent

function) associated with x7

Fig. 117
0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

Example 3.4.16 (Supports of global shape functions on triangular mesh)

Fig. 118

Support of node-associated basis

function, cf. Fig. 92

Fig. 119

Support of edge-associated basis

function

Fig. 120

Support of cell-associated basis

function

(3.4.17) Importance of local supports

Requirement (c) implies that
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global finite element basis functions are locally supported.

What is the rationale for this requirement ?

Consider a generic bilinear form a arising from a linear scalar 2nd-order elliptic BVP, see (3.3.16): it

involves integration over Ω/∂Ω of products of (derivatives of) basis functions. Thus the integrand for

a(b
j
N , bi

N) vanishes outside the overlap of the supports of b
j
N and bi

N.

Galerkin matrix A ∈ RN,N with (A)ij := a(b
j
N, bi

N), i, j = 1, . . . , N satisfies

aij 6= 0 only if bi
N and b

j
N associated with

vertices/faces/edges(cells) adjacent to common cell

✞
✝

☎
✆Finite element stiffness matrices are sparse (→ Notion 3.3.18)

In turns, sparsity of the coefficient matrix is crucial for

• the ability to store the Galerkin matrix with O(N) memory requirements, where N is the dimension

of the finite element space,

• for the fast direct or iterative solution of the linear system of equations arising from finite element

Galerkin discretization.

Now we introduce an important notion that will be crucial for understanding the efficient assembly of finite

element Galerkin matrices. Recall that “assembly” =̂ initialization of finite element Galerkin matrix from

element contributions, cf. § 3.3.29.

Global shape functions
Restriction to element−−−−−−−−−−−→ local shape functions (3.4.18)

Definition 3.4.19. Local shape functions

Given a finite element function space on a meshM with global shape functions bi
N , i = 1, . . . , N:

{bj
N |K, K ⊂ supp(b

j
N)} = set of local shape functions on K ∈ M .

A consequence of property (b) of global shape functions:

(b) Also local shape functions b1
K, . . . , bQ

K , Q = Q(K) ∈ N are associated with geometric entities

(vertices/edges/faces/interior) of K.

Example 3.4.20 (Local shape functions for S0
1 (M) in 2D → Section 3.3.3)
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Global basis function for S0
1 (M) ✄

On “unit triangle” K with vertices

a1 =

[
0
0

]
, a2 =

[
1
0

]
, a3 =

[
0
1

]

Local shape functions:

b1
K(x) = 1− x1 − x2 ,

b2
K(x) = x1 ,

b3
K(x) = x2 .

Fig. 121

1

Fig. 122

These are the barycentric coordinate functions λ1, λ2, λ3 introduced in Section 3.3.5

?! Review question(s) 3.4.21. (Principles of finite element discretization)

1. What 2D triangular meshes with hanging nodes can be regarded as valid hybrid meshes comprising

triangular and quadrilateral cells.

2. Devise a class QuadMesh2D for general planar quadrilateral meshes in analogy to the class Tri-

aMesh2D.

3. How can a quadrilateral mesh be converted into a triangular mesh? Based on the data structures

developed in Item 2 outline an algorithm.

4. Consider the Galerkin discretization of (3.1.4) on a planar triangular mesh M using global shape

functions associated with the edges of the mesh. Give a sharp bound for the number of non-zero

entries of the Galerkin matrix in terms of the number of vertices ♯V(M), number of edges ♯E(M),
and number of cells ♯M of the mesh.

3.5 Lagrangian Finite Element Spaces

Taken for granted in this section: finite element meshM according to Def. 3.4.2.

(3.5.1) H1-conforming finite element spaces
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Goal: construction of finite element spaces and global shape functions of higher polynomials degrees,

generalizing the space S0
1 (M) introduced in Section 3.3.3.

Lagrangian finite element spaces provide spaces V0,N ofM-piecewise polynomials that fulfill

VN,0 ⊂ C0(Ω)
Thm. 2.3.35
=⇒ VN,0 ⊂ H1(Ω) .

Parlance: finite element spaces that are contained in H1(Ω) are often called “H1-conforming”.

Notation:

(Lagrangian FE spaces)
S0

p(M) continuous functions, cf. C0(Ω)

locally polynomials of degree p , e.g. Pp(Rd)

3.5.1 Simplicial Lagrangian FEM

NowM = simplicial mesh, consisting of triangles in 2D, tetrahedra in 3D.

Now we generalize S0
1 (M)/S0

1,0(M) from Section 3.3 to higher polynomial degree p ∈ N0.

Definition 3.5.2. Simplicial Lagrangian finite element spaces

Space of p-th degree Lagrangian finite element functions on simplicial meshM

S0
p(M) := {v ∈ C0(Ω): v|K ∈ Pp(K) ∀K ∈ M} .

Def. 3.5.2 merely describes the space of trial/test functions used in a Lagrangian finite element method

on a simplicial mesh. A crucial ingredient is still missing (→ Section 3.4.3): the global shape functions still

need to be specified. This is done by generalizing (3.3.9) based on sets of special interpolation nodes.

Example 3.5.3 (Triangular quadratic (p = 2) Lagrangian finite elements)

Suitable set of interpolation nodes

N := V(M) ∪ {midpoints of edges} ,

N = {p1, . . . , pN} (ordered) .

Nodal basis functions b
j
N, j = 1, . . . , N, defined by,

cf. (3.3.9)

b
j
N(pi) =

{
1 , if i = j ,

0 else.
(3.5.4)

Fig. 123

A “definition” like (3.5.4) is cheap, but it may be pointless, in case no such functions b
j
N exist. To establish

their existence, we first study the case of a single triangle K.
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We have to show that there is a basis of P2(R
2) that satisfies (3.5.4) in the case of a mesh consisting of

a single triangleM = {K}.

Interpolation nodes on triangle K with vertices a1, a2, and a3, see Fig. 124:

p1 = a1 , p2 = a2, p3 = a3 ,

p4 = 1
2(a

1 + a2) , p5 = 1
2(a

2 + a3), p6 = 1
2(a

1 + a3) .
(3.5.5)

What is the rationale for this numbering? There is absolutely none, because the numbering of the local

interpolation nodes can be chosen arbitrarily. Once it is decided, however, one has to adhere to this choice

consistently throughout a finite element code.

A first simple consistency check : does the number of interpolation nodes ♯N for M = {K} agree with

dimP2(R
2) = 6? Yes, it does!

Next step: “Proof by constuction” ; give formulas for local shape functions.

Local shape functions

b1
K = (2λ1 − 1)λ1 ,

b2
K = (2λ2 − 1)λ2 ,

b3
K = (2λ3 − 1)λ3 ,

b4
K = 4λ1λ2 ,

b5
K = 4λ2λ3 ,

b6
K = 4λ1λ3 .

(3.5.6)

Fig. 124 ➀

➁

➂

➃

➅
➄

K

It is generally true for Lagrangian finite elements that local shape functions are linear combinations of

(products of) barycentric coordinate functions.

To confirm the validity of the formulas (3.5.6), that is, the compliance with (3.5.4), note that

• λi(a
i) = 1 and λi(a

j) = 0, if i 6= j, where a1, a2, a3 are the vertices of the triangle K,

• λ1(m
12) = λ1(m

13) = 1
2 , λ2(m

12) = λ2(m
23) = 1

2 , λ3(m
13) = λ3(m

23) = 1
2 , λ1(m

23) =

λ2(m
13) = λ3(m

12) = 0, where mij = 1
2(a

i + aj) denotes the midpoint of the edge connecting ai

and aj,

• each barycentric coordinate function λi is affine linear such that λiλj ∈ P2(R
2).

Graphs of selected local shape functions for S0
2 (M) over a triangle:
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Fig. 125
Fig. 126

So far we have seen that local shape functions can be found that satisfy (3.5.4).

Issue: can the local shape functions from (3.5.6) be “stiched together” across interelement edges such

that they yield a continuous gobal basis function? (Remember that Thm. 2.3.35 demands global

continuity in order to obtain a subspace of H1(Ω).)

Fig. 127

The restriction of a quadratic polynomial to an edge is an uni-

variate quadratic polynomial.

Fixing its value in three points, the midpoint of the edge and the

endpoints, uniquely fixes this polynomial.

The local shape functions associated with the same

interpolation node “from left and right” agree on the edge.

➣ continuity !

Fig. 128
Fig. 129
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Fig. 130

✁ Global basis function for S0
2 (M) associated

with a vertex

(3.5.4): this function attains value = 1 at a vertex

(•) and vanishes at the midpoints (•) of the edges of

adjacent triangles, as well as at any other vertex.

Example 3.5.7 (Local interpolation nodes for cubic (p = 3) and quartic (p = 4) Lagrangian

FE in 2D)

Fig. 131

(local) interpolation nodes for S0
3 (M)

Fig. 132

(local) interpolation nodes for S0
4 (M)

Can you already guess a general pattern underlying the location of local interpolation nodes for degree

p Lagrangian finite elements on triangles? They are the points whose barycentric coordinates satisfy

λi(p j) ∈ { 0
p , 1

p , . . . ,
p−1

p ,
p
p}.

3.5.2 Tensor-product Lagrangian FEM

Now we consider tensor product meshes (grids), see (3.4.5), Fig. 115, for a 2D example.

Example 3.5.8 (Bilinear Lagrangian finite elements)

Sought: generalization of 1D piecewise linear finite element functions from Section 1.5.2.2, see § 1.5.69,

to 2D tensor product gridM.
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Tensor product structure ofM ➤ tensor product construction of FE space

This is best elucidated by a tensor product construction of basis functions:

b
j
N,x(x) : 1D tent function onMx = {[xj−1, xj], j = 1, . . . , n}

bl
N,y(y) : 1D tent function onMy = {[yj−1, yj], j = 1, . . . , n}

2D tensor product “tent function” associated with node p:

b
p
N(x) = b

j
N,x(x1) · bl

N,y(x2) , where p = (xj, yl)
T . (3.5.9)
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Fig. 134

✁ 2D tensor product tent function

No pyramid !

Basis functions associated (→ Section 3.4.3,

condition (c)) with nodes ofM,

Tensor product construction ➤ bilinear local shape functions, e.g. on K =]0, 1[2

b1
K(x) = (1− x1)(1− x2) ,

b2
K(x) = x1(1− x2) ,

b3
K(x) = x1x2 ,

b4
K(x) = (1− x1)x2 .

(3.5.10)

bi
K(a

j) = δij , 1 ≤ i, j ≤ 4 ,

that is, these basis functions satisfy a local version

of (3.5.4).

Fig. 135

K

➀ ➁

➂➃

x1

x2

a1
a2

a3
a4
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Fig. 136

Bilinear local shape functions on unit square K

Span{b1
K, b2

K, b3
K, b4

K} = Q1(R
2) .

Bilinear Lagrangian finite element space on 2D tensor product meshM:

S0
1 (M) := {v ∈ C0(Ω): v |K ∈ Q1(R

2) ∀K ∈ M} . (3.5.11)

The following is a natural generalization of (3.5.11) to higher degree local tensor product polynomials, see

Def. 3.4.13:

Definition 3.5.12. Tensor product Lagrangian finite element spaces

Space of p-th degree Lagrangian finite element functions on tensor product meshM

S0
p(M) := {v ∈ C0(Ω): v|K ∈ Qp(K) ∀K ∈ M} .

Terminology: S0
1 (M) = multilinear finite elements (p = 1, d = 2 = bilinear finite elements)

Remaining issue: definition of global basis functions (global shape functions)

Policy: use of interpolation nodes as in Section 3.5.1, see Ex. 3.5.3.

Example 3.5.13 (Quadratic tensor product Lagrangian finite elements)

Consider the case p = 2, d = 2 for Def. 3.5.12:

Interpolation nodes for S0
2 (M)

N = V(M) ∪ {midpoints of edges} .

Note: number of interpolation nodes belonging to

one cell is

9 = dimQ2(R
2) .

Fig. 137

d

a b

c
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Global basis functions defined analoguously to (3.5.4).

N = {p1, . . . , pN}: b
j
N ∈ S0

2 (M) , b
j
N(pl) =

{
1 , if j = l ,

0 else.

Choice of interpolation nodes for tensor product Lagrangian finite elements:

p = 1 p = 2

Fig. 138

p = 3

(3.5.14) Imposing homogeneous Dirichlet boundary conditions

What is a global basis for S0
p(M) ∩ H1

0(Ω), where M is either a simplicial mesh or a tensor product

mesh?

We proceed analoguous to § 3.3.14: recall that global basis functions are defined via interpolation nodes

p j, j = 1, . . . , N, see (3.5.4).

S0
p,0(M) := S0

p(M) ∩ H1
0(Ω) = Span{bj

N : p j ∈ Ω (interior node)} . (3.5.15)

In words: the subspace S0
p,0(M) of functions in S0

p(M) that vanish on ∂Ω can be obtained by dropping

all global shape functions associated with interpolation nodes on ∂Ω.

Remark 3.5.16 ((Bi)-linear Lagrangian finite elements on hybrid meshes)

M: 2D hybrid mesh comprising triangles & rectan-

gles ✄

Idea: use

✦ linear functions (→
Def. 3.4.8, p = 1) on

triangular cells,

✦ bi-linear functions (→
Def. 3.5.12, p = 1) on

rectangles.
Fig. 139

S0
1 (M) =

{
v ∈ H1(Ω): v |K ∈

{
P1(R

2) , if K ∈ M is triangle,

Q1(R
2) , if K ∈ M is rectangle

}
. (3.5.17)

Two issues arise:
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1. Does the prescription (3.5.17) yield a large enough space? (Note that v ∈ H1(Ω) ⇒ S0
1 (M) ⊂

C0(Ω), see Thm. 2.3.35, but continuity might enforce too many constraints.)

2. Does the space from (3.5.17) allow for locally supported basis functions associated with nodes of

the mesh?

We wil give a positive answer to both question by constructing the basis functions:

Define global shape functions b
j
N according to (3.3.13)

This makes sense, because

✦ linear/bi-linear functions on K are uniquely determined by their values in the vertices,

✦ the restrictions to an edge of K of the local linear and bi-linear shape functions are both linear

univariate functions, see Fig. 99 and Fig. 136.

Fixing vertex values for vN ∈ S0
1 (M) uniquely determines v on all edges of M already, thus,

ensuring global continuity , which is necessary due to Thm. 2.3.35.

Remark 3.5.18 (Lagrangian finite elements

on hybrid meshes)

M: 2D hybrid mesh comprising triangles & rectan-

gles

☞ Matching interpolation nodes on edges of trian-

gles and rectangles

Glueing of local shape functions on triangles

and rectangles possible

gobal interpolation nodes for p = 2 ✄
Fig. 140

?! Review question(s) 3.5.19. (Lagrangian finite elements)

1. Explain why the local shape functions according to ?? and (??) remain valid local shape functions

for the lowest degree Lagrangian finite element space on the hybrid mesh shown in Fig. 139.

2. LetM be a triangular mesh with ♯V(M) vertices, ♯E(M) edges, and ♯M cells. What is dimS0
p(M)

for p = 1, 2, 3?

3. For a triangular mesh M with ♯V(M) vertices, ♯E(M) edges, and ♯M cells give sharp upper

bounds for the number of non-zero entries of the Galerkin matrix arising from the finite element

discretization of (3.1.4) with trial and test space S0
p(M), p = 1, 2.

4. Consider a tensor product meshM of Ω :=]0, 1[2 and the space

V0,N :=
{

v ∈ H1
0(Ω): v |K ∈ P1(R

2) ∀K ∈ M
}

.

What is the dimension of this space?

5. Let M be a tensor product mesh and M̃ a triangular mesh arising from M by splitting each

rectangular cell into two congruent triangles. Show that S0
1 (M) 6= S0

1 (M̃).

6. Express the local shape functions for linear Lagrangian finite elements on a triangle as linear com-

binations of the quadratic local shape functions as given in (3.5.6).
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7. Characterize the space of gradients of Pp(R2) and Qp(R2).

3.6 Implementation of Finite Element Methods

This section discusses algorithmic details of Galerkin finite element discretization of 2nd-order elliptic

variational problems for spatial dimension d = 2, 3 on bounded polygonal/polyhedral domains Ω ⊂ Rd.

The guiding principle behind the implementation of finite element codes is✞
✝

☎
✆to rely on local computations as much as possible!

We witnessed this principle in action already in Section 3.3.5 (→ Code 3.3.35) and Section 3.3.6 (→
Code 3.3.47). Local computations are enough thanks to local supports of the global basis functions, see

Section 3.4.3, Ex. 3.4.16.

Remark 3.6.1 (DUNE – Distributed and Unified Numerics Environment)

The finite element implementation part of this course is based on the concepts devised and realized in the

context of DUNE:

✎
✍

☞
✌

The core idea behind DUNE is to use generic programming techniques available through the template

facilities of C++ to specify interfaces between core modules of finite elememt codes.

From the DUNE website: “The underlying idea of DUNE is to create slim interfaces allowing an efficient

use of legacy and/or new libraries. Modern C++ programming techniques enable very different implemen-

tations of the same concept (i.e. grids, solvers, ...) using a common interface at a very low overhead.

Thus DUNE ensures efficiency in scientific computations and supports high-performance computing ap-

plications.”

DUNE based codes are widely used for scientific simulations of complex PDE based models, see these

examples. The DUNE interfaces have been designed with a focus on

• parallel implementation of finite element meshes on distributed memory multi-processor architec-

tures,

• handling of hierarchical meshes created by local mesh refinement.
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These aspects will not play a role in this course.

Basic DUNE implementations are open source and

available under a GPL library license. It is possible to

use the DUNE interface for any code.

Fig. 141

Background information and applications of DUNE are covered in [2, 3, 9] and many more references can

be accessed through the DUNE publications page.

Remark 3.6.2 (BETL – a DUNE based finite element and boundary element code)

The implementation of finite element methods in this course will rely on the code suite

BETL (Boundary Element Template Library) a DUNE compliant software package

offering a framework for the implementation of finite element methods on a variety of

2D and 3D meshes.

BETL is an open source software and can be freely used for academic research and education. Some

industrial companies rely on BETL for their in-house simulation code development.

The current version of this document often covers both the strictly DUNE-

compliant implementation and its adaptation to the use of the BETL library. The

former should be treated as legacy codes and the reader is advised to focus on

the latter!

Remark 3.6.3 (Installation of BETL)

The BETL source distribution consists of two parts, the basis DUNE style interface definitions called eth-

GenericGrid and BETL proper. The installation of both employs the tool cmake in order to achieve portabil-

ity between various operating systems (Linux, Mac OS X, Windows). The operation of cmake is controlled

by CMakeLists.txt-files providing a bare minimum of information about the code to be built. cmake sup-

plements suitable compiler and linker flags fitting the current operating system and build environment.

Essentially it creates a Makefile containing all that information, which passes it to the UNIX make utility.

For the sake of simplicity, the installation of both libraries (ethGenericGrid and Betl2) are managed by the

cmake file in the lectures Gitlab repository ➺ GITLAB

In order to make it work, please perform the following steps:

1. Check out the BETL submodule

You need to have a Gitlab account in https://gitlab.math.ethz.ch and to be registered in the

lecture in order to access this submodule!

You will need to type in your NETHZ username and password.
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✦ If you are cloning the lecture repository for the first time, please type the following shell com-

mands

git clone --recursive https://gitlab.math.ethz.ch/NumPDE/NumPDE.git

cd NumPDE

mkdir build

✦ If you have already cloned the lecture repository, you need to update it such that it includes the

submodules. Asumming you are in the root folder in the folder NumPDE, this is done by typing

cd third_party/Betl2

git submodule init

git submodule update --init --recursive

2. Make sure the library boost is installed in your system

3. Compile the Gitlab repository as usual, i.e., type

cd build

cmake -DCMAKE_BUILD_TYPE=Release ..

make

This will handle the installation of ethGenericGrid and BETL. You may find some troubleshooting

instructions in the repository readme.

Remark 3.6.4 (Learning BETL)

As of now August 16, 2016, BETL’s documentation is still rudimentary, a shortcoming it has in common

with many simulation codes. These course notes attempt to fill this gap for some parts of BETL. To learn

the finite element functionality of BETL you can rely on three resources:

• commented listings in this lecture document and the accompanying explanations,

• example codes in the lecture’s Gitlab repository ➺ GITLAB, many containing code snippets dis-

cussed in these lecture notes,

• BETL based implementation tasks submitted as homework problems and coming with detailed so-

lutions.

A DOXYGENdocumentation of BETL is work in progress.

In order to learn the finite element capabilities of BETL you may follow these steps:

(I) Start from a small code that reads a mesh file and creates a BETL internal mesh data structure,

see Code 3.6.18.

(II) Learn from Ex. 3.6.27 about ways how to traverse the geometric entities of a mesh (→ Code 3.6.29).

You should know about the GridView concept and indexing beforehand, see § 3.6.24.

(III) Become familiar with how to access geometric entities locally (→ Code 3.6.46) and retrieve geo-

metric information (→ Ex. 3.6.52). Read Ex. 3.6.31, Rem. 3.6.48, and § 3.6.49 before, in order to

understand fundamental notions and conventions.

(IV) After you have completely grasped the algorithmic ideas underlying cell-oriented assembly (→
Section 3.6.4.1, § 3.6.71, Section 3.6.4.2), study the use FESpace objects: look at Ex. 3.6.86,

Code 3.6.87 first and also consult the explanations about the facilities provided by FESpace given

in § 3.6.83.
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(V) From Code 3.6.84 and the explanations in § 3.6.75 get an idea how to use BETL’s built-in La-

grangian finite element spaces, see also the first part of Code 3.7.14.

(VI) Study Ex. 3.6.94 and § 3.6.107 that will tell you how to build the sparse linear system of equations

arising from Galerkin finite element discretization.

(VII) When you have understood transformation based local quadrature you may look at its use in BETL,

see § 3.6.164.

(VIII) Once you have grasped § 3.6.177 examine Ex. 3.6.181 for the treatment of essential boundary

conditions in BETL. Familiarity with FESpace is essential.

(IX) § 3.6.139 will tell you how to access information crucial for the use of transformation techniques in

BETL.

(X) Learn how to specify local shape functions relying on the FEBasis concept as introduced in

§ 3.6.75, Ex. 3.7.13 and demonstrated in Ex. 3.6.76, Code 3.7.14. Before you look at these para-

graphs, you have to understand the paradigm of parametric finite elements (→ Section 3.7).

(XI) From Ex. 3.7.33 learn the BETL implementation of transformation techniques for local computations.

This requires familiarity with local quadrature and FEBasis.

Remark 3.6.5 (LehrFEM – a MATLAB finite element code)

Earlier version of this course relied on the LehrFEM finite element MATLAB library implementing data

structures and algorithms for 2D finite elements on triangular meshes. A detailed documentation is avail-

able from [6].

Other MATLAB based finite element programming environments are iFEM and the codes presented in

[1, 11],

3.6.1 Mesh generation and mesh file format

In Section 3.4.1 we identified triangulations (→ Def. 3.4.2) as one of the main building blocks of finite

element methods. Their algorithmic generation turns out to be a separate issue, because the data flow in

(most) finite element software packages look like this:

CAD data Parameters

Mesh generator
Finite element solver

(computational kernel)

Post-processor

(e.g. visualization)

Here “ ” designates passing of information, which is usually done by writing and reading files to and

from hard disk. This requires particular file formats.

Algorithms for generating a finite element mesh from some description of the geometry of the computa-

tional domain are beyond the scope of this course. Sophisticated methods have been developed over

3. Finite Element Methods (FEM), 3.6. Implementation of Finite Element Methods 232

http://www.sam.math.ethz.ch/~hiptmair/tmp/LehrFEMManual.pdf
http://www.math.uci.edu/~chenlong/programming.html


NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

many years and they are implemented in powerful commercial software packages. The problem of gen-

erating “suitable” finite element meshes without user interference is a persistent research topic, because

complex geometries (slender domain, multiple length scales, layered media, etc.) entail immense chal-

lenges.

Remark 3.6.6 (Gmsh – geometric modeling and mesh generation tool)

We use the open source public domain geometric modeler and mesh generator Gmsh (pronounced “G-

mesh”), which is employed in many projects in academic and industrial research.

Gmsh has been and is being developed by

Prof. Ch. Geuzaine and Prof. J.-F. Remacle at the

University of Liége in Belgium. Code and documen-

tation are available through

http://geuz.org/gmsh/.

Gmsh graphical user interface (GUI) ✄

Fig. 142

Example 3.6.7 (Geometric modeling with Gmsh)

In this example we define a simple geometry interactively using the Gmsh geometric modeling interface.

We specify Points, Lines and Surfaces that define our computational domain, the unit square Ω =]0, 1[2.

➊ Setting points. Select the menu item

Modules -> Geometry -> Elementary entities -> Add -> Point.

You can start adding points by interactively clicking, holding the position of the mouse, and pressing ’e’.

The coordinates of your mouse pointer are reflected on the Contextual Geometry Defintions

window that appears. It is, however, advisable to use this window and manually enter the coordinates of

the points you want to create in the X, Y and Z coordinate text boxes.

Start by adding your first point with coordinates (0, 0, 0) in the coordinate field. After you press return, one

point should appear on your canvas. Similarly, add points (1, 0, 0), (1, 1, 0), and (0, 1, 0). This sets all

four corners of the square.

➋ Defining lines. To add the lines that form the edges of our square, use the menu

Modules -> Geometry -> Elementary entities -> Add -> Straight Line.
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Now, select the point (0, 0) as starting point.

The selected point will be show in red. Then,

complete the line by selecting (1, 0) as the end

point. Similarly, create three other lines, forming

a square. See the figure beside.

Fig. 143

➌ Creating surfaces (domains). To finish the definition of a computational domain, we have to tell Gmsh

which of closed line loops form a surface. This can be easily done by using the menu

Modules -> Geometry -> Elementary entities -> Add -> Plane Surface.

Then click on any part of the square. After

the boundary has been selected, press ’e’, to

create a surface. See the figure beside for a

screenshot.

Fig. 144

Example 3.6.8 (Gmsh geometry description file)

When geometric elements are created interactively using the GUI, gmsh stores the data in a .geo file,

with its own scripting language. This file can be opened, and edited by the menu

Modules -> Geometry -> Edit File

The .geo file for the square mesh reads:

1 Point(1) = {0, 0, 0, 1};

2 Point(2) = {1, 0, 0, 1};

3 Point(3) = {1, 1, 0, 1};

4 Point(4) = {0, 1, 0, 1};

5 Line(1) = {1, 2};

6 Line(2) = {2, 3};

7 Line(3) = {3, 4};

8 Line(4) = {4, 1};

9 Line Loop(5) = {1, 2, 3, 4};

10 Plane Surface(6) = {5};

The line numbers 1-4 in the above code define Points 1-4, with the following syntax,
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Poin t ( i d ) = { x , y , z , mesh−s ize } ;

Similarly, line numbers 5-8 specify the four edges of the square, as

Line ( i d ) = { id−of−s t a r t−po in t , id−of−end−p o in t } ;

Defining a closed polygon (line loop) also follows a similar syntax, but you have to make sure that lines

are in proper cyclic order. To invert the direction of a line, use a minus sign before line id.

Line Loop ( i d ) = { id−of−l i n e −1, id−of−l i n e −2, id−of−l i n e −3, . . . } ;

The final line of the code defines surface that is created with the line loop as the boundary, and is defined

as follows.

Plane Surface ( i d ) = { id−of−l i n e−loop , id−of−holes−loop } ;

(3.6.9) Generating a mesh with Gmsh

After the geometry has been specified or a .geo file has been read in, a mesh can be generated for

currently active domain (surface). Click the menu

Modules -> Mesh -> 2D.

Then Gmsh should display an unstructured mesh for

the square surface, see the figure beside for a mesh

covering the square domain created in Ex. 3.6.7.

When point are added (to Ex. 3.6.7) in the dia-

logue there is text box for Prescribed mesh

element size at point. This can be used

to define the size of the meshes around a particular

point. In this example this was set to 1. In general,

this parameter can be used to control the local reso-

lution of the mesh.

Fig. 145

Fig. 146

To create a finer mesh, edit the .geo-file and spec-

ify a smaller local mesh size for the points (→
Ex. 3.6.8). Do not forget a subsequent click on

Modules -> Geometry -> Reload.

The figure beside displays a mesh for the square

generated with local mesh size 0.1.

Example 3.6.10 (Gmsh file format for storing meshes)
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Gmsh stores mesh data in plain ASCI .msh-files. The file cor-

responding to the mesh from Fig. 145 is as follows ✄

Lines 1-3: Version number, file format, and floating point format

used.

Line 4-11 (between $Nodes and $EndNodes): List of nodes

The first line in the nodes section gives the number of nodes in

the mesh, followed by each of the nodes. In our case, the mesh

comprises 5 nodes. In each node line, the first integer describes

the id(entifier) of the entity in the .msh-file, followed by the x-,

y- and z- coordinates of the node (floating point numbers). In

the example, the four points we created are part of the mesh,

and Gmsh has created a new fifth node in the center of the

mesh at coordinates (0.5, 0.5, 0).

1 $MeshFormat

2 2.2 0 8

3 $EndMeshFormat

4 $Nodes

5 5

6 1 0 0 0

7 2 1 0 0

8 3 1 1 0

9 4 0 1 0

10 5 0.5 0.5 0

11 $EndNodes

12 $Elements

13 12

14 1 15 2 0 1 1

15 2 15 2 0 2 2

16 3 15 2 0 3 3

17 4 15 2 0 4 4

18 5 1 2 0 1 1 2

19 6 1 2 0 2 2 3

20 7 1 2 0 3 3 4

21 8 1 2 0 4 4 1

22 9 2 2 0 6 1 2 5

23 10 2 2 0 6 1 5 4

24 11 2 2 0 6 2 3 5

25 12 2 2 0 6 3 4 5

26 $EndElements

Line 12-26 (between $Elements and $EndElements): List of elements and boundary entities

Some entities, such as points, lines, triangles, quadrangles, etc., are coded in this section. The first line

(line number 13) gives the number of entities listed. In each entity line, the integer denotes the entity

id(entifier), followed by an identifier for a type of the entity. The third integer denotes the number of

tags for this entity, followed by that many integers (tags). The meaning of the tags will be covered in

Rem. 3.6.12. The remainder of the line lists the id(entifier)s of nodes which are contained in the boundary

of this particular entity.

(3.6.11) Gmsh Element Types

A selection of entity types used by Gmsh for 2D

meshes

The meaning of “3-node line” and “6-node triangle

will be explained in 3.7.41.

Number Element Type

15 1-node point

1 2-node line

2 3-node triangle

3 4-node quadrilateral

8 3-node line

9 6-node triangle

For example, line number 14 describes an entity with identifier 1, and the element type of 15, which is a 1-

node point. This entity has 2 tags (for now ignore the following 2 integers). The last integer, 1, corresponds

to the node identifier which is a part of the entity. The node identifier 1 is the point that is located at (0, 0, 0).
Hence the entity 1, correspondes to the node 1. The entities 2, 3, and 4 are also of type “1-node point”,
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and represent the points (1, 0, 0), (1, 1, 0) and (0, 1, 0), respectively.

The line numbers 18-21 code for entities with identifiers 5-8, and represent entities of type 1, which is a

2-node line. Ignoring the tags, the last two integers represent the nodes corresponding to the endpoints

of the lines. Their order endows the line with a direction. For instance, entity number 7 represents a line

between the nodes 3 and 4. Hence, this is a line between the Points (1, 1, 0) and (0, 1, 0).

The element numbers 9-12 represent, the element of type 2, which are 3-node triangles. The last three

integers give the node numbers of the vertices. For example, the element number 9, is a triangle with

vertices (0, 0, 0), (1, 0, 0) and (0.5, 0.5, 0).

! Note that only the points and lines (edges) which are a part of the boundary are included as separate

entities; interior edges and points are not.

Remark 3.6.12 ( Gmsh – marking parts of a mesh by tags)

Often one wants to distinguish parts of the computational domain (sub-domains), where special coefficient

functions or source functions should be used. Moreover, parts of the boundary have to be marked, if they

carry different boundary conditions as in Ex. 2.7.8. In Gmsh this can be achieved by assigning mesh

entities to different physical groups. Those can be created using the menu item

Modules -> Geometry -> Physical Groups -> Add

Physical groups are distinguished by their

name and the .geo-file for the square ex-

tended by physical groups may look as fol-

lows. ✄

1 Point(1) = {0, 0, 0, 1};

2 Point(2) = {1, 0, 0, 1};

3 Point(3) = {1, 1, 0, 1};

4 Point(4) = {0, 1, 0, 1};

5 Physical Point("bottom-pts") = {1, 2};

6 Line(1) = {1, 2};

7 Line(2) = {2, 3};

8 Line(3) = {3, 4};

9 Line(4) = {4, 1};

10 Physical Line("top-bottom") = {1, 3};

11 Physical Line("left-right") = {2, 4};

12 Line Loop(5) = {1, 2, 3, 4};

13 Plane Surface(6) = {5};

14 Physical Surface("thesurface") = {6};
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Gmsh manages physical groups using the tags, whose discus-

sion we skipped in Ex. 3.6.10. For instance, the .msh-file gen-

erated from the above .geo-file is printed beside. ✄

The .msh file has changed; a new section $PhysicalNames

has been created which tabulates the keys for looking up the

physical groups the entities belong to. Line 5 gives the number

of physical groups. Each line of this section has the following

format: the first integer defines the dimension of the entities

of the group (0 for points, 1 for lines and 2 for surfaces). The

second integer gives the tag number for the physical group, and

third its corresponding string identifier.

1 $MeshFormat

2 2.2 0 8

3 $EndMeshFormat

4 $PhysicalNames

5 4

6 0 1 "bottom-pts"

7 1 2 "top-bottom"

8 1 3 "left-right"

9 2 4 "thesurface"

10 $EndPhysicalNames

11 $Nodes

12 5

13 1 0 0 0

14 2 1 0 0

15 3 1 1 0

16 4 0 1 0

17 5 0.5 0.5 0

18 $EndNodes

19 $Elements

20 10

21 1 15 2 1 1 1

22 2 15 2 1 2 2

23 3 1 2 2 1 1 2

24 4 1 2 3 2 2 3

25 5 1 2 2 3 3 4

26 6 1 2 3 4 4 1

27 7 2 2 4 6 1 2 5

28 8 2 2 4 6 1 5 4

29 9 2 2 4 6 2 3 5

30 10 2 2 4 6 3 4 5

31 $EndElements

Comparing with Ex. 3.6.10, we can see that the tag numbers of elements have changed. The first tag

denotes the physical group an entity belongs to, and the second tag represents the geometric entity it

belongs to. The groupings can be read off from the tags of the entities and the corresponding name of the

physical group. For example, the elements 1 and 2 belong to the physical group 1, which is “bottom-pts”.

The elements 3 and 5 that are lines have the physical tag 2, which corresponds to the group “top-bottom”.

Similarly, entities 4 and 6 belong to “left-right”. The remaining entities that are triangles belong to the

physical group “thesurface”.

Example 3.6.13 (Gmsh – meshing more complex geometries)

Curved boundaries can also be modelled in Gmsh. Refer to the documentation for details.
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1 Point(1) = {0, 0, 0, 0.25};

2 Point(2) = {1, 0, 0, 0.25};

3 Point(3) = {0, 2, 0, 0.25};

4 Point(4) = {1, 2, 0, 0.25};

5 Point(5) = {2, 2, 0, 0.25};

6 Point(6) = {2, 3, 0, 0.25};

7 Point(7) = {2, 4, 0, 0.25};

8 Point(8) = {4, 4, 0, 0.25};

9 Point(9) = {4, 3, 0, 0.25};

10 Line(1) = {3, 1};

11 Line(2) = {1, 2};

12 Line(3) = {2, 4};

13 Line(4) = {6, 9};

14 Line(5) = {9, 8};

15 Line(6) = {8, 7};

16 Circle(7) = {4, 5, 6};

17 Circle(8) = {3, 5, 7};

18 Line Loop(9) = {1, 2, 3, 4, 5, 6, 7, -8};

19 Plane Surface(10) = {9};

Fig. 147

Remark 3.6.14 (Other tools for mesh generation)

Freely available mesh generators:

✦ DistMesh (MATLAB, used in “LehrFEM”, see [6, Sect. 1.2])

✦ Triangle (easy to use 2D mesh generator)

✦ TETGEN (Tetrahedral mesh generation)

✦ NETGEN (industrial strength open source mesh generator)

Example 3.6.15 (DUNE - building mesh from Gmsh mesh file)

When using the DUNE library, one has to make a decision which of the available seven grid implemen-

tations to use. The following code makes use of the ALUGrid DUNE module [8] to handle conforming

two-dimensional simplicial meshes.

C++11 code 3.6.16: DUNE code: reading a .msh-file and building a mesh from it

1 // Includes skipped ....

2 i n t main ( i n t argc , char ∗argv [ ] ) {

3 t ry {

4 // Get mesh file name from command line arguments

5 const s t r i n g FileName = argv [ 1 ] ;

6

7 // Initialize triangular mesh reading a Gmsh mesh file

8 using GridType = Dune : : ALUSimplexGrid<2 ,2 >;

9 Dune : : Gr idFactory <GridType > gr idFac to r y ;
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10 Dune : : GmshReader<GridType > : : read ( gr idFac tory , FileName . c _ s t r ( ) ,

11 false , true ) ;

12 GridType ∗work ingGr id = g r idFac to r y . c rea teGr id ( ) ;

13 workingGrid−>loadBalance ( ) ; // undocumented internal setup

14

15 // Get the grid view

16 using GridView = GridType : : LeafGridView ;

17 GridView gv = workingGrid−>lea fGr idV iew ( ) ;

18 }

19 catch (Dune : : Exception &e ) {

20 ce r r << " Dune r e p o r t e d e r r o r : " << e << endl ;

21 } }

This example uses the DUNE mesh implementation ALUGrid, selected by instantiating the corresponding

template in Line 8 of Code 3.6.16. The actual mesh data structure is initialized by a gridFactory

object, which reads the data from a .msh-file. Eventually a reference to the mesh of type GridView is

created and stored in the variable gv in Line 17.

Example 3.6.17 (BETL - building mesh from Gmsh mesh file)

BETL offers rather advanced facilities for parsing Gmsh mesh files (suffix .msh) and building mesh data

structures from the information contained in them. The following code reads the data for a 2D hybrid mesh

from file.

C++11 code 3.6.18: BETL code reading 2D hybrid mesh from a .msh-file ➺ GITLAB

1 // wrapper for the input stream amenable to the mesh file parser

2 const s t r i n g basename ( " m e s h f i l e " ) ; // omit suffix .msh!

3 using i n p u t _ t = b e t l 2 : : i n p u t : : gmsh : : Inpu t ;

4 using i n p I n t e r f a c e _ t = b e t l 2 : : i n p u t : : I n p u t I n te r f a c e < inpu t_ t > ;

5 i n p u t _ t i n p u t ( basename ) ; i n p I n t e r f a c e _ t i n p I n t e r f a c e ( i n p u t ) ;

6

7 // Define the grid type: we chose a hybrid 2D grid → § 3.4.4.

8 using g r i d _ t = b e t l 2 : : volume2dGrid : : hybr id : : Gr id ;

9

10 // Focus on a single refinement level provided by leafView.

11 const eth : : g r i d : : GridViewTypes view =

eth : : g r i d : : GridViewTypes : : LeafView ;

12 using gridView_t = typename eth : : g r i d : : GridView <

13 g r i d _ t : : gr idTra i ts_ t : : template v iewTra i t s_ t <view > >;

14 // Basic information about the grid can be accessed through grid traits

15 using gr idTra i ts_ t = gridView_t : : gr idTra i ts_ t ;

16

17 // Dynamically allocate an instance of Grid, accessible through

18 // a pointer. We use a shared pointer that will trigger an automatic

19 // delete when it reaches the end of its lifetime, see documentation.

20 using g r i d _ p t r _ t = shared_ptr <

21 eth : : g r i d : : Grid < g r i d _ t : : gr idTra i ts_t > > ;
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22 g r i d _ p t r _ t g r i d _ p t r (new g r i d _ t ( i n p I n t e r f a c e ) ) ;

23

24 // A grid factory object actually builds the internal

25 // mesh data structure.

26 using gridFactory_t = eth : : g r i d s : : u t i l s : : Gr idViewFactory <g r i d _ t , view >;

27 const gridFactory_t gridFactory ( g r i d _ p t r ) ;

28

29 // Access to a grid is channelled through a gridView object.

30 // Note that this is a const data type, which rules

31 // out altering the mesh

32 const gridView_t gridView = gridFactory . getView ( ) ;

33

34 // Fetch dimension of ambient space and grid, which may differ for
triangulated

35 // surfaces for instance

36 const in t worlddim = gr idTra i ts_ t : : dimWorld ;

37 const in t gr idd im = gr idTra i ts_ t : : dimMesh ;

38

39 // get the size of the entity container of a specified co-dimension

40 const in t numNodes = gridView . s ize ( 2 ) ; // vertices ↔ co-dim. 2

41 const in t numEdges = gridView . s ize ( 1 ) ; // edges ↔ co-dim. 1

42 const in t numElements = gridView . s ize ( 0 ) ; // cells ↔ co-dim. 0

The grid allocation (Line 20-Line 27) can be simplified by calling the instance

betl2::GridCreator. For this, Line 15-Line 27 can be replaced by

1 using gridCreator_t = b e t l 2 : : Gr idCreator < g r i d _ t , view >;

2 using gridFactory_t = gridCreator_t : : gridFactory_t ;

3 const gridFactory_t gridFactory = gridCreator_t ( ) ( i n p u t ) ;

• Line 8: We select the type of the mesh to be read, here a 2D hybrid mesh, see § 3.4.4.

• Line 15: Through traits static properties of a GridView object can be accessed. For instance, in

Line 27 and Line 31 we fetch relevant dimensions, which should both be 2 in this case.

• Line 22: Here an empty grid object is created dynamically and a pointer to it is stored.

• Line 27: A BETL internal mesh data structure is initialized according to the data in the input buffer.

• Line 32 The constant reference to a GridView object allows access to all data connected with the

grid, see § 3.6.24.

(The GridView interface is defined in grid_view.hpp in namespace eth::grid.)

Example 3.6.19 (Processing extra information in Gmsh mesh file with BETL)

In Rem. 3.6.12 we saw that geometric mesh entities can be endowed with special “physical groups” tags in

Gmsh. These are automatically extracted by the BETL Gmsh reader and is managed via the InputInter-

face interface in betl2::input that was created in Ex. 3.6.17. After the creation of the grid object (see

Ex. 3.6.17), we additionally introduce a structure that manages the “physical groups” of Gmsh elements. It

is given through the class GridElementsIdentifier that is defined in grid_elements_identifier.hpp

in betl2::input::gmsh.
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C++11 code 3.6.20: Reading Gmsh’s physical groups with BETL ➺ GITLAB

1 // define type shorthands and get the index set

2 const eth : : g r i d : : GridViewTypes view =

eth : : g r i d : : GridViewTypes : : LeafView ;

3 using gr idV iew_t = typename eth : : g r i d : : GridView <

g r i d _ t : : g r i d T r a i t s _ t : : template v iewTra i t s_ t <view > >;

4 const gr idV iew_t& gr idView = gr idFac to r y . getView ( ) ;

5 auto& set = gr idView . indexSet ( ) ; // See § 3.6.41.

6

7 using i d x _ t = unsigned in t ; // type for indices

8 typedef set < i d x _ t > tagSet ; // type for collection of tags

9

10 // First check what physical tags are associated with the mesh,

11 // and what Gmsh element co-dimension they are associated to

12 // initialize a set object containing all tags for Gmsh elements

13 // of a given co-dimension, which is used as array index.

14 array <tagSet , g r i d F a c to r y _ t : : g r i d T r a i t s _ t : : dimMesh+1> codim2tags ;

15 for ( const auto elType : inpInter face . getElementTypes ( ) ) {

16 // Retrieve the co-dimension of the Gmsh element type

17 const auto re fElType = ElementTypeInfo : : getRefElType ( elType ) ;

18 const i d x _ t elCodim = g r i d F a c to r y _ t : : g r i d T r a i t s _ t : : dimMesh −
eth : : base : : ReferenceElements : : getDimension ( refElType ) ;

19 // Loop over the Gmsh elements of that particular type

20 for ( auto e l I t e r = inpInter face . begin ( elType ) ;

21 e l I t e r != inpInter face . end ( elType ) ; e l I t e r ++ ) {

22 // Collect and store the Gmsh element physical tag

23 const i d x _ t tagID =

( inpInter face . getElementTags (∗ e l I t e r ) ) . a t ( 0 ) ;

24 // insert in set, which automatically weeds out duplicates

25 codim2tags [ elCodim ] . i n s e r t ( tagID ) ;

26 }

27 }

28

29 // instantiate class to recover tagged subsets of entities

30 b e t l 2 : : i n p u t : : gmsh : : GridElementsIdentif ier < in p In te r f a c e _ t ,

g r i d F a c to r y _ t >

31 gridMarker ( inpInterface , g r idFac to r y ) ;

32

33 // Print information on physical tags of co-dimension 0 entities
(cells)

34 // Meaning and use of entity indices are explained in § 3.6.41.

35 for ( const i d x _ t tag : codim2tags [ 0 ] ) {

36 cout<< " G r i d i d x o f p h y s i c a l e n t i t i e s o f CODIM 0 w i t h t a g " << tag

<< " : " << endl ;

37 const auto &ta g g e d E n t i t i e s = gridMarker . template

re t r ieveEnt i t ies <0>( tag ) ;

38 for ( const auto & e n t i t y : t a g g e d E n t i t i e s )

39 cout<< set . index (∗ e n t i t y ) << " ( " << e n t i t y−>refElType ( ) << " ) " ;

40 cout << endl ;

41 }
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42

43 // Scan entities of co-dimension 1 (edges)

44 // Those are stored as intersections, not entities, see § 3.6.56!

45 for ( const i d x _ t tag : codim2tags [ 1 ] ) {

46 cout<< " G r i d i d x o f p h y s i c a l e n t i t y o f CODIM 1 w i t h t a g " << tag <<

" : " << endl ;

47 const auto& taggedIn t = gridMarker . template

re t r ieveEnt i t ies <1>( tag ) ;

48 for ( const auto& i n t e r s : taggedIn t ) {

49 // get pointer to element (el)

50 const auto& in = in te r s−>in s i d e ( ) ;

51 // get local index of this side (wrt el)

52 const auto i n L c l I d x = in te r s−>index In Ins i de ( ) ;

53 // get global index of this side (a bit convoluted,

54 // since set maps entities and not intersections)

55 const auto g lb Idx = set . index ( ∗ ( in−>template subEnt i ty <1>(

i n L c l I d x ) ) ) ;

56 cout<< g lb Idx << " ( " << in te r s−>geometry ( ) . re fElType ( ) << " ) " ;

57 }

58 cout<< endl ;

59 }

60

61 // scan entities of codim 2 (vertices)

62 for ( const i d x _ t tag : codim2tags [ 2 ] ) {

63 cout<< " G r i d i d x o f p h y s i c a l e n t i t i e s o f CODIM 2 w i t h t a g " << tag

<< " : " << endl ;

64 const auto& ta g g e d E n t i t i e s = gridMarker . template

re t r ieveEnt i t ies <2>( tag ) ;

65 for ( const auto& e n t i t y : t a g g e d E n t i t i e s )

66 cout << set . index (∗ e n t i t y ) << " ( " << e n t i t y−>refElType ( ) << " )

" ;

67 cout<< endl ;

68 }

• Line 8: To store the occuring tags, we use the set data structure.

• Line 14: The tags that occur for Gmsh elements of a given codimension are stored in an array.

• Line 14-Line 27: We fill the array by iterating over all Gmsh elements that are present in the mesh

(note that a Gmsh element can also be a entity of codimension bigger than 0, see § 3.6.11), storing

its “physical groups” tag in the array at the Gmsh elements codimension.

• Line 31: Here the object that finally manages the “physical groups” of Gmsh elements is instantiated.

• Line 37, Line 47, Line 64: Show how to access the Gmsh elements of a given codimension that are

part of the “physical group” associated with the tag tag.

The above code is also included in the header file

lecture_codes/FEMwithBETL/topology/NPDE_topology_functions.hpp, in function printPhysicalSetsInfo

It is accessed via the following function call.
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C++11 code 3.6.21: Function call for output of physical tags ➺ GITLAB

1 // printing the information about Gmsh physical sets:

2 b e t l 2 : :NPDE : : p r i n t P h y s i c a l S e t s I n f o ( i n p In te r f a c e , g r idFac to r y ) ;

A minimal working example related to Code 3.6.20 is available in ➺ GITLAB.

3.6.2 Mesh data structures

Topic: internal representation of mesh (→ Def. 3.4.2) in computer code and definition of suitable pro-

gramming interface.

Purposes of mesh data structures

mesh data structures must

1. offer unique identification of cells/(faces)/(edges)/vertices

(for instance, by an integer index)

2. make possible traversal of cells of the mesh (→ global numbering)

3. represent mesh topology (= incidence relationships of cells/faces/edges/vertices)

4. allow sequential access to edges/faces of a cell

(→ traversal of local shape functions/degrees of freedom)

5. describe mesh geometry (= location/shape of cells/faces/edges/vertices)

Two kinds of objects can be distinguished:

Global objects

• single instance exists

• container for geometric entities

↔
Local objects

• many instances exist

• store geometry/topology

(3.6.23) Importance of global numbering of geometric entities

Remember from Section 3.2: we need on ordered basis B of the finite element space, that is, we have

to establish a consecutive numbering of the finite element basis functions/global shape functions, B =
{b1

N , . . . , bN
N}.

For assembly as explained in Section 3.3.5 we also assumed that the local shape functions carried num-

bers, there corresponding to the (local) numbers of the vertices of each triangle of the mesh. Thus, in a

code using linear Lagrangian finite elements, we have to number the vertices of a mesh.

More generally, in Section 3.4.3 we saw that global shape functions are associated with geometric entities.

➣ Numbering geometric entities paves the way for numbering global shape functions.

(3.6.24) BETL grid view concept

In DUNE the basic device to handle global aspects of a mesh is the GridView concept, see documentation.

It has been modified slightly in BETL. The basic facilities offered by a GridView object are
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✦ traits data types (GridTraits & ViewTraits) for accessing static data and data types for (pointers to)

geometric entities (distinguished by co-dimension→ § 3.4.3),

✦ access to sequential containers for geometric entities of the mesh through the entities<codim>()

method.

✦ size(int codim) method returning the total number of geometric entities of a particular co-

dimension,

✦ indexing (numbering) of geometric entities through consecutive integers provides by an IndexSet

sub-object, which can be obtained through the indexSet() method.

Refer to Code 3.6.18 (Line 32)to learn how to obtain a reference to an object of GridView type.

GridView objects are constant; they do not allow modification of the mesh!

Example 3.6.25 (Using entity iterators of a DUNE GridView)

C++11 code 3.6.26: Looping over entities of a DUNE grid of a particular co-dimension

1 // Function template parameter k specifies co-dimension

2 template <class GridView , i n t k>

3 i n t t r a v e r s e E n t i t i e s ( const GridView &gv ) {

4 using E n t i t y I t e r a t o r =typename GridView : : template Codim<k > : : I t e r a t o r ;

5 using IndexSetRef =typename GridView : : IndexSet const &;

6 // The indexSet manages unique and consecutive integer entity indices

7 IndexSetRef se t ( gv . indexSet ( ) ) ;

8

9 i n t cnt = 0 ;

10 cout << " G r i d d imens ion = " << GridView : : dimension << " , " ;

11 cout << " i t e r a t i n g ove r e n t i t i e s o f cod imens ion " << k << " , " ;

12 cout << gv . size ( k ) << " e x i s t " << endl ;

13 for ( E n t i t y I t e r a t o r i t =gv . template begin<k > ( ) ;

14 i t != gv . template end<k > ( ) ; ++ i t ) {

15 cout << " o b j e c t " << cnt ;

16 cout << " : i d = " << set . index (∗ i t ) << endl ;

17 cnt ++;

18 }

19 }

In Code 3.6.26 the EntityIterator behaves like a pointer to an object of type Entity. In Line 16

an iterator is dereferenced, producing an Entity object that is passed to the index method of the

IndexSet, which returns the global index of that object, see § 3.6.41 below.

Example 3.6.27 (Using entity iterators in BETL)
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In BETL an instance of GridView owns a method entities<k>(), with k a cardinal template param-

eter that passes the co-dimension, that returns a reference to an EntityCollection, which serves as a

sequential container for the entities of a particular co-dimension.

The following Code 3.6.28 demonstrates sequential access to all entities of a GridView object of a partic-

ular co-dimension, which is passed as a template parameter

C++11 code 3.6.28: Looping over entities of a particular co-dimension in BETL grid ➺ GITLAB

1 template < i n t k , class VIEW_TRAITS>

2 i n t t r a v e r s e E n t i t i e s ( const eth : : g r i d : : GridView<VIEW_TRAITS> &gv ) {

3 // type of current GridView object contained in gv

4 using gr idV iew_t = eth : : g r i d : : GridView<VIEW_TRAITS>;

5 // GridTraits and ViewTraits of current GridView

6 using g r i d T r a i t s _ t = typename gr idV iew_t : : g r i d T r a i t s _ t ;

7 using v i e w T r a i t s _ t = typename gr idV iew_t : : v i e w T r a i t s _ t ;

8 // iterator type for entities of co-dimension k

9 using e n t i t y I t e r a t o r I m p l _ t = typename v i e w T r a i t s _ t : : template

e n t i t y I t e r a t o r _ t <k >;

10 using e n t i t y I t e r a t o r _ t = eth : : g r i d : : E n t i t y I t e r a t o r <

g r i d T r a i t s _ t , e n t i t y I t e r a t o r I m p l _ t >;

11 // An EntityCollection is a sequential container of entities

12 using e n t i t y C o l l e c t i o n _ t =

eth : : g r i d : : E n t i t y C o l l e c t i o n < e n t i t y I t e r a t o r _ t > ;

13 // An IndexSet manages unique consecutive indices for the entities

14 // of a GridView object

15 using indexSet_ t = eth : : g r i d : : IndexSet < g r i d T r a i t s _ t , typename

v i e w T r a i t s _ t : : indexSet_t >;

16 // References to IndexSet objects are not mutable

17 using indexSetRef_t = indexSet_ t const &;

18

19 // The indexSet method of a GridView object returns a reference

20 // to its associated index set, see § 3.6.41.

21 indexSetRef_t se t ( gv . indexSet ( ) ) ;

22

23 i n t cnt = 0 ;

24 cout << " G r i d d imens ion = " << g r i d T r a i t s _ t : : dimMesh << " , " ;

25 cout << " i t e r a t i n g ove r e n t i t i e s o f cod imens ion " << k << " , " ;

26 cout << gv . s ize ( k ) << " e x i s t " << endl ;

27 // Obtain reference to a sequential container for entities of
codimension k

28 // by calling the entities<k> method.

29 e n t i t y C o l l e c t i o n _ t ent i tyCol lect ion = gv . template ent i t ies <k > ( ) ;

30 // Standard loop for visiting elements of a sequential container.

31 for ( e n t i t y I t e r a t o r _ t i t =ent i tyCol lect ion . begin ( ) ;

32 i t != ent i tyCol lect ion . end ( ) ; ++ i t ) {

33 cout << " o b j e c t " << cnt ;

34 // Retrieve global index of current entity through index

35 // method of IndexSet.

36 cout << " : i d = " << set . index (∗ i t ) << endl ;

37 cnt ++;

38 }
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39 return cnt ;

40 }

Obtaining the right types for entities and iterators is cumbersome and error prone. Thus the auto facility

of C++11 comes very hand, which lets the compiler determine the type of most objects. The next codes

relies on auto as does the same as Code 3.6.28.

C++11 code 3.6.29: Looping over entities of a particular co-dimension in BETL grid, version

with automatic type deduction ➺ GITLAB

1 template < i n t k , class VIEW_TRAITS>

2 i n t t r a v e r s e E n t i t i e s _ a u t o (

3 const eth : : g r i d : : GridView <VIEW_TRAITS> &gv ) {

4 // Fetch reference to the index set for current GridView object

5 // referenced by gv.

6 auto& set = gv . indexSet ( ) ;

7 i n t cnt = 0 ;

8 cout << " BETL : No o f e n t i t i e s o f cod imens ion " << k << " = "

9 << gv . size ( k ) << endl ;

10 // range based loop running through all entities of co-dimension k

11 for ( auto& i t : gv . template ent i t ies <k > ( ) ) {

12 cout << " o b j e c t " << cnt << " : i d = " << set . index ( i t ) << endl ;

13 cnt ++;

14 }

15 return cnt ;

16 }

Note the difference between the loop variables in the loops implemented in Code 3.6.28 (Line 32) and

Code 3.6.28 (Line 11), respectively. In the former code, it is a pointer to an entity, whereas in he latter it

provides a constant reference. This reference can simply be passed to the index method in Line 12 of

Code 3.6.29.

(3.6.30) Representation of mesh topology

When we talk about the “topology” of a mesh, we ignore the location and shape of entities and focus on

how those are connected, that is we are interested in the

incidence relations: ✦ “boundary contains”-relation: boundary of an entity of a higher dimension con-

tains entity of a lower dimension

✦ “is part of”-relation: entity of lower dimension is part of the boundary of an entity

of a higher dimension

The incidence relations yield an abstract (generalized) graph description of a finite element mesh

Possible internal realization of incidence relations:

• for some (j, k) ∈ {0, . . . , d}2, 0 ≤ j < k ≤ d, entities of dimension k hold ordered lists (vectors) of

references (pointers) to those entities of dimension j contained in their boundary,
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• for some (m, n) ∈ {0, . . . , d}2, 0 ≤ m < n ≤ d, entities of dimension m hold ordered lists (vectors)

of references (pointers) to those entities of dimension n that contain them.

Example 3.6.31 (Storing topology of triangular mesh in 2D)

Let M be a triangular mesh according to Def. 3.4.2 as in Section 3.3.1. Various schemes for storing

topological information are conceivable. In the figures below: black ↔ triangles, blue ↔ edges, red ↔
vertices.

Fig. 148

(A) Minimal scheme: triangles hold lists/vectors of

references to their vertices. Edges not stored.

Realized in the MATLAB mesh data structure dis-

cussed in § 3.3.3

Sufficient for linear Lagrangian finite elements, if no

special boundary conditions have to be dealt with,

see Code 3.3.38

This scheme already provides complete topological

information (edges can be reconstructed)!

(B) Element centered scheme with edges:

✦ Elements, edges and vertices stored as (vir-

tual) “objects”

✦ Elements have lists/vectors of references to

their vertices and edges.

Fig. 149
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Fig. 150

(C) Full unidirectional topology representation:

✦ All geometric entities are stored as (virtual)

“objects”.

✦ Elements hold lists/vectors of references to

their vertices and edges.

✦ Edges have references to their endpoints.

(D) Restricted bidirectional topology representation:

✦ All geometric entities are stored as (virtual)

“objects”.

✦ Elements hold vectors of references to their

vertices and edges.

✦ Elements also possess a vector of references

to their neighbors.

Topology representation in DUNE/BETL

Fig. 151

Fig. 152

(E) Full bidirectional topology representation:

✦ Elements hold vectors of references to their

vertices and edges.

✦ Edges have references to their endpoints and

their adjacent triangles

✦ Vertices have references to their adjacent tri-

angles.

Notation: M = mesh (set of elements = set of geometric entities of co-dimension 0)

V(M) = set of nodes (vertices) inM (geometric entities of co-dimension 2)

E(M) = set of edges inM (geometric entities of co-dimension 1)
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(3.6.32) DUNE concept for geometric entities

In DUNE objects describing geometric entities fit the Entity concept, see documentation. The correspond-

ing types can be obtained via

using Entity=typename GridView:: template Codim<k>::Entity;

using EntityPtr=typename GridView:: template Codim<k>::EntityPointer;

co-dimension is a template parameter!

Entity offers the following (few) features and facilities:

✦ type() tells the geometric type of an entity, is Simplex2D, Simplex1D, or Simplex0D for a

triangular mesh in two dimensions.

✦ geometry() provides a reference to the “geometry” of an entity, see § 3.6.49.

(Only!) entities of co-dimension 0 (= cells/elements of the mesh) provide an extended functionality in the

form of the following methods:

✦ int count<codim>() returns the number of entities of co-dimension codim contained in the

boundary of the cell.

✦ EntityPtr subEntity<codim>(int locidx) returns a pointer to the entity with local

number locidx and co-dimension codim contained in the boundary of the cell.

This function gives complete information about the mesh topology (access arrows → and → in

Fig. 151).

(3.6.33) BETL concept for geometric entity

The entity concept underlying BETL represents a small modification of its DUNE counterpart explained in

§ 3.6.32. In BETL the types can be obtained by

using gridTraits_t = typename GRID_VIEW::gridTraits_t;

template < i n t k>

using entity_t = eth::grid::Entity<gridTraits_t,k>;

template < i n t k>

using entityPtrImpl_t =

typename gridTraits_t:: template entityPointer_t<k>;

template < i n t k>

using entityPtr_t =

eth::grid::EntityPointer<gridTraits_t,entityPtrImpl_t<k> >;

The Entity interface is defined in entity.hpp and resides in namespace eth::grid.

Entities are always immutable and cannot be copied or assigned to; if pointers are needed, the use of the

above EntityPointer types is mandatory.

The following methods are provided by an entity:

✦ refElType() provides information about the geometric type of the mesh entity.

More precisely, refElType() tells about the underlying reference element. ➢ The meaning

and use of reference elements will be explained in Section 3.7.
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• POINT, SEGMENT (LineSegment [−1, 1]),

• TRIA (reference triangle with ordered vertices
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• TETRA (reference tetrahedron with ordered vertices
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• HEXA (unit cube),

• PRISM (reference prism),

• PYRAMID (reference pyramid)

These are defined in enum_ref_el_types.hpp, namespace eth::base, e.g.

using triangle_t = eth::base::RefElType::TRIA;

✦ geometry() returns a (constant) reference to the geometric information attached to the entity, see

§ 3.6.49 for explanation concerning the Geometry concept.

Entities of co-dimension 0 (= cells/elements of the mesh) alone provide an extended functionality in the

form of the following methods:

✦ int countSubEntities<codim>() returns the number of entities of co-dimension codim

contained in the boundary of the cell.

✦ EntityPtr subEntity<codim>(int locidx) returns a pointer to the entity with local

number locidx and co-dimension codim contained in the boundary of the cell.

This function gives complete information about the mesh topology (access arrows → and → in

Fig. 151).

Supplement 3.6.34 (Definition of reference elements in BETL).

The geometry of the reference elements is specified in ref_el_types_i.hpp, namespace eth::base.

For instance the definition of the reference triangle by means of a template specialisation of the static class

ReferenceElement is given in the following code (partial listing from the file EthGenericGrid/Libs/eth_base

It makes use of template specialization.

C++11 code 3.6.35: Part of the definition of the reference triangle in BETL

1 // subEntityTypes_[i][j] = type of subentity with codim i, index j

2 template <>

3 const i tV e c _ t ReferenceElement <RefElType : : TRIA > : : subEnti tyTypes_ {

4 { RefElType : : TRIA } , // co-dimension = 0

5 { RefElType : :SEGMENT, RefElType : :SEGMENT, RefElType : :SEGMENT} , //

edges

6 { RefElType : : POINT , RefElType : : POINT , RefElType : : POINT } //

vertices

7 } ;

8 // subEntityCorners_[i][j][k] = Index of k-th vertex of subentity
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with codim i, index j

9 template <>

10 const vector < i iVec_ t >

ReferenceElement <RefElType : : TRIA > : : subEnt i tyCorners_ {

11 { { 0 , 1 , 2 } } , // vertex numbers for triangle

12 { { 0 , 1 } , { 1 , 2 } , { 2 , 0 } } , // endpoint indices of edges

13 { { 0 } , { 1 } , { 2 } } // indices of vertices

14 } ;

15 // cornerCoord_[i][k]} = k-th coordinate of i-th node.

16 template <>

17 const f i x e d Ma t r i x _ t <2,3>

ReferenceElement <RefElType : : TRIA > : : cornerCoord_ (

18 ( f i x e d Ma t r i x _ t <2 ,3 >() << 0 ,1 ,1 ,

19 0 ,0 ,1 ) . f i n i s h e d ( ) ) ;

Note the use of initializer lists to set the values of the static class variables subEntityCorners_ and

subEntityCorners_. The static variable cornerCoord_ is initialized by means of the contructor of

a fixed size matrix type provided by EIGEN. △

Remark 3.6.36 (Internal mesh data structures of BETL)

This supplementary information can utterly be ignored by a user of the BETL library.

The GRID_TRAITS concept collects basic types and cardinals characterising an instance of a mesh. An

excerpt from file volume2d_traits.hpp is displayed next.

C++11 code 3.6.37: GRID_TRAITS for a 2D hybrid mesh

1 st ruct Gr id T r a i t s

2 {

3 typedef eth : : base : : unsigned_t unsigned_t ;

4 typedef eth : : base : : s igned_t s igned_t ;

5 typedef unsigned_t s ize_ type ;

6

7 // fix dimension of triangulated manifold and ambient space

8 s t a t i c const in t dimMesh = 2;

9 s t a t i c const in t dimWorld = 2;

10

11 typedef Grid g r i d Imp l_ t ;

12

13 template < i n t CODIM>

14 using e n t i t y _ t =

b e t l 2 : : g r id2d : : hybr id : : Entity <CODIM, Gr idT ra i t s >;

15 template < i n t CODIM>

16 using ent i tyPointer_t = b e t l 2 : : g r id2d : : hybr id : : EntityPointer <

CODIM, Gr i d T r a i t s >;

17 template < i n t CODIM>

18 using e n t i t y I t e r a t o r _ t = b e t l 2 : : g r id2d : : hybr id : : Ent i ty I t e ra tor <

CODIM, Gr i d T r a i t s >;
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19 template < i n t CODIM>

20 using geometry_t = b e t l 2 : : Geometry< CODIM, dimMesh−CODIM,

dimWorld >;

21 template < i n t DIM_FROM, i n t DIM_TO>

22 using localGeometry_t = b e t l 2 : : Geometry< 0 , DIM_FROM, DIM_TO >;

23 template <signed_t ROWS, s igned_t COLS>

24 using f ixedSizeMatr ix_t = b e t l 2 : : real_matr ix_t < ROWS, COLS >;

25

26 typedef double c type_t ;

27 typedef s ize_ type idType_t ;

28 . . .

29 } ;

The next code lists essential parts of a template specialization the forms the basis for a “Vertex type” for a

2D hybrid mesh (partial listing from file Library/grid/grid2d_entity_node).

C++11 code 3.6.38: BETL class representing a vertex in a 2D hybrid mesh

1 // special instance of a geometric entity with co-dimension 2

2 template < typename GRID_TRAITS >

3 class E n t i t y <2 ,GRID_TRAITS>:

4 public : : eth : : g r i d : : E n t i t y < GRID_TRAITS,2 >

5 {

6 pr ivate :

7 // A vertex is an entity of codimension 2, see § 3.4.3

8 s t a t i c const in t codim = 2;

9 // type of geometric object, see § 3.6.33

10 s t a t i c const eth : : base : : RefElType re t_ =

eth : : base : : RefElType : : POINT ;

11 public :

12 typedef eth : : g r i d : : E n t i t y <GRID_TRAITS , codim>

i n t e r f a c e _ t ;

13 typedef typename GRID_TRAITS : : s ize_ type index_t ;

14 typedef typename GRID_TRAITS : : template geometry_t<codim>

geometry_impl_t ;

15 typedef eth : : g r i d : : Geometry<GRID_TRAITS , geometry_impl_t >

geometry_t ;

16 pr ivate :

17 // EIGEN fixed size matrix type for storing coordinate vectors

18 typedef typename GRID_TRAITS : :

19 template f i xedS izeMat r i x_ t <GRID_TRAITS : : dimWorld ,1 > matrix_t ;

20 pr ivate :

21 // Global index number

22 index_t index_ ;

23 // Information about the geometry. This data member actually

24 // stores the (world) coordinates of the vertex.

25 geometry_impl_t geometry_impl_ ;

26 public :

27 E n t i t y ( ) : i n t e r f a c e _ t ( ) , index_ ( ) , geometry_impl_ ( matrix_t ( ) ) { }
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28 E n t i t y ( index_t index , const matrix_t& coords )

29 : i n t e r f a c e _ t ( ) , index_ ( index ) , geometry_impl_ ( coords ) { }

30

31 index_t index ( ) const { return index_ ; }

32 eth : : base : : RefElType refElType ( ) const { return r e t_ ; }

33 geometry_t geometry ( ) const { return geometry_t ( geometry_impl_ ) ;

}

34 } ;

Now we look at the type for an edge entity in 2D (partial listing from file Library/grid/grid2d_entity_edge

We see that the edge data structure contains a pair of pointers to the vertices representing its endpoints.

C++11 code 3.6.39: BETL class representing an edge of a 2D hybrid mesh

1 // specialisation of entity with co-dimension 1

2 template < typename GRID_TRAITS >

3 class E n t i t y < 1 , GRID_TRAITS >:

4 public : : eth : : g r i d : : E n t i t y < GRID_TRAITS,1 >

5 {

6 pr ivate :

7 // An edge is an entity of codimension 1, see § 3.4.3

8 s t a t i c const in t myCodim_ = 1;

9 // type of geometric object, see § 3.6.33

10 s t a t i c const eth : : base : : RefElType re t_ =

eth : : base : : RefElType : :SEGMENT ;

11

12 public :

13 typedef : : eth : : g r i d : : E n t i t y < GRID_TRAITS , myCodim_ > i n t e r f a c e _ t ;

14 typedef eth : : base : : unsigned_t index_t ;

15

16 pr ivate :

17 template < i n t CODIM >

18 using e n t i t y P t r _ t =

19 typename GRID_TRAITS : : template e n t i t y P o i n t e r _ t <CODIM>;

20 typedef typename GRID_TRAITS : : template e n t i t y _ t < 2 > node_t ;

21 typedef array < node_t∗ , 2 > pair_t ;

22

23 pr ivate :

24 // Global index of the edge

25 index_t index_ ;

26 // An edge is stored as an array of two pointers to nodes.

27 const pair_t edge_nodes_ ;

28

29 public :

30 // An edge is built from a pair of nodes

31 E n t i t y ( node_t∗ f i r s t , node_t∗ l a s t ) :

32 i n t e r f a c e _ t ( ) , index_ ( ) , edge_nodes_ ( ) {

33 edge_nodes_ [ 0 ] = f i r s t ; edge_nodes_ [ 1 ] = l a s t ; }

34
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35 // Return index of edge

36 index_t index ( ) const { return index_ ; }

37 // Return the entity’s reference type, which will be SEGMENT

38 eth : : base : : RefElType refElType ( ) const { return r e t_ ; }

39 // Get number of sub-entities

40 template < i n t CODIM > i n t count ( ) const {

41 BOOST_STATIC_ASSERT_MSG ( CODIM == 2 ,

42 " E n t i t y < 1 > : : Cod imens ion o t h e r than 2 i s mean ing less " ) ;

43 return 2; // An edge always consists of 2 nodes

44 }

45 // Get pointer to i-th subentity

46 template < i n t CODIM > e n t i t y P t r _ t <CODIM> subEn t i t y ( i n t i ) {

47 BOOST_STATIC_ASSERT_MSG ( CODIM == 2 ,

48 " E n t i t y < 1 > : : Cod imens ion o t h e r than 2 i s mean ing less " ) ;

49 BOOST_ASSERT_MSG( i < th is −> count <CODIM> ( ) ,

50 " E n t i t y < 1 > : : Wrong i n d e x ! " ) ;

51 return ( i == 0 ?

52 e n t i t y P t r _ t <CODIM>( edge_nodes_ [ 0 ] ) :

53 e n t i t y P t r _ t <CODIM>( edge_nodes_ [ 1 ] ) ) ;

54 }

55 } ;

More complex is the type for a cell of a 2D hybrid mesh, whose definition through template specialization

is introduced next (partial listing from file Library/grid/grid2d_entity_element.hpp). The

implementations of the methods have been omitted.

C++11 code 3.6.40: BETL class representing a cell of a 2D hybrid mesh

1 template < typename GRID_TRAITS >

2 class E n t i t y <0 ,GRID_TRAITS >: public : : eth : : g r i d : : E n t i t y <

GRID_TRAITS,0 >

3 {

4 pr ivate :

5 // A cell is an entity of codimension 2, see § 3.4.3

6 s t a t i c const in t codim = 0;

7 typedef E n t i t y <0 , GRID_TRAITS> s e l f _ t ;

8 public :

9 typedef eth : : base : : unsigned_t index_t ;

10 typedef b e t l 2 : : ElementType element_t ;

11 typedef typename GRID_TRAITS : : template geometry_t<codim>

geometry_impl_t ;

12 typedef typename GRID_TRAITS : : e n t i t y O r i e n t a t i o n _ t

e n t i t y O r i e n t a t i o n _ t ;

13 typedef eth : : g r i d : : Geometry<GRID_TRAITS , geometry_impl_t >

geometry_t ;

14 template < i n t CODIM>

15 using e n t i t y _ p o i n t e r _ i m p l _ t = typename GRID_TRAITS : : template

e n t i t y P o i n t e r _ t <CODIM>;

16 template < i n t CODIM>
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17 using e n t i t y _ p o i n t e r _ t = eth : : g r i d : : E n t i t y P o in te r <

GRID_TRAITS , e n t i t y _ p o in t e r _ i m p l _ t <CODIM> >;

18 pr ivate :

19 typedef eth : : base : : ReferenceElements Rets ;

20 typedef typename GRID_TRAITS : : template e n t i t y _ t < 1 > edge_t ;

21 typedef typename GRID_TRAITS : : template e n t i t y _ t < 2 > node_t ;

22 typedef vector <edge_t∗> edge_vec_t ;

23 typedef vector <node_t∗> node_vec_t ;

24 typedef vector <const s e l f _ t ∗> element_vec_t ;

25 typedef tup le <edge_vec_t , node_vec_t> ent i t y_co l lec t ion_t ;

26 pr ivate :

27 // Internal code for storage class, defined in file
element_types.hpp

28 const element_t element_type_ ;

29 // Global index

30 const index_t index_ ;

31 // Array of pointers to edges and vertices

32 ent i t y_co l lec t ion_t e n t i t y _ c o l l e c t i o n _ ;

33 // Matrix of node coordinates

34 geometry_impl_t geometry_impl_ ;

35 // Orientation of current element

36 e n t i t y O r i e n t a t i o n _ t e n t i t y O r i e n t a t i o n _ ;

37 public :

38 // Main constructor building a cell from pieces of information

39 template < typename NODE_ITERATOR >

40 E n t i t y ( element_t element_type ,

41 index_t index ,

42 NODE_ITERATOR node_begin ,

43 NODE_ITERATOR node_end) ;

44 // Fetch the element index

45 i n l in e index_t index ( ) const ;

46 // Get the underlying reference element’s type

47 eth : : base : : RefElType refElType ( ) const ;

48 // Get number of subentities

49 template < i n t CODIM > i n l in e in t countSubEnt i t ies ( ) const ;

50 template < i n t CODIM >

51 e n t i t y _ p o i n t e r _ t <CODIM> subEn t i t y ( i n t i ) const ;

52 // Return the entity’s geometry representation

53 geometry_t geometry ( ) const ;

54 /// Get the orientation of the i-th sub-entity of codim CODIM

55 template < i n t CODIM >

56 bool o r i e n ta t i o n S ig n ( s ize_ type i ) const

57 // Determine relative orientation of the edges of the cell

58 void i n i t i a l i z e O r i e n t a t i o n ( void ) ;

59 } ;

The method orientationSign returns the relative orientation of a sub-entity, usually of an edge. The

orientation tells its direction specified by an ordering of the endpoints. The method gives +1 if the intrinsic

orientation of an edge matches its local orientation, −1 otherwise. Local orientations are explained in

Rem. 3.6.48.
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(3.6.41) Numbering of geometric entities in DUNE/BETL

All geometric entities of a fixed co-dimension and geometric type are numbered by consecutive inte-

ger indices starting from 0. These indices are not accessible from the entity itself, but are stored in an

IndexSet object, see documentation: If GRIDVIEW is the type of the current grid, a reference to which

is stored in the variable gv, then in a standard DUNE interface a reference to its index set can be fetched

as follows:

using IndexSetRef=typename GridView::IndexSet const &;

using index_t =typename GridView::IndexSet::IndexType;

IndexSetRef set(gv.indexSet());

In BETL access to the type and the instance of the index set associated with a grid is slightly different:

using grid_t = betl2::volume2dGrid::hybrid::Grid;

// we use the leaf view of a grid only

const eth::grid::GridViewTypes view =

eth::grid::GridViewTypes::LeafView;

using indexSet_betl2_t = typename grid_t::gridTraits_t:: template

viewTraits_t<view> ::indexSet_t;

using indexSet_eth_t = typename eth::grid::IndexSet<gridTraits_t,

indexSet_betl2_t>;

using indexSetRef_t = indexSet_eth_t const &;

using index_t = typename indexSet_t::size_type;

indexSetRef_t set(gv.indexSet());

The BETL way looks more complicated, but everything becomes very simple with auto type deduction,

see Code 3.6.29.

auto & set = gv.indexSet();

IndexSet has the method

index_t index(const Entity &) const;

which returns the unique index (actually an integer) of any entity passed to it.

For entities of co-dimension 0 (= cells, elements) there is a shortcut access to the indices of sub-entities:

✦ In the standard DUNE specification:

index_t subIndex(const Entity &element,size_type

locidx,size_type codim)

whose function is equivalent to calling

set.index(T. template subEntity<codim>(locidx));

for the entity object T of co-dimension 0.

✦ A slightly altered variant in BETL, templated by the co-dimension:

template <CODIM> index_t subIndex(

const Entity<GRID_TRAITS,0> &element,size_type locidx)
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Example 3.6.42 (Scanning mesh topology in standard DUNE interface)

Code 3.6.43 demonstrates the access of lower-dimensional entities in a DUNE compliant code; the use of

subEntity methods and the retrieval of global index numbers, also by subIndex().

C++11 code 3.6.43: Accessing geometric entities of a mesh in DUNE

1 template <class GridView >

2 void scanTopology ( const GridView &gv ) {

3 using IndexSetRef =typename GridView : : IndexSet const &;

4 using Index=typename GridView : : IndexSet : : IndexType ;

5 // Types for geoemtric entities of the mesh

6 using Tr iang le =typename GridView : : template Codim <0 >:: E n t i t y ;

7 using T r i a n g le P t r =typename GridView : : template

Codim <0 >:: E n t i t y P o i n t e r ;

8 using Edge=typename GridView : : template Codim <1 >:: E n t i t y ;

9 using EdgePtr=typename GridView : : template Codim <1 >:: E n t i t y P o i n t e r ;

10 using Node=typename GridView : : template Codim <2 >:: E n t i t y ;

11 using NodePtr=typename GridView : : template Codim <2 >:: E n t i t y P o i n t e r ;

12

13 IndexSetRef se t ( gv . indexSet ( ) ) ;

14 // loop over all cells of the mesh

15 for ( auto i t =gv . template begin <0 >() ; i t != gv . template end <0 >() ;

++ i t ) {

16 const Tr iang le &T = ∗ i t ;

17 cout << i t −>type ( ) << " , i d = " << set . index (T ) ;

18 const in t Ned = T . template count <1 >() ; // No. of edges @@

19 // loop over edges and print their global indices

20 cout << " , edges = " ;

21 for ( i n t j =0; j <Ned ; j ++) {

22 EdgePtr edpt r = T . template subEntity <1>( j ) ;

23 const Edge &ed = ∗edpt r ;

24 cout << set . index ( ed ) ;

25 cout << " ( s u b i n d e x = " << set . subIndex (T , j , 1 ) << " ) , " ;

26 }

27 // loop over vertices and print their global index numbers

28 cout << " v e r t i c e s = " ;

29 const in t Nvt = T . template count <2 >() ;

30 for ( i n t j =0; j <Nvt ; j ++) {

31 NodePtr v t p t r = T . template subEntity <2>( j ) ;

32 const Node &v t = ∗ v t p t r ;

33 cout << set . index ( v t ) ;

34 cout << " ( s u b i n d e x = " << set . subIndex (T , j , 2 ) << " ) , " ;

35 }

36 cout << endl ;

37 }

38 }

Line 18, Line 16: the count function gives the number of sub-entities.
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Line 11, Line 19: the index function of the IndexSet contained in the GridView allows access to

unique global index numbers starting from 0.

Line 25, Line 20: indices can also be requested by calling subIndex().

Example 3.6.44 (Inspecting mesh topology in BETL)

The following two codes are meant to demonstrate access to entities and sub-entities using the DUNE-

style mesh interface provided by BETL. Two versions are given; a long version with explicit statement of

all types and a short version relying on automatic type deduction.

C++11 code 3.6.45: Accessing sub-entities and their index numbers in BETL ➺ GITLAB

1 template <class VIEW_TRAITS>

2 void scanTopology ( const eth : : g r i d : : GridView <VIEW_TRAITS> &gv ) {

3 using gr idV iew_t = eth : : g r i d : : GridView <VIEW_TRAITS>;

4 using g r i d T r a i t s _ t = typename gr idV iew_t : : g r i d T r a i t s _ t ;

5 using v i e w T r a i t s _ t = typename gr idV iew_t : : v i e w T r a i t s _ t ;

6 using indexSet_ t = eth : : g r i d : : IndexSet < g r i d T r a i t s _ t , typename

v i e w T r a i t s _ t : : indexSet_t >;

7 using indexSet_ t = typename v i e w T r a i t s _ t : : indexSet_ t ;

8 using indexSetRef_t = indexSet_ t const &;

9 using index_t = typename indexSet_ t : : s ize_ type ;

10

11 // Types for geometric entities of the mesh and pointers to them

12 using t r i a n g l e _ t = eth : : g r i d : : E n t i t y < g r i d T r a i t s _ t ,0 > ;

13 using t r i a n g l e P t r I m p l _ t = typename g r i d T r a i t s _ t : : template

e n t i t y P o i n t e r _ t <0>;

14 using t r i a n g l e P t r _ t =

eth : : g r i d : : E n t i t y P o in te r < g r i d T r a i t s _ t , t r i a n g l e P t r I m p l _ t > ;

15 using edge_t = eth : : g r i d : : E n t i t y < g r i d T r a i t s _ t ,1 > ;

16 using edgePtr Impl_t = typename g r i d T r a i t s _ t : : template

e n t i t y P o i n t e r _ t <1>;

17 using edgePtr_t =

eth : : g r i d : : E n t i t y P o in te r < g r i d T r a i t s _ t , edgePtr Impl_t > ;

18 using node_t = eth : : g r i d : : E n t i t y < g r i d T r a i t s _ t ,2 > ;

19 using nodePtr Impl_t = typename g r i d T r a i t s _ t : : template

e n t i t y P o i n t e r _ t <2>;

20 using nodePtr_t =

eth : : g r i d : : E n t i t y P o in te r < g r i d T r a i t s _ t , nodePtr Impl_t > ;

21

22 // Obtain handle to index set for current grid

23 indexSetRef_t se t ( gv . indexSet ( ) ) ;

24 // loop over all cells of the mesh

25 for ( auto& t : gv . template e n t i t i e s <0 >() ) {

26 // Fetch index of current element

27 const index_t idxT = set . index ( t ) ;

28 cout << t . re fElType ( ) << " , i n d e x = " << idxT << endl ;

29 const in t Ned = t . template countSubEntities <1 >() ; // No. of edges
@@

3. Finite Element Methods (FEM), 3.6. Implementation of Finite Element Methods 259

https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/topology/NPDE_topology_functions.hpp


NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

30 // loop over edges and print their global indices

31 for ( i n t j =0; j <Ned ; j ++) {

32 cout << " Edge " << j << " : " ;

33 edgePtr_t edpt r = t . template subEntity <1>( j ) ;

34 const edge_t &ed = ∗edpt r ;

35 cout << set . index ( ed ) ;

36 const index_t edIdx = set . template subIndex<1>( t , j ) ;

37 cout << " ( s u b i n d e x = " << edIdx << " ) , " ;

38 }

39 cout << endl ;

40 // loop over vertices and print their global index numbers

41 const in t Nvt = t . template countSubEntities <2 >() ;

42 for ( i n t j =0; j <Nvt ; j ++) {

43 cout << " V e r t e x " << j << " : " ;

44 nodePtr_t v t p t r = t . template subEntity <2>( j ) ;

45 const node_t &v t = ∗ v t p t r ;

46 cout << set . index ( v t ) ;

47 const index_t v t I d x = set . template subIndex<2>( t , j ) ;

48 cout << " ( s u b i n d e x = " << v t I d x << " ) , " ;

49 }

50 cout << endl ;

51 }

52 }

The cumbersome extraction of types can be avoided when relying on the C++11 auto type deduction

mechanism:

C++11 code 3.6.46: Accessing sub-entities and their index numbers in BETL ➺ GITLAB

1 template <class VIEW_TRAITS>

2 void scanTopology_auto ( const eth : : g r i d : : GridView <VIEW_TRAITS> &gv ) {

3 auto &set = gv . indexSet ( ) ; // See § 3.6.41

4 // loop over all cells of the mesh (entities of co-dimension 0)

5 for ( auto& t : gv . template ent i t ies <0 >() ) {

6 cout << t . re fElType ( ) << " , i d = " << set . index ( t ) << endl ;

7 auto Ned = t . template countSubEntities <1 >() ; // No. of edges

8 // loop over edges and print their global indices

9 for ( i n t j =0; j <Ned ; j ++) {

10 auto edpt r = t . template subEntity <1>( j ) ;

11 cout << " Edge " << j << " : " << set . index (∗ edpt r ) ;

12 cout << " ( s u b i d x = " << set . template subIndex<1>( t , j ) << " ) ,

" ;

13 }

14 cout << endl ;

15 // loop over vertices and print their global index numbers

16 const in t Nvt = t . template countSubEntities <2 >() ;

17 for ( i n t j =0; j <Nvt ; j ++) {

18 auto v t p t r = t . template subEntity <2>( j ) ;

19 cout << " V e r t e x " << j << " : " << set . index (∗ v t p t r ) ;

20 cout << " ( s u b i d x = " << set . template subIndex<2>( t , j ) << " ) , " ;
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21 }

22 cout << endl ;

23 }

24 }

Line 6: via the index set request unique global index number of current cell referenced by iterator t.

Line 7, Line 16: the method countSubEntities yields the number of lower-dimensional sub-entities

of a particular co-dimension.

Line 10, Line 18: by means of subEntity() one can obtain a pointer to a particular sub-entity.

Line 12, Line 20: a call to the subindex method of an indexSet_t object also gives the global index of

a sub-entity.

A working example calling scanTopology is given in ➺ GITLAB.

Example 3.6.47 (Global indices of entities of a hybrid mesh in BETL)

This example highlights the fact that consecutive indexing is done separately for geometric entities of

different type, though they may be of the same co-dimension.
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1 $MeshFormat

2 2.2 0 8

3 $EndMeshFormat

4 $Nodes

5 8

6 1 0 0 0

7 2 1 0 0

8 3 2 0 0

9 4 2 2 0

10 5 1 2 0

11 6 0 2 0

12 7 0 1 0

13 8 1 1 0

14 $EndNodes

15 $Elements

16 17

17 1 15 2 5 1 1

18 2 15 2 5 3 3

19 3 15 2 5 4 4

20 4 15 2 5 6 6

21 5 1 2 2 1 1 2

22 6 1 2 2 2 2 3

23 7 1 2 2 3 3 4

24 8 1 2 4 3 3 4

25 9 1 2 2 4 4 5

26 10 1 2 2 5 5 6

27 11 1 2 3 6 6 7

28 12 1 2 3 6 7 1

29 13 2 2 1 11 3 4 8

30 14 2 2 1 11 3 8 2

31 15 2 2 1 11 8 4 5

32 16 3 2 1 12 1 2 8 7

33 17 3 2 1 12 7 8 5 6

34 $EndElements

✁ .msh-file (→ Ex. 3.6.10) created by Gmsh describing the mesh

drawn in Fig. 153.

Simple planar hybrid mesh comprising triangular and rectangular

cells:

Fig. 153
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0,. . . =̂ local index of vertices

1,. . . =̂ global indices of vertices

1,. . . =̂ global indices of edges

Ti, Qi =̂ cells with global index

The internal index numbers of all mesh entities are displayed as deduced from the information output by

diagnostic functions and listed below.

Output of executable NPDE_topolgy ➺ GITLAB, when supplied with the name of the above .msh-file

as argument:

1 BETL demo : −−−−−−−−−−−−−−− INPUT MESH FROM Gmsh MESH FILE −−−−−−−−−−
2 BETL demo : i n p u t from : hybrid_mesh_5 . msh

3 BETL demo : i n p u t data Version = 2.2

4 Format = ASCII

5 No. o f phys . names = 0

6 No. o f nodes = 8

7 No. o f elements = 5

8 No. o f elements o f type ’QUAD_4’ = 2

9 No. o f elements o f type ’ TRIA_3 ’ = 3

10

11 BETL demo : numNodes = 8

12 BETL demo : numEdges = 12

13 BETL demo : numElements = 5

14
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15 TRIA , i d = 0

16 Edge 0 −> Id : 4 wi th v e r t i c e s [2 0 ] , [2 2 ]

17 Edge 1 −> Id : 7 wi th v e r t i c e s [2 2 ] , [1 1 ]

18 Edge 2 −> Id : 5 wi th v e r t i c e s [1 1 ] , [2 0 ]

19 Vertex 0 −> Id : 2 : [2 0 ]

20 Vertex 1 −> Id : 3 : [2 2 ]

21 Vertex 2 −> Id : 7 : [1 1 ]

22

23 TRIA , i d = 1

24 Edge 0 −> Id : 5 wi th v e r t i c e s [1 1 ] , [2 0 ]

25 Edge 1 −> Id : 3 wi th v e r t i c e s [1 1 ] , [1 0 ]

26 Edge 2 −> Id : 2 wi th v e r t i c e s [1 0 ] , [2 0 ]

27 Vertex 0 −> Id : 2 : [2 0 ]

28 Vertex 1 −> Id : 7 : [1 1 ]

29 Vertex 2 −> Id : 1 : [1 0 ]

30

31 TRIA , i d = 2

32 Edge 0 −> Id : 7 wi th v e r t i c e s [2 2 ] , [1 1 ]

33 Edge 1 −> Id : 6 wi th v e r t i c e s [2 2 ] , [1 2 ]

34 Edge 2 −> Id : 9 wi th v e r t i c e s [1 2 ] , [1 1 ]

35 Vertex 0 −> Id : 7 : [1 1 ]

36 Vertex 1 −> Id : 3 : [2 2 ]

37 Vertex 2 −> Id : 4 : [1 2 ]

38

39 QUAD, i d = 0

40 Edge 0 −> Id : 0 wi th v e r t i c e s [0 0 ] , [1 0 ]

41 Edge 1 −> Id : 3 wi th v e r t i c e s [1 1 ] , [1 0 ]

42 Edge 2 −> Id : 11 wi th v e r t i c e s [1 1 ] , [0 1 ]

43 Edge 3 −> Id : 1 wi th v e r t i c e s [0 1 ] , [0 0 ]

44 Vertex 0 −> Id : 0 : [0 0 ]

45 Vertex 1 −> Id : 1 : [1 0 ]

46 Vertex 2 −> Id : 7 : [1 1 ]

47 Vertex 3 −> Id : 6 : [0 1 ]

48

49 QUAD, i d = 1

50 Edge 0 −> Id : 11 wi th v e r t i c e s [1 1 ] , [0 1 ]

51 Edge 1 −> Id : 9 wi th v e r t i c e s [1 2 ] , [1 1 ]

52 Edge 2 −> Id : 8 wi th v e r t i c e s [1 2 ] , [0 2 ]

53 Edge 3 −> Id : 10 wi th v e r t i c e s [0 2 ] , [0 1 ]

54 Vertex 0 −> Id : 6 : [0 1 ]

55 Vertex 1 −> Id : 7 : [1 1 ]

56 Vertex 2 −> Id : 4 : [1 2 ]

57 Vertex 3 −> Id : 5 : [0 2 ]

We summarize the main insight gleaned from this example:

Only the pair of index and RefElType uniquely identifies a mesh entity in BETL.

Remark 3.6.48 (Local numbering of sub-entities of a triangle in DUNE and BETL)

The subEntity() access method of an element accepts a local index number, returns a pointer to a
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sub-entity and thus defines a local numbering of the sub-entities of an element (see also Code 3.6.35).

This local numbering must be fixed by convention. The conventions adopted by DUNE and BETL for

setting the local indices of the edges of a triangle once the vertices are numbered are different. They are

illustrated below (red↔ vertex numbers, green↔ edge numbers). BETL’s local numbering scheme can

also be deduced from the program output listed in Ex. 3.6.47.

Fig. 154
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BETL’s numbering convention for quadrilaterals (ref-
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index. Distinguis from global orientation, which is in-

trinsic to an edge and fixed arbitrarily during the con-

struction of a mesh.
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(3.6.49) Geometric information in DUNE & BETL

In the DUNE standard interface the geometry method available for any entity (→ § 3.6.32 & § 3.6.33)

provides access to a Geometry structure with the following types and methods, see documentation:

✦ Type ctype =̂ type for the components of coordinate vectors

✦ Type GlobalCoordinate =̂ vector of global coordinates

✦ Method int corners() =̂ number of vertices/endpoints

✦ Method corner(int i) =̂ global location of corner with local index i

✦ Method volume() =̂ returns volume/length of geometric entity

In DUNE coordinate vectors are of type Dune::FieldVector, which offers elementary linear algebra,

see DUNE Doxygen documentation.

In BETL this interface has been modified slightly and the class Geometry is defined in geometry.hpp

in namespace eth::grid. The following types and methods can be accessed:

✦ Constant dimFrom telling the dimension of the reference element
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✦ Constant dimTo, the dimension of ambient space

✦ Type gridTraits_t of the GridTraits of the mesh of which the entity is part of.

✦ Vector type globalCoord_t for absolute coordinates of points in ambient space.

✦ Vector type localCoord_t for relative coordinates in a reference element.

✦ Integer type size_type for indices.

✦ Method size_type numCorners() telling the number of vertices of the entity.

✦ Method globalCoord_t mapCorner(int i) returning the global coordinates of the vertices

of the geometric entity.

✦ Method gridTraits_t::ctype_t volume() telling the volume/area of the geometric entity.

✦ Method globalCoord_t center() obtaining the global coordinates of the center of gravity of

the geometric entity.

In BETL coordinate vectors are small fixed size EIGEN vector types, see [14, § 1.2.11] and Sec-

tion 3.6.3. Thus, all of EIGEN’s linear algebra operations and functions are available for them.

Example 3.6.50 (Accessing locations in DUNE)

Code 3.6.51 demonstrates the use of the corner()method to request to location of vertices of geometric

entities.

C++11 code 3.6.51: Printing the locations of vertices associated with geometric entities

1 template <class GridView , i n t k>

2 void printMeshGeo ( const GridView &gv ) {

3 enum { domdim = GridView : : dimension } ;

4 using E n t i t y I t e r a t o r =typename GridView : : template Codim<k > : : I t e r a t o r ;

5 using E n t i t y = typename GridView : : template Codim<k > : : E n t i t y ;

6 using GeometryRef=typename E n t i t y : : Geometry const &;

7 using PointCoords =typename E n t i t y : : Geometry : : GlobalCoordinate ;

8

9 cout << " Dim . = " << GridView : : dimension << endl ;

10 for ( E n t i t y I t e r a t o r i t =gv . template begin <k > ( ) ; i t != gv . template

end<k > ( ) ; ++ i t ) {

11 GeometryRef geo = i t −>geometry ( ) ;

12 i n t Nvt = geo . corners ( ) ;

13 cout << Nvt << " v e r t i c e s a t " ;

14 for ( i n t j =0; j <Nvt ; j ++) {

15 const PointCoords &vpos ( geo . corner ( j ) ) ;

16 cout << " ( " << vpos << " ) " ;

17 }

18 cout << endl ;

19 }

20 }
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Example 3.6.52 (Geometry related queries in BETL)

The following codes demonstrate geomtric queries in BETL through the Geometry interface.

C++11 code 3.6.53: Output of information on the geometry of an entity ➺ GITLAB

1 template <class GEOMETRY>

2 void pr in tGeometry In fo ( const GEOMETRY &geoEnt ) {

3 // Type for length of vectorss

4 using size_t = typename GEOMETRY : : s ize_ type ;

5 // Traits for underlying grid, see Code 3.6.37

6 using gr idTra i ts_ t = typename GEOMETRY : : gr idTra i ts_ t ;

7 // Type for components of coordinate vectors (double)

8 using ctype_t = typename gr idTra i ts_ t : : ctype_t ;

9 // Type for coordinate vectors, small fixed size vector from EIGEN

10 using globalCoord_t = typename GEOMETRY : : globalCoord_t ;

11 // Dimension of the mesh entity

12 s t a t i c const in t dimFrom = GEOMETRY : : dimFrom ;

13 // Dimension of the ambient space (world dimension)

14 s t a t i c const in t dimTo = GEOMETRY : : dimTo ;

15

16 // Fetch the dimFrom-dimensional volume of the entity

17 const ctype_t vo lEnt = geoEnt . volume ( ) ;

18 // Inquire about coordinates of the center

19 // (The center is the image of the barycenter of the reference
element)

20 const globalCoord_t cn t rEn t = geoEnt . center ( ) ;

21 // Find out whether mapping from reference element is affine

22 const bool a f f i n e = geoEnt . i s A f f i n e ( ) ;

23 // Print obtained information

24 cout << " ( t y p e = " << geoEnt . refElType ( )

25 << " , d im_f rom = " << dimFrom << " , d im_ to = " << dimTo

26 << " ) , Volume = " << vo lEnt << " , c e n t e r = [ "

27 << cn t rEn t . transpose ( ) << " ] , " ;

28 i f ( a f f i n e ) cout << " [ a f f i n e ] " << endl ;

29 else cout << " [ n o t a f f i n e ] " << endl ;

30

31 // For demonstration purposes: direct computation of affine

32 // barycenter of vertices of the mesh entity

33 const s ize_t nCorners = geoEnt . numCorners ( ) ;

34 // Sum position vectors of vertices in vector s

35 globalCoord_t s ; s . setZero ( ) ;

36 for ( i n t j =0; j < nCorners ; j ++) {

37 globalCoord_t cornCoords = geoEnt . mapCorner ( j ) ;

38 s += cornCoords ;

39 }

40 s /= nCorners ;

41 cout << endl << " A f f i n e b a r y c e n t e r a t "

42 << s . transpose ( ) << endl ;
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43 }

Four important query options are available through Geometry. We can find out about the volume (→
Line 17), the center of gravity (→ Line 20), the number of corners (vertices,→ Line 33), and their location

in the world coordinate system (→ Line 37).

C++11 code 3.6.54: Output of information on the geometry of an entity ➺ GITLAB

1 template <class GEOMETRY>

2 void pr in tGeometry In fo ( const GEOMETRY &geoEnt ) {

3 cout << " ( t y p e = " << geoEnt . refElType ( )

4 << " , d im_f rom = " << GEOMETRY : : dimFrom

5 << " , d im_ to = " << GEOMETRY : : dimTo

6 << " ) , Volume = " << geoEnt . volume ( )

7 << " , c e n t e r = [ " << geoEnt . center ( ) . transpose ( ) << " ] , " ;

8 i f ( geoEnt . i s A f f i n e ( ) ) cout << " [ a f f i n e ] " << endl ;

9 else cout << " [ n o t a f f i n e ] " << endl ;

10

11 typename GEOMETRY : : globalCoord_t s ; s . setZero ( ) ;

12 i n t j =0; for ( ; j < geoEnt . numCorners ( ) ; j ++)

13 s += geoEnt . mapCorner ( j ) ;

14 s /= j ;

15 cout << endl << " A f f i n e b a r y c e n t e r a t [ " << s . transpose ( ) << ’ ] ’ <<

endl ;

16 }

The meaning of the isAffine() in Line 8 query will be explained in Section 3.7. The type globalCoord_t

defined in Line 11 is that of a fixed size EIGEN vector.

The output functions are invoked from an loop over mesh entities of a particular co-dimension (passed as

template parameter) as in Code 3.6.29.

C++11 code 3.6.55: Output of information on the geometry of an entity ➺ GITLAB

1 template < i n t k , class VIEW_TRAITS>

2 void printMeshGeo ( const eth : : g r i d : : GridView<VIEW_TRAITS> &gv ) {

3 // loop over entities of co-dimension k

4 for ( auto& i t : gv . template ent i t ies <k > ( ) )

5 printGeometryInfo ( i t . geometry ( ) ) ;

6 }

An executable code using printMeshGeo can be accessed through ➺ GITLAB.

(3.6.56) DUNE/BETL – Intersections

The representation of mesh topology implemented in DUNE/BETL, see Fig. 151, allows direct access to

adjacent elements through the device of intersections, see DUNE documentation:
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Intersection object = part of the boundary of an element

6= geometric entity of co-dimension 1 (edge)

☞ An intersection object always belongs to a cell.

☞ Intersection objects do not have any global indices.

In the standard DUNE interface sequential access to the intersection of a cell e is possible through the

iterator pair

GridView::ibegin(e) . . . GridView::iend(e)

In BETL an intermediate sequential container of type EntityCollection serves the same purpose. It can

be accesses through the following member function of a GridView object:

const EntityCollection< IntersectionIterator<VIEW_TRAITS> >

intersections (const Entity<GRID_TRAITS,0> &e) const

An intersection object is equipped with the following methods:

✦ bool boundary(): if false, no other neighbor exists.

✦ bool neighbor(): true, if a neighbor cell exists.

✦ geometry(): geometry of intersection object, see § 3.6.49

✦ inside(): return pointer to “master element”

✦ outside(): returns pointer to neighbor element; well defined return value only if this exists.

✦ indexInInside(): local number of edge corresponding to intersection object in “master ele-

ment”

✦ indexInOutside(): local number of edge corresponding to intersection object in neighboring

element; well defined return value only if this exists.

Example 3.6.57 (Using DUNE intersections to query local topology of mesh)

The following code uses DUNE’s intersection facility to access the cells adjacent to a current cell.

C++11 code 3.6.58: Use of intersection objects in DUNE

1 template <class GridView >

2 void v i s i t I n t e r s e c t i o n s ( const GridView &gv ) {

3 using IndexSetRef =typename GridView : : IndexSet const &;

4 using Index=typename GridView : : IndexSet : : IndexType ;

5 // Types for geoemtric entities of the mesh

6 using T r i a n g le P t r =typename GridView : : template

Codim <0 >:: E n t i t y P o i n t e r ;

7 // Types connected with intersections

8 using Side=typename GridView : : I n t e r s e c t i o n ;

9 using S i d e I t e r a t o r =typename GridView : : I n t e r s e c t i o n I t e r a t o r ;

10
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11 IndexSetRef se t ( gv . indexSet ( ) ) ;

12 // loop over all cells of the mesh

13 for ( auto i t =gv . template begin <0 >() ; i t != gv . template end <0 >() ;

++ i t ) {

14 const Tr iang le &T = ∗ i t ;

15 // loop over the intersections (sides) of the current cell

16 for ( auto i i t = gv . ibegin (T ) ; i i t != gv . iend (T ) ; ++ i i t ) {

17 const Side& side = ∗ i i t ;

18 T r i a n g le P t r nb1ptr = s ide . inside ( ) ; // the triangle itself

19 i n t l o c i d x = s ide . indexInInside ( ) ; // local number of side

20 // obtain global index number of current side

21 Index g lb i d x = set . index (∗T . template subEnt i ty <1>( l o c i d x ) ) ;

22 cout << " s i d e " << l o c i d x << " ( i d x = " << g lb i d x << " ) " ;

23 // If the side is on the boundary there is no other neighbor

24 i f ( s ide . boundary ( ) ) cout << " on boundary , " ;

25 else {

26 // Get point to triangle on the other side

27 T r i a n g le P t r nb2ptr = s ide . outside ( ) ;

28 cout << "−> n e i g h b o r = " << set . index (∗ nb2ptr ) << " , " ;

29 }

30 }

31 cout << endl ;

32 }

33 }

Testing boundary() in Line 24 is essential; otherwise the result of outside() in Line 27 is an invalid

pointer.

Example 3.6.59 (Using BETL intersections to query local topology of mesh)

The following code uses BETL’s intersection facility to access the cells adjacent to a current cell. We first

give a version with full specification of the types

C++11 code 3.6.60: Use of intersection objects in BETL ➺ GITLAB

1 template < class VIEW_TRAITS>

2 void v i s i t I n t e r s e c t i o n s ( const eth : : g r i d : : GridView <VIEW_TRAITS> &gv ) {

3 using gr idV iew_t = eth : : g r i d : : GridView <VIEW_TRAITS>;

4 using g r i d T r a i t s _ t = typename gr idV iew_t : : g r i d T r a i t s _ t ;

5 using v i e w T r a i t s _ t = typename gr idV iew_t : : v i e w T r a i t s _ t ;

6 using indexSet_ t = eth : : g r i d : : IndexSet < g r i d T r a i t s _ t , typename

v i e w T r a i t s _ t : : indexSet_t >;

7 using index_t = typename indexSet_ t : : s ize_ type ;

8 // Types for geometric entities of the mesh and pointers to them

9 using element_t = eth : : g r i d : : E n t i t y < g r i d T r a i t s _ t , 0 >;

10 using e lemPtr Imp l_ t = typename g r i d T r a i t s _ t : : template

e n t i t y P o i n t e r _ t <0>;

11 using elemPtr_t = eth : : g r i d : : E n t i t y P o in te r < g r i d T r a i t s _ t ,
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elemPtr Impl_t > ;

12 using e le mI te r a to r Imp l_ t = typename v i e w T r a i t s _ t : : template

e n t i t y I t e r a t o r _ t <0>;

13 using e l e m I t e r a t o r _ t = eth : : g r i d : : E n t i t y I t e r a t o r < g r i d T r a i t s _ t ,

e l e m I te r a to r Imp l_ t > ;

14 using edge_t = eth : : g r i d : : E n t i t y < g r i d T r a i t s _ t , 1 >;

15 using edgePtr Impl_t = typename g r i d T r a i t s _ t : : template

e n t i t y P o i n t e r _ t <1>;

16 using edgePtr_t = eth : : g r i d : : E n t i t y P o in te r < g r i d T r a i t s _ t ,

edgePtr Impl_t > ;

17 // Types for handling intersections

18 using i t s c t _ t = eth : : g r i d : : Intersect ion < g r i d T r a i t s _ t > ;

19 using i t s c t I t e r a t o r _ t =

eth : : g r i d : : In te rsec t ion I te ra tor <v iewTra i t s_ t > ;

20 using i t s c t C o l l e c t i o n _ t =

eth : : g r i d : : E n t i t y C o l l e c t i o n < i t s c t I t e r a t o r _ t > ;

21

22 const indexSet_ t &set ( gv . indexSet ( ) ) ;

23 // Loop over all the elements in the mesh

24 for ( e l e m I t e r a t o r _ t e l i t = gv . template e n t i t i e s <0 >() . begin ( ) ;

25 e l i t != gv . template e n t i t i e s <0 >() . end ( ) ; ++ e l i t ) {

26 // Get reference to the element itself

27 const element_t &e l = ∗ e l i t ;

28 // Global index of the element

29 const index_t e lG lb Idx = set . index ( e l ) ;

30 // Get reference to the intersections container

31 const i t s c t C o l l e c t i o n _ t & i t s c t C o l l = gv . intersect ions ( e l ) ;

32 // Loop over intersections (side) of current element

33 for ( i t s c t I t e r a t o r _ t i t s c t i t = i t s c t C o l l . begin ( ) ; i t s c t i t !=

i t s c t C o l l . end ( ) ; ++ i t s c t i t ) {

34 const i t s c t _ t & i n t e r s = ∗ i t s c t i t ;

35 // Get the pointer to the "inside" element, coinciding with el

36 elemPtr_t i n P t r = i n t e r s . inside ( ) ;

37 // Get local index of this side wrt el

38 const index_t i n L c l I d x = i n t e r s . indexInInside ( ) ;

39

40 // Get global index of current side. Since the IndexSet maps

41 // entities, not intersections, we need to get the corresponding
entity first.

42 const edgePtr_t locEdPtr = inP t r−>template

subEnt i ty <1>( i n L c l I d x ) ;

43 const index_t g lb Idx = set . index ( ∗ locEdPtr ) ;

44

45 cout << " I n t e r s e c t i o n " << g lb Idx << " i s a s i d e o f e l emen t "

<< e lG lb Idx << " ( i d x : " << i n L c l I d x << " ) " ;

46

47 // check if this intersection is shared or is a boundary

48 i f ( i t s c t i t −>boundary ( ) ) cout << " and i s on boundary " ;

49 else {

50 // Get pointer to element on the other side
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51 elemPtr_t ou tP t r = i n t e r s . outside ( ) ;

52 const index_t o u tL c l I d x = i n t e r s . indexInOutside ( ) ;

53 const index_t e lOutGlbIdx = set . index (∗ ou tP t r ) ;

54 cout << " and o f e l emen t " << elOutGlbIdx << " ( i d x : " <<

o u tL c l I d x << " ) " ;

55 }

56 cout << endl ;

57 } } }

Using automatic type deduction makes possible a more compact implementation and a more readable

code.

C++11 code 3.6.61: Use of intersection objects in BETL (with auto typing) ➺ GITLAB

1 template < class VIEW_TRAITS >

2 void v i s i t I n t e r s e c t i o n s _ a u t o ( const eth : : g r i d : : GridView <VIEW_TRAITS>

&gv ) {

3 auto& set = gv . indexSet ( ) ;

4 // Loop over mesh elements (codim=0)

5 for ( const auto& e l : gv . template e n t i t i e s <0 >() ) {

6 // Loop over element intersections (sides)

7 for ( const auto& i n t e r s : gv . intersect ions ( e l ) ) {

8 const auto e l InG lb Idx = set . index (∗ i n t e r s . inside ( ) ) ;

9 i f ( e l InG lb Idx != se t . index ( e l ) )

10 cout << "WARNING : i n d e x mismatch between ’ i n s i d e ’ and c u r r e n t

e l emen ts ! " << endl ;

11 // Get local index of this side (wrt inside element/ el)

12 const auto i n L c l I d x = i n t e r s . indexInInside ( ) ;

13 // Get global index of this side

14 const auto locEdPtr = e l . template subEnt i ty <1>( i n L c l I d x ) ;

15 const auto g lb Idx = set . index ( locEdPtr ) ;

16 cout<< " I n t e r s e c t i o n " << g lb Idx << " i s a s i d e o f e l emen t " <<

e l InGlb Idx << " ( i d x : " << i n L c l I d x << " ) " ;

17 // Check if this intersection is shared or is a boundary

18 i f ( i n t e r s . boundary ( ) ) cout<< " i s on boundary " ;

19 else {

20 // Get local index of this side

21 // (wrt neighbor/other element sharing this intersection)

22 const auto o u tL c l I d x = i n t e r s . indexInOutside ( ) ;

23 const auto elOutGlbIdx = set . index ( ∗ i n t e r s . outside ( ) ) ;

24 cout<< " and o f e l emen t " << elOutGlbIdx << " ( i d x : " <<

o u tL c l I d x << " ) " ;

25 }

26 cout << endl ;

27 } } }

A minimal working code is available from ➺ GITLAB.
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3.6.3 Vectors and matrices

(3.6.62) Functions of vectors and matrices in a FE code

Data structures representing matrices and vectors serve different important purposes in a finite element

code:

➊ They represent coordinate vectors of points and have to support geometric calculations, see Code 3.6.54.

➋ They store element matrices and element vectors, recall Section 3.3.5, Section 3.3.6, and see

Def. 3.6.69 below.

➌ They are needed for handling the Galerkin matrices and and have to be used by the linear (direct or

iterative) solver.

For ➊ small fixed size vectors and matrices are sufficient, and they may also be used for ➋, if the mesh

consists of a single type of cells only. For ➋ we need data structures suitable for large variable size vectors

and matrices, where the latter are sparse, moreover, see Section 3.3.4.

(3.6.63) EIGEN– A C++ template library for numerical linear algebra

BETL relies on the open source software EIGEN for its numerical linear algebra needs.

EIGEN is a C++ template library designed to enable easy, natural and efficient numerical linear algebra: it

provides data structures and a wide range of operations for matrices and vectors, see below. EIGEN also

implements (→ doc)

• all important matrix decompositions of dense numerical linear algebra (LU-, QR-, Cholesky-decompositions)

and direct solvers based on them,

• “direct” eigensolvers for various types of dense eigenvalue problems,

• the singular value decomposition (SVD) of a matrix,

• ranks, determinants and inverses of matrices.

Eigen relies on expression templates to allow the efficient evaluation of complex expressions involving

matrices and vectors. Refer to the example given in the EIGEN documentation for details.

The principal components and capabilities of the EIGEN library have been covered in the course “Numeri-

cal Methods for Computational Science and Engineering” [14, Section 1.2.3].

In BETL all matrices and vectors are objects of a suitable Eigen::(Sparse)Matrix type.

(3.6.64) EIGEN: some pointers to information

✦ Matrix and vector data types in EIGEN: see [14, § 1.2.11] and documentation.

✦ Initialization of dense matrices in EIGEN: see [14, § 1.2.12].

✦ Access to submatrices in EIGEN: see [14, § 1.2.13] and documentation.
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✦ Componentwise operations in EIGEN: see [14, § 1.2.15] and documentation.

✦ Sparse matrices in EIGEN (CRS/CCS-format): see [14, Section 1.7.3] and documentation; already

used in Code 3.3.38.

3.6.4 Assembly

“Assembly” = term used for computing entries of stiffness matrix/right hand side vector (load vector) in a

finite element context, cf. § 3.3.29.

From the dictionary: “Assemble” = to fit together all the separate parts of something.

Aspects of assembly for linear Lagrangian finite elements (V0,N = S0
1,0(M)) were discussed in Sec-

tion 3.3.5 and Section 3.3.6. (Refresh yourself on these sections in case you cannot remember the main

ideas behind building the Galerkin matrix and right hand side vector.)

3.6.4.1 Assembly: Localization

Cell-local concepts and operations play a key role in the efficient initialization of finite element Galerkin

matrices and right hand side vectors.

(3.6.65) Localized (bi-)linear forms in variational formulations

We consider a discrete variational problem (V0,N = FE space, dim V0,N = N ∈ N, see (3.2.8))

uN ∈ V0,N : a(uN , vN) = ℓ(vN) ∀vN ∈ V0,N . (3.2.8)

To be computed (see also Section 3.3.5 and Section 3.3.6):

• Galerkin matrix (stiffness matrix): A =
(
a(b

j
N , bi

N)
)N

i,j=1
∈ R

N,N

• r.h.s. vector (load vector): ~ϕ :=
(
ℓ(bi

N)
)N

i=1
∈ R

N

︸ ︷︷ ︸
both can be written in terms of local cell contributions, since usually

a(u, v) = ∑
K∈M

aK(u|K , v|K) , ℓ(v) = ∑
K∈M

ℓK(v|K) , (3.6.66)

where ·|K designates the restriction of a function to cell K; u|K and v|K are not defined outside K.

Example: bilinear forms/linear forms arising from 2nd-order elliptic BVPs, e.g, (2.10.2), (2.10.3),

(2.10.4), can be localized in straightforward fashion by restricting integration to mesh cells

(→ Rem. 3.3.8): for u, v ∈ H1(Ω)

a(u, v) :=
∫

Ω
α(x) grad u · grad v dx = ∑

K∈M

∫

K
α(x) grad u · grad v dx

︸ ︷︷ ︸
=:aK(u|K,v|K)

, (3.6.67)
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ℓ(v) :=
∫

Ω
f v dx = ∑

K∈M

∫

K
f v dx

︸ ︷︷ ︸
=:ℓK(v|K)

. (3.6.68)

✞
✝

☎
✆Recall (3.4.18): Restrictions of global shape functions to cells = local shape functions

Definition 3.6.69. Element (stiffness) matrix and element (load) vector

Given a cell K ∈ M and local shape functions {b1
K, . . . , bQ

K }, Q = Q(K) ∈ N, we introduce

the element (stiffness) matrix AK :=
(
aK(b

j
K, bi

K)
)Q

i,j=1
∈ R

Q,Q ,

and the element (load) vector ~ϕK :=
(
ℓK(b

i
K)
)Q

i=1
∈ R

Q .

(3.6.70) Numbers of local shape functions

In Def. 3.6.69: Q = the number of local shape functions on element K ∈ M, may be different for different

mesh cells K. For instance, this occurs

✦ in the case of hybrid meshes as discussed in Rem. 3.5.16: Q(K) ∈ {3, 4},
✦ in the case of enforcement of zero essential boundary conditions by dropping basis functions asso-

ciated with interpolation nodes on ∂Ω, as explained in § 3.5.14: according to the formal definition

Def. 3.4.19 this will lead to a reduced number of local shape functions. However, in implementations

zero essential boundary conditions are handled differently, see Section 3.6.6.

For standard Lagrangian finite element spaces S0
p(M) the dimensions of the spaces spanned by local

shape functions are the same for all mesh cells and given by the following formulas:

Type of FE space Q

degree p Lagrangian FE on triangular mesh → dimPp(R2) = 1
2(p + 1)(p + 2)

degree p Lagrangian FE on tetrahedral mesh → dimPp(R3) = 1
6(p + 1)(p + 2)(p + 3)

degree p Lagrangian FE on tensor product mesh in 2D→ dimQp(R2) = (p + 1)2

We arrive at these formulas, by the following considerations:

✦ For Lagrangian finite element spaces the local shape functions span a polynomial space, either

Pp(R
d) (simplicial mesh) or Qp(R

d) (tensor product mesh).

✦ The dimensions of Pp(Rd)/Qp(Rd) are given in Lemma 3.4.11 and Lemma 3.4.14.

3.6.4.2 Assembly: Index Mappings

What we have discovered in the case of linear finite elements in Section 3.3.5 (conveyed in Fig. 101 and

Fig. 102 and the accompanying remarks) and implemented in Code 3.3.35 is a general principle.

We find that in the (not so special) setting of this section, characterized by the possibility to localize the

bilinear form a and right hand side linear form ℓ in the sense of (3.6.66),
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✦ the entries of the finite element Galerkin matrix can be obtained by summing corre-

sponding entries of some element matrices,

✦ this corresponding entry of an element matrices is determined by the unique associa-

tion of a local basis function to a global basis function (through a “d.o.f. mapper”).

(3.6.71) Abstract “d.o.f. mapper” facility

The correct assignment of local contributions to entries of the Galerkin matrix and the right hand side

vector requires a

☞ Local→global index map (“d.o.f. mapper”)

locglobmap : M×N → N ,

locglobmap(K, i) = j , if b
j
N |K = bi

K , i ∈ {1, . . . , Q(K)} .
(3.6.72)

global shape function local shape function

Remark 3.6.73 (Local→global index mapping and index array)

The mapping locglobmap generalizes the device of the index mapping array dofh introduced in (3.3.33)

on Page 204 for linear Lagrangian finite elements on 2D triangular meshes and also used in Code 3.3.35:

Precisely, they are related by

dofh(k, l) = locglobmap(K, l) , if K has index k , l ∈ {1, 2, 3} .

(Here, mathematical counting from 1 is used.)

Note that the representation of locglobmap through a matrix dofh assumes unique consecutive index-

ing of all cells of the mesh. In DUNE/BETL this is not the case, if the mesh comprises cells of different

geometric type.

Example 3.6.74 (Local→global mapping for linear Lagrangian finite elements on triangular

mesh)

This example refreshes § 3.3.32.

Using the local/global numbering indicated in the fig-

ure to the right the local→global index map for the

marked cells yields

locglobmap(K∗, (1, 2, 3)) = (2, 7, 9) .

Here: “MATLAB-style” row vector argument makes

locglobmap return row vector output.

See also Fig. 103 for similar considerations.

Fig. 157
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(3.6.75) Specifying the location of global shape functions in BETL

By “location” of a global shape function we mean the unique geometric entity it is associated with, see

Section 3.4.3. BETL adopts a cell-oriented perspective, to represent this linkage: for each cell of the

mesh (element) the locations of the local shape functions are fixed.

More precisely, BETL imposes a substantial constraint: the locations of local shape functions have to be

the same for all cells of the same geometric type (encoded in the RefElType, see § 3.6.33). The concept

providing this information is betl2::fe::FEBasis (Library/fe/febasis.hpp). It has to provide the

following types and methods:

✦ size_type: standard type for indexing

✦ template< eth::base::RefElType RET >

static constexpr size_type multiplicity()

static size_type multiplicity(const eth::base::RefElType ret)

→ tell number of local shape functions belonging to subentities of a particular type.

✦ template< eth::base::RefElType RET > static size_type numDofs()

static size_type numDofs(const eth::base::RefElType ret)

→ gives total number of local shape functions associated with a subentities of a given type and its

boundary. Usually this method is called only for an entity of co-dimension 0 and then it returns the

total number of local shape functions.

In fact betl2::fe::FEBasis has more facilities, but the discussion of those will be postponed to Ex. 3.7.33.

Several standard finite element spaces are already built into BETL and accessible through

template < i n t APPROX_ORDER,enum FEBasisType FE_TYPE> c lass FEBasis;

where the template parameters serve as selectors, and are defined in Library/fe/fe_enumerators.hpp

➺ BETL, and can attain the following values

enum ApproxOrder { Constant=0, Linear=1, Quadratic=2, Cubic=3 };

enum class FEBasisType : unsigned

{ Lagrange, Div, Curl, LagrangeHierarchical };

The type Lagrange selects the H1(Ω)-conforming Lagrangian finite elements introduced in Section 3.5.

For a discussion of the types Div and curl see [4, Sections 2.3, 2.4] and [13, Section 3].

Example 3.6.76 (Implementation of an FEBasis compatible type)

The following data type realizes an FEBasis compatible type defining a finite element space, which has 1
shape function associated with each vertex, 2 with each edge, and 2 more with each cell. The implemen-

tation is generic, however, and can easily be adapted to any finite scheme on 2D hybrid meshes that are

uniform in the sense that the arrangement of local shape functions is the same for every cell.

The definition of the data type is as follows:
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C++11 code 3.6.77: Definition of FEBasis compatible type ➺ GITLAB

1 st ruct MyFEBasis {

2 typedef eth : : base : : unsigned_t s ize_ type ;

3

4 /* static methods: return number of dof per entity */

5 template < enum eth : : base : : RefElType RET >

6 s t a t i c constexpr s ize_ type m u l t i p l i c i t y ( ) ;

7 s t a t i c s ize_ type m u l t i p l i c i t y ( const eth : : base : : RefElType

ref_element ) ;

8

9 /* Approximation order: dummy implementation */

10 s t a t i c constexpr i n t approxOrder ( ) { return 1; }

11

12 /* returns number of dof associated with an entity type, that is

the total number of dofs

13 belonging to the entity and all sub-entities */

14 template < eth : : base : : RefElType RET >

15 s t a t i c constexpr s ize_ type numDofs ( ) ;

16 s t a t i c s ize_ type numDofs ( const eth : : base : : RefElType ref_element ) ;

17 } ;

The next listing shows the implementation of the multiplicity() methods:

C++11 code 3.6.78: Implementation of multiplicity()methods for MyFEBasis ➺ GITLAB

1 // Template specializations: no. of lsf per cell

2 template <> constexpr MyFEBasis : : s ize_ type

3 MyFEBasis : : mu l t ip l i c i t y <eth : : base : : RefElType : : TRIA > ( ) { return 2; }

4 template <> constexpr MyFEBasis : : s ize_ type

5 MyFEBasis : : mu l t ip l i c i t y <eth : : base : : RefElType : :QUAD> ( ) { return 2; }

6 // no. of local shape functions per SEGMENT

7 template <> constexpr MyFEBasis : : s ize_ type

8 MyFEBasis : : mu l t ip l i c i t y <eth : : base : : RefElType : :SEGMENT> ( ) { return 2; }

9 // no. of local shape functions per POINT

10 template <> constexpr MyFEBasis : : s ize_ type

11 MyFEBasis : : mu l t ip l i c i t y <eth : : base : : RefElType : : POINT > ( ) { return 1; }

12 // Non-template version, runtime binding to entity type

13 MyFEBasis : : s ize_ type

14 MyFEBasis : : m u l t i p l i c i t y ( const eth : : base : : RefElType ref_element ) {

15 switch ( re f_e lement ) {

16 case eth : : base : : RefElType : : TRIA : { return

mu l t ip l i c i t y <eth : : base : : RefElType : : TRIA > ( ) ; }

17 case eth : : base : : RefElType : :QUAD: { return

mu l t ip l i c i t y <eth : : base : : RefElType : :QUAD> ( ) ; }

18 case eth : : base : : RefElType : :SEGMENT : { return

mu l t ip l i c i t y <eth : : base : : RefElType : :SEGMENT> ( ) ; }

19 case eth : : base : : RefElType : : POINT : { return

mu l t ip l i c i t y <eth : : base : : RefElType : : POINT > ( ) ; }

20 defaul t : { ETH_ASSERT( fa lse ) ; return 0; }
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21 } }

The numDofs method has to add up the numbers of local shape functions associated with the geometric

type of a (sub)entity. In fact, these numbers can be computed by calling multiplicity() in a generic

fashion. However, the next listing gives a specific implementation.

C++11 code 3.6.79: Implementation of numDofs() methods for MyFEBasis ➺ GITLAB

1 template <> constexpr MyFEBasis : : s ize_ type

2 MyFEBasis : : numDofs<eth : : base : : RefElType : : POINT > ( ) { return 1; }

3 template <> constexpr MyFEBasis : : s ize_ type

4 MyFEBasis : : numDofs<eth : : base : : RefElType : :SEGMENT> ( ) { return 4; }

5 template <> constexpr MyFEBasis : : s ize_ type

6 MyFEBasis : : numDofs<eth : : base : : RefElType : : TRIA > ( ) { return 11; }

7 template <> constexpr MyFEBasis : : s ize_ type

8 MyFEBasis : : numDofs<eth : : base : : RefElType : :QUAD> ( ) { return 14; }

9

10 MyFEBasis : : s ize_ type MyFEBasis : : numDofs ( const eth : : base : : RefElType

ref_element ) {

11 switch ( re f_e lement ) {

12 case eth : : base : : RefElType : : TRIA : { return

numDofs<eth : : base : : RefElType : : TRIA > ( ) ; }

13 case eth : : base : : RefElType : :QUAD: { return

numDofs<eth : : base : : RefElType : :QUAD> ( ) ; }

14 case eth : : base : : RefElType : :SEGMENT : { return

numDofs<eth : : base : : RefElType : :SEGMENT> ( ) ; }

15 case eth : : base : : RefElType : : POINT : { return

numDofs<eth : : base : : RefElType : : POINT > ( ) ; }

16 defaul t : { ETH_ASSERT( fa lse ) ; return 0; }

17 } }

(3.6.80) Ordering of local shape functions in BETL

Using the the FEBasis concept to define the association of local shape functions and geometric (sub-

)entities of a cell does not immediately imply a numbering of those local shape functions. This numbering

is arbitrary and calls for another convention to organize the finite element code.

The following convention is universally applied in BETL for d = 2:

(I) The local shape functions are arranged according to increasing dimension of their associated geo-

metric entities:

POINT −→ SEGMENT −→ {TRIA,QUAD} .

(II) Local shape functions belonging to geometric entities of the same dimension are ordered according

to the intrinsic local ordering of those entities. See Rem. 3.6.48 for BETL’s conventions.

(III) No ordering of local shape functions attached to the same geometric entity is implied.
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For the finite element scheme de-

fined through the type MyFEBasis in

Ex. 3.6.76 (1/2/2 local shape func-

tions assigned to vertices, edges,

and cells, respectively) we find the

following numbering scheme for the

local shape functions: ✄

This output was generated by the

code lines Code 3.6.82 listed below

➺ GITLAB.

1 # Local basis on triangle:

2 # 11 local shape functions

3 l s f no . 0 <−> POINT , ( sub−) e n t i t y no . 0

4 l s f no . 1 <−> POINT , ( sub−) e n t i t y no . 1

5 l s f no . 2 <−> POINT , ( sub−) e n t i t y no . 2

6 l s f no . 3 <−> SEGMENT, ( sub−) e n t i t y no . 0

7 l s f no . 4 <−> SEGMENT, ( sub−) e n t i t y no . 0

8 l s f no . 5 <−> SEGMENT, ( sub−) e n t i t y no . 1

9 l s f no . 6 <−> SEGMENT, ( sub−) e n t i t y no . 1

10 l s f no . 7 <−> SEGMENT, ( sub−) e n t i t y no . 2

11 l s f no . 8 <−> SEGMENT, ( sub−) e n t i t y no . 2

12 l s f no . 9 <−> TRIA , ( sub−) e n t i t y no . 0

13 l s f no . 10 <−> TRIA , ( sub−) e n t i t y no . 0

14 # Local basis on quadrilateral:

15 # 14 local shape functions

16 l s f no . 0 <−> POINT , ( sub−) e n t i t y no . 0

17 l s f no . 1 <−> POINT , ( sub−) e n t i t y no . 1

18 l s f no . 2 <−> POINT , ( sub−) e n t i t y no . 2

19 l s f no . 3 <−> POINT , ( sub−) e n t i t y no . 3

20 l s f no . 4 <−> SEGMENT, ( sub−) e n t i t y no . 0

21 l s f no . 5 <−> SEGMENT, ( sub−) e n t i t y no . 0

22 l s f no . 6 <−> SEGMENT, ( sub−) e n t i t y no . 1

23 l s f no . 7 <−> SEGMENT, ( sub−) e n t i t y no . 1

24 l s f no . 8 <−> SEGMENT, ( sub−) e n t i t y no . 2

25 l s f no . 9 <−> SEGMENT, ( sub−) e n t i t y no . 2

26 l s f no . 10 <−> SEGMENT, ( sub−) e n t i t y no . 3

27 l s f no . 11 <−> SEGMENT, ( sub−) e n t i t y no . 3

28 l s f no . 12 <−> QUAD, ( sub−) e n t i t y no . 0

29 l s f no . 13 <−> QUAD, ( sub−) e n t i t y no . 0

The following helper class probes the assignment of local shape functions for standard 2D element type. It

relies on the numbering convention for local shape functions outlines in Item (I). If, for a triangle np, ne, nc

local shape functions are associated with POINTs, SEGMENTs, and TRIA, respectively, then the first 3np

local shape functions will sit on vertices, the next 3ne on edges, and the remaining are supported on the

element. The local index of the corresponding geometric object can be determined by module arithmetic.

This algorithm is implemented in the two methods of the class.

C++11 code 3.6.81: Class telling placement of local shape functions defined by an FEBasis

➺ GITLAB

1 template <typename FEBASIS>

2 st ruct ProbeFEBasis {

3 using index_t = typename FEBASIS : : s ize_ type ;

4 using size_t = typename FEBASIS : : s ize_ type ;

5 using r e f E l _ t = eth : : base : : RefElType ;

6

7 // Return entity type for local shape function with number lidx

8 s t a t i c r e f E l _ t getRETDof ( r e f E l _ t r e t , index_t l i d x ) {

9 switch ( r e t ) {

10 case eth : : base : : RefElType : : TRIA : {

11 i f ( l i d x < 3∗FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : : POINT > ( ) )

12 return eth : : base : : RefElType : : POINT ;
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13 l i d x −= 3∗FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : : POINT > ( ) ;

14 i f ( l i d x < 3∗FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : :SEGMENT> ( ) )

15 return eth : : base : : RefElType : :SEGMENT;

16 return eth : : base : : RefElType : : TRIA ;

17 }

18 case eth : : base : : RefElType : :QUAD: {

19 i f ( l i d x < 4∗FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : : POINT > ( ) )

20 return eth : : base : : RefElType : : POINT ;

21 l i d x −= 4∗FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : : POINT > ( ) ;

22 i f ( l i d x < 4∗FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : :SEGMENT> ( ) )

23 return eth : : base : : RefElType : :SEGMENT;

24 return eth : : base : : RefElType : :QUAD;

25 }

26 defaul t : { ETH_ASSERT( fa lse ) ; return eth : : base : : RefElType : : POINT ;

}

27 } }

28

29 // Return local index number of sub-entity associated with local
shape functions

30 // of index lidx

31 s t a t i c index_t getSubentIdx ( r e f E l _ t r e t , index_t l i d x ) {

32 switch ( r e t ) {

33 case eth : : base : : RefElType : : TRIA : {

34 const s ize_t ndp = FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : : POINT > ( ) ;

35 const s ize_t nde = FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : :SEGMENT> ( ) ;

36 const s ize_t ndt = FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : :QUAD> ( ) ;

37 i f ( ndp > 0) { i f ( l i d x < 3∗ndp ) return l i d x / ndp ; else l i d x −=

3∗ndp ; }

38 i f ( nde > 0) { i f ( l i d x < 3∗nde ) return l i d x / nde ; else l i d x −=

3∗nde ; }

39 i f ( l i d x < ndt ) return 0;

40 ETH_ASSERT_MSG( false , " I l l e g a l i n d e x " ) ; return 0; }

41 case eth : : base : : RefElType : :QUAD: {

42 const s ize_t ndp = FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : : POINT > ( ) ;

43 const s ize_t nde = FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : :SEGMENT> ( ) ;

44 const s ize_t ndt = FEBASIS : : template

mu l t ip l i c i t y <eth : : base : : RefElType : :QUAD> ( ) ;

45 i f ( ndp > 0) { i f ( l i d x < 4∗ndp ) return l i d x / ndp ; else l i d x −=

4∗ndp ; }

46 i f ( nde > 0) { i f ( l i d x < 4∗nde ) return l i d x / nde ; else l i d x −=
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4∗nde ; }

47 i f ( l i d x < ndt ) return 0;

48 ETH_ASSERT_MSG( false , " I l l e g a l i n d e x " ) ; return 0; }

49 defaul t : { ETH_ASSERT( fa lse ) ; return 0; }

50 } }

51 } ; // end class definition ProbeFEBasis

C++11 code 3.6.82: Listing of local shape functions described by MyFEBasis defined in

Ex. 3.6.76.

1 typedef MyFEBasis f e b a s i s _ t ; // see Code 3.6.77

2 typedef ProbeFEBasis< febas is_ t > probe_t ;

3 s td : : cout << " # L o c a l b a s i s on t r i a n g l e : " << std : : endl ;

4 i n t Q = fe b a s i s _ t : : numDofs<eth : : base : : RefElType : : TRIA > ( ) ;

5 s td : : cout << " # " << Q << " l o c a l shape f u n c t i o n s " << std : : endl ;

6 for ( i n t j =0; j <Q; j ++) {

7 s td : : cout << " l s f no . " << j << " <−> "

8 << probe_t : : getRETDof ( eth : : base : : RefElType : : TRIA , j )

9 << " , ( sub−) e n t i t y # " <<

probe_t : : getSubentIdx ( eth : : base : : RefElType : : TRIA , j )

10 << std : : endl ;

11 }

12 s td : : cout << " # L o c a l b a s i s on q u a d r i l a t e r a l : " << std : : endl ;

13 Q = fe b a s i s _ t : : numDofs<eth : : base : : RefElType : :QUAD> ( ) ;

14 s td : : cout << " # " << Q << " l o c a l shape f u n c t i o n s " << std : : endl ;

15 for ( i n t j =0; j <Q; j ++) {

16 s td : : cout << " l s f no . " << j << " <−> "

17 << probe_t : : getRETDof ( eth : : base : : RefElType : :QUAD, j )

18 << " , ( sub−) e n t i t y # " <<

probe_t : : getSubentIdx ( eth : : base : : RefElType : :QUAD, j )

19 << std : : endl ;

20 }

(3.6.83) D.o.f. handler and d.o.f. mapper in BETL

In BETL local→global index mappings in the spirit of the d.o.f. mapper function locglobmap from

(3.6.72) are managed by objects of type fe::FESpace. In BETL, the d.o.f. mapper has to be initialized,

which is done through a so-called “d.o.f. handler” object, which is templated by the concrete kind of finite

element underlying the discretization. The instantiation of a d.o.f. handler is done in the following code for

quadratic Lagrangian finite elements.

C++11 code 3.6.84: Instantiation of a d.o.f. handler for S0
2 (M) in BETL ➺ GITLAB

1 // define the finite element space and global basis functions

2 // Here: 2nd-order Lagrangian finite elements, nodal basis

3 typedef fe : : FEBasis< fe : : Quadrat ic , fe : : FEBasisType : : Lagrange >
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fe b a s i s _ t ;

4 // define dofhandler type for the grid

5 typedef b e t l 2 : : fe : : DofHandler < febas is_ t ,

fe : : FESContinuity : : Continuous , g r i d F a c to r y _ t > DH_t ;

6 DH_t dh ; // instantiate dofhandler

7 // Initialize internal data structures for d.o.f. mapper.

8 dh . distr ibuteDofs ( g r idFac to r y ) ;

9 cout << " Number o f c r e a t e d d o f s = " << dh . numDofs ( ) << endl ;

10 // The function basisFuncIndicesRET is defined in Code 3.6.87.

11 // It generates index mapping matrices for specific cell types, see
§ 3.6.33

12 s t a t i c const eth : : base : : RefElType TRIA = eth : : base : : RefElType : : TRIA ;

13 s t a t i c const eth : : base : : RefElType QUAD = eth : : base : : RefElType : :QUAD;

14 // get index mapping matrix for reference element type TRIA

15 auto d o f h _ t r i a = basisFuncIndicesRET ( dh , gr idView , TRIA ) ;

16 // get index mapping matrix for reference element type QUAD

17 auto dofh_quad = basisFuncIndicesRET ( dh , gr idView , QUAD ) ;

Line 3: the d.o.f. handler needs the typedef of a fe::FEBasis object (see § 3.6.75). In the example we

use the basis type fe::FEBasisType::Lagrange, hence we intend to use Lagrangian finite elements

(→ Section 3.5). The polynomial degree is specified by fe:Quadratic, hence we use quadratic

Lagrangian finite elements (→ Ex. 3.5.3, Ex. 3.5.13).

Line 5: The d.o.f. handler object itself is implemented by the class fe::DofHandler. It takes the specifica-

tion of the fe::FEBasisType, the fe::FESContinuity, a legacy parameter, which should always be

set to (fe::FESContinuity::Continuous, and the eth::grids::utils::GridViewFactory type.

Line 6–Line 8: The actual instantiation of the fe::DofHandler object. In order to initialize the degrees of

freedom, the member function distributeDofs(gridFactory) is called, where gridFactory

is an object of type eth::grids::utils::GridViewFactory.

Line 17: basisFuncIndicesRET( dh,gridView,RET) outputs the matrix dofh storing the local→global

index mappings for each cell (entity of codimension 0) of reference element type RET. A listing and

details are given in Code 3.6.87. The matrix dofh is built based on the convention from § 3.6.71.

The object gridView of type eth::grids::utils::GridViewFactory is needed to obtain

the index set, which stores the indices of the cells § 3.6.41.

The fe::DofHandler object in BETL only takes care of the initialization of the degrees of freedom.

The object that provides the actual local→global index map afterwards is an instantiation of the

class fe::FESpace. It is a data member of fe::DofHandler and can be obtained by calling the

following method of fe::DofHandler

const auto& fe_space = dh.fespace();

The class fe::FESpace provides the following important member functions:

✦ begin() and end() (Code 3.6.85, Line 40) return the constant iterator to the beginning and end

of the container of cells, i.e. entities of codimension zero. This enables foreach loops over

fe::FESpaces, Code 3.6.87 Line 21.

✦ begin(e) and end(e) (Code 3.6.85, Line 46) take e, a constant reference to an entity of co-dimension

zero (cell) and provide a constant iterator to the beginning and end of the vector of dofs for the
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element/cell e.

✦ dofsOnElements() (Code 3.6.85, Line 50) returns a constant reference to the container of all dofs

managed by the fe::FESpace.

✦ globalIndex(dIter) (Code 3.6.85, Line 54) takes a constant dof iterator dIter and returns its global

index.

✦ localIndex(dIter,e) (Code 3.6.85, Line 56) takes a constant dof iterator dIter and a constant ref-

erence to an entity e of codimension zero and returns the local index of the dof from dIter with

respect to the cell e.

✦ filter<CODIM>(e, intersectionIndex) (Code 3.6.85, Line 63) takes e, a constant reference to an entity

of codimension zero (cell) and an intersectionIndex of the element (type int), referring to

one of the elements intersections (sides). It returns a standard vector containing the local indices

(w.r.t. the cell e) of all dofs that are associated with entities of codimension CODIM contained in the

intersection corresponding to the intersectionIndex.

✦ filterAll(e, intersectionIndex) (Code 3.6.85, Line 67) takes e, a constant reference to an entity of

codimension zero (cell) and an intersectionIndex of the cell e (type int), referring to one

of the elements intersections (sides). It returns a standard vector containing pointers to all dofs that

are associated with the side corresponding to the intersectionIndex.

✦ filterIndices(e, intersectionIndex) (Code 3.6.85, Line 72) takes e, a constant reference to an en-

tity of codimension zero (cell) and an intersectionIndex of the cell e (type int), referring

to one of the elements intersections (sides). It returns a standard vector containing the local in-

dices (w.r.t. the cell e) of all dofs that are associated with the intersection corresponding to the

intersectionIndex.

✦ indices(e, intersectionIndex) (Code 3.6.85, Line 76) takes e, a constant reference to an entity of

codimension zero (cell) and an intersectionIndex of the cell e (type int), referring to one

of the elements intersections (sides). It returns a standard vector containing the local→global index

mappings (w.r.t. the intersection associated with the intersectionIndex) of all dofs that are

associated with the intersection corresponding to the intersectionIndex.

✦ indices(e) (Code 3.6.85, Line 74) takes e, a constant reference to an entity of codimension zero

(cell), and provides a standard vector filled with its local→global index mappings (as pairs of integer

indices, see below). This method is used, e.g., in Code 3.6.96.

✦ numDofs() returns the global number of dofs.

✦ numElements() returns the total number of elements.

The local→global index mappings in BETL are implemented via the class IndexPair<size_t> which is a

standard pair, where the first entry is accessed via the member function local(), while the second entry

is accessed calling global().

The class FESpace is implemented as follows:

C++11 code 3.6.85: FESpace implementation in BETL (partial listing) ➺ BETL

1 template <typename FE_BASIS_T ,

2 enum FESContinuity FES,

3 typename GRID_VIEW_FACTORY_T>

4 class FESpace

5 {

6 public :
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7 typedef FE_BASIS_T fe_bas is_ t ;

8 typedef GRID_VIEW_FACTORY_T gr idV iewFactory_ t ;

9 typedef typename GRID_VIEW_FACTORY_T : : g r i d T r a i t s _ t g r i d T r a i t s _ t ;

10 typedef eth : : g r i d : : E n t i t y < g r i d T r a i t s _ t ,0 > element_t ;

11 typedef typename g r i d T r a i t s _ t : : s ize_ type s ize_type ;

12 typedef typename DofDataSetFactory <

13 g r i d T r a i t s _ t : : dimMesh , FES, FE_BASIS_T ,

GRID_VIEW_FACTORY_T> : : dofDataSet_t dofDataSet_t ;

14 pr ivate :

15 typedef typename g r i d T r a i t s _ t : : template e n t i t y I t e r a t o r _ t <0>

i t e r a t o r I m p l _ t ;

16 public :

17 typedef eth : : g r i d : : E n t i t y I t e r a t o r < g r i d T r a i t s _ t , i t e r a t o r I m p l _ t >

18 cons t_e lemen t_ i te ra to r ;

19 typedef boost : : i n d i r e c t _ i t e r a t o r < Dof const∗ const∗ ,

20 const Dof > c o n s t_ d o f_ i t e r a t o r ;

21 pr ivate :

22 typedef eth : : g r i d : : E n t i t y C o l l e c t i o n < cons t_e lemen t_ i te ra to r >

23 e le me n t_ c o l l e c t i o n _ t ;

24

25 /// the current grid view factory

26 const GRID_VIEW_FACTORY_T& gr id_v iew_ fac to r y_ ;

27 /// the overall number of dofs

28 s ize_ type num_dofs_ ;

29 /// container of element-wise degrees of freedom

30 dofDataSet_t∗ dofs_on_elements_ ;

31 /// store begin end end iterators to elements in an element
collection

32 e le me n t_ c o l l e c t i o n _ t∗ element_collection_ ;

33 /// the overall number of elements which are associated to the dofs

34 s ize_ type num_elements_ ;

35 public :

36 /// default constructor

37 FESpace ( const GRID_VIEW_FACTORY_T& gr id_v iew_ fac to r y ) ;

38

39 /// Begin of element collection

40 i n l in e cons t_e lemen t_ i te ra to r begin ( ) const

41 { return element_collection_−>begin ( ) ; }

42 /// End of element collection

43 i n l in e cons t_e lemen t_ i te ra to r end ( ) const

44 { return element_collection_−>end ( ) ; }

45 /// Begin of dofs for element e

46 c o n s t_ d o f_ i t e r a t o r begin ( const element_t& e ) const ;

47 /// End of dofs for element e

48 c o n s t_ d o f_ i t e r a t o r end ( const element_t& e ) const ;

49 /// Return container of stored dofs

50 const dofDataSet_t& dofsOnElements ( ) const { return

∗dofs_on_elements_ ; }

51 /// Return the grid factory

52 const GRID_VIEW_FACTORY_T& gridFactory ( ) const { return
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gr id_v iew_ fac to r y_ ; }

53 /// get the dof’s global index

54 s ize_ type globalIndex ( const c o n s t_ d o f_ i t e r a t o r & d I t e r ) const ;

55 /// Get the dof’s local index w.r.t. element e

56 s ize_ type localIndex ( const c o n s t_ d o f_ i t e r a t o r & d I t e r ,

57 const element_t& e ) const ;

58 /// Returns the local indices w.r.t. to the cell e of the dofs

59 /// associated with the entities of codimension CODIM contained

60 /// in the intersection of e with index intersectionIndex.

61 template < i n t CODIM >

62 i n l in e

63 s td : : vector < i n t > f i l t e r ( const element_t& e , i n t

i n t e r s e c t i o n I n d e x ) const ;

64 /// returns pointers to the dofs that are associated with the
intersection

65 /// of e with index intersectionIndex

66 i n l in e

67 s td : : vector < const Dof∗ > f i l t e r A l l ( const element_t& e , i n t

i n t e r s e c t i o n I n d e x ) const ;

68 /// Returns the local indices (w.r.t. of the cell e) of the dofs

69 /// that are associated with the intersection of e with index

70 /// intersectionIndex

71 i n l in e

72 s td : : vector < i n t > f i l t e r I n d i c e s ( const element_t& e , i n t

i n t e r s e c t i o n I n d e x ) const ;

73 /// get pairs of local->global indices for the cell e

74 vector < IndexPair <s ize_type > > indices ( const element_t& e ) const ;

75 /// get pairs of local->global indices for an intersection of the
cell e with index intersectionIndex

76 s td : : vector < IndexPair <s ize_type > > indices ( const element_t& e ,

const in t i n t e r s e c t i o n I n d e x ) const

77 /// Get the total number of dofs

78 s ize_ type numDofs ( void ) const { return num_dofs_ ; }

79 /// Get total number of elements

80 s ize_ type numElements ( void ) const { return num_elements_ ; }

81 } ; // end class FESpace

Example 3.6.86 (Index mapping for quadratic Lagrangian FE in BETL)

Refer to Ex. 3.5.3 for details on local and global shape functions for quadratic Lagrangian finite element

space S0
2 (M) on triangular mesh M: a single global shape function is associated to each vertex and

edge ofM, see Fig. 123.
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BETL’s numbering convention (∗)
for local shape functions from (3.5.6)

Fig. 158 ➀

➁

➂

➃

➅ ➄

K

Numbering convention (∗) for global shape functions of S0
2 (M) (→ § 3.6.88)

• First number global shape functions associated with vertices.

• Then number global shape functions belonging to edges.

• If there are global shape functions associated to faces (which is the case for quadrilaterals), we

number these shape functions too.

• Use numbering provided by IndexSet for ordering both vertices and edges, see § 3.6.33.

(∗) “Convention” means that this choice can essentially be made in arbitrary ways, but has to be applied

consistently throughout the code afterwards.

The above conventions are used for the implementation of the local→ global index mapping managed by

an FESpace object in BETL. The initialization of the d.o.f. handler for quadratic Lagrangian finite elements

is done in Code 3.6.84.

The next code accesses the local→global index mapping using the d.o.f handler structure in BETL (com-

pare with Example Ex. 3.6.74). This sample code shows how to use the FESpace member object of the

DofHandler in order to retrieve the local→global index mapping in the form of a matrix of ints.

The function basisFuncIndicesRET takes fe:DofHandler and GRIDVIEW arguments together with

a geomtric type RET and returns an n×Q-EIGEN matrix dofh, where

• n is the number of cells of the type RET,

• Q is the (maximal) number of local shape functions on cells of type RET.

The entry dofh(k,l) provides the global index of the local d.o.f. l in the cell of type RET with index k.

When invoked for all cell types in a mesh, the function builds an algebraic representation of locglobmap

from (3.6.72).

The following code creates the index mapping matrix managing the local to global index mapping for a

specific reference element type using dofHandler/FESpace in BETL.

C++11 code 3.6.87: Assmebly of “local→global mapping matrix” ➺ GITLAB

1 template < class DOF_HANDLER, class VIEW_TRAITS >

2 Eigen : : Matr ix < in t , Eigen : : Dynamic , Eigen : : Dynamic>

3 basisFuncIndicesRET ( const DOF_HANDLER &dh ,

4 const eth : : g r i d : : GridView <VIEW_TRAITS> &gv ,

5 const eth : : base : : RefElType& RET) {

6 // Obtain a reference to an FESpace from the DofHandler

7 const auto& fe_space = dh . fespace ( ) ;

8 // Fetch reference to global indices

9 auto& set = gv . indexSet ( ) ;

10 // Get the number of local dofs for the reference element type RET
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11 const s ize_t max_local_dofs =

DOF_HANDLER: : fespace_t : : fe_bas is_ t : : numDofs (RET) ;

12 // Get the number of elements of type RET

13 const s ize_t num_elements = set . s ize ( RET ) ;

14 // Define matrix type for matrix describing locglobmap

15 typedef Eigen : : Matr ix < i n t , Eigen : : Dynamic , Eigen : : Dynamic >

dense_matr ix_t ;

16 // Instantiate dofh matrix with number of columns equal num_elements

17 dense_matr ix_t dofh ( num_elements , max_local_dofs ) ;

18 cout << " Re fe rence e lemen t t y p e : " << RET << endl ;

19 // Fill the matrix with the global indices

20 // Loop over all elements on which the fespace is based on

21 for ( const auto& e : fe_space ) {

22 i f ( e . re fElType ( ) == RET) {

23 cout<< " L o c a l t o g l o b a l i n d e x mapping f o r c e l l o f i n d e x " <<

set . index ( e ) << " : " ;

24 const auto& loca l_ to_g loba l_mapper_vec tor = fe_space . indices ( e ) ;

25 // Loop over local shape functions

26 for ( const auto map : loca l_ to_g loba l_mapper_vec tor ) {

27 // local() and global() methods of map allow to retrieve

28 // the actual mapping

29 cout<< map. local ( ) << "−>" << map. global ( ) << " " ;

30 // we use it to fill the dofh matrix

31 dofh ( se t . index ( e ) ,map. local ( ) ) = map. global ( ) ;

32 } // end for

33 cout << endl ;

34 } }

35 return dofh ;

36 }

To demonstrate the numbering of global and local shape functions for quadratic Lagrangian finite ele-

ments in BETL, we list their indices for the hybrid mesh from Ex. 3.6.47 drawn in Fig. 153 using the

function printElementInfoFESpace from ➺ GITLAB. The mainfile ➺ GITLAB calls the functions

printElementInfoFESpace and basisFuncIndicesRET and returns the following output:

1 # Listing of elements as returned by iterator of FESpace

2 Output element i n fo r ma t i o n s tored in the FESpace :

3 TRIA , index : 0 , coord ina tes o f corners :

4 a_1 = [2 0 ]^T , a_2 = [2 2 ]^ T , a_3 = [1 1 ]^ T ,

5

6 TRIA , index : 1 , coord ina tes o f corners :

7 a_1 = [2 0 ]^T , a_2 = [1 1 ]^ T , a_3 = [1 0 ]^ T ,

8

9 TRIA , index : 2 , coord ina tes o f corners :

10 a_1 = [1 1 ]^T , a_2 = [2 2 ]^ T , a_3 = [1 2 ]^ T ,

11

12 QUAD, index : 0 , coord ina tes o f corners :

13 a_1 = [0 0 ]^T , a_2 = [1 0 ]^ T , a_3 = [1 1 ]^ T , a_4 = [0 1 ]^ T ,

14

15 QUAD, index : 1 , coord ina tes o f corners :
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16 a_1 = [0 1 ]^T , a_2 = [1 1 ]^ T , a_3 = [1 2 ]^ T , a_4 = [0 2 ]^ T ,

By coincidence the cells are arranged in the same order as that given by their global indices. However,

this is not guaranteed. The next output listing probes the d.o.f. mapper.

1 # Local→global index mapping matrices as returned from basisFuncIndicesRET

2 # Type TRIA

3 Reference element type : TRIA

4 l o c a l to g loba l index mapping f o r c e l l o f index 0: 0−>0 1−>1 2−>2 3−>12

4−>15 5−>13

5 l o c a l to g loba l index mapping f o r c e l l o f index 1: 0−>0 1−>2 2−>3 3−>13

4−>11 5−>10

6 l o c a l to g loba l index mapping f o r c e l l o f index 2: 0−>2 1−>1 2−>4 3−>15

4−>14 5−>17

7 dofh = 0 1 2 12 15 13

8 0 2 3 13 11 10

9 2 1 4 15 14 17

10 # Type QUAD

11 Reference element type : QUAD

12 l o c a l to g loba l index mapping f o r c e l l o f index 0: 0−>5 1−>3 2−>2 3−>6

4−>8 5−>11 6−>19 7−>9 8−>20

13 l o c a l to g loba l index mapping f o r c e l l o f index 1: 0−>6 1−>2 2−>4 3−>7

4−>19 5−>17 6−>16 7−>18 8−>21

14 dofh = 5 3 2 6 8 11 19 9 20

6 2 4 7 19 17 16 18 21

(3.6.88) Global ordering of degrees of freedom in BETL’s FESpace

The dof mapper of BETL must number the global basis functions in order to relate basis expansion coeffi-

cients to components of vectors. This is required by the second step of Galerkin discretization, remember

Section 3.2.

The ordering of global basis functions is as arbitrary as that of local shape functions (→ § 3.6.80) and

must be governed by universal convention. BETL adopts the following rules for numbering global finite

element basis functions in 2D:

(I) Basis functions are sorted according to the geometric type (roughly, by increasing dimension) of the

associated entity as follows:

POINT −→ SEGMENT −→ TRIA −→ QUAD.

(II) If several global shape functions belong belong to a single geometric entity, their ordering is induced

by that implicitly used in the FEBasis type contained in the FESpace.

Example 3.6.89 (“Location” of global shape functions in BETL)

In this example we examine the assignment of global shape functions to geometric entities as constructed

by BETL’s FESpace for the mesh from Ex. 3.6.47 and the set of local shape functions defined by the type

MyFEBasis from Ex. 3.6.76 (1/2/2 local shape functions associated with vertices, edges, and elements).
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The following function permits us to inspect the geometric type and index number (as provided by the

mesh’s IndexSet). It relies on the helper class ProbleFEBasis from Code 3.6.81.

C++11 code 3.6.90: Prints entity types and index numbers for global shape functions handled

by an FESpace ➺ GITLAB.

1 template < class FESPACE, class VIEW_TRAITS >

2 void listDOFs ( const FESPACE &fe_space ,

3 const eth : : g r i d : : GridView <VIEW_TRAITS> &gv ) {

4 // Define important types

5 using f e_bas is_ t = typename FESPACE : : fe_bas is_ t ;

6 using size_t = typename f e_bas is_ t : : s ize_ type ;

7 using r e f E l _ t = eth : : base : : RefElType ;

8 using index_t = typename f e_bas is_ t : : s ize_ type ;

9 // Vector for storing information about dofs

10 s td : : vector <std : : pa i r < r e fE l_ t , index_t > >

dofentvec ( fe_space . numDofs ( ) ) ;

11 // Handler for global indices of geometric entities

12 auto &set = gv . indexSet ( ) ;

13

14 // Loop over all elements relevant for the FESpace

15 for ( const auto& e l : fe_space ) {

16 const r e f E l _ t r e t = e l . re fElType ( ) ;

17 const auto& i d x _ i t = fe_space . ind ices ( e l ) ;

18 // Loop over all local shape functions

19 for ( const auto i dx : i d x _ i t ) {

20 // Retreive local index of shape function

21 const index_t l s f i d x = idx . l o c a l ( ) ;

22 // Request type of associated geometric entity
(POINT,SEGMENT,QUAD,TRIA)

23 const r e f E l _ t l s f r e t =

ProbeFEBasis<fe_bas is_ t > : : getRETDof ( r e t , l s f i d x ) ;

24 // Local number of associated geometric entity

25 const index_t en t idx =

ProbeFEBasis<fe_bas is_ t > : : getSubentIdx ( r e t , l s f i d x ) ;

26 // Find out global index of geometric entity

27 index_t g idx ;

28 switch ( l s f r e t ) {

29 case eth : : base : : RefElType : : POINT :

30 { g idx = set . template subIndex<2>( e l , en t idx ) ; break ; }

31 case eth : : base : : RefElType : :SEGMENT:

32 { g idx = set . template subIndex<1>( e l , en t idx ) ; break ; }

33 case eth : : base : : RefElType : : TRIA :

34 case eth : : base : : RefElType : :QUAD:

35 { g idx = set . index ( e l ) ; break ; }

36 defaul t : { g idx = 0; ETH_ASSERT( fa lse ) ; }

37 }

38 dofentvec [ idx . g loba l ( ) ] = s td : : make_pair ( l s f r e t , g idx ) ;

39 } }

40 for ( size_t l =0; l <dofentvec . s ize ( ) ; l ++) {

41 cout << " g s f no . " << l << "−> " << dofentvec [ l ] . f i r s t << " , i d x =
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"

42 << dofentvec [ l ] . second << std : : endl ;

43 }

44 } // end listDOFs

This is the output produced by listDOFs ➺ GITLAB:

1 gs f no . 0−> POINT , i dx = 2

2 gs f no . 1−> POINT , i dx = 3

3 gs f no . 2−> POINT , i dx = 7

4 gs f no . 3−> POINT , i dx = 1

5 gs f no . 4−> POINT , i dx = 4

6 gs f no . 5−> POINT , i dx = 0

7 gs f no . 6−> POINT , i dx = 6

8 gs f no . 7−> POINT , i dx = 5

9 gs f no . 8−> SEGMENT, i dx = 0

10 gs f no . 9−> SEGMENT, i dx = 0

11 gs f no . 10−> SEGMENT, i dx = 1

12 gs f no . 11−> SEGMENT, i dx = 1

13 gs f no . 12−> SEGMENT, i dx = 2

14 gs f no . 13−> SEGMENT, i dx = 2

15 gs f no . 14−> SEGMENT, i dx = 3

16 gs f no . 15−> SEGMENT, i dx = 3

17 gs f no . 16−> SEGMENT, i dx = 4

18 gs f no . 17−> SEGMENT, i dx = 4

19 gs f no . 18−> SEGMENT, i dx = 5

20 gs f no . 19−> SEGMENT, i dx = 5

21 gs f no . 20−> SEGMENT, i dx = 6

22 gs f no . 21−> SEGMENT, i dx = 6

1 gs f no . 22−> SEGMENT, i dx = 7

2 gs f no . 23−> SEGMENT, i dx = 7

3 gs f no . 24−> SEGMENT, i dx = 8

4 gs f no . 25−> SEGMENT, i dx = 8

5 gs f no . 26−> SEGMENT, i dx = 9

6 gs f no . 27−> SEGMENT, i dx = 9

7 gs f no . 28−> SEGMENT, i dx = 10

8 gs f no . 29−> SEGMENT, i dx = 10

9 gs f no . 30−> SEGMENT, i dx = 11

10 gs f no . 31−> SEGMENT, i dx = 11

11 gs f no . 32−> TRIA , i dx = 0

12 gs f no . 33−> TRIA , i dx = 0

13 gs f no . 34−> TRIA , i dx = 1

14 gs f no . 35−> TRIA , i dx = 1

15 gs f no . 36−> TRIA , i dx = 2

16 gs f no . 37−> TRIA , i dx = 2

17 gs f no . 38−> QUAD, i dx = 0

18 gs f no . 39−> QUAD, i dx = 0

19 gs f no . 40−> QUAD, i dx = 1

20 gs f no . 41−> QUAD, i dx = 1

3.6.4.3 Assembly: Cell-oriented Algorithms

(3.6.91) Cell-oriented assembly of finite element Galerkin matrix and right hand side vector

Another fundamental design principle for the assembly realized already in Code 3.3.35 was to rely on☛
✡

✟
✠loops only over mesh cells combined with purely local operations.

Notion: local operations =̂
✦ require data only from fixed “neighbourhood” of cell K
✦ computational effort “O(1)”: independent of ♯M

This design principle is honored in the MATLAB-style “pseudo-code” Code 3.6.92, which extends Code 3.3.35,

which was confined to linear Lagrangian finite elements, to general finite element methods. The local→global

index mapping is realized through the locglobmap-function/matrix.
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Pseudocode 3.6.92: Abstract assembly routine for finite element Galerkin matrices

1 A = sparse(N,N); % Allocated empty sparse matrix

2 f o r k = Mesh.Elements’ % loop over all cells

3 % Obtain number Q(K) of local shape functions, see Def. 3.6.69

4 Qk = no_loc_shape_functions(k);

5 % Local operation: compute Q(K)×Q(K) element matrix → Def. 3.6.69,

6 % usually incurs cost of only “O(1)”

7 Ak = getElementMatrix(k);

8 % Get vector of global indices (length Q(K));

9 % Usage of locglobmap as in Ex. 3.6.74

10 idx = locglobmap(k,(1:Qk));

11 % Add local contributions to global matrix

12 f o r i=1:Qk

13 f o r j=1:Qk

14 A(idx(i),idx(j)) = A(idx(i),idx(j)) + Ak(i,j);

15 end

16 end

17 end

Note that in Code 3.3.38 the local→global index mapping could be inferred from the mesh data directly

through the Elements-vetor.

The very same ideas in a somewhat simpler version govern the initialization of the right hand side vector

from element (load) vectors. The following MATLAB-style “pseudocode” Code 3.6.93 extends Code 3.3.47

and supplies a generic finite element assembly algorithm for right hand side vectors:

Pseudocode 3.6.93: Generic assembly algorithm for finite element right hand side vectors

1 f = zeros(N,1); % Allocated zero vector of appropriate length

2 f o r k = Mesh.Elements’ % loop over all cells

3 % Obtain number Q(K) of local shape functions, see Def. 3.6.69

4 Qk = no_loc_shape_functions(k);

5 % Local operation: compute element vector, length Q(K) →
Def. 3.6.69,

6 % (usually incurs cost of only “O(1)”)

7 phi_k = getElementVector(k);

8 % Get vector of global indices (length Q(K));

9 % Usage of locglobmap as in Ex. 3.6.74

10 idx = locglobmap(k,(1:Qk));

11 % Add local contributions to global matrix

12 f o r i=1:Qk

13 f(idx(i)) = f(idx(i) + phi_k(i,j);

14 end

15 end

Example 3.6.94 (An assembler class in BETL: Global assembly of Galerkin Matrices)
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In this example, we present an implementation of the assembly of a Galerkin matrix according to Code 3.6.92.

It is given by the class NPDE::GalerkinMatrixAssembler ➺ GITLAB.

The following ingredients are necessary to define the class NPDE::GalerkinMatrixAssembler:

✦ a reference to a (constant) ELEM_MAT_BUILDER object that computes the element matrix for a

given element.

An object of type ELEM_MAT_BUILDER must provide a static method

template <c lass BUILDER_DATA_T, c lass ELEMENT>

s t a t i c result_t eval(const BUILDER_DATA_T& data, const ELEMENT&

el);

which computes the element matrix for the cell el. The arguments have the following meanings.

el is a reference to a cell of the mesh, the “element” for which the element matrix is to be

computed.

•• data is a functor object meant to pass additional data like coefficients and source functions.

• result_t is the type of the return value. It has to be a N × N EIGEN matrix type, where

N corresponds to the number of local dofs on the element el. The return value is the local

element (stiffness) matrix.

This eval())-interface has been chosen for the sake of compatibility with BETL’s built-in assembly.

Note that being static the only way to pass data to the computation of the element matrix is through

the const BUILDER_DATA_T & data argument.

Types meeting the requirements of ELEM_MAT_BUILDER can be found in Code 3.6.125 and

Code 3.7.37.

A reference to a (constant) fe::FESpace-compatible object (template paramter FESPACE_TEST_T)

that handles the test finite element space (and its dofs).

✦✦ A reference to a (constant) fe::FESpace-compatible object (template parameter FESPACE_TRIAL_T)

that handles the trial finite element space (and its dofs).

✦ A reference to a (constant) functor object (template parameter BUILDER_DATA_T) to be passed

to the eval() method of ELEM_MAT_BUILDER.

C++11 code 3.6.95: NPDE assembler in BETL: implementation of global assembly of Galerkin

matrix ➺ GITLAB

1 template < typename ELEM_MAT_BUILDER >

2 class GalerkinMatrixAssembler { public :

3 typedef double numeric_t ;

4 // Type for CRS matrix in EIGEN

5 typedef Eigen : : SparseMatr ix < numeric_t > sparseMatr ix_ t ;

6 // Elementary triplet type, see [14, Section 1.7.3].

7 typedef Eigen : : T r i p l e t < numeric_t > t r i p l e t _ t ;

8 // Triplet container: Matrix in triplet format

9 typedef s td : : vector < t r i p l e t _ t > t r i p l e t M a t r i x _ t ;

10 // Type for small dense matrix, e.g, the element matrix

11 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , Eigen : : Dynamic >

ma t r i x _ t ;

12 // type of local matrix assembler providing static eval() method

3. Finite Element Methods (FEM), 3.6. Implementation of Finite Element Methods 292

https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_global_assembly.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_global_assembly.hpp


NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

13 typedef ELEM_MAT_BUILDER loca lAssembler_ t ;

14

15 GalerkinMatrixAssembler ( void ) { /* empty */ }

16 // Assemble global FE matrix as list of triplets

17 template <class FESPACE_TEST_T, class FESPACE_TRIAL_T, class

BUILDER_DATA_T>

18 t r i p l e t M a t r i x _ t assembleTripletMatrix (

19 const FESPACE_TEST_T & fe_ tes t ,

20 const FESPACE_TRIAL_T & f e _ t r i a l ,

21 const BUILDER_DATA_T & data ) ;

22 // Assemble global FE Galerkin matrix as CRS matrix

23 template <class FESPACE_TEST_T, class FESPACE_TRIAL_T, class

BUILDER_DATA_T>

24 sparseMatr ix_ t assembleMatrix (

25 const FESPACE_TEST_T & fe_ tes t ,

26 const FESPACE_TRIAL_T & f e _ t r i a l ,

27 const BUILDER_DATA_T & data ) ;

28 } ; // end class GalerkinMatrixAssembler

The next listings give the details of the implementation of the actual assembly routine.

C++11 code 3.6.96: NPDE assembler in BETL: implementation of method

assembleTripletMatrix in Code 3.6.95 ➺ GITLAB

1 template < typename ELEM_MAT_BUILDER >

2 template < class FESPACE_TEST_T, class FESPACE_TRIAL_T,

3 class BUILDER_DATA_T >

4 typename GalerkinMatrixAssembler < ELEM_MAT_BUILDER >: : t r i p l e t M a t r i x _ t

5 GalerkinMatrixAssembler < ELEM_MAT_BUILDER >: : assembleTripletMatrix (

6 const FESPACE_TEST_T& fe_ tes t , const FESPACE_TRIAL_T & f e _ t r i a l , const

BUILDER_DATA_T& data ) {

7 // initialize empty container of triplets: this will store

8 // contributions to the global matrix

9 t r i p l e t M a t r i x _ t c o n t r i b u t i o n s ;

10 // initialize the local aseembler’s static data

11 ELEM_MAT_BUILDER : : i n i t i a l i z e ( ) ;

12 // Loop over all the grid elements: cell-oriented assembly

13 for ( const auto& e l : f e _ t e s t ) {

14 // compute (small local) element matrix

15 const auto l c lMa t = loca lAssembler_ t : : eval ( data , e l ) ;

16 // store local contributions in vector of triplets

17 // get the local->global indices for this element

18 const auto i d _ t e s t = f e _ t e s t . indices ( e l ) ;

19 const auto i d _ t r i a l = f e _ t r i a l . indices ( e l ) ;

20 // for all rows (test func)

21 for ( const auto t e s t _ i d x : i d _ t e s t ) {

22 const auto row_loc = t e s t _ i d x . local ( ) ;

23 const auto row_glo = t e s t _ i d x . global ( ) ;

24 // and all columns (trial func)
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25 for ( const auto t r i a l _ i d x : i d _ t r i a l ) {

26 const auto co l_ loc = t r i a l _ i d x . local ( ) ;

27 const auto co l_g lo = t r i a l _ i d x . global ( ) ;

28 const auto value = l c lMa t ( row_loc , co l_ loc ) ;

29 // map the contribution from the local matrix and store them

30 c o n t r i b u t i o n s . push_back ( t r i p l e t _ t ( row_glo , co l_g lo , value )

) ;

31 } } }

32 // Move triplet list into return argument. No copying of data!

33 return ( c o n t r i b u t i o n s ) ; //@@

34 }

Line 13 loops over all cells (elements) contributing to the finite element space, see the discussion of

fe:FESpace in § 3.6.83. This realizes the outer loop in Line 2, Code 3.6.92.

Line 21 implements a loop over all local shape functions in the test space corresponding to the rows of

the element matrix.

Line 25 loops over the local shape functions in the trial space, that is, the columns of the element matrix.

Line 13–Line 33 in Code 3.6.96 show that the assembly is performed over all global basis functions

included in fe_test and fe_trial. Therefore, in the case of essential boundary conditions,

as in Section 3.6.6, additional manipulations must be carried out outside of this class. This will be

further discussed in Ex. 3.6.181.

A working example demonstrating NPDE::GalerkinMatrixAssembler in action can be found in

➺ GITLAB.

Remark 3.6.97 (Variational problems with different trial and test spaces)

So far we have always considered variational problems where trial and test space coincided both on the

continuous and discrete level.

This need not be the case, because the natural Sobolev spaces for a bilinear form might differ, as for

a(u, v) :=
∫

Ω
c · grad u(x) v(x)dx , u ∈ H1(Ω), v ∈ L2(Ω) . (3.6.98)

The simplest Galerkin finite element discretization of this bilinear form on a mesh M would employ

S0
1 (M) ⊂ H1(Ω) for u and merelyM-piecewise constant functions as test space. The corresponding

Galerkin matrix could be built with GalerkinMatrixAssembler from Code 3.6.95 by providing suitable type

as FESPACE_TEST_T and FESPACE_TRIAL_T.

Another more exotic case is the deliberate use of different finite element subspaces even in the case of

a variational problem for which test and function space are the same. This generalization of the Galerkin

approach is called a Petrov-Galerkin discretization.

(3.6.99) Cell oriented assembly: “O(N)” computational effort
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If we assume “constant cost” for the local operations then we conclude for the asymptotic computational

effort as we use meshes with more and more elements:

Computational cost(Assembly of Galerkin matrix A) = O(♯M)

This statement can be specialized:

For Lagrangian FEM of fixed degree p (→ Section 3.5):

the total computational effort is of the order O(♯M) = O(N), N := dimS0
p(M).

(3.6.100) Global assembly of right hand side vector in BETL

The cell oriented assembly of the right hand side (load) vector according to Code 3.6.93 makes use of

element (load) vectors, see Def. 3.6.69.

As in the case of the class NPDE::GalerkinMatrixAssembler from Ex. 3.6.94, its implementation in BETL

relies on objects of type fe::FESpace (template parameters FESPACE_TEST_T, FESPACE_TRIAL_T),

and a ELEM_VEC_BUILDER object. As in Ex. 3.6.94, the latter has to provide a static eval() method

with the following signature:

template < c lass BUILDER_DATA_T, c lass ELEMENT>

s t a t i c vector_t eval(const BUILDER_DATA_T &F,const ELEMENT &el)

The arguments are analogous to those of the eval() method of the ELEM_MAT_BUILDER type in

Ex. 3.6.94, with the exception of the return type vector_t, which is supposed to represent an EIGEN

column vector of length NQ now, where NQ is the number of local degrees of freedom. In addition, the

eval() method of an ELEM_VEC_BUILDER wants an object of type BUILDER_DATA_T. This can be

used to pass arbitrary data to the code computing the element load vector. This is a welcome possibility,

because, as a static method, eval() itself cannot access any class data members.

An implementation of a class conforming with the concept of an ELEM_VEC_BUILDER is given in Code 3.6.168

below.

The following code implements a generic assembler class for right hand side vectors

NPDE::LoadVectorAssembler.

C++11 code 3.6.101: NPDE assembler in BETL: code for global assembly of right hand side

vector ➺ GITLAB

1 template < typename ELEM_VEC_BUILDER >

2 class LoadVectorAssembler {

3 public :

4 typedef double numeric_t ;

5 // the right hand side vector

6 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , 1 > v e c to r _ t ;

7 // type for small dense matrix (just for convenience)

8 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , Eigen : : Dynamic >

ma t r i x _ t ;

9 // type of local matrix assembler (needs info on basis datas to use)

10 typedef ELEM_VEC_BUILDER loca lAssembler_ t ;

11

12 LoadVectorAssembler ( void ) { /* empty */ }

13 // Assemble global right hand side vector
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14 template < class FESPACE_TEST_T, class BUILD_DATA_T >

15 v e c to r _ t assembleRhs ( const FESPACE_TEST_T& fe_ tes t ,

16 const BUILD_DATA_T& data ) ;

17 } ; // end class LoadVectorAssembler

Parallel to the method assembleTripletMatrix from GalerkinMatrixAssembler, see Code 3.6.96,

the method assembleRhs performs cell-oriented assembly of the right hand side vector according to

Code 3.6.93.

C++11 code 3.6.102: Implementation of LoadVectorAssembler ➺ GITLAB

1 template < typename ELEM_VEC_BUILDER >

2 template < class FESPACE_TEST_T, typename BUILDER_DATA_T >

3 typename LoadVectorAssembler <ELEM_VEC_BUILDER> : : v e c to r _ t

4 LoadVectorAssembler <ELEM_VEC_BUILDER> : : assembleRhs (

5 const FESPACE_TEST_T& fe_ tes t , const BUILDER_DATA_T& data ) {

6 // Initialize the integrator’s static data

7 loca lAssembler_ t : : i n i t i a l i z e ( ) ;

8 // Initialize the right hand side vector with zero

9 v e c to r _ t rhsvec ( f e _ t e s t . numDofs ( ) ) ; rhsvec . setZero ( ) ;

10 // Loop over all the grid elements (cells)

11 for ( const auto& e l : f e _ t e s t ) {

12 // Compute element load vector

13 const auto l c lVec = loca lAssembler_ t : : eval ( data , e l ) ;

14 // Store local contributions to r.h.s. vector

15 // First get the local->global indices for this element

16 const auto i d = f e _ t e s t . indices ( e l ) ;

17 // for all rows (test func)

18 for ( const auto t e s t _ i d x : i d ) {

19 const auto row_loc = t e s t _ i d x . local ( ) ;

20 const auto row_glo = t e s t _ i d x . global ( ) ;

21 // add contribution to the correct index in the global vector

22 rhsvec ( row_glo ) += lc lVec ( row_loc ) ;

23 } }

24 return ( rhsvec ) ;

25 }

From the above listing, we see that NPDE::LoadVectorAssembler in Code 3.6.101 adds all global basis

functions contained in fespace. Consequently, in the case of essential boundary additional manipula-

tions must be carried out outside of this class (as we will see in Ex. 3.6.181).

The class NPDE::LoadVectorAssembler in Code 3.6.101 is a simplified version of the class fem::LinearForm

in Library/fem_operator/linear_form.hpp.

A working example demonstrating NPDE::LoadVectorAssembler in action can be found in ➺ GITLAB.

Example 3.6.103 (Global assembly of boundary contributions to Galerkin matrices in BETL)
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In the case of a second-order elliptic boundary value problem with Robin boundary conditions (→ Ex. 2.7.5),

we face a variational problem of the form (→ Ex. 2.9.6)

u ∈ H1(Ω):
∫

Ω

κ(x) grad u · grad v dx +
∫

∂Ω

q(x)u(x)v(x)dS(x) =
∫

Ω

f v dx ∀v ∈ H1(Ω) ,

(3.6.104)

with uniformly positive definite functions κ ∈ C0
pw(Ω), q ∈ C0

pw(∂Ω). The implementation of a La-

grangian finite element Galerkin discretization requires the evaluation of integrals over (parts of) the bound-

ary.

In this example, we present an implementation of the assembly of a Galerkin matrix according to Code 3.6.92

over Intersection-objects. It is given by the class NPDE::IntersectionGalMatAsse.

The following ingredients are necessary to define the class NPDE::IntersectionGalMatAsse:

✦ a reference to a (constant) INTER_MAT_BUILDER object that computes the element matrix for a

given intersection. An object of type INTER_MAT_BUILDER must provide a static method eval

similar to the one described in Ex. 3.6.94.

template <c lass BUILDER_DATA_T, c lass INTERSECTION>

s t a t i c result_t eval(const BUILDER_DATA_T& data, const

INTERSECTION& ic);

A reference to a (constant) fe::FESpace-compatible object (template paramater FESPACE_TEST_T)

that handles the test finite element space (and its dofs).

✦✦ A reference to a (constant) fe::FESpace-compatible object (template parameter FESPACE_TRIAL_T)

that handles the trial finite element space (and its dofs).

✦ A reference to a (constant) functor object (template parameter BUILDER_DATA_T) to be passed

to the eval() method of INTER_MAT_BUILDER.

C++11 code 3.6.105: NPDE assembler in BETL: Implementation of global assembly of

Galerkin matrix over boundary ➺ GITLAB

1 template < typename INTER_MAT_BUILDER >

2 class In tersect ionGalMatAsse {

3 public :

4 typedef double numeric_t ;

5 // Type for CRS matrix in EIGEN

6 typedef Eigen : : SparseMatr ix < numeric_t > sparseMatr ix_ t ;

7 // Elementary triplet type

8 typedef Eigen : : T r i p l e t < numeric_t > t r i p l e t _ t ;

9 // Matrix in triplet format

10 typedef s td : : vector < t r i p l e t _ t > t r i p l e t M a t r i x _ t ;

11 // Type for small dense matrix

12 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , Eigen : : Dynamic >

ma t r i x _ t ;

13

14 // type of local matrix assembler (needs info on basis functions to

15 // use, and the quadrature rule to apply for integration if needed)

16 typedef INTER_MAT_BUILDER loca lAssembler_ t ;

17
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18 In tersect ionGalMatAsse ( void ) { /* empty */ }

19 // Assemble global FE matrix as list of triplets

20 template <class FESPACE_TEST_T, class FESPACE_TRIAL_T, class

BUILDER_DATA_T , class INTERSECTION >

21 t r i p l e t M a t r i x _ t assembleTripletMatrix (

22 const FESPACE_TEST_T & fe_ tes t ,

23 const FESPACE_TRIAL_T & f e _ t r i a l ,

24 const BUILDER_DATA_T & data ,

25 const s td : : vector < const INTERSECTION∗ >& i n t e r s e c t i o n s ) ;

26 // Assemble global FE matrix as CRS matrix

27 template <class FESPACE_TEST_T, class FESPACE_TRIAL_T, class

BUILDER_DATA_T , class INTERSECTION >

28 sparseMatr ix_ t assembleMatrix (

29 const FESPACE_TEST_T & fe_ tes t ,

30 const FESPACE_TRIAL_T & f e _ t r i a l ,

31 const BUILDER_DATA_T & data ,

32 const s td : : vector < const INTERSECTION∗ >& i n t e r s e c t i o n s ) ;

33 } ; // end class IntersectionGalMatAsse

The next listing gives the details of the implementation of the actual assembly routine assembleTripletMatrix

The main loop adds the triplets contributed by a particular element to the global triplet container.

C++11 code 3.6.106: NPDE assembly in BETL: implementation of method

assembleTripletMatrix in Code 3.6.105 ➺ GITLAB

1 template < typename INTER_MAT_BUILDER >

2 template < class FESPACE_TEST_T, class FESPACE_TRIAL_T,

3 class BUILDER_DATA_T , class INTERSECTION >

4 typename IntersectionGalMatAsse < INTER_MAT_BUILDER >: : t r i p l e t M a t r i x _ t

5 IntersectionGalMatAsse < INTER_MAT_BUILDER >: : assembleTripletMatrix (

6 const FESPACE_TEST_T& fe_ tes t ,

7 const FESPACE_TRIAL_T& f e _ t r i a l ,

8 const BUILDER_DATA_T& data ,

9 const s td : : vector < const INTERSECTION∗ >& i n t e r s e c t i o n s ) {

10 // Initialize empty container of triplets: this will store

11 // contributions to the global matrix

12 t r i p l e t M a t r i x _ t c o n t r i b u t i o n s ;

13 // Initialize the local assembler’s static data

14 INTER_MAT_BUILDER : : i n i t i a l i z e ( ) ;

15 // loop over all the grid elements

16 for ( const auto& I : i n t e r s e c t i o n s ) {

17 // Compute element matrix for restricted set of local shape
functions

18 const auto l c lMa t = loca lAssembler_ t : : eval ( data , ∗ I ) ;

19 // Store local contributions in vector of triplets

20 // Fetch the local->global index mapping for this element

21 const auto i d _ t e s t = f e _ t e s t . indices ( ∗ ( I−>inside ( ) ) ,

I−>indexInInside ( ) ) ;

22 const auto i d _ t r i a l = f e _ t r i a l . indices ( ∗ ( I−>inside ( ) ) ,

I−>indexInInside ( ) ) ;
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23 // for all rows (test local shape functions)

24 for ( const auto t e s t _ i d x : i d _ t e s t ) {

25 const auto row_loc = t e s t _ i d x . local ( ) ;

26 const auto row_glo = t e s t _ i d x . global ( ) ;

27 // and all columns (trial local shape functions)

28 for ( const auto t r i a l _ i d x : i d _ t r i a l ) {

29 const auto co l_ loc = t r i a l _ i d x . local ( ) ;

30 const auto co l_g lo = t r i a l _ i d x . global ( ) ;

31 const auto value = l c lMa t ( row_loc , co l_ loc ) ;

32 // Store contribution from local matrix in global matrix

33 c o n t r i b u t i o n s . push_back ( t r i p l e t _ t ( row_glo , co l_g lo , value ) ) ;

34 } } }

35 // Move triplet list into return argument. No copying of data!

36 return ( c o n t r i b u t i o n s ) ;

37 }

A working example demonstrating NPDE::IntersectionGalMatAsse in action can be found in

➺ GITLAB.

(3.6.107) Global assembly of boundary contributions to the right hand side vector in BETL

In the variational formulation of a second-order elliptic Neumann problem with non-zero Neumann data

h ∈ L2(∂Ω) involves a right hand side linear functional of the form v 7→
∫

∂Ω
hv dS, see Ex. 2.9.10.

In this example we present a BETL class providing the finite element discretization of such functionals. As

in the case of the class NPDE::IntersectionGalMatAsse from Ex. 3.6.103, the implementation in BETL

relies on objects of type fe::FESpace (template parameters FESPACE_TEST_T, FESPACE_TRIAL_T),

and a INTER_MAT_BUILDER object. As in Ex. 3.6.103, the latter has to provide a static eval()

method. The structure of the class is very similar to that of NPDE::LoadVectorAssembler in Code 3.6.101.

C++11 code 3.6.108: Global assembly of boundary contribution to right hand side ➺ GITLAB

1 template < typename INTER_VEC_BUILDER >

2 class IntersectionLoadVectAsse {

3 public :

4 typedef double numeric_t ;

5 // the right hand side vector

6 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , 1 > v e c to r _ t ;

7 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , Eigen : : Dynamic >

ma t r i x _ t ;

8 // type of local matrix assembler providing eval()) method

9 typedef INTER_VEC_BUILDER loca lAssembler_ t ;

10

11 IntersectionLoadVectAsse ( void ) { }

12 // Assemble global finite element Galerkin matrix

13 template < class FESPACE_TEST_T, class BUILDER_DATA_T , class

INTERSECTION >

14 v e c to r _ t assembleRhs ( const FESPACE_TEST_T& fe_ tes t ,
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15 const BUILDER_DATA_T &data ,

16 const s td : : vector < const INTERSECTION∗ >& i n t e r s e c t i o n s ) ;

17 } ; // end class IntersectionLoadVectAsse

A listing of the counterpart of the method assembleRhs of LoadVectorAssembler from Code 3.6.101

is given now.

C++11 code 3.6.109: Implementation of assembleRhs of IntersectionLoadVectAsse from cn

Code 3.6.108 ➺ GITLAB

1 template < class FESPACE_TEST_T, class BUILDER_DATA_T , class

INTERSECTION >

2 v e c to r _ t assembleRhs ( const FESPACE_TEST_T& fe_ tes t ,

3 const BUILDER_DATA_T& data ,

4 const s td : : vector < const INTERSECTION∗ >& i n t e r s e c t i o n s ) {

5 // In case initialize the integrator’s static data

6 loca lAssembler_ t : : i n i t i a l i z e ( ) ;

7 // Initialize vector

8 v e c to r _ t rhsvec ( f e _ t e s t . numDofs ( ) ) ; rhsvec . setZero ( ) ;

9 // loop over all the grid elements

10 for ( const auto I : i n t e r s e c t i o n s ) {

11 // assemble local FE vector

12 const auto l c lVec = loca lAssembler_ t : : eval ( data , ∗ I ) ;

13 // Store local contributions in global right hand side vector

14 // Fetch the local->global indices for this element

15 const auto i d =

f e _ t e s t . indices (∗ ( I−>in s i d e ( ) ) , I−>indexInInside ( ) ) ;

16 // loop over relevant components of element vector

17 for ( const auto t e s t _ i d x : i d ) {

18 const auto row_loc = t e s t _ i d x . local ( ) ;

19 const auto row_glo = t e s t _ i d x . global ( ) ;

20 // add contribution to the correct index in the global vector

21 rhsvec ( row_glo ) += lc lVec ( row_loc ) ;

22 } }

23 return ( rhsvec ) ;

24 }

Note that in Line 15 a set of local shape functions is selected that is associated with the current intersection.

The class NPDE::IntersectionLoadVectAsse in Code 3.6.108 is a simplified version of the class

fem::IntersectionLinearForm in Library/fem_operator/intersection_linear_form.hpp

A working example demonstrating the use of NPDE::IntersectionLoadVectAsse can be found in ➺ GITLAB.

Example 3.6.110 (Driver code for global assembly in BETL)

The following code demonstrates the use of global assembly facilities introduced in ??, and Code 3.6.101

together with the local assembler classes for local computations from Code 3.6.125 and Code 3.6.129. The
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code relies on two classes supplying suitable static eval() functions: NPDE::AnalyticStiffnessLocalAssembler,

see Code 3.6.125, and NPDE::LoadVectorAssembler, see Code 3.6.129.

C++11 code 3.6.111: Building global matrix and global load vector using assembler classes

in BETL ➺ GITLAB

1 // ASSEMBLING FE GALERKIN MATRIX

2 typedef double numeric_t ;

3 typedef Eigen : : SparseMatr ix < numeric_t > sparseMatr ix_ t ;

4 // type of objects computing element matrix -> using Code 3.6.125

5 typedef NPDE : : AnalyticStiffnessLocalAssembler

aSt i f fnessMatAssembler_t ;

6 // type taking care of assembly of Galerkin matrix

7 typedef NPDE : : GalerkinMatrixAssembler < aSt i f fnessMatAssembler_t >

ASt i f fGa lMatA_t ;

8 // instantiate corresponding object

9 ASt i f fGa lMatA_t A ;

10 // compute the (big) Galerkin (stiffness) matrix

11 const sparseMatr ix_ t& Ah =

12 A. assembleMatr ix ( dh . fespace ( ) , dh . fespace ( ) , 1.0 ) ;

13 // ASSEMBLING FE RIGHT HAND SIDE VECTORS

14 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , 1 > v e c to r _ t ;

15 // Define the source function f

16 using coord_t = typename g r i d T r a i t s _ t : : template

17 f i xedS izeMat r i x_ t < g r i d T r a i t s _ t : : dimWorld ,1 >;

18 // Source function for the right hand side functional

19 const auto f_double = [ ] ( const coord_t& x ) {

20 double res = x ( 0 ) ∗ x ( 1 ) ; return res ; } ;

21

22 // type computing local element vectors

23 typedef NPDE : : LocalVectorAssembler trapLocFunAssembler_t ;

24 // type in charge of computing the right hand side vector using
Code 3.6.129

25 typedef NPDE : : LoadVectorAssembler< trapLocFunAssembler_t >

t rap l inea rFo rm_ t ;

26 // instantiate corresponding object

27 t r ap l i nea rFo rm_ t tF ;

28 // compute the global functional vector

29 const v e c to r _ t& t f h = tF . assembleRhs ( dh . fespace ( ) , f_double ) ;

3.6.4.4 Assembly: Linear algebra perspective

There is a formal “mathematical” way to express assembly in the language of linear algebra in terms of

sums of matrix products. This is presented in the next theorem:
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Theorem 3.6.112. Assembly through index mapping matrices

The stiffness matrix and load vector can be obtained from their cell counterparts, the element (stiff-

ness) matrix AK and element (load) vector~ϕK (→ Def. 3.6.69), by

A = ∑
K

T⊤K AKTK , ~ϕ = ∑
K

T⊤K~ϕK , (3.6.113)

with the index mapping matrices (“T-matrices”) TK ∈ R
Q,N, defined by

(TK)ij :=

{
1 , if (b

j
N)|K = bi

K ,

0 , otherwise.
1 ≤ i ≤ Q, 1 ≤ j ≤ N . (3.6.114)

☞ Every index mapping matrix has exactly one non-vanishing entry per row! (why?)

“MATLAB pseudo-code” for the initialization of a sparse index mapping matrix based on the

local→global index map introduced in (3.6.72), Qk = number opf local shape functions,

TK = sparse(1:Qk,locglobmap(K,1:Qk),ones(Qk,1));

Proof. (of Thm. 3.6.112) Use the definition of the entries of the Galerkin matrix, of the element matrix (→
Def. 3.6.69), and of the local shape functions (→ Def. 3.4.19):

(A)ij = a(b
j
N , bi

N) = ∑
K∈M

aK(b
j
N |K, bi

N |K) =

∑
K∈M, supp(b

j
N)∩K 6=∅,

supp(bi
N
)∩K 6=∅

aK(b
l(j)
K , b

l(i)
K ) = ∑

K∈M, supp(b
j
N)∩K 6=∅,

supp(bi
N
)∩K 6=∅

(AK)l(i),l(j) .

Here, l(i) ∈ {1, . . . , Q}, 1 ≤ i ≤ N =̂ index of the local shape function corresponding to the global

shape function bi
N on K.

➣ By (3.6.114), the indices l(i) encode the T-matrix according to

(TK)l(i),i = 1 , i = 1, . . . , N ,

where all other entries of TK are understood to vanish.

⇒ (A)ij = ∑
K∈M, supp(b

j
N
)∩K 6=∅,

supp(bi
N
)∩K 6=∅

Q

∑
l=1

Q

∑
n=1

(TK)li(AK)ln(TK)nj .

The rules for matrix multiplication give the assertion of the theorem.
✷

Example 3.6.115 (Index mapping matrix for linear Lagrangian finite elements on triangular

mesh)
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The local→ global index mapping for linear finite el-

ements with vertex associated global basis functions

and three local basis functions was studied in Sec-

tion 3.3.5, see also Rem. 3.6.73.

This example is connected to Ex. 3.6.74.

Using the local/global numbering indicated beside we

find

→ TK∗ =




0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0




Fig. 159
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Now we can rephrase the operation of Code 3.6.92 and Code 3.6.96 from a linear algebra point of view:✎
✍

☞
✌Cell oriented assembly ↔ (3.6.113)↔ A = ∑

K
T⊤K AKTK

m

A = ∑
K

T⊤K AKTK :=





foreach K ∈ M do

local operations on K (→ AK) and A = A + T⊤K AKTK

enddo





Obviously, this is little to do with the actual implementation and may just serve as a convenient notation.

3.6.5 Local computations

We have seen that the (global) Galerkin matrix and right hand side vector are conveniently generated by

“assembling” entries of element (stiffness) matrices and element (load) vectors.

Now we study the computation of these local quantities for Lagrangian finite elements on 2nd-order scalar

linear boundary value problems in weak form, see also Section 3.3.5 and Section 3.3.6.

3.6.5.1 Analytic formulas for entries of element matrices

First option: Direct analytic evaluations (➥ “closed form” expressions)

We discuss this for the bilinear form related to −∆, triangular Lagrangian finite elements of degree p,

Section 3.5.1, Def. 3.5.2:

K triangle: aK(u, v) :=
∫

K
grad u · grad v dx element stiffness matrix .

Use barycentric coordinate representations of local shape functions, in 2D

bi
K = ∑

α∈N3
0 ,|α|≤p

κα λα1
1 λα2

2 λα3
3 , κα ∈ R , (3.6.116)

where λi are the affine linear barycentric coordinate functions (linear shape functions), see Fig. 99.
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For the barycentric coordinate representation of the quadratic local shape functions see (3.5.6), for a

justification of (3.6.116) consult Rem. 3.7.10.

⇒ grad bi
K = ∑

α∈N3
0, |α|≤p

κα

(
α1λα1−1

1 λα2
2 λα3

3 grad λ1 + α2λα1
1 λα2−1

2 λα3
3 grad λ2+

α3λα1
1 λα2

2 λα3−1
3 grad λ3

)
.

(3.6.117)

To evaluate:

∫

K
λ

β1

1 λ
β2

2 λ
β3

3 grad λi · grad λj dx , i, j ∈ {1, 2, 3}, βk ∈ N . (3.6.118)

The (constant!) gradients of barycentric coordinate functions have already been computed in Sec-

tion 3.3.5 on Page 200, see also Rem. 3.3.24.

If a1, a2, a3 vertices of K (counterclockwise ordering):

λ1(x) =
1

2|K|

(
x−

[
a2

1
a2

2

])
·
[

a2
2 − a3

2
a3

1 − a2
1

]
,

λ2(x) =
1

2|K|

(
x−

[
a3

1
a3

2

])
·
[

a3
2 − a1

2
a1

1 − a3
1

]
,

λ3(x) =
1

2|K|

(
x−

[
a1

1
a1

2

])
·
[

a1
2 − a2

2
a2

1 − a1
1

]
.

Fig. 160

a1 =
(
a1

1, a1
2

)T
a2 =

(
a2

1, a2
2

)T

a3 =
(
a3

1, a3
2

)T

ω1
ω2

ω3
n1n2

n3

grad λ1 =
1

2|K|

[
a2

2 − a3
2

a3
1 − a2

1

]
, grad λ2 =

1

2|K|

[
a3

2 − a1
2

a1
1 − a3

1

]
, grad λ3 =

1

2|K|

[
a1

2 − a2
2

a2
1 − a1

1

]
. (3.6.119)

By (3.6.118), it remains to figure out the integral of products of powers of berycentric coordinate functions

over a triangle.

Lemma 3.6.120. Integration of powers of barycentric coordinate functions

For any non-degenerate d-simplex K with barycentric coordinate functions λ1, . . . , λd+1 and expo-

nents αj ∈ N, j = 1, . . . , d + 1,

∫

K
λα1

1 · · · · · λ
αd+1

d+1 dx = d!|K| α1!α2! · · · · · αd+1!

(α1 + α2 + · · ·+ αd+1 + d)!
∀α ∈ N

d+1
0 . (3.6.121)

3. Finite Element Methods (FEM), 3.6. Implementation of Finite Element Methods 304



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Proof. (for d = 2) The idea is to transform K to the “unit triangle” K̂ := convex

{[
0
0

]
,

[
1
0

]
,

[
0
1

]}
:

⇒
∫

K
λ

β1
1 λ

β2
2 λ

β3
3 dx = 2|K|

1∫

0

1−x1∫

0

x
β1
1 x

β2
2 (1− x1 − x2)

β3 dx2dx1

(∗)
= 2|K|

1∫

0

x
β1

1

1∫

0

(1− x1)
β2+β3+1sβ2(1− s)β3 ds dx1

= 2|K|
1∫

0

x
β1

1 (1− x1)
β2+β3+1 dx1 · B(β2 + 1, β3 + 1)

= 2|K| B(β1 + 1, β2 + β3 + 2) · B(β2 + 1, β3 + 1) ,

At step (∗) we preformed the substitution s(1− x1) = x2, B(·, ·) =̂ Euler’s beta function, a well known

special function defined as

B(α, β) :=

1∫

0

tα−1(1− t)β−1 dt , 0 < α, β < ∞ .

It satisfies the important relation Γ(α + β) B(α, β) = Γ(α)Γ(β), where Γ denotes the Gamma function,

which interpolates the factorials: Γ(n) = (n− 1)!,

⇒
∫

K
λ

β1

1 λ
β2

2 λ
β3

3 dx = 2|K| · Γ(β1 + 1)Γ(β2 + 1)Γ(β3 + 1)

Γ(β1 + β2 + β3 + 3)
.

By the properties of the Gamma function, this amounts to the assertion of the lemma.
✷

Example 3.6.122 (Element matrix for quadratic Lagrangian finite elements)

In this example we, again, consider the local bilinear form related to −∆: aK(u, v) =
∫

K grad u ·
grad v dx. We state the element matrix for an arbitrary triangle K for the nodal local shape functions

as given in (3.5.6):

b1
K = (2λ1 − 1)λ1 , b2

K = (2λ2 − 1)λ2 , b3
K = (2λ3 − 1)λ3 ,

b4
K = 4λ1λ2 , b5

K = 4λ2λ3 , b6
K = 4λ1λ3 ,

where the λi are barycentric coordinate functions, see Section 3.3.5, Rem. 3.3.24.

We respect BETL’s local numbering convention from Fig. 158. Then element matrix has the representa-

tion

AK =
|K|
3




3g1 · g1 −g1 · g2 −g1 · g3 4g1 · g2 0 4g1 · g3

−g1 · g2 3g2 · g2 −g2 · g3 4g1 · g2 4g2 · g3 0
−g1 · g3 −g2 · g3 3g3 · g3 0 4g3 · g2 4g3 · g1

4g1 · g2 4g1 · g2 0 d4 8g1 · g3 8g2 · g3

0 4g2 · g3 4g3 · g2 8g1 · g3 d5 8g1 · g2

4g1 · g3 0 4g3 · g1 8g2 · g3 8g1 · g2 d6




with (constant!) vectors gℓ := grad λℓ, ℓ = 1, 2, 3, as given in (3.6.119), and

d4 := 8(g1 · g1 + g1 · g2 + g2 · g2) ,

d5 := 8(g2 · g2 + g2 · g3 + g3 · g3) ,

d6 := 8(g1 · g1 + g1 · g3 + g3 · g3) .
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Example 3.6.123 (Class providing analytically computed element matrix for −∆ and linear

Lagrangian FE in BETL)

In this example we consider the very simple second-order linear variational problem

u ∈ H1(Ω):
∫

Ω
grad u(x) · grad v(x)dx =

∫

Ω
f (x)v(x)dx ∀v ∈ H1(Ω) , (3.6.124)

on a polygonal domain Ω ⊂ R2 for f ∈ C0(Ω) given through a function handle. Note that (3.6.124) fails

to have a unique solution and that existence of a solution hinges on a vanishing mean condition for f .

We perform Galerkin discretization of (3.6.124) by means of linear finite elements on a planar triangular

mesh as introduced in Section 3.3.1. For the right hand side we use the 2D trapezoidal rule. This ex-

ample together with Ex. 3.6.128 will guide you how to build the resulting linear system of equations using

NPDE::GalerkinMatrixAssembler and NPDE::LoadVectorAssembler.

The following class can play the role of the ELEM_MAT_BUILDER template type argument for

NPDE::GalerkinMatrixAssembler from Code 3.6.95 and BETL’s built-in generic assembler fem::BilinearForm.

The code uses the formulas already implemented in Code 3.3.27.

C++11 code 3.6.125: Class computing element matrix for −∆ analytically, compatible with

GalerkinMatrixAssembler ➺ GITLAB

1 st ruct AnalyticStiffnessLocalAssembler {

2 pr ivate :

3 s t a t i c const in t dim_ = 2; // world dimension (2D)

4 public :

5 typedef double numeric_t ;

6 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , Eigen : : Dynamic >

r e s u l t _ t ;

7 // If FiniteElement class is being used, it needs to be initialized here

8 s t a t i c void i n i t i a l i z e ( ) { }

9

10 template < typename MATERIAL , typename ELEMENT >

11 s t a t i c r e s u l t _ t eval ( const MATERIAL& mater ia l , const ELEMENT& e l ) ;

12 } ; //end class definition AnalyticStiffnessLocalAssembler

The actual computation of the element matrix is done in the eval() method. In this simple case no

additional data but the positions of the vertices of the triangle are required.

C++11 code 3.6.126: Implementation of eval() for AnalyticStiffnessLocalAssembler

➺ GITLAB

1 template < typename BUILDER_DATA_T , typename ELEMENT >

2 Ana ly t i cS t i f fnessLoca lAssemb le r : : r e s u l t _ t

3 Ana ly t i cS t i f fnessLoca lAssemb le r : : eval ( const BUILDER_DATA_T& data ,

const ELEMENT& e l ) {

4 r e s u l t _ t r e s u l t ;
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5 switch ( e l . refElType ( ) ) {

6 case eth : : base : : RefElType : : TRIA : {

7 // Get element geometry and area

8 const auto& geom = e l . geometry ( ) ;

9 auto elem_area = geom . volume ( ) ;

10 // compute gradients

11 Eigen : : Matr ixXd grads (2 ,3 ) ;

12 grads << (geom . mapCorner ( 1 )− geom . mapCorner ( 2 ) ) ,

13 (geom . mapCorner ( 2 )− geom . mapCorner ( 0 ) ) ,

14 (geom . mapCorner ( 0 )− geom . mapCorner ( 1 ) ) ;

15 // compute local matrix

16 r e s u l t = grads . transpose ( ) ∗grads / ( 4 . ∗ elem_area ) ;

17 break ;

18 }

19 defaul t : {

20 ETH_ASSERT_MSG( false , " Imp lemented f o r TRIA 2D o n l y ! " ) ;

21 break ;

22 } }

23 return ( r e s u l t ) ;

24 }

Remark 3.6.127 (Symbolic computation)

Recommended for the direct computation of entries of element matrices for complicated finite element is

the use of symbolic computing (MAPLE, Mathematica).

3.6.5.2 Local quadrature

At this point turn the pages back to (1.5.85) and remember the use of numerical quadrature for computing

the Galerkin matrix for the linear finite element method in 1D. Also recall the rationale for using mesh

based composite quadrature rules.

Also recall § 3.3.48, where a simple local quadrature rule was used for the computation of element vectors.

Next we take a look at its implementation in BETL.

Example 3.6.128 (Class for the computation of element vectors for linear Lagrangian FE)

The following class can serve as type of ELEM_VEC_BUILDER for the assembler class

NPDE::LoadVectorAssembler given as Code 3.6.101 and BETL’s built-in generic right-hand-side vector

assembler device fem::LinearForm. The local computations are based on the 2D trapezoidal rule and

have already been explained in Section 3.3.6, see (3.3.50) and Code 3.3.51.

C++11 code 3.6.129: Class for computation of element (load) vector, compatible with Load-

VectorAssembler ➺ GITLAB

1 st ruct LocalVectorAssembler {

3. Finite Element Methods (FEM), 3.6. Implementation of Finite Element Methods 307

https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_local_assembly_triangles.hpp


NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

2 pr ivate :

3 s t a t i c const in t dim_ = 2; // world dimension (2D)

4 public :

5 typedef double numeric_t ;

6 typedef Eigen : : Matr ix < numeric_t , 3 , 1 > r e s u l t _ t ;

7 // If FiniteElement class is being used, it need to be initialized here

8 s t a t i c void i n i t i a l i z e ( ) { }

9

10 template < typename FUNCTION, typename ELEMENT >

11 s t a t i c r e s u l t _ t eval ( const FUNCTION& f , const ELEMENT& e l )

12 {

13 ETH_ASSERT_MSG( e l . refElType ( ) == eth : : base : : RefElType : : TRIA ,

14 " For t h i s example , i n t e g r a t i o n o n l y works w i t h 2D

t r i a n g l e s . " ) ;

15

16 // get element geometry

17 const auto& geom = e l . geometry ( ) ;

18 auto elem_area = geom . volume ( ) ;

19 // 3-vector according to (3.3.50)

20 r e s u l t _ t r e s u l t ; r e s u l t . setZero ( ) ;

21 for ( unsigned i =0; i <3;++ i ) {

22 r e s u l t ( i ) = elem_area /3 .0 ∗ f (geom . mapCorner ( i ) ) ;

23 }

24 return ( r e s u l t ) ;

25 }

26 } ; // end class LocalVectorAssembler

An important lesson can already be learned from this example:

Since Lagrangian finite element functions are merelyM-piecewise smooth, numerical integration

of expressions containing FE functions has to rely on composite quadrature rules onM (“cell based

quadrature”).

Reminder: numerical quadrature mandatory in the presence of coefficients/source terms in procedural

form → Rem. 1.5.5.

(3.6.130) General local quadrature rules

A composite quadrature rule on a mesh M of a domain Ω ⊂ Rd splits an integral over Ω into cell

contributions and approximately evaluates those. This latter step is based on so-called local quadrature

rules.
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Definition 3.6.131. (Local) quadrature rule

A local quadrature rule on the element K ∈ M is an approximation

∫

K
f (x)dx ≈

PK

∑
l=1

ωK
l f (ζK

l ) , ζK
l ∈ K , ωK

l ∈ R , PK ∈ N . (3.6.132)

Terminology:
ωK

l → weights , ζK
l → quadrature nodes

(3.6.132) = P-point local quadrature rule

Def. 3.6.131 generalizes the quadrature rule (1.5.50) in 1D. The same terminology still applies.

An example for a local quadrature rule in 2D is the trapezoidal rule from (3.3.49).

Recall from § 1.5.79, § 1.5.84 that numerical quadrature is inevitable

• for computation of load vector, if f is complicated or only available in procedural form, Rem. 1.5.5,

• for computation of stiffness matrix, if the non-constant coefficient α = α(x) in the bilinear form from

(2.4.5), (2.9.16) does not permit analytic integration.

We recall a constraint on the weights of local quadrature rules:

Guideline [14, Section 5.2]: only quadrature rules with positive weights are numerically stable.

Once the local quadrature rules according to Def. 3.6.131, (3.6.132), are fixed, we formally use the ap-

proximation

∫

Ω

f (x) dx ≈ ∑
K∈M

PK

∑
l=1

ωK
l f (ζK

l ) . (3.6.133)

For the variational problems (2.4.5) and (2.9.16) this means

∫

Ω

(α(x) grad u(x)) · grad v(x) dx ≈ ∑
K∈M

PK

∑
l=1

ωK
l (α(ζK

l )(grad u)(ζK
l )) · (grad v)(ζK

l ) ,

∫

Ω

f (x)v(x) dx ≈ ∑
K∈M

PK

∑
l=1

ωK
l f (ζK

l )v(ζ
K
l ) .

Of course, in algorithms, in the spirit of local assembly as explained in Section 3.6.4, the focus is on local

quadratures on the cells.

(3.6.134) Transformation of quadrature rules

Generically, the quadrature rule (3.6.132) is specific for the cell K. This begs the questions how local

quadrature rules are handled on finite element meshes with millions of cells.

The policy is the same as in 1D in § 1.5.48: there the (local) quadrature rule was defined on a reference

interval, e.g., [−1, 1] for Gaussian quadrature and mapped to a general interval by (affine) transformation,

cf. [14, Rem. 5.1.4].
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The local quadrature rules used in finite element methods are obtained by transformation from (a

few) local quadrature rules defined on reference elements.

Reference elements and the associated transformations will be studied in the sequel with focus on the

construction of local quadrature rules, and in a more general context in Section 3.7.

(3.6.135) Affine transformation of triangles

Now we examine the generalization of affine transformations from 1D to two dimensions:

Definition 3.6.136. Affine (linear) transformation

A mapping Φ : Rd 7→ Rd is affine (linear), if Φ(x) = Fx + τ with some F ∈ Rd,d, τ ∈ Rd.

✎ Reference triangle: ‘unit triangle” K̂ := convex

{[
0
0

]
,

[
1
0

]
,

[
0
1

]}
(numbered vertices!)

Lemma 3.6.137. Affine transformation of triangles

For any non-degenerate triangle K ⊂ R
2 (|K| > 0) with numbered vertices there is a unique affine

transformation ΦK, ΦK(x̂) = FK x̂ + τK (→ Def. 3.6.136), with K = ΦK(K̂) and preserving the

numbering of the vertices.

Visualization of the affine mapping of the reference triangle onto K:

Fig. 161

ΦK(x̂) =

[
2 1
4 3

]
x̂

[
0
0

] [
1
0

]

[
0
1

]

[
0
0

]

[
1
3

]
[

2
4

]

K

K̂

The matrix FK and translation vector τK can be determined by solving a 6× 6 linear system of equations,

from which we obtain:

K = convex

{[
a1

1
a1

2

]
,

[
a2

1
a2

2

]
,

[
a3

1
a3

2

]}
⇒ ΦK(x̂) =

[
a2

1 − a1
1 a3

1 − a1
1

a2
2 − a1

2 a3
2 − a1

2

]
x̂ +

[
a1

1

a1
2

]
. (3.6.138)

Note that |K| = |K̂| |det FK| .

(3.6.139) Reference elements and transformations in BETL
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Every entity of co-dimension 0 (= cell, element) of the mesh has a reference element associated with it,

depending on the RefElType of the element, which is returned by the refelType()member function,

see § 3.6.33.

TRIA : reference element K̂ := convex

{[
0
0

]
,

[
1
0

]
,

[
1
1

]}
, (3.6.140)

QUAD : reference element K̂ := convex








0
0
0


,




1
0
0


,




0
1
0


,




0
0
1





 . (3.6.141)

For TRIA this convention is evident from Code 3.6.35. The reference triangle used in BETL is not the

usual one!

Non-standard reference triangle in BETL

BETL uses the reference triangle K̂ :=

{[
0
0

]
,

[
1
0

]
,

[
1
1

]}

The affine mapping from K̂ to the actual element K relies on the ordering of vertices from (3.6.140),

(3.6.141) and the ordering implied by the subEntity<dim>-function, cf. Rem. 3.6.48.

By Lemma 3.6.137 there is a one-to-one correspondence between the geometric shape of a triangular

element K and its associated afine mapping from/to the reference element K̂. ➣ Information about the

mapping to/from the reference element is stored in the Geometry-object associated with every entity→
§ 3.6.49. The following data types and member functions of a Geometry-object are relevant:

✦ Type localCoord_t =̂ coordinate vectors for points in the reference element

✦ Type globalCoord_t =̂ coordinate vectors for points in the reference element

✦ bool isAffine() tells, whether the mapping from the reference element is affine.

✦ Method global(const localCoord_t &) returns the coordinates of the image of a point in

the reference element under the mapping to the actual element.

The following code demonstrates the use of these facilities. It forgoes auto type detection to elucidate the

relevant type, at the expense of significantly increased code length, of course.

C++11 code 3.6.143: Using coordinate transformation from reference element in BETL

➺ GITLAB

1 template <class ELEMENT>

2 void printTransformCoordinates ( const ELEMENT &e l ) {

3 using g r i d T r a i t s _ t = typename ELEMENT : : g r i d T r a i t s _ t ;

4 using geometryElemImpl_t = typename

5 g r i d T r a i t s _ t : : template geometry_t <0>;

6 using geometry_t =

7 eth : : g r i d : : Geometry< g r i d T r a i t s _ t , geometryElemImpl_t > ;

8 using r e f E l t _ t = eth : : base : : RefElType ;

9 using globalCoord_t = typename geometry_t : : g lobalCoord_t ;

10 using loca lCoord_t = typename geometry_t : : loca lCoord_t ;

11

12 using r e f E l _ t = eth : : base : : RefElType ;

13 s t a t i c const r e f E l _ t t r i aType = r e f E l _ t : : TRIA ;
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14 s t a t i c const r e f E l _ t quadType = r e f E l _ t : :QUAD;

15

16 geometry_t geo = e l . geometry ( ) ;

17 r e f E l t _ t re fe lType = geo . refElType ( ) ;

18 i f ( geo . i sAf f ine ( ) )

19 cout << " A f f i n e e lement , t y p e = " << re fe lType << " : " ;

20

21 // Determine location of barycenter in 2 different ways

22 globalCoord_t center = geo . center ( ) ;

23 loca lCoord_t barycenter ;

24 // Barycenter of the reference triangle, BETL convention!

25 i f ( re fe lType == t r iaType ) barycenter << 2 /3 . , 1 / 3 . ;

26 // Barycenter of the ref quad

27 i f ( re fe lType == quadType) barycenter << 1 /2 . , 1 / 2 . ;

28

29 // Print local and global coordinates of vertices.

30 const s ize_t nCorners = geo . numCorners ( ) ;

31 cout << nCorners << " v e r t i c e s a t " << endl ;

32 for ( i n t j =0; j < nCorners ; j ++) {

33 globalCoord_t glbCoords = geo . mapCorner ( j ) ;

34 loca lCoord_t locCoords =

35 eth : : base : : ReferenceElements : : getNodeCoord ( re fe lType , j ) ;

36 globalCoord_t mappedlocCoords = geo . global ( locCoords ) ;

37 cout << " g l o b a l ( " << glbCoords . transpose ( ) << " ) <−> "

38 << " l o c a l ( " << locCoords . transpose ( ) << " ) "

39 << " mapped l o c a l ( " << mappedlocCoords . transpose ( ) << " ) "

<< endl ;

40 }

41 cout << " c e n t e r = " << center . t ranspose ( ) << " <−> "

42 << geo . global ( barycenter ) . transpose ( ) << endl ;

43 }

A partial listing of output when running the mainfile ➺ GITLAB for the hybrid mesh with five cells from

Ex. 3.6.47. The listing shows the output of the function call printMeshTransf(gridView), which

internally calls printTransformCoordinates from Code 3.6.143 for all elements contained in the

hybrid mesh with five cells from Ex. 3.6.47.

1 #Transformation of elements:

2 ENTITY TRIA ( i d = 0)

3 A f f i n e element , type = TRIA : 3 v e r t i c e s a t

4 g loba l ( 2 0 ) <−> l o c a l ( 0 0 ) mapped l o c a l ( 2 0 )

5 g loba l ( 2 2 ) <−> l o c a l ( 1 0 ) mapped l o c a l ( 2 2 )

6 g loba l ( 1 1 ) <−> l o c a l ( 1 1 ) mapped l o c a l ( 1 1 )

7 center = 1.66667 1 <−> 1.66667 1

8

9 ENTITY TRIA ( i d = 1)

10 A f f i n e element , type = TRIA : 3 v e r t i c e s a t

11 g loba l ( 2 0 ) <−> l o c a l ( 0 0 ) mapped l o c a l ( 2 0 )

12 g loba l ( 1 1 ) <−> l o c a l ( 1 0 ) mapped l o c a l ( 1 1 )

13 g loba l ( 1 0 ) <−> l o c a l ( 1 1 ) mapped l o c a l ( 1 0 )
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14 center = 1.33333 0.333333 <−> 1.33333 0.333333

15

16 ENTITY TRIA ( i d = 2)

17 A f f i n e element , type = TRIA : 3 v e r t i c e s a t

18 g loba l ( 1 1 ) <−> l o c a l ( 0 0 ) mapped l o c a l ( 1 1 )

19 g loba l ( 2 2 ) <−> l o c a l ( 1 0 ) mapped l o c a l ( 2 2 )

20 g loba l ( 1 2 ) <−> l o c a l ( 1 1 ) mapped l o c a l ( 1 2 )

21 center = 1.33333 1.66667 <−> 1.33333 1.66667

22

23 ENTITY QUAD( i d = 0)

24 4 v e r t i c e s a t

25 g loba l ( 0 0 ) <−> l o c a l ( 0 0 ) mapped l o c a l ( 0 0 )

26 g loba l ( 1 0 ) <−> l o c a l ( 1 0 ) mapped l o c a l ( 1 0 )

27 g loba l ( 1 1 ) <−> l o c a l ( 1 1 ) mapped l o c a l ( 1 1 )

28 g loba l ( 0 1 ) <−> l o c a l ( 0 1 ) mapped l o c a l ( 0 1 )

29 center = 0.5 0.5 <−> 0.5 0.5

30

31 ENTITY QUAD( i d = 1)

32 4 v e r t i c e s a t

33 g loba l ( 0 1 ) <−> l o c a l ( 0 0 ) mapped l o c a l ( 0 1 )

34 g loba l ( 1 1 ) <−> l o c a l ( 1 0 ) mapped l o c a l ( 1 1 )

35 g loba l ( 1 2 ) <−> l o c a l ( 1 1 ) mapped l o c a l ( 1 2 )

36 g loba l ( 0 2 ) <−> l o c a l ( 0 1 ) mapped l o c a l ( 0 2 )

37 center = 0.5 1.5 <−> 0.5 1.5

Example 3.6.144 (Evaluation of local shape functions for triangular quadratic Lagrangian

finite elements in BETL)

Recall from Ex. 3.5.3 the local shape functions for

S0
2 (M) on triangle K in barycentric coordinate rep-

resentation:

b1
K = (2λ1 − 1)λ1 ,

b2
K = (2λ2 − 1)λ2 ,

b3
K = (2λ3 − 1)λ3 ,

b4
K = 4λ1λ2 ,

b5
K = 4λ2λ3 ,

b6
K = 4λ1λ3 ,

(3.5.6)

Fig. 162 ➀

➁

➂

➃

➅
➄

K

Obviously, in order to compute bi
K(x), x ∈ K, i = 1, . . . , 6, all we need are the values λℓ(x), ℓ = 1, 2, 3,

of the barycentric coordinate functions. As explained in § 3.3.10, since (ak, k = 1, 2, 3 are the position

column vectors of the vertices of the triangle K)

x = λ1(x)a
1 + λ2(x)a

2 + λ3(x)a
3 , λ1(x) + λ2(x) + λ3(x) = 1 , (3.6.145)
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these can be obtained from the linear system of equations

[
a1 a2 a3

1 1 1

]


λ1(x)
λ2(x)
λ3(x)


 =

[
x
1

]
, (3.6.146)

For the reference triangle on BETL with vertices a1 =

[
0
0

]
, a1 =

[
1
0

]
, a3 =

[
1
1

]
, we thus find

λ̂1(x̂) = 1− x̂1 , λ̂2(x̂) = x̂1− x̂2 , λ̂3(x̂) = x̂2 . (3.6.147)

where we have used the hat tag for coordinates and barycentric coordinate functions on the BETL refer-

ence triangle K̂.

This formula and the numbering from (3.5.6) is used in the following code, which implements an Eval()

function that returns the values of the local shape functions from (3.5.6) on the BETL reference triangle.

C++11 code 3.6.148: Computing values of local shape functions for quadratic Lagrangian FE

in BETL ➺ GITLAB

1 template < >

2 st ruct qfemLocalShape < eth : : base : : RefElType : : TRIA >

3 {

4 using vec t_ t = eth : : base : : f i x e d Ma t r i x _ t < 6 ,1 >;

5

6 template < typename LOCAL_COORDS>

7 s t a t i c vec t_ t Eval ( const LOCAL_COORDS& lc lCoord ) {

8 const double lambda1 = 1 − l c lCoord [ 0 ] ;

9 const double lambda2 = lc lCoord [ 0 ] − l c lCoord [ 1 ] ;

10 const double lambda3 = lc lCoord [ 1 ] ;

11

12 vec t_ t b ( 6 ) ;

13 b << (2∗ lambda1−1)∗ lambda1 , ( 2∗ lambda2−1)∗ lambda2 ,

14 (2∗ lambda3−1)∗ lambda3 ,4 ∗ lambda1 ∗ lambda2 ,

15 4 ∗ lambda2 ∗ lambda3 ,4 ∗ lambda1 ∗ lambda3 ;

16 return ( b ) ;

17 }

18 } ;

Note the use of template specialization in order to restrict the use to this class to cells with a TRIA refer-

ence element.

(3.6.149) Transformation of local quadrature rules on triangles

Now we resume the discussion started in § 3.6.134:

We write ΦK(x̂) := FK x̂ + τK =̂ affine transformation (→ Def. 3.6.136) mapping K̂ to triangle K, see

Lemma 3.6.137.

By transformation formula for integrals [18, Satz 8.5.2]
∫

K
f (x)dx =

∫

K̂
f (ΦK(x̂)) |det FK|dx̂ . (3.6.150)
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This enables the transition

P-point quadrature formula on K̂ P-point quadrature formula on K,

and tells us how to adapt the quadrature weights (|K| = area(K)):

∫
K̂ f (x̂)dx̂ ≈

P

∑
l=1

ω̂l f (ζ̂ l)

∫

K
f (x)dx ≈ |K|

|K̂|
P

∑
l=1

ωK
l f (ζK

l )

with ωK
l = ω̂l , ζK

l = ΦK(ζ̂ l) .

(3.6.151)

➣ Only he quadrature formula (3.6.132) on the unit triangle K̂ needs to be specified!

(The same applies to tetrahedra, where affine mappings for d = 3 are used.)

(3.6.152) Order of local quadrature rule

How to gauge the quality of parametric local quadrature rules ? We briefly review the discussion in [14,

Section 5.4].

Gauging the quality of a quadrature formula

The quality of a parametric local quadrature rule on K is measured maximal degree of polynomi-

als (multivariate → Def. 3.4.8, or tensor product → Def. 3.4.13) on K integrated exactly by the

corresponding quadrature rule on K.

Definition 3.6.154. Order of a local quadrature rule

A local quadrature rule according to Def. 3.6.131 is said to be order q ∈ N, if

• for a simplex K (triangle tetrahedron) it is exact for all polynomials f ∈ Pq−1(R
d),

• for a tensor product element K (rectangle, brick) it is exact for all tensor product polynomials

f ∈ Qq−1(R
d).

Note: Quadrature rule exact for Pp(Rd) ⇒
quadrature rule of order p + 1

degree of exactness p

How is the order of a local quadrature rule linked with the number of quadrature points?

Recall 1D: P-point Gaussian quadrature rule achieves maximal order 2P, see [14, Section 5.3]

On triangles/tetrahedra there is no simple general formula has been found linking the order and the minimal

number of quadrature nodes, but there is a simple overall relationship for “optimal” quadrature formulas:

The prize of higher order quadrature

For “optimal” local quadrature formulas:

the higher the order the more quadrature nodes are required.

(3.6.156) Preservation of order under affine mappings
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An important observation is that the space Pp(Rd) is invariant under affine mappings, that is

q ∈ Pp(R
d) ⇒ x̂ 7→ q(Φ(x̂)) ∈ Pp(R

d) for any affine transformation Φ . (3.6.157)

This means, if a quadrature rule on the reference element integrates all polynomials up to degree p
exactly, the same is achieved by the mapped quadrature rule on K, if the underlying mapping is affine.

The orders of the quadrature rules on the left and right hand side of (3.6.151) agree!

Its order is an intrinsic property of a quadrature rule on the reference triangle/tetrahedron K̂ and

will be inherited by all derived quadrature rules on elements that are affine images of K̂.

Example 3.6.158 (Local quadrature rules on triangles)

By the transformation policy it is enough to specify the quadrature rule for the reference triangle (“unit trian-

gle”) K̂ := convex
{[

0
0

]
,
[

1
0

]
,
[

0
1

]}
(, which is different from BETL’s K̂ := convex

{[
0
0

]
,
[

1
0

]
,
[

1
1

]}
).

According to Def. 3.6.131 quadrature rules on K̂ can be described by pairs (ω̂1, ζ̂1), . . . , (ω̂P, ζ̂P), P ∈ N,

of weights ω̂P and nodes ζ̂P ∈ K̂.

✦ P3O2: 3-point quadrature rule of order 2 (exact for P1(K̂))

{(
1

3
,

[
0
0

])
,

(
1

3
,

[
0
1

])
,

(
1

3
,

[
1
0

])}
. (3.6.159)

✦ P3O3: 3-point quadrature rule of order 3 (exact for P2(K̂))

{(
1

3
,

[
1/2

0

])
,

(
1

3
,

[
0

1/2

])
,

(
1

3
,

[
1/2

1/2

])}
. (3.6.160)

✦ P1O2: One-point quadrature rule of order 2 (exact for P1(K̂))

{(
1,

[
1/3

1/3

])}
. (3.6.161)

✦ P7O6: 7-point quadrature rule of order 6 (exact for P5(K̂))

{(
9

40
,

[
1/3

1/3

])
,

(
155 +

√
15

1200
,

[
6+
√

15/21

6+
√

15/21

])
,

(
155 +

√
15

1200
,

[
9−2
√

15/21

6+
√

15/21

])
,

(
155 +

√
15

1200
,

[
6+
√

15/21

9−2
√

15/21

])
,

(
155−

√
15

1200
,

[
6−
√

15/21

9+2
√

15/21

])
,

(
155−

√
15

1200
,

[
9+2
√

15/21

6−
√

15/21

])
,

(
155−

√
15

1200
,

[
6−
√

15/21

6−
√

15/21

])}
(3.6.162)

Location of quadrature nodes ζ̂ l in the unit triangle K̂:
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 Quadrature rule P1O2

(3.6.161): P = 1, order 2

 Quadrature rule P3O3

P = 3, order 3

 Quadrature rule P6O4

P = 6, order 4

 Quadrature rule P7O6

(3.6.162): P = 7, order 6

In the article [10] oen can find quadrature rules up to order p = 21 with P ≤ 1/6p(p + 1) + 5 points.

Example 3.6.163 (Local quadrature rules on quadrilaterals)

If K quadrilateral ⇒ reference element K̂ := convex
{[

0
0

]
,
[

1
0

]
,
[

0
1

]
,
[

1
1

]}
(unit square).

On K̂ use tensor product construction:

If {(ω1, ζ1), . . . , (ωP, ζP)}, P ∈ N, quadrature rule on the interval ]0, 1[, exact for Pp]0, 1[, then a

quadrature rule on the unit square is given by the following sequence of P2 weight–nodes pairs:

{
(ω2

1 ,

[
ζ1

ζ1

]
) · · · (ω1ωP,

[
ζ1

ζP

]
)

...
...

(ω1ωP,

[
ζP

ζ1

]
) · · · (ω2

P,

[
ζP

ζP

]
)

}

It provides a quadrature rule on the unit square K̂ that is exact for Qp(K̂). → order p + 1!

Recall quadrature rules on ]0, 1[ (→ [14, Chapter 5]):

• classical Newton-Cotes formulas (equidistant

quadrature nodes).

• Gauss-Legendre quadrature rules, exact for

P2P(]0, 1[) using only P nodes.

• Gauss-Lobatto quadrature rules: P nodes in-

cluding {0, 1}, exact for P2P−1(]0, 1[).

Fig. 163
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(3.6.164) Numerical quadrature in BETL

In BETL quadrature rules on reference elements (→ § 3.6.134) are provided by Quadrature-objects.

template <enum eth::base::RefElType RET,

eth::base::signed_t NUM_POINTS> c lass Quadrature
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Quadrature objects command the following member functions:

✦ getNumPoints() returns the number P of quadrature points (NUM_POINTS)

✦ getRefEl() returns the reference element type (RET), see § 3.6.33 for a list.

✦ getPoints() returns an object of type Eigen::Matrix<refElDim,NUM_POINTS> con-

taining the local coordinates of the quadrature nodes as columns, that is, the coordinates of ζ̂ l.

refElDim is the dimension of the reference element.

✦ getWeights() returns an object of type Eigen::Matrix< 1, NUM_POINTS > containing

the quadrature weights ω̂l.

✦ getScale() returns correction scaling factor σ, such that the sum of the quadrature weights

multiplied with σ is equal to |K̂|, the area of the reference element. In other words, only after

rescaling with σ we get a valid quadrature formula on K̂.

✦ getRefDim() returns the dimension of the reference element, for instance, 2 in the case of TRIA

or QUAD.

One can verify, if a quadrature with M quadrature points is implemented for a given reference element

type RET by using an object of type betl2::quad::QuadratureTraits< RET >, which provides the member

function isValid< M >(). This method will return true if such quadrature is available.

In particular, we the following quadrature rules are available in BETL

RET Implemented numbers of quadrature points

SEGMENT {1, 2, 3, 4, 5}
TRIA {1, 3, 6, 7, 12, 16, 19, 25, 33, 37, 42, 61, 73}

QUAD {1, 4, 9, 12, 13, 16, 25, 36, 49, 64}

As BETL allows hybrid meshes and each reference element type will require its own Quadrature object,

the quadratures rules are handled via QuadRuleList objects. This object will store a list of QuadRule

objects, that store a pair {RET, NUM_POINTS} at compile time.

An object of type QuadRuleList for an Entity object of co-dimension 0 in a 2D mesh can be initialized

as follows (NT is the desired number of quadrature points for triangular elements, and NQ the desired

number of quadrature points for quadrilateral elements):

// define quadrature rules for 2D-element types

t ypedef QuadRule< eth::base::RefElType::TRIA,NT > tria_t;

t ypedef QuadRule< eth::base::RefElType::QUAD,NQ > quad_t;

t ypedef QuadRuleList< tria_t, quad_t > quadrules_t;

The following function performs the integration of a function f : Ω → Rm, m ∈ N, over a triangulated

domain Ω in BETL. The object of type FUNCTION must have a return type that supports elementary

linear algebra operations and the method setZero(). This essential restricts the return type to EIGEN

matrices.

C++11 code 3.6.165: Integration of a function on a 2D mesh using quadrature in BETL

➺ GITLAB

1 template <class QUAD_RULE_LIST, class VIEW_TRAITS, class FUNCTION>

2 auto integrateF ( const eth : : g r i d : : GridView <VIEW_TRAITS> &gv ,FUNCTION

const &f )

3 −> decltype ( declval <FUNCTION> ( ) ( typename

VIEW_TRAITS : : g r i d T r a i t s _ t : : template
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f i xedS izeMat r i x_ t <VIEW_TRAITS : : g r i d T r a i t s _ t : : dimWorld ,1 > ( ) ) )

4 {

5 // Element types that can be handled by this function

6 using r e f E l _ t = eth : : base : : RefElType ;

7 s t a t i c const r e f E l _ t t r i aType = eth : : base : : RefElType : : TRIA ;

8 s t a t i c const r e f E l _ t quadType = eth : : base : : RefElType : :QUAD;

9

10 // Type returned by the function

11 using va lue_t = decltype ( declval <FUNCTION> ( ) (

12 typename VIEW_TRAITS : : g r i d T r a i t s _ t : : template

13 f i xedS izeMat r i x_ t <VIEW_TRAITS : : g r i d T r a i t s _ t : : dimWorld ,1 > ( ) ) ) ;

14 // The return type of the function must support the setZero() method

15 // (in other words, it must be an Eigen::Matrix<>)

16 va lue_t s ; s . setZero ( ) ;

17

18 // Loop over cells of the mesh and apply quadrature rule on each

19 for ( auto& t : gv . template ent i t ies <0 >() ) {

20 i f ( t . refElType ( ) == t r iaType ) s +=

loc_integrateF <QUAD_RULE_LIST, t r iaType >( t , f ) ;

21 else i f ( t . refElType ( ) == quadType) s +=

loc_integrateF <QUAD_RULE_LIST, quadType >( t , f ) ;

22 else ETH_ASSERT( fa lse ) ; // Not implemented!

23 }

24 return ( s ) ;

25 }

The actual implementation of the local quadrature comes next. It makes use of the method

template< int NUM_POINTS > matrix_t< 1, NUM_POINTS >

integrationElement( const matrix_t< dimFrom, NUM_POINTS >& local ) const;

of GEOMETRY objects, which were first introduced in Ex. 3.6.52. This method expects an argument of

type const_point_reference supplied by a QUADRATURE objects. This argument is actually a list of

point coordinates in the reference element K̂. What is returned is the value of det DΦK(x̂) for each of

the points x̂. Of course, for an affine mapping ΦK (→ Def. 3.6.136) these values are the same for every

point, but in Section 3.7 we will learn about more general mappings with non-constant Jacobians.

C++11 code 3.6.166: Composite quadrature of a function on an element ➺ GITLAB

1 template <class QUAD_RULE_LIST, enum eth : : base : : RefElType RET,

2 class GRID_TRAITS , class FUNCTION>

3 auto loc_integrateF ( const eth : : g r i d : : E n t i t y <GRID_TRAITS , 0> &e ,

4 FUNCTION const &f )

5 −> decltype ( declval <FUNCTION> ( ) ( typename GRID_TRAITS : : template

f i xedS izeMat r i x_ t <GRID_TRAITS : : dimWorld ,1 > ( ) ) )

6 {

7 using va lue_t = decltype ( declval <FUNCTION> ( ) (

8 typename GRID_TRAITS : : template

9 f i xedS izeMat r i x_ t <GRID_TRAITS : : dimWorld ,1 > ( ) ) ) ;

10 s t a t i c const in t numQuadNodes = QUAD_RULE_LIST : : template
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get<RET> ( ) ;

11 using quadRule_t = b e t l 2 : : quad : : Quadrature<RET, numQuadNodes >;

12 using weigh ts_ t = typename quadRule_t : : const_weight_reference ;

13 using p o in t s _ t = typename quadRule_t : : cons t_po in t_ re fe rence ;

14 weigh ts_ t weights = quadRule_t : : getWeights ( ) ;

15 p o in t s _ t po in ts = quadRule_t : : getPoints ( ) ;

16 const auto elemGeo = e . geometry ( ) ;

17 // Transform all quadrature point simultaneously to save branching
due to different element types.

18 const auto g lobPo in ts = elemGeo . global ( po in ts ) ;

19 // Get local metric factors at quadrature points

20 const auto elemIE = elemGeo . integrationElement ( po in ts ) ;

21

22 va lue_t l s ; l s . setZero ( ) ;

23 // Loop over quadrature nodes

24 // Here we use that globPoints contains an Eigen matrix

25 for ( i n t j =0; j < po in ts . co ls ( ) ; j ++) {

26 // Evaluate the function at the quadrature nodes

27 // Call to eval() enforces unraveling of expression templates

28 const va lue_t fVa l = f ( g lobPo in ts . co l ( j ) . eval ( ) ) ;

29 l s += weights ( j ) ∗ fVa l ∗elemIE ( j ) ;

30 }

31 return ( quadru le_ t : : getScale ( ) ∗ l s ) ;

32 }

Line 10: The number of quadrature points for the QuadratureRule for the given reference element

type RET is retrieved from the QuadratureRuleList.

Line 11: A Quadrature object for the reference element type RET of the current element e is created

accordingly.

Line 18: Map quadrature points from reference element to current element e.

(3.6.167) Computation of element vector with local quadrature in BETL

In § 1.5.79 and § 1.5.84 we learned that local quadrature is the only option for evaluation the right hand

side functional v 7→
∫

Ω
f (x)v(x)dx, if source function f ∈ C0(Ω) is given in procedural form as a

function that offers only point evaluation.

As pointed out in § 3.6.107, a ELEM_VEC_BUILDER object (for the right hand side vector) in BETL

gets an argument of type BUILDER_DATA_T, which can be used to pass arbitrary information for local

computations

As in Code 3.6.129 here we expect this type to provide a functor with an evaluation operator according to

i n l i n e result_t opera tor()(globalCoord_t x) const

with types as in Code 3.6.143).

The following code demonstrates the computation of the element load vector for the local right hand

side linear form ℓK(v) =
∫

K f (x)v(x)dx for quadratic Lagrangian finite elements using the local shape
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functions as give in (3.5.6) (for triangles). The implementation relies on qFEmLocalShape for triangles

given as Code 3.6.148.

C++11 code 3.6.168: Class performing local computation of element load vector ➺ GITLAB

1 template < typename QUADRULES >

2 st ruct MySimpleLocalVectorAssembler {

3 typedef double numeric_t ;

4 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , 1 > r e s u l t _ t ;

5 s t a t i c void i n i t i a l i z e ( ) { }

6

7 template < class FUNCTION, class ELEMENT>

8 s t a t i c r e s u l t _ t eval ( const FUNCTION& F , const ELEMENT& e l ) {

9 r e s u l t _ t r e s u l t ;

10 switch ( e l . re fElType ( ) ) {

11 case eth : : base : : RefElType : : TRIA : {

12 eval_ < eth : : base : : RefElType : : TRIA > eva lua to r ;

13 r e s u l t = eva lua to r . compute_ ( F , e l ) ; break ; }

14 case eth : : base : : RefElType : :QUAD: {

15 eval_ < eth : : base : : RefElType : :QUAD > eva lua to r ;

16 r e s u l t = eva lua to r . compute_ ( F , e l ) ; break ; }

17 defaul t :

18 ETH_ASSERT_MSG( false , " Imp lemented f o r TRIA o n l y " ) ;

19 }

20 return ( r e s u l t ) ;

21 }

22 } ; //end struct MySimpleLocalVectorAssembler

This class has a private member class whose compute_ method carries out the actual quadrature:

C++11 code 3.6.169: Evaluator class for MySimpleLocalVectorAssembler ➺ GITLAB

1 // evaluation routine based on the reference element type as template
parameter

2 template < eth : : base : : RefElType RET >

3 st ruct eval_ {

4 typedef r e s u l t _ t re tu rnType_t ;

5

6 template < class FUNCTION, class ELEMENT>

7 s t a t i c re tu rnType_t compute_ ( const FUNCTION& F ,

8 const ELEMENT& e l ) {

9 // fetch the quadrature rule that must be applied to this reference
element type

10 typedef b e t l 2 : : quad : : Quadrature< RET , QUADRULES : : template

11 get< RET >() > quadru le_ t ;

12 // Utility function to find out number of dofs for Quadratic
Lagrangian FE

13 typedef b e t l 2 : : fe : : d e t a i l : : F E B a s i s U t i l i t y

<2 , fe : : FEBasisType : : Lagrange > f e _ u t i l i t y _ t ;

14 // number of test basis function with support on reference element
type

15 s t a t i c const in t numDofs_ = f e _ u t i l i t y _ t : : template
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Accumulate <RET> ( ) ;

16 // Initialize result vector to 0

17 re tu rnType_t r e s u l t ( numDofs_ ) ; r e s u l t . setZero ( ) ;

18 // get element geometry

19 const auto& geom = e l . geometry ( ) ;

20 // get local integration points and weights

21 const auto& x i = quadru le_ t : : getPoints ( ) ;

22 const auto& wi = quadru le_ t : : getWeights ( ) ∗quadru le_ t : : getScale ( ) ;

23 // get metric factor (determinant of Jacobian of ’reference->actual’
element transformation)

24 const auto d e t J i = geom . template integrationElement <

quadru le_ t : : getNumPoints ( ) >( x i ) ;

25 // multiply everything together

26 const auto c o e f f = d e t J i . cwiseProduct ( wi ) ;

27 // for every integration point

28 for ( i n t i =0; i < x i . co ls ( ) ; i ++ ) {

29 // evaluate local shape functions, see Code 3.6.148

30 const Eigen : : Matr ix < double , numDofs_ , 1 > p h i _ i

31 = NPDE : : qfemLocalShape<RET> : : Eval ( x i . co l ( i ) ) ;

32 // evaluate integrand of linear form for each i test basis
functions

33 // multiply by integration weight and add contribution to final
result

34 r e s u l t += c o e f f ( i ) ∗ p h i _ i ∗ F (geom . global ( x i ) . co l ( i ) ) ;

35 }

36 return r e s u l t ;

37 }

38 } ;

Note the use of numerical quadrature based on QuadRuleList and Quadrature objects as explained

in § 3.6.164.

3.6.6 Incorporation of Essential Boundary Conditions

According to the terminology introduced in Section 2.10, we call those boundary conditions essential

that are imposed on the functions in the trial space of variational problems. For second order elliptic

boundary value problems and the variational formulations discussed in Section 2.9, essential boundary

conditions are synonymous to Dirichlet boundary conditions. Now we elaborate how to handle non-zero

(non-homogeneous) Dirichlet boundary conditions within finite element Galerkin discretization.

Recall the variational formulation of a non-homogeneous Dirichlet boundary value problem from Ex. 2.9.2:

u ∈ H1(Ω)

u = g on ∂Ω
:
∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

0(Ω) . (2.9.5)

⇓
− div(κ(x) grad u) = f in Ω , u = g on ∂Ω ,

with (admissible→ § 2.10.6) Dirichlet data g ∈ C0(∂Ω).
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Recall from Section 2.10: Dirichlet b.c. = essential boundary conditions

(built into trial space)

Now we will learn, how discrete trial spaces and algorithms have to be modified in order to accommodate

essential boundary conditions.

(3.6.170) Offset functions for Lagrangian finite element methods

Remember the offset function technique, see (1.3.30) and Section 2.2.3:

(2.9.5) ⇔ u = u0 + w ,
w ∈ H1

0(Ω):
∫

Ω
κ(x) grad w · grad v dx

=
∫

Ω
−κ(x) grad u0 · grad v + f v dx ∀v ∈ H1

0(Ω) ,
(3.6.171)

with offset function u0 ∈ H1(Ω) satisfying u0 = g on ∂Ω

We adapt the offset function policy to finite element Galerkin discretization by generalizing the 1D example

from Rem. 1.5.89 to d = 2, 3:

Remember: we already know finite element subspaces V0,N := S0
p,0(M) ⊂ H1

0(Ω), see § 3.5.14.

Finite element offset functions

Idea (from Rem. 1.5.89 in 1D):

use offset function u0 ∈ VN := S0
p(M)

locally supported near the boundary :

m
use offset function in the span of global basis functions associated with

geometric entities on ∂Ω

supp(u0) ⊂
⋃
{K ∈ M: K ∩ ∂Ω 6= ∅} . (3.6.173)

Fig. 164

Ω

(3.6.173) is a consequence of the

local support property of finite element basis

functions, see Ex. 3.4.16.

✁ Maximal support of u0 on triangular mesh.
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Example 3.6.174 (offset functions for linear Lagrangian FE)

Now we apply this idea to the special case of linear Lagrangian finite elements, which will yield a direct

generalization of the choice of an offset function in 1D presented in Rem. 1.5.89.

For Dirichlet data g ∈ C0(∂Ω) use

u0 = ∑
x∈V(M)∩∂Ω

g(x) bx
N (3.6.175)

bx
N =̂ tent function associated with node x ∈

V(M), cf. Section 3.3.3. (3.6.175) generalizes

(1.5.90) to 2D.

Note that this offset functions vanishes in all interior

vertices: u0(x) = 0 for all x ∈ V(M) ∩Ω.

Fig. 165

Remark 3.6.176 (Approximate Dirichlet boundary conditions)

Be aware that the formula (3.6.175) actually violates the strict trace condition, because in general

u0 6= g on ∂Ω .

Rather, u0 is a piecewise linear interpolant of the Dirichlet data g ∈ C0(∂Ω). Therefore, another approx-

imation comes into play when enforcing Dirichlet boundary conditions by means of piecewise polynomial

offset functions.

(3.6.177) Implementation of non-homogeneous Dirichlet b.c. for linear FE: Elimination

Consider (2.9.5) and assume the following ordering of the nodal basis functions, see Fig. 93

B0 := {b1
N , . . . , bN

N} =̂ nodal basis of S0
1,0(M),

(tent functions associated with interior nodes)

B := B0 ∪ {bN+1
N , . . . , bM

N } =̂ nodal basis of S0
1 (M)

(extra basis functions associated with nodes ∈ ∂Ω).

Here: M = ♯V(M) = dimS0
1 (M), N = ♯{x ∈ V(M), x 6∈ ∂Ω} = dimS0

1,0(M) (no. of

interior nodes)

A0 ∈ RN,N =̂ Galerkin matrix for discrete trial/test space S0
1,0(M),

A ∈ RM,M =̂ Galerkin matrix for discrete trial/test space S0
1 (M).

This gives rise to a block-partitioning of the Galerkin matrix A,

A =

[
A0 A0∂

AT
0∂ A∂∂

]
,

A0∂ :=
(
a(b

j
N, bi

N)
)

i=1,...,N
j=N+1,...,M−N

∈ R
N,M−N ,

A∂∂ :=
(
a(b

j
N, bi

N)
)

i=N+1,...,M−N
j=N+1,...,M−N

∈ R
M−N,M−N .

(3.6.178)
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If u0 ∈ S0
1 (M) is chosen according to (3.6.175), then

u0 ∈ Span{bN+1
N , . . . , bM

N } ⇔ u0 =
M

∑
j=N+1

γj−Nb
j
N ,

with suitable coefficients γj, j = 1, . . . , M− N, defined, for instance, by (3.6.175). We can now plug this

into the variational equation for the “correction” wN ∈ V0,N, which in abstract form reads

wN ∈ V0,N : a(wN, vN) = ℓ(vN)− a(u0, vN) ∀vN ∈ V0,N ,

where we used the abbreviation a for the bilinear form in Eq. (2.9.5) and ℓ for the right hand side linear

form. Thus, we get with wN = ∑
N
j=1 νjb

j
N

N

∑
j=1

νja(b
j
N , bi

N) = ℓ(bi
N)−

M

∑
k=N+1

γk−Na(b
k
N, bi

N) , i = 1, . . . , N ,

which means that the coefficient vector ~ν of the finite element approximation wN ∈ S0
1,0(M) of w ∈

H1
0(Ω) from (3.6.171) solves the linear system of equations

A0~ν = ~ϕ−A0∂~γ . (3.6.179)

➣ Non-homogeneous Dirichlet boundary data are taken into account through a modified right hand

side vector.

Alternative consideration leading to (3.6.179):

➊ First ignore essential boundary conditions and assemble the linear system of equations arising from

the discretization of a on the (larger) FE space S0
1 (M):

[
A0 A0∂

AT
0∂ A∂∂

][
~µ0
~µ∂

]
=

[
~ϕ
~ϕ∂

]
. (3.6.180)

Here, ~µ0 =̂ coefficients for interior basis functions b1
N, . . . , bN

N

~µ∂ =̂ coefficient for basis functions bN+1
N , . . . , bM

N associated with nodes located on ∂Ω.

➋ We realize that the coefficient vector of (3.6.180) is that of a FE approximation of u

~µ∂ known = values of g at boundary nodes: ~µ∂ = ~γ

➌ Moving known quantities in (3.6.180) to the right hand side yields (3.6.179).

Example 3.6.181 (Non-homogeneous Dirichlet boundary conditions in BETL)

BETL follows the approach from § 3.6.177. In order to build A0 and A0∂, one first needs to partition the

dofs (= finite element basis expansion coefficients) into boundary dofs and interior dofs. Based on this

partition an interior finite element space and a boundary finite element space are created.

In BETL, the partitioning and the creation of the interior and boundary finite element space is handled

by the class fe::BoundaryDofMarker. The interior and boundary finite element spaces are of type

fe::ConstrainedFESpace and can be obtained by calling the following member functions of the instantia-

tion markerFull of the class fe::BoundaryDofMarker:
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// create the ConstrainedFESpaces via the BoundaryDofMarker

markerFull.mark( gridFactory );

// extract the ConstrainedFESpaces

const auto& constrained_FESpace_interior =

markerFull.interiorFESpace();

const auto& constrained_FESpace_boundary =

markerFull.boundaryFESpace();

See Code 3.6.183 for more details.

• The class fe::BoundaryDofMarker takes care of the partitioning of the degrees of freedom

of an underlying fe::FESpace.

• The object that provides the actual local→global index map is an instantiation of the class

fe::ConstrainedFESpace. It is a data member of fe::BoundaryDofMarker. Hence, the

purpose of the fe::BoundaryDofMarker can be compared with that of the fe::DofHandler

that is only a tool to create the fe::FESpace, see § 3.6.83.

• The class fe::ConstrainedFESpace has a member object of type fe::FESpace and hence

has access to the dofs managed via the fe::FESpace object. fe::ConstrainedFESpace

makes it possible to work with a subset of the dofs from the fe::FESpace (fulfilling a cer-

tain constraint). It provides almost all the member functions that we have already seen when

discussing the class fe::FESpace, see Code 3.6.85.

The class fe::ConstrainedFESpace provides the following important member functions, similar to those

of fe::FESpace presented in § 3.6.83.

✦ begin() and end() return the constant iterators to the beginning and end of the container of cells, i.e.

entities of codimension zero. This enables foreach loops over fe::ConstrainedFESpaces.

✦ indices(e, intersectionIndex) takes e, a constant reference to an entity of codimension zero (cell)

and an intersectionIndex of the cell e of type int, referring to one of the elements inter-

sections (sides). It returns a standard vector containing the local→global index mappings (w.r.t. the

intersection associated with the intersectionIndex) of all dofs that are associated with the

intersection corresponding to the intersectionIndex.

✦ indices(e) takes e, a constant reference to an entity of codimension zero (cell), and provides a

standard vector filled with its local→global index mappings.

✦ mapToGrid(data) takes a reference to the Eigen column vector data, representing a coefficient

vector for the fe::ConstrainedFESpace. Hence, it needs to have a length that coincides with

the global number of dofs of the fe::ConstrainedFESpace. It returns the Eigen column vector

that represents that coefficient vector in the underlying fe::FESpace fespace_. It has length

fespace_.numDofs(), which corresponds to the global number of dofs contained in fespace_.

✦ numDofs() returns the global number of dofs.

✦ numElements() returns the total number of elements.

First, we discuss the implementation of the fe::ConstrainedFESpace class and afterwards, we give an ex-

ample how the fe::BoundaryDofMarker is used to obtain its member objects of class fe::ConstrainedFESpace.

The template parameter DOF_CONDITIONmust provide a functor that takes a dof and returns a boolean

value. It returns true if the inserted dof is part of the fe::ConstrainedFESpace.
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C++11 code 3.6.182: Implementation of the class fe::ConstrainedFESpace in BETL (partial

listing of Library/fe/constrained_fespace.hpp)

1 template < typename FESPACE_T, typename DOF_CONDITION>

2 class ConstrainedFESpace

3 {

4 public :

5 // Types, essentially inherited from underlying FESpace

6 using fespace_t = FESPACE_T;

7 using f e_bas is_ t = typename fespace_t : : fe_bas is_ t ;

8 using g r i d T r a i t s _ t = typename fespace_t : : g r i d T r a i t s _ t ;

9 using gr idV iewFactory_ t = typename fespace_t : : g r idV iewFactory_ t ;

10 pr ivate :

11 using index_t = Dof : : index_t ;

12 using v e c to r _ t = s td : : vector < index_t >;

13 using s ize_ type = typename g r i d T r a i t s _ t : : s ize_ type ;

14 // the element type

15 using element_t = eth : : g r i d : : E n t i t y < g r i d T r a i t s _ t , 0 >;

16 pr ivate :

17 const fespace_t& fespace_ ;

18 // this is a vector that will be filled by the BoundaryDofMarker.

19 // It will have length of the total number of dofs that are contained

20 // in the underlying fespace_object.

21 // It stores for each dof in the fespace_

22 // the new index in the ConstrainedFESpace at position dof→index().

23 v e c to r _ t permutations_ ;

24 // stores total number of dofs contained in the RestrictedFESpace

25 s ize_ type size_ ;

26 public :

27 /// constructor

28 ConstrainedFESpace( const FESPACE_T& fespace ) :

29 fespace_ ( fespace ) , permutations_ ( ) , size_ ( ) { }

30 /// return reference to the non-constrained fespace

31 const FESPACE_T& feSpace ( ) const { return fespace_ ; }

32 /// return the number of dofs

33 s ize_ type numDofs ( ) const { return size_ ; }

34 /// return the permuatations

35 const v e c to r _ t& permutat ions ( ) const { return permutations_ ; }

36 /// access the fespace’s gridfactory

37 decltype ( fespace_ . g r idFac to r y ( ) ) g r idFac to r y ( ) const { return

fespace_ . g r idFac to r y ( ) ; }

38 /// return the continuity property

39 constexpr s t a t i c bool isCont inuous ( )

40 { return FESPACE_T : : isCont inuous ( ) ; }

41 /// begin of entity collection of codimension zero (cells)

42 i n l in e decltype ( fespace_ . begin ( ) ) begin ( ) const ;

43 /// end of entity collection of codimension zero (cells)

44 i n l in e decltype ( fespace_ . end ( ) ) end ( ) const ;

45 /// get the number of elements contained in the underlying grid

46 i n l in e decltype ( fespace_ . numElements ( ) ) numElements ( ) const ;

47 /// get the local→global index map associated with the cell e

3. Finite Element Methods (FEM), 3.6. Implementation of Finite Element Methods 327



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

48 s td : : vector < IndexPair <s ize_type > > ind ices ( const element_t& e )

const ;

49 /// local→global index maps for the dofs associated with the
intersection

50 /// of the cell e that is associated with the index IntersectionIndex.

51 s td : : vector < IndexPair <s ize_type > > ind ices ( const element_t& e ,

const in t i n t e r s e c t i o n I n d e x ) const ;

52 /// provides the mapping of the coefficient vector data considered

53 /// in the ConstrainedFESpace of length size_ and maps it

54 /// to the corresponding coefficient vector in the underlying FESpace

55 /// of length fespace_.numDofs()

56 template < typename NUMERIC_T >

57 Eigen : : Matr ix <NUMERIC_T , Eigen : : Dynamic ,1 > mapToGrid ( const

Eigen : : Matr ix <NUMERIC_T, Eigen : : Dynamic ,1>& data ) const ;

58

59 /// member functions that are needed by the BoundaryDofMarker

60 /// to set up the ConstrainedFESpace

61 /// set the dimension of the constrained fespace

62 void setS ize ( s ize_ type numDofs ) ;

63 /// return the permutations (this vector has length is managing the
indices of the dofs)

64 v e c to r _ t& permutat ions ( ) { return permutations_ ; }

The following code shows how to set up a fe::BoundaryDofMarker, create the partitioning of the dofs of

the underlying fe::FESpace into boundary dofs and interior dofs and access the fe::ConstrainedFESpaces

containing the local→global index mappings of the boundary dofs and interior dofs, respectively.

C++11 code 3.6.183: partitioning of degrees of freedom ➺ GITLAB

1 // SETUP FE basis and dof handler

2 typedef fe : : FEBasis< fe : : Linear , fe : : FEBasisType : : Lagrange >

fe b a s i s _ t ;

3 // define dofhandler type for the surface grid

4 typedef b e t l 2 : : fe : : DofHandler < febas is_ t ,

fe : : FESContinuity : : Continuous , g r i d F a c to r y _ t > DH_t ;

5 // instantiate dofhandler for grid, distribute the dofs

6 dh . d i s t r i b u t e D o f s ( g r idFac to r y ) ;

7 DH_t dh ; dh . d i s t r i b u t e D o f s ( g r idFac to r y ) ;

8

9 fe : : BoundaryDofMarker< DH_t : : fespace_t > markerFu l l ( dh . fespace ( ) ) ;

10 // this method call partitions the dofs into boundary dofs and interior

11 // dofs. It also creates the respective ConstrainedFESpaces

12 markerFu l l . mark ( g r idFac to r y ) ;

13 // extract the constrained space corresponding to the interior dofs

14 // of the underlying fespace

15 const auto& i n t e r i o r S p a c e F u l l = markerFu l l . interiorFESpace ( ) ;

16

17 // extract a finite element space containing the boundary dofs

18 // boundary of the underlying fespace

19 const auto& boundarySpaceFull = markerFu l l . boundaryFESpace ( ) ;
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20 cout << " # ( d o f s on boundary ) : " << contra inedSpaceFul l . numDofs ( ) <<

" , # ( d o f s i n t e r i o r ) : " << i n t e r i o r S p a c e F u l l . numDofs ( ) <<endl ;

The following code shows how to use the fe::ConstrainedFESpaces created previously in Code 3.6.183

to obtain the linear system as given in (3.6.179). A detailed documentation can be found right after the

code listing.

C++11 code 3.6.184: Modification of Galerkin system according to § 3.6.177 ➺ GITLAB

1 typedef double numeric_t ;

2 typedef Eigen : : SparseMatr ix < numeric_t > sparseMatr ix_ t ;

3 // define element matrix assembler

4 typedef NPDE : : Ana ly t i cS t i f fnessLoca lAssemb le r

aSt i f fnessMatAssembler_t ;

5 // define the associated bilinear form

6 typedef NPDE : : Galerk inMatr ixAssembler < aSt i f fnessMatAssembler_t >

7 Galerk inAssembler_t ;

8

9 // compute bilinear form on interior space:

10 Galerk inAssembler_t A ;

11 const auto Ah = A. assembleMatrix ( inter iorSpaceFull ,

inter iorSpaceFull , 1.0 ) ;

12 // Impose non-homogeneous Dirichlet boundary conditions:

13 // define functor providing Dirichlet data g

14 const auto d i rFunc to r = [ ] ( const coord_t& x ) {

15 Eigen : : Matr ix <numeric_t , 1 , 1> res ;

16 res << x ( 0 ) ∗x ( 1 ) ; return res ; } ;

17 // create AnalyticalGridFunction object

18 const auto dirFunc = fem : : makeAnalyticalGridFunction ( g r idFac tory ,

d i rFunc to r ) ;

19 // interpolate the function into the boundary dofs

20 const auto uD = DofInterpolator ( ) ( dirFunc , boundarySpaceFull ) ;

21 // compute the bilinear form for right-hand side; no contribution

22 // due to a source function f here!

23 Galerk inAssembler_t A_rhs ;

24 const auto A_rhs_h = A_rhs . assembleMatrix ( inter iorSpaceFull ,

boundarySpaceFull , 1.0 ) ;

25 // use it to get the right-hand side vector for the linear system

26 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , 1 > v e c to r _ t ;

27 const v e c to r _ t rhs = − A_rhs_h ∗ uD;

Notice that the global assembly in BETL (as NPDE::GalerkinMatrixAssembler (→ Code 3.6.95) and

NPDE::LoadVectorAssembler (→ Code 3.6.101)) construct the global matrix and vector, respectively, in

the FE spaces received as arguments. In other words:

• Line 7: The global matrix assembly class GalerkinMatrixAssembler is set up for the bilinear form

(u, v) 7→
∫

Ω
grad u · grad v dx.

• Line 11: A0 is constructed using interiorSpaceFull as trial and test space.

• Line 24: A0∂ is computed using interiorSpaceFull and boundarySpaceFull as test and trial
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spaces, respectively.

• Line 27: The right hand side is modified as in (3.6.179).

Some additional comments on Code 3.6.184:

Line 18 constructs a fem::AnalyticalGridFunction given the Dirichlet data function dirFunc.

An object of type fem::AnalyticalGridFunction provides the necessary interface that is needed from sev-

eral BETL-routines working with so-called grid functions. They are named grid functions, since they pro-

vide an evaluation on the grid, i.e. an evaluation f(q,e), where q represents a local quadrature point and

e corresponds to a cell. (In addition to a GRID_FACTORY object, the class fem::AnalyticalGridFunction

requires an object of type FUNCTION_FUNCTOR as argument. In this case, the method

fem::makeAnalyticalGridFunction acts as a wrapper in order to receive a lambda function instead).

Line 20: Finally we get a vector with the values of the Dirichlet data function in the boundary dofs.

If the source function f is non-zero (for instance constant 1), the following code would have to be included

before ??, Code 3.6.184.

C++11 code 3.6.185: Right hand side assembly on interior nodes using BETL ➺ GITLAB

1 // Define a function on the domain

2 using coord_t = typename g r i d T r a i t s _ t : : template f i xedS izeMa t r i x_ t <

g r i d T r a i t s _ t : : dimWorld ,1 >;

3 const auto f = [ ] ( const coord_t& x ) { double res = x ( 0 ) ∗ x ( 1 ) ;

4 return res ; } ;

5

6 // define local element vector assembler

7 typedef NPDE : : LocalVectorAssembler trapLocFunAssembler_t ;

8 // define the associated linear form

9 typedef NPDE : : LoadVectorAssembler < trapLocFunAssembler_t >

load_vector_assembler_t ;

10 // define the associated linear form

11 load_vector_assembler_t l ;

12 // - compute the linear form with given function F

13 const auto f_vec = l . assembleRhs ( inter iorSpaceFull , f ) ;

In addition Line 27 has to be replaced with

// -use it to get the problem right-hand side

const vector_t rhs = f_vec - A_rhs_h * uD;

Example 3.6.186 (Non-homogeneous Dirichlet boundary conditions on parts of the boundary

in BETL)
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In this example we consider a simple planar trian-

gular mesh and the physical tags for its boundary

edges. The non-homogeneous Dirichlet b.c. are im-

posed on the right side of the square with tag 4.

Fig. 166
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Again, we follow the approach from § 3.6.177. But this time we consider non-homogeneous Dirichlet

boundary conditions only at a part of the boundary , denoted by ΓD. It is characterized by a specific

physical tag for edges, i.e. for entities of codimension 1. For simplicity, we assume for this example that

tag = 4 (see Fig. 166). On all the other parts of the boundary ∂Ω \ ΓD, we impose homogeneous

Neumann boundary conditions. Hence, the corresponding variational problem has the same form as

the variational problem described in § 3.6.177. The only difference lies in the definition of the spaces.

The interior finite element space is not only spanned by functions associated with interior nodes, it also

contains all the nodal basis functions that are associated with nodes in ∂Ω \ ΓD. The inactive finite

element space is spanned by the nodal basis functions associated with ΓD .

In BETL, the implementation of the problem can done accomplished analogously to Ex. 3.6.181. We

simply exchange the type of marker that we are using. We use the class fe::IntersectionsDofMarker

instead of fe::BoundaryDofMarker. The marking and the extraction of the fe::ConstrainedFESpaces

works in a similar way as in Ex. 3.6.181.

The interior and inactive finite element spaces are of type fe::ConstrainedFESpace (see Code 3.6.182)

and can be obtained by calling the following member functions of the instantiation intersection_marker

of the class fe::IntersectionsDofMarker:

// create the ConstrainedFESpaces via the IntersectionsDofMarker

intersection_marker.mark( gridFactory );

// extract the ConstrainedFESpaces

const auto& constrained_FESpace_interior =

intersection_marker.interiorFESpace();

const auto& constrained_FESpace_inactive =

intersection_marker.inactiveFESpace();

See Code 3.6.187 for more details.

C++11 code 3.6.187: partitioning of degrees of freedom ➺ GITLAB

1 // SETUP FE basis and dof handler

2 typedef fe : : FEBasis< fe : : Linear , fe : : FEBasisType : : Lagrange > fe b a s i s _ t ;

3 // define dofhandler type for the surface grid

4 typedef b e t l 2 : : fe : : DofHandler < febas is_ t ,

fe : : FESContinuity : : Continuous , g r idFac to r y_ t > DH_t ;

5 // instantiate and initialized dofhandler for the current mesh
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6 DH_t dh ; dh . distr ibuteDofs ( g r idFac to r y ) ;

7

8 // retrieve boundary entities carrying tag 4 → Code 3.6.20

9 const auto& taggedIn t = gr idMarker . template r e t r i e v e E n t i t i e s <1 >(4) ;

10 // instantiate the marker class

11 fe : : IntersectionsDofMarker<DH_t : : fespace_t > in te r sec t ion_marke r (

dh . fespace ( ) ) ;

12 // partition the dofs of the underlying FESspace into

13 // dofs that are contained in taggedInt and all other dofs

14 i n te r sec t ion_marke r . mark ( taggedIn t ) ;

15 // extract the interior space,

16 // i.e. all dofs except the ones that are associated with ΓD

17 const auto& in te r io rSpace = in te r sec t ion_marke r . interiorFESpace ( ) ;

18 // extract the ConstrainedFESpace that manages the dofs associated with

19 // ΓD, i.e. with the entities tagged with physical tag 4.

20 const auto& inact iveSpace = in te r sec t ion_marke r . inactiveFESpace ( ) ;

The remainder of the code is the same as in Code 3.6.184, just replace interiorSpaceFull by interi-

orSpace and boundarySpaceFull by inactiveSpace.

(3.6.188) Implementation of non-homogeneous Dirichlet b.c. for linear FE: Augmentation

We use notations from § 3.6.177 and describe an alternative strategy for implementing (3.6.179).

Observe that the solution ~ν of (3.6.179) can be obtained as one component of the solution of the block-

partitioned linear system

[
A0 A0∂

0 I

][
~ν
~ν∂

]
=

[
~ϕ
~γ

]
. (3.6.189)

The top block row of the coefficient matrix of (3.6.189) agrees with that of the Galerkin matrix A from

(3.6.178) for the finite element space S0
1 (M) (without dropping basis functions on the boundary).

This leads to the following approach:

➊ Assemble the full Galerkin matrix A ∈ RM,M belonging to the (larger) FE space S0
1 (M).

➋ Set its left lower (M− N)× N-block to zero: in MATLAB notation A(N + 1 : M, 1 : N) = 0.

➌ Replace its right lower (M− N)× (M− N)-block on the diagonal with the identity matrix.

➍ Set the last M− N components of the right hand side vector to the given values in the nodes on

the boundary.

➎ Solve the resulting modified linear system: the solution provides the expansion coefficient vector~µ
of the Galerkin finite element solution w.r.t. the nodal basis.

?! Review question(s) 3.6.190. (Finte element algorithms and implementation)
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1. In BETL you have to deal with an exotic finite element scheme which assigns two local shape

functions to each edge and two to each vertex. Which is the type of the geometric entity supporting

the local shape function bi
K, i = 1, . . . , Q, Q =̂ the total number of local shape functions.

2. For the finite element scheme from Item 1, what is the dimension of the finite element space on a

triangular space with ♯M cells, ♯E(M) edges, and ♯V(M) vertices? Give a rule for telling the

type of geometric entity associated with components of the vector of basis expansion coefficients.

3. Outline a way to create (in BETL) a vector of pairs of pointers to POINT objects with each pair

corresponding to an edge of a 2D hybrid mesh.

4. Based on Def. 3.6.154 determine the minimal order of a quadrature rule on the unit square that is

exact for all polynomials in Pp(R2).

5. Explain, why endowing edges of the mesh with an orientation, which means giving them a well-

defined direction, is important for the implementation of cubic Lagrangian finite elements.

6. Outline the implementation of a function in BETL that takes a vector~µ of expansion coefficients of

a finite element function uN ∈ S0
2 (M) (M a triangular mesh), a suitable FESpace argument, and

a coordinate vector p ∈ R2 and returns the value uN(p).

3.7 Parametric Finite Elements

Already in Section 3.6.5 we exploited (affine) transformation (→ Def. 3.6.136) to a reference cell in order

to obtain numerical quadrature formulas (3.6.132) for all cells of a mesh in one fell swoop. In this section

we will witness the full power of this idea of using transformations to reference cells. It will enable us

to extend the range of Lagrangian finite element spaces significantly, and will also be a key element in

algorithm design (The entire BETL finite element library relies on the construction of finite elements by

transformation).

We need to enhance the flexibility of finite element spaces. For instance, the construction of Lagrangian

finite element spaces done in Section 3.5 cannot cope with the following situation:

Fig. 167

? ? ?
?

???
?

✁ 2D hybrid meshM with curvilinear triangles and

general quadrilaterals

How to build S0
1 (M)?

3.7.1 Affine equivalence

Recall Lemma 3.6.137: affine transformation of triangles (3.6.138)

All cells of a triangular mesh are affine images of “unit triangle” K̂
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“Unit triangle”: K̂ =

〈[
0
0

]
,

[
1
0

]
,

[
0
1

]〉

For K = convex
{

a1, a2, a3
}

:

FK =

[
a2

1 − a1
1 a3

1 − a1
1

a2
2 − a1

2 a3
2 − a1

2

]
, τK = a1 .

Fig. 168 1

1

K

K̂

ΦK(x̂) = FK x̂ + τK

x̂1

x̂2

a1

a2

a3

➊ ➋

➌

(3.7.1) Pullback of functions

In a natural way, a transformation of domains induces a transformation of the functions defined on them:

Definition 3.7.2. Pullback

Given domains Ω, Ω̂ ⊂ Rd and a bijective mapping Φ : Ω̂ 7→ Ω, the pullback Φ
∗u : Ω̂ 7→ R of a

function u : Ω 7→ R is a function on Ω̂ defined by

(Φ∗u)(x̂) := u(Φ(x̂)) , x̂ ∈ Ω̂ .

✦ Implicitly, we used the pullback of integrands when defining quadrature rules through transformation,

see (3.6.150).

✦ Obviously, the pullback Φ
∗ induces a linear mapping between spaces of functions on Ω and Ω̂,

respectively.

Fig. 169

Ω̂

Ω

Φ

Φ∗

Φ
∗u defined here u defined here

In the context of numerical quadrature, when wondering whether transformation preserved the order of a

quadrature rule, we made the following observation, cf. (3.6.157):

Lemma 3.7.3. Preservation of polynomials under affine pullback

If Φ : R
d 7→ R

d is an affine (linear) transformation (→ Def. 3.6.136), then

Φ
∗(Pp(R

d)) = Pp(R
d) and Φ

∗(Qp(R
d)) = Qp(R

d) .

In fact, Lemma 3.6.137 reveals another reason for the preference for polynomials in building discrete

Galerkin spaces.
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Proof. (of Lemma 3.6.137) Since the pullback is linear, we only need to study its action on the (monomial)

basis x 7→ xα, α ∈ Nd
0 of Pp(Rd), see Def. 3.4.8 and the explanations on multi-index notation (3.4.9).

Then resort to induction w.r.t. degree p.

Φ
∗
K(x

α) = Φ
∗
K(x1) ·Φ∗K( xα′

︸︷︷︸
∈Pp−1(Rd)

) = (
d

∑
l=1

(F)1l x̂l + τ1)

︸ ︷︷ ︸
∈P1(Rd)

· Φ
∗
K(x

α′)︸ ︷︷ ︸
∈Pp−1(Rd)

∈ Pp(R
d) ,

with α′ := (α1− 1, α2, . . . , αd), where we assumed α1 > 0. Here, we have used the induction hypothesis

to conclude Φ
∗
K(x

α′) ∈ Pp−1(R
d).

✷

(3.7.4) Pullback of local shape functions for Lagrangian finite elements

A simple observation:

Consider S0
1 (M), triangle K ∈ M, unit triangle K̂, affine mapping ΦK : K̂ 7→ K

• b1
K, b2

K, b3
K (standard) local shape functions on K,

• b̂1, b̂2, b̂3 (standard) local shape functions on K̂,
→ Ex. 3.4.20

b̂i = Φ
∗
Kbi

K ⇔ b̂i(x̂) = bi
K(x) , x = ΦK(x̂) (3.7.5)

Of course, we assume that ΦK respects the local numbering of the vertices of K̂ and K: ΦK(â
i) = ai,

i = 1, 2, 3.

The proof of (3.7.5) is straightforward: both Φ
∗
Kbi

K (by Lemma 3.7.3) and b̂i are (affine) linear functions

that attain the same values at the vertices of K̂. Hence, they have to agree.

Note: (3.7.5) holds true for all simplicial Lagrangian finite element spaces

Proof. (of (3.7.5)) First, recall the definition of global shape functions and also local shape functions for

S0
p(M), p ∈ N, by means of the conditions (3.5.4) at interpolation nodes, see Ex. 3.5.3 for p = 2.

Note: we already used the definition of basis functions through basis functions on the “reference cell” [0, 1]
and affine pullback in 1D, see § 1.5.45.

Now write pi
K =̂ (local) interpolation nodes on triangle K,

p̂i =̂ (local) interpolation nodes on unit triangle K̂.

Observe: Assuming a matching numbering pi
K = ΦK(p̂i). where ΦK : K̂ 7→ K is the unique affine

transformation mapping K̂ onto K, see (3.6.138).

This is clear for p = 2, because affine transfor-

mations take midpoints of edges to midpoints of

edges. The same applies to the interpolation nodes

for higher degree Lagrangian finite elements defined

in Ex. 3.5.7.

Fig. 170 1

1

K

K̂

ΦK

x̂1

x̂2

a1

a2

a3

3. Finite Element Methods (FEM), 3.7. Parametric Finite Elements 335



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

For Lagrangian finite element spaces the local shape functions bi
K ∈ Pp(Rd), b̂i ∈ Pp(Rd), i = 1, . . . , Q,

on K and K̂, respectively, are uniquely defined by the interpolation conditions

bi
K(p

j
K) = δij , b̂i(p̂ j) = δij . (3.7.6)

Together with pi
K = ΦK(p̂i) this shows that Φ

∗
Kbi

K satisfies the interpolation conditions (3.7.6) on K̂ and,

thus, has to agree with b̂i.
✷

The property (3.7.5) paves the way for profound algorithmic simplifications in finite element codes. Thus it

is very desirable that global basis functions of finite element spaces comply with (3.7.5).

Terminology: Finite element spaces satisfying (3.7.5) with a affine mapping (→ Def. 3.6.136) ΦK : K̂ → K
for every K ∈ M are called affine equivalent.

Remark 3.7.7 (Evaluation of local shape functions at quadrature points)

Affine equivalence can be exploited to achieve substantial reduction in computational effort for local com-

putations: We consider Lagrangian finite element spaces on a simplicial meshM.

Recall from Section 3.6.5 the definition (3.6.151) of local quadrature formulas via transformation from a

“unit simplex” (reference cell/element).

In particular the quadrature nodes on K are given by ζK
l = ΦK(ζ̂ l). Hence, the values of local shape func-

tions at quadrature points can be obtained by evaluating the local shape functions on K̂ in the quadrature

points on K̂:

bi
K(ζ

K
l )

Def. 3.7.2
= Φ

∗
K(b

i
K)(ζ̂

l
)

(3.7.5)
= b̂i(ζ̂

l
) independent of K ! . (3.7.8)

This can be exploited for the fast numerical quadrature of expressions depending on local shape functions

only:

∫

K

F(bi
K(x), b

j
K(x))dx ≈ |K|

|K̂|
P

∑
l=1

ω̂lF(b̂
i(ζ̂ l), b̂j(ζ̂ l)) , (3.7.9)

for any integrable function F : R2 7→ R.

➣ Precompute b̂i(ζ l), i = 1, . . . , Q, l = 1, . . . , P, and store the values in a table!

Recall: (3.7.9) was applied in Code 3.6.169, with evaluation of local shape functions on K̂ farmed out to

the function qfemLocShape::Eval listed as Code 3.6.148.

Remark 3.7.10 (Barycentric representation of local shape functions)
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We consider Lagrangian finite element spaces on a simplicial meshM in 2D, standard reference triangle

used.

In (3.5.6) the formulas for local shape functions for S0
2 (M) (d = 2) were given in terms of barycentric coordinate functions

λi, i = 1, 2, 3. Is this coincidence? NO! Does

bi
K = ∑

α∈N3
0 ,|α|≤p

κα λα1
1 λα2

2 λα3
3 , κα ∈ R , (3.6.116)

hold for any (simplicial) Lagrangian finite element space?

YES , because
bi

K(x)
(3.7.5)
= (Φ−1

K )∗
(

x̂ 7→ b̂i(x̂1, x̂2)
)

= b̂i((Φ−1
K )∗(λ̂2)(x), (Φ

−1
K )∗(λ̂3)(x)) = b̂i(λ2(x), λ3(x)) ,

where λ2(x̂) = x̂1, λ3(x̂) = x̂2, λ1(x̂) = 1− x̂1 − x̂2 =̂ barycentric coordinate functions on K̂,

see Ex. 3.4.20,

λi =̂ barycentric coordinate functions on triangle K, see Fig. 99,

ΦK =̂ affine transformation (→ Def. 3.6.136), ΦK(K̂) = K, see (3.6.138).

The above formula is a consequence of the trivial fact that for an affine transformation ΦK : K̂ → K
between simplices (triangles or tetrahedra) the corresponding pullback (→ Def. 3.7.2) maps barycentric

coordinate functions onto each other:

Φ
∗
K(λk) = λ̂k , k = 1, . . . , d + 1 . (3.7.11)

➣ By the chain rule:

grad bi
K(x) =

∂b̂i

∂x̂1
(x̂) grad λ2 +

∂b̂i

∂x̂2
(x̂) grad λ3

=
(
grad λ2 grad λ3

)
gradx̂ b̂i(x̂) , x = ΦK(x̂) .

(3.7.12)

This formula is convenient, because grad λi ≡ const, see (3.6.119).

This facilitates the computation of element (stiffness) matrices for 2nd-order elliptic problems in variational

form with scalar valued coefficient α = α(x): when using a quadrature formula according to (3.6.151)

∫

K

(α(x) grad bi
K) · grad b

j
K dx

≈ |K|
|K̂|

PK

∑
l=1

ω̂lα(ζ l)







∂b̂i

∂x̂1
(ζ̂ l)

∂b̂i

∂x̂2
(ζ̂ l)




⊤
(

grad λ2 · grad λ2 grad λ2 · grad λ3

grad λ2 · grad λ3 grad λ3 · grad λ3

)



∂b̂j

∂x̂1
(ζ̂ l)

∂b̂j

∂x̂2
(ζ̂ l)







This is attractive from an implementation point of view, because

✦ the values
∂b̂i

∂x̂1
(ζ̂ l) can be precomputed ,

✦ simple expressions for grad λi · grad λj are available, see Section 3.3.5.
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More on the use of these transformation techniques ➣ Section 3.7.3

Example 3.7.13 (BETL style representation of local shape functions for Lagrangian finite

elements)

BETL has built-in classes for (low order) Lagrangian finite elements. They are defined in

Library/fe/fe_lagrange_basis_functions.hpp for each reference element type ➺ BETL.

The interface to these pre-defined finite elements is betl2::fe::FEBasis, see § 3.6.75 for a first discussion.

However a betl2::fe::FEBasis-compatible object has to provide facilities beyond what was discussed in

§ 3.6.75, namely two types

typename FEBASIS:: template basisFunction_t<RET>;

typename FEBASIS:: template diffBasisFunction_t<RET>;

Both take an enum eth::base::RefElType as template argument and have to match the following

specification:

// geometry type of element for which FEBasis was designed

s t a t i c const eth::base::RefElType refElType = ;

// number of local shape functions

s t a t i c const i n t numFunctions = ;

// Number of vector components of return value

s t a t i c const i n t functionDim = ;

// Dimension of ambient space for reference element

s t a t i c const i n t localDim = ;

using matrix_t = ; // fixed size EIGEN matrix

// Evaluation for multiple points passed a columns of a matrix

template < i n t NUM_POINTS >

s t a t i c matrix_t< numFunctions, NUM_POINTS*functionDim >

Eval( const matrix_t< localDim, NUM_POINTS > & );

The type basisFunction_t does the evaluation for the local shape functions themselves, the Eval()

method of diffBasisFunction_t returns the gradients of the local shape functions (for fe::FEBasisType::Lagrange

Eval() takes a matrix with point coordinates with respect to the reference element in its columns. The

number of columns has to be passed as a template parameter. It returns a matrix

• with a rows for each individual local shape functions,

• with the result (vectors) of the evaluations in the passed points horizontally concatenated in each

row.

The following code snipped shows how to request values and gradients of the local shape functions for

S0
2 (M) in a point on the BETL reference triangle.

C++11 code 3.7.14: Fundamental BETL types related to Lagrangian finite elements ➺ GITLAB

1 // definition of some static enumerators

2 s t a t i c const b e t l 2 : : fe : : ApproxOrder order = fe : : Quadrat ic ;

3 s t a t i c const b e t l 2 : : fe : : FEBasisType type =

fe : : FEBasisType : : Lagrange ;

4 s t a t i c const eth : : base : : RefElType RET_TRIA =
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eth : : base : : RefElType : : TRIA ;

5 s t a t i c const eth : : base : : RefElType RET_QUAD=

eth : : base : : RefElType : :QUAD;

6 // typedefs for local basis functions and its gradient for reference
element type TRIA

7 using f e_bas is_ t = typename fe : : FEBasis< order , type >;

8 using l o c _ f u n _ t r i a _ t = typename f e_bas is_ t : : template

bas isFunc t ion_t <RET_TRIA>;

9 using g r a d _ lo c _ fu n _ t r i a _ t = typename f e_bas is_ t : : template

d i f fB a s i s F u n c t i o n _ t <RET_TRIA>;

10 // typedefs for local basis functions and its gradient for reference
element type QUAD

11 using loc_fun_quad_t = typename f e_bas is_ t : : template

bas isFunc t ion_t <RET_QUAD>;

12 using grad_loc_fun_quad_t = typename f e_bas is_ t : : template

d i f fB a s i s F u n c t i o n _ t <RET_QUAD>;

13

14 // instantiation of local basis functions for quadratic Lagrangian

15 // FE for the reference element type TRIA

16 l o c _ f u n _ t r i a _ t local_FE_tr ia ;

17 // instantiation of the gradient of the local basis functions for

18 // quadratic Lagrangian FE for the reference element type TRIA

19 g r a d _ lo c _ fu n _ t r i a _ t local_FE_grad_tria ;

20 // local point x = x̂= (1, 1)⊤ for evaluation of local basis functions

21 g r a d _ lo c _ fu n _ t r i a _ t : : mat r ix_ t <2,1> x ;

22 x << 1 ,1 ;

23 cout << " # ( l s f ) f o r t y p e " << RET_TRIA << " = " <<

g r a d _ lo c _ fu n _ t r i a _ t : : numFunctions << endl ;

24 cout << " l s f ( [ " << x . transpose ( ) << " ] ^ T ) = " << local_FE_tr ia . Eval (

x ) << endl ;

25 cout << " g rad l s f ( [ " << x . transpose ( ) << " ] ^ T = \ n " <<

local_FE_grad_tria . Eval ( x ) << endl ;

26

27 // instantiation of local basis functions for quadratic Lagrangian FES

28 // for the reference element type QUAD

29 loc_fun_quad_t local_FE_quad ;

30 // instantiation of the gradient of the local basis functions for

31 // quadratic Lagrangian FES for the reference element type QUAD

32 grad_loc_fun_quad_t local_FE_grad_quad ;

33 cout << " # ( l s f ) f o r t y p e " << RET_QUAD << " = " <<

grad_loc_fun_quad_t : : numFunctions << endl ;

34 cout << " l s f ( [ " << x . transpose ( ) << " ] ^ T ) = " << local_FE_quad . Eval (

x ) << endl ;

35 cout << " g rad l s f ( [ " << x . transpose ( ) << " ] ^ T ) = %\n " <<

local_FE_grad_quad . Eval ( x ) << endl ;

The selector type type = fe:FEBasisType::Lagrange corresponds to Lagrangian finite elements. Here

order is the polynomials degree. Lagrangian finite elements are available in BETL up to third order, i.e.

fe::Constant, fe::Linear, fe::Quadratic, fe::Cubic.

As explained above an object of type fe_basis_t::template basisFunction_t<RET>or fe_basis_t::template
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diffBasisFunction_t<RET> provides the following member function

template < i n t NUM_POINTS >

s t a t i c matrix_t< numFunctions, NUM_POINTS >

Eval(const matrix_t< 2, NUM_POINTS >& local)

It stores the values of all local shape functions at the point x̂ (passed in local) in the reference element

in a static matrix of type matrix_t<numFunctions, functionDim*NUM_POINTS>, which is a

double valued, dense Eigen matrix of fixed size (numFunctions,functionDim*NUM_POINTS),

where numFunctions refers to the number of local shape functions and is a static member of the class.

Also functionDim is a static method of the class that tells the dimension of the basis functions’ return

value, that is, 1 for scalar-valued finite elements, d for vector valued.

Running the executable corresponding to the mainfile listed in Code 3.7.14 provides the following output:

1 Number o f l o c a l shape fu n c t i o n s f o r element type TRIA i s 6

2 Eva lua t ion of the l o c a l shape fu n c t i o n s i n x = [1 1 ]^T gives

3 0 0 1 −0 0 −0

4 Eva lua t ion of the g rad ien ts o f l o c a l shape fu n c t i o n s i n x = [1 1 ]^T gives

5 1 −1 0 −0 4 −4

6 0 1 3 0 −4 −0

7 Number o f l o c a l shape fu n c t i o n s f o r element type QUAD i s 9

8 Eva lua t ion of the l o c a l shape fu n c t i o n s i n x = [1 1 ]^T gives

9 0 0 1 0 −0 −0 −0 −0 0

10 Eva lua t ion of the g rad ien ts o f l o c a l shape fu n c t i o n s i n x = [1 1 ]^T gives

11 0 0 3 1 −0 −0 −4 −0 0

12 0 1 3 0 −0 −4 −0 −0 0

3.7.2 Example: Quadrilaterial Lagrangian finite elements

So far, see Section 3.4.3 and Eq. (3.4.18), we have adopted the perspective

global shape functions
Restriction to element−−−−−−−−−−−→ local shape functions

Now we reverse this construction

local shape functions
“glueing”−−−−→ global shape functions (3.7.15)

In fact, when building the global basis functions for quadratic Lagrangian finite elements we already

proceeded this way, see Ex. 3.5.3. Fig. 129 lucidly conveys what is meant by “glueing”.

Be aware that the possibility to achieve a continuous global basis function by glueing together local shape

function on adjacent cells, entails a judicious choice of the local shape functions.

This section will demonstrate how the policy (3.7.15) together with the formula (3.7.5) will enable us to

extend Lagrangian finite element beyond the meshes discussed in Section 3.5.
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Fig. 171

✁ quadrilateral meshM in 2D

What is “S0
1 (M)”?

So far we know Lagrangian finite elements only on

rectangles, see Section 3.5.2, for which the local

spaces are given by Qp(K) (→ Def. 3.5.12).

(3.7.16) Bilinear transformations

Clear: If K is a rectangle, K̂ the unit square, then there is a unique affine transformation ΦK (→ Def. 3.6.136)

with K = ΦK(K̂).

In this case (3.7.5) holds for the local shape functions of bilinear Lagrangian finite elements from Ex. 3.5.8

(and all tensor product Lagrangian finite elements introduced in Section 3.5.2)

Princple of constructing of parametric finite elements

Idea:
✦ local shape functions

“glueing”−−−−→ global shape functions

✦ Build local shape functions by “inverse pullback”

bi
K = (Φ−1

K )∗ b̂i , (3.7.18)

where

{
b̂i
}Q

i=1
=̂ set of shape functions on reference element K̂.

➣ What is ΦK for a general quadrilateral ?

Fig. 172

Affine
mapping

x̂1

x̂2

â1 â2

â3â4

ΦK

unit square parallelogram

Affine transformations fail to produce gen-

eral quadrilaterals from a square. They

only give parallelograms.

It takes bilinear transformations to obtain a

generic quadrilateral from the unit square.

Fig. 173

mapping
bilinear

x̂1

x̂2

â1
â2

â3â4

a1

a2

a3

a4

ΦK

unit square quadrilateral

Bilinear transformation of unit square to quadrilateral with vertices ai, i = 1, 2, 3, 4:

ΦK(x̂) = (1− x̂1)(1− x̂2) a1 + x̂1(1− x̂2) a2 + x̂1x̂2 a3 + (1− x̂1)x̂2 a4 . (3.7.19)

⇓
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ΦK(x̂) =

[
α1 + β1 x̂1 + γ1 x̂2 + δ1x̂1 x̂2

α2 + β2 x̂1 + γ2 x̂2 + δ2x̂1 x̂2

]
, αi, βi, γi, δi ∈ R .

The mapping property ΦK(â
i) = ai is evident. In order to see ΦK(K̂) = K (K̂ =̂ unit square) for (3.7.19),

verify that ΦK maps all parallels to the coordinate axes to straight lines.

Moreover, a simple computation establishes:

If K̂ is the unit square, ΦK : K̂ 7→ K a bilinear transformation, and b̂i the bilinear local shape functions

(3.5.10) on K̂,

then (Φ−1
K )∗ b̂i are linear on the edges of K.

(3.7.20) Glueing of local shape functions on quadrilateral meshes

The last observation in § 3.7.16 makes possible the “glueing” of local shape functions obtained by inverse

pullback from a nodal basis of Q1(K̂) on the unit square K̂.

Explanation:

Fig. 174

K

K̃

e

x

i

j

y

➊ Pick a vertex x ∈ V(M) and consider an ad-

jacent quadrilateral K, on which there is a local

shape function bi
K such that bi

K(x) = 1 and bi
K

vanishes on all other vertices of K. This local

shape function is obtained by inverse pullback

of the b̂i associated with Φ
−1
K (x).

➋ The same construction can be carried out for

another quadrilateral K̃ that shares the vertex

x and an edge e with K. On that quadrilateral

we find the local shape function b
j

K̃

➌ Both bi
K |e and b

j

K̃ |e are linear and attain the same values, that is 0 and 1 at the endpoints x and y

of e, respectively.

bi
K |e = b

j

K̃ |e

Continuity of global shape function (defined by interpolation conditions at nodes)

Remark 3.7.21 (Non-polynomial “bilinear” local shape functions)

Note that the components of Φ
−1
K are not polynomial even if ΦK is a bilinear transformation (3.7.19).
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The local shape functions bi
K defined by (3.7.18), where ΦK is a bilinear transformation and b̂i are

the bilinear local shape functions on the unit square, are not polynomial in general.

Visualization of local shape functions on trapezoidal cell K := convex
{[

0
0

]
,
[

3
0

]
,
[

2
1

]
,
[

1
1

]}
:

3.7.3 Transformation techniques

In the previous section we already generalized the notion of affine equivalent finite element spaces from

Section 3.7.1.✞
✝

☎
✆“Bilinear” Lagrangian finite elements = a specimen of parametric finite elements

Definition 3.7.22. Parametric finite elements

A finite element space on a mesh M is called parametric, if there exists a reference element K̂,

Q ∈ N, and functions b̂i ∈ C0(K̂), i = 1, . . . , Q, such that

∀K ∈ M: ∃ bijection ΦK : K̂ 7→ K: b̂i = Φ
∗
Kbi

K, i = 1, . . . , Q ,

where {b1
K, . . . , bQ

K } = set of local shape functions on K.

This definition takes the possibility of “glueing” for granted: the concept of a local shape function, see

(3.4.18), implies the existence of a global shape function with the right continuity properties (C0-continuity

for H1(Ω)-conforming finite element spaces).

How to implement parametric finite elements ?

We consider a generic elliptic 2nd-order variational Dirichlet problem

u ∈ H1(Ω) ,

u = g on ∂Ω
:
∫

Ω

(α(x) grad u(x)) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) . (2.4.5)
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(3.7.23) Local computations for parametric finite elements

We focus on the computation of element (stiffness) matrices and element (load) vectors (→ Def. 3.6.69),

a key step in the set-up of the Galerkin matrix and right hand side vector.

Both challenge and opportunities arise from the implicit definition of the local local shape functions via

pullback (→ Def. 3.7.2)

bi
K = (Φ−1

K )∗ b̂i ⇔ b̂i = Φ
∗
Kbi

K , i = 1, . . . , Q .

Known: transformation ΦK : K̂ 7→ K reference element K̂

Idea: use transformation to K̂ to compute element stiffness matrix AK, and

element load vector ~ϕK:

Detailed formulas for entries of element matrix AK and element vector ~ϕK:

(AK)ij =
∫

K
α(x) grad b

j
K(x) · grad bi

K(x)dx

=
∫

K̂
(Φ∗Kα)(x̂)(Φ∗K(grad b

j
K)︸ ︷︷ ︸

= ?

)(x̂) · (Φ∗K(grad bi
K)︸ ︷︷ ︸

= ?

)(x̂) |det DΦK(x̂)|dx̂ ,

(~ϕK)i =
∫

K
f (x)bi

K(x)dx =
∫

K̂
(Φ∗K f )(x̂) b̂i(x̂) |det DΦK(x̂)|dx̂ ,

by transformation formula (for multidimensional integrals, see also (3.6.150)):

∫

K
f (x)dx =

∫

K̂
f (x̂)|det DΦK(x̂)|dx̂ for f : K 7→ R , x = ΦK(x̂) , (3.7.24)

All integrals have been transformed to the reference element K̂, where we can now apply a

quadrature formula:

∫

K̂
f̂ (x̂)dx̂ ≈

P

∑
l=1

ω̂l f̂ (ζ̂ l) , ζ̂ l ∈ K̂, ω̂l ∈ R , (3.6.151)

which can be combined with (3.7.24):

∫

K
f (x)dx ≈

P

∑
l=1

ω̂l f (ΦK(ζ̂ l)) |det DΦK(ζ̂ l)| . (3.7.25)

Required information and evaluations:

• values b̂i(ζ̂ l), i = 1, . . . , Q, l = 1, . . . , P,

• gradients Φ
∗(grad bi

K) at quadrature nodes ζ̂l ∈ K̂ !?

• metric factors at quadrature nodes in K̂: det DΦK(ζ̂ l)

• values α(ΦK(ζ̂ l)) ∈ Rd,d and f (ΦK(ζ̂ l)) ∈ R from point evaluations of functions α : Ω →
Rd,d, f : Ω→ R.
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The gradients seem to pose a problem as bi
K may be elusive, cf. Rem. 3.7.21! Fortunately we can compute

them from the gradients of the local shape functions b̂j on the reference element using the formulas given

in the next lemma.

Lemma 3.7.26. Transformation formula for gradients

For differentiable u : K 7→ R and any diffeomorphism Φ : K̂ 7→ K we have

(grad x̂(Φ
∗u))(x̂) = (DΦ(x̂))T (gradx u)(Φ(x̂))︸ ︷︷ ︸

=Φ
∗(grad u)(x̂)

∀x̂ ∈ K̂ . (3.7.27)

Proof. Use chain rule for components of the gradient

∂Φ
∗u

∂x̂i
(x̂) =

∂

∂x̂i
u(Φ(x̂)) =

d

∑
j=1

∂u

∂xj
(Φ(x̂))

∂Φj

∂x̂i
(x̂) .




∂Φ
∗u

∂x̂1
(x̂)

...

∂Φ
∗u

∂x̂d
(x̂)



= (gradx̂ Φ

∗u)(x̂) = DΦ(x̂)T




∂u

∂x1
(Φ(x̂))

...
∂u

∂xd
(Φ(x̂))



= DΦ(x̂)T(gradx u)(Φ(x̂)) .

Here, DΦ(x̂) ∈ Rd,d is the Jacobian of Φ at x̂ ∈ K̂, see [18, Bem. 7.6.1].
✷

Using Lemma 3.7.26 we arrive at a tractable expression for the entries of the element matrix:

(AK)ij =
∫

K̂
(α(Φ(x̂))(DΦ)−T grad b̂i) · ((DΦ)−T grad b̂j)|det DΦ|dx̂

=
∫

K̂
((DΦ)−1α(Φ(x̂))(DΦ)−T) grad b̂i · grad b̂j|det DΦ|dx̂ .

(3.7.28)

Note that the argument x̂ is suppressed for some terms in the integrand.

✎ notation: for matrix S write S−T :=
(
S−1

)T
=
(
ST
)−1

The next step is the approximation of (3.7.28) by means of quadrature rule (3.6.132) on K̂, see (3.6.151):

(AK)ij ≈
P

∑
l=1

ω̂l (MK(ζ̂l) grad b̂i(ζ̂l)) · grad b̂j(ζ̂l)|det DΦ(ζ̂l)| , (3.7.29)

with MK(x̂) := (DΦ)−1(x̂)α(Φ(x̂))(DΦ)−T(x̂) , x̂ ∈ K̂ .

The vectors grad b̂i(ζ̂l) are easily computed, since the local shape functions b̂i will usually be simple

polynomials. In addition, they are independent of K, so they can be precomputed and stored in a table.

The same holds for the numbers |det DΦ(ζ̂l)|.

Remark 3.7.30 (BETL support for transformation of gradients)

From (3.7.28) and (3.7.29) we see that DΦ(x̂) for certain points x̂ ∈ K̂ is required for the computation of

entries of element matrices. BETL supplies this matrix through a function of Geometry:
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template < i n t NUM_POINTS > matrix_t< dimFrom, dimTo*NUM_POINTS >

jacobianInverseTransposed( const matrix_t< dimFrom, NUM_POINTS

>& local );

This function takes a matrix argument whose columns give point coordinates in the reference element.

The dimFrom/dimTo template arguments specify the dimension of the ambient space of the reference

element/actual element, 2 throughout in this course. The function returns the NUM_POINTS inverses of

the transposed Jacobian horizontally concatenated into a big matrix.

Example 3.7.31 (Transformation techniques for bilinear transformations)

In Section 3.7.2 we saw that it takes a general bilinear transformation (3.7.19) to map a square onto a

general quadrilateral cell, see Fig. 173 on page 341. It turned out that these bilinear mappings are key to

defining parametric Lagrangian finite elements on general quadrilaterals.

In order to compute the element (stiffness) matrices according to (3.7.29), we have to evaluate the Jaco-

bians for bilinear transformations and their determinants. This can be done through the following formu-

las:

Φ(x̂) =

[
α1 + β1 x̂1 + γ1x̂2 + δ1x̂1x̂2

α2 + β2 x̂1 + γ2x̂2 + δ2x̂1x̂2

]
, αi, βi, γi, δi ∈ R ,

⇒ DΦ(x̂) =

[
β1 + δ1x̂2 γ1 + δ1x̂1

β2 + δ2x̂2 γ2 + δ2x̂1

]
,

⇒ det(DΦ(x̂)) = β1γ2 − β2γ1 + (β1δ2 − β2δ1)x̂1 + (δ1γ2 − δ2γ1)x̂2 .

(3.7.32)

Both DΦ(x̂) and det(DΦ(x̂)) are (componentwise) linear in x.

If Φ = ΦK for a generic quadrilateral K as in (3.7.19), then the coefficients αi, βi, γ1, δi depend on the

shape of K in a straightforward fashion:

[
α1

α2

]
= a1 ,

[
β1

β2

]
= a2 − a1 ,

[
γ1

γ2

]
= a4 − a1 ,

[
δ1

δ2

]
= a3 − a2 − a4 + a1 .

Example 3.7.33 (Local computations in BETL based on transformation techniques)

Focus on linear variational problem:

u ∈ H1
0(Ω):

∫

Ω

M(x) grad u(x) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) .

We assume that the (diffusion) coefficient function M : Ω 7→ Rd,d is matrix-valued, uniformly symmetric

positive definite, and given in procedural form as a function that allows point evaluations, cf. Rem. 1.5.5.

Writing b
j
K, j = 1, . . . , Q(K), for the local shape functions on cell (element) K ∈ M, see Def. 3.4.19, we

obtain for the element matrix

(AK)ij =
∫

K
M(x) grad b

j
K · grad bi

K dx , i, j ∈ {1, . . . , Q} . (3.7.34)
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Writing Φ : K̂ → K for the transformation from the reference element and applying a P-point quadrature

formula on K̂, we arrive at

(A)ij =
P

∑
l=1

ω̂l|det DΦ(ζ̂ l)|α(Φ(ζ̂ l))DΦ(ζ̂ l)
−⊤(grad b̂j)(ζ̂ l) · DΦ(ζ̂ l)

−⊤(grad b̂j)(ζ̂ l) . (??)

The element matrix can be computed by the following compact formula

AK =
P

∑
l=1

ω̂l|det DΦ(ζ̂ l)|




g⊤1,l
...

g⊤Q,l


α(Φ(ζ̂ l))

[
g1,l . . . gQ,l

]
, (3.7.35)

gj,l := DΦ(ζ̂ l)
−⊤(grad b̂j)(ζ̂ l) = grad b

j
K(ζ l) ∈ R

d . (3.7.36)

In order to implement a local assembler in BETL using local computations based on transformation tech-

niques, we require the following two ingredients:

✦ a fe::FEBasis-compatible object (template parameter FEBASIS) that handles the basis functions

and was introduced in § 3.6.75 and Ex. 3.7.13. In particular, an FEBASIS object has to provide the

two types basisFunction_t and diffBasisFunction_t.

✦ a QuadRuleList-compatible object as explained in § 3.6.164 (template parameter QUADRULES).

Moreover, as we learnt in Ex. 3.6.94, a ELEM_MAT_BUILDER object (for the local element matrix) in

BETL gets an argument of type BUILDER_DATA_T, which can be used to pass arbitrary information for

local computations. Here this role is played by the object of type MATERIAL. Here, we expect this type to

provide a functor with an evaluation operator according to

i n l i n e result_t opera tor()( localPoint_t x, element_t e) const

C++11 code 3.7.37: Computation of general element matrix according to (3.7.29) in BETL

➺ GITLAB

1 template < typename FEBASIS , typename QUADRULES >

2 st ruct St i f fnessLoca lMa t r ixAssembler {

3 pr ivate :

4 s t a t i c const in t dim_ = 2; // world dimension (2D)

5 public :

6 typedef double numeric_t ;

7 typedef Eigen : : Matr ix < numeric_t , Eigen : : Dynamic , Eigen : : Dynamic >

r e s u l t _ t ;

8 s t a t i c void i n i t i a l i z e ( ) { }

9

10 template < class MATERIAL , class ELEMENT>

11 s t a t i c r e s u l t _ t eval ( const MATERIAL& M, const ELEMENT& e l ) {

12 r e s u l t _ t r e s u l t ;

13 switch ( e l . re fElType ( ) ) {

14 case eth : : base : : RefElType : : TRIA : {

15 eval_< eth : : base : : RefElType : : TRIA > eva lua to r ;

16 r e s u l t = eva lua to r . compute_ ( M, e l ) ; break ; }

17 case eth : : base : : RefElType : :QUAD: {
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18 eval_< eth : : base : : RefElType : :QUAD > eva lua to r ;

19 r e s u l t = eva lua to r . compute_ ( M, e l ) ; break ; }

20 defaul t :

21 ETH_ASSERT_MSG( false , " Imp lemented f o r TRIA and QUAD o n l y " ) ;

22 }

23 return ( r e s u l t ) ;

24 }

We observe that the structure is rather similar to the implementation of MySimpleLocalVectorAssem-

bler in Code 3.6.168, and that the implementation relies on the private member struct whose compute_

method carries out the quadrature and the computation of the local element matrix. As a template param-

eter it is passed the reference element type.

C++11 code 3.7.38: Evaluator struct for StiffnessLocalMatrixAssembler ➺ GITLAB

1 template < eth : : base : : RefElType RET >

2 st ruct eval_ {

3 template < class MATERIAL , class ELEMENT>

4 s t a t i c r e s u l t _ t compute_ ( const MATERIAL& M, const ELEMENT& e l ) {

5 typedef typename FEBASIS : : template d i f fB a s i s F u n c t i o n _ t <RET>

basisFunctGrads ;

6 typedef b e t l 2 : : quad : : Quadrature < RET, QUADRULES : : template get <

RET >() > quadru le_ t ;

7 // Number of local shape functions

8 s t a t i c const auto nDofs_ = FEBASIS : : template numDofs<RET> ( ) ;

9 // Initialize result matrix to zero

10 r e s u l t _ t r e s u l t ( nDofs_ , nDofs_ ) ; r e s u l t . setZero ( ) ;

11 // Get GEOMETRY object for current element

12 const auto& geom = e l . geometry ( ) ;

13 // Get local quadrature points and weights

14 const auto& x i = quadru le_ t : : getPoints ( ) ;

15 const auto& wi = quadru le_ t : : getWeights ( ) ∗quadru le_ t : : getScale ( ) ;

16 // Number of quadrature points (known at compile time!)

17 const in t nQuadP = quadru le_ t : : getNumPoints ( ) ;

18 // Compute |det DΦ| in quadrature points § 3.6.164

19 const auto d e t J i = geom . template integrationElement <nQuadP>( x i ) ;

20 // Multiply weights with metric factors

21 const auto c o e f f = d e t J i . cwiseProduct ( wi ) ;

22 // Get DΦ
−T for every quadrature point Rem. 3.7.30

23 const auto invJT = geom . template

jacobianInverseTransposed <nQuadP>( x i ) ;

24 // Gradient of every basis function b̂i in quadrature points

25 const Eigen : : Matr ix < double , nDofs_ , dim_∗nQuadP > gradEval =

basisFunctGrads : : Eval ( x i ) ;

26 // Loop over quadrature points

27 for ( i n t l =0; l < x i . co ls ( ) ; l ++ ) {

28 // DΦ
−T(x̂) in current quadrature point

29 const Eigen : : Matr ix < double , dim_ , dim_ >& invJT_ l =

invJT . template block < dim_ , dim_ >( 0 , dim_∗ l ) ;
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30 // Compute gradient of actual local shape function according to
Lemma 3.7.26

31 const Eigen : : Matr ix < double , nDofs_ , dim_ >

32 grad_b = gradEval . template block <

nDofs_ , dim_ >(0 , l ∗dim_ ) ∗ i nvJT_ l . transpose ( ) ;

33 // evaluate diffusion coefficient at current quadrature point

34 const auto Meval = M( x i . co l ( l ) , e l ) ;

35 // Implementation of (3.7.35)

36 r e s u l t += c o e f f ( l ) ∗ grad_b ∗ Meval ∗ grad_b . transpose ( ) ;

37 }

38 return ( r e s u l t ) ;

39 } } ;

Line 5: Obtain a type that provides the evaluation of the gradients of local shape functions, see § 3.6.75.

We assume FEBASIS to be of Lagrangian type (c.f. § 3.6.75).

Line 6: Here we fetch the quadrature rule that must be applied to the current reference element type, see

§ 3.6.164.

Line 22: Results are nQuadP blocks of size 2x2. Each block contains the Jacobian DΦ
−T(x̂) in a

quadrature point x̂.

Line 25: In the variable gradEval, which is a matrix of size nDofs_ × 2nQuadP, every row contains

the transposed gradients of a single local shape function, i.e. (grad b̂j)⊤, j = 0...nDofs_ − 1
concatenated horizontally.

Line 32: The j-th row of grad_b represents the transposed transformed gradient

grad b
j
K(ζ l) = (DΦ)−T(ζ̂ l) grad b̂j(ζ̂ l)

evaluated in the l-the quadrature node ζ l in the actual element K. Notice that the gradient is again

handled as a row vector.

Line 36: Notice that the object M could return a matrix or a scalar. Both will work thanks to EIGEN’s

operator overloading.

A working example using this local assembler implementation can be found in ➺ GITLAB.

3.7.4 Boundary approximation

Intuition: Approximating a (smooth) curved boundary ∂Ω by a polygon/polyhedron will introduce a (sort

of) discretization error.

Parametric finite elment constructions provide a tool going beyond polygonal/polyhedral approxima-

tion of boundaries (by simple straight lines or flat faces).

An example of a mesh resolving a curved boundary is given in Fig. 112. Here we discuss this for a very

simple case of triangular meshes in 2D (more details→ [5, Sect, 10.2]).
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Idea: Piecewise polynomial approximation of

boundary (boundary fitting)

(∂Ω locally considered as function over

straight edge of an element)

Example: Piecewise quadratic boundary

approximation

(Part of ∂Ω between a1 and a2

approximated by parabola)

Fig. 175

a1

a2

a3

∂Ω

K̃
nEΓ

δ

(3.7.39) Piecewise quadratic polynomial boundary approximation

Mapping K̃→ “curved element” K:

Φ̃K(x̃) := x̃ + 4δ λ1(x̃)λ2(x̃) n . (3.7.40)

(λi barycentric coordinate functions on K̃, n normal to EΓ, see Fig. 175)

Note: Essential: δ sufficiently small =⇒ Φ bijective

The complete transformation ΦK : K̂ 7→ K is obtained by joining an affine transformation (→ Def. 3.6.136)

Φ
a
K : K̂ 7→ K̃, Φ

a
K(x̂) := FK x̂ + τK, and Φ̃K:

ΦK = Φ̃K ◦Φ
a
K .

For parabolic boundary fitting:

DΦ̃K = I + 4δ n · grad(λ1λ2)
⊤ ∈ R

2,2 , det(DΦ̃K) = 1 + 4δ n · grad(λ1λ2) .

Example 3.7.41 (Second-order geometry approximation in Gmsh)

The menu item Mesh->Set Order 2 makes Gmsh insert information into the .msh-file that is neces-

sary for parabolic boundary approximation.

3. Finite Element Methods (FEM), 3.7. Parametric Finite Elements 350



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Fig. 176
Fig. 177

Polygonal (left) and parabolic (right) approximation of a circular boundary

The .msh-file then contains entities of type 8 and 9, which corresponds to 3-node lines and 6-node

triangles. The former is described by three locations, the latter by six, where the extra points designate

the (shifted) midpoints of edges.

?! Review question(s) 3.7.42. (Parametric finite elements)

1. Which data required for the computation of the element matrices for 2nd-order elliptic variational

problems discretized by means of Lagrangian finite elements, depend on the current cell, and which

do not?

2. Does the numerical quadrature of the pullback of a function to the reference element yield the same

value as its local numerical quadrature on a cell based on the same quadrature rule obtained from

the reference element by transformation?

3. The mapping x̂ 7→ [ax̂1bx̂2]
⊤

, a, b > 0, takes the unit disc D̂ ⊂ R2 to a ellipse Ω with axes a and

b. Let u ∈ H1
0(Ω) solve ∆u = f , f ∈ L2(Ω). Using Lemma 3.7.26, derive the variational problem

solved by the pullback of u to D̂.

4. Give the formula for the bilinear transformation that maps the unit square to the “triangular” quadri-

lateral with vertices

[
0
0

]
,
[

1
0

]
,
[

1/2
1/2

]
,
[

0
1

]
.

3.8 Linearization

3.8.1 Non-linear variational problems

So far we have discussed the finite elements for linear second-order variational boundary value problems

only.

However, as we have learned in § 1.5.91, in 1D the Galerkin approach based on linear finite elements was

perfectly capable of dealing with non-linear two-point boundary value problems. Indeed the abstract dis-
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cussion of the Galerkin approach in Section 1.5.2 was aimed at general and possibly non-linear variational

problems, see (1.5.9), (1.5.23).

It goes without saying that the abstract (and formal) discussion of Section 1.5.2 remains true for non-linear

second-order boundary value problems in variational form.

Difficult: Characterization of “spaces of functions with finite energy” (→ Sobolev spaces, Section 2.3)

for non-linear variational problems.

(Relief!) In this course we do not worry that much about function spaces.

Recall (→ Rem. 1.3.31): Non-linear variational problem

u ∈ V: a(u; v) = ℓ(v) ∀v ∈ V0 , (1.3.24)

✦ V0 =̂ test space, (real) vector space (usually a function space, “Sobolev-type” space→ Section 2.3)

✦ V =̂ trial space, affine space: usually V = u0 + V0, with offset function u0 ∈ V,

✦ f =̂ a linear mapping V0 7→ R, a linear form,

✦ a =̂ a mapping V ×V0 7→ R, linear in the second argument, that is

a(u; αv + βw) = αa(u; v) + βa(u; w) ∀u ∈ V , v, w ∈ V0 , α, β ∈ R . (1.3.25)

Remember that linearity in the second argument is a key feature of variational equations (1.3.24) arising

in the calculus of variations when seeking extrema of functionals on function spaces, see Section 1.3.1.

Example 3.8.1 (Heat conduction with radiation boundary conditons)

➣ 2nd-order elliptic boundary value problem, cf. (2.6.10) & (2.7.4)

− div(κ(x) grad u) = f in Ω ,
κ(x) grad u · n(x) + Ψ(u) = 0 on ∂Ω .

Variational formulation from Ex. 2.9.6

u ∈ H1(Ω):
∫

Ω
κ(x) grad u · grad v dx +

∫

∂Ω
Ψ(u) v dS =

∫

Ω
f v dx ∀v ∈ H1(Ω) . (2.9.8)

If Ψ : R 7→ R is not an affine linear function, then (2.9.8) represents a non-linear variational problem

(1.3.24) with

✦ trial/test space V = V0 = H1(Ω) (→ Def. 2.3.25),

✦ right hand side linear form ℓ(v) :=
∫

Ω
f v dx,

✦ a(u; v) :=
∫

Ω
κ(x) grad u · grad v dx +

∫

∂Ω
Ψ(u) v dS.

Note that the non-linearity enters only through the boundary term.
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Example 3.8.2 (Non-linear materials)

In the context of heat conduction (→ Section 2.6) a material is called non-linear, if its heat conductivity

may also vary with temperature: Using the notations of § 2.6.4, this means that

κ : Ω×R → R
3,3 , κ = κ(x, u) ,

where the uniform positivity (2.6.6) still has to hold, this time uniformly in the temperature, as well.

In the case of Dirichlet boundary conditions this leads to the 2nd-order elliptic boundary value problem (→
§ 2.6.7)

− div(κ(x, u) grad u) = f in Ω, u = g on ∂Ω ,

with variational formulation

u ∈ H1(Ω)

u = g on ∂Ω
:
∫

Ω

κ(x, u) grad u · grad v dx =
∫

Ω

f v dx ∀v ∈ H1(Ω) ,

where a “moderate” increase of ‖κ‖ as a function of u has to be assumed, in order to be able retain

H1(Ω) as variational space.

3.8.2 Newton in function space

Pursuing the policy of Galerkin discretization (choice of discrete spaces and corresponding bases, →
Section 1.5.2) we can convert (1.3.24) into a non-linear system of equations

a(u0 +
N

∑
j=1

µjb
j
N; bk

N) = f (bk
N) ∀k = 1, . . . , N . (1.5.23)

If the left hand side depends smoothly on the unkowns (the coefficients µj of~µ), then the classical Newton

method (→ [14, Section 2.4]) to solve it iteratively.

Here, we focus on a different approach that reverses the order of the steps:

1. Linearization of problem (“Newton in function space”),

2. Galerkin discretization of linearized problems.

Recall idea of Newton’s method [14, Section 2.4] for the iterative solution of F(x) = 0, F : D ⊂ R
N 7→

RN smooth:

Idea: local linearization:

Given~ξ(k) ∈ D ➣ ~ξ(k+1) as zero of affine linear model function

F(~ξ) ≈ F̃(~ξ) := F(~ξ(k)) + DF(~ξ(k))(~ξ −~ξ(k)) .

Newton iteration:

~ξ(k+1) :=~ξ(k)−DF(~ξ(k))−1F(~ξ(k)) , [ if DF(~ξ(k)) regular ] (3.8.3)
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← apply idea to (1.3.24)

Idea: local linearization:

Given u(k) ∈ V ➣ u(k+1) from

w ∈ V0: a(u(k); v) + Dua(u
(k) ; v)w = ℓ(v) ∀v ∈ V0 ,

u(k+1) := u(k) + w .
(3.8.4)

The meaning of DF(~ξ(k)) in (3.8.3) is clear: it stands for the Jacobian of F evaluated at~ξ(k)

But what is the meaning of Dua(u(k); v)w in (3.8.4)?

Remember the “definition” of the Jacobian (for sufficiently smooth F)

DF(~ξ)~µ = lim
t→0

F(~ξ + t~µ)− F(~ξ)

t
, ~ξ ∈ D, ~µ ∈ R

N . (3.8.5)

➣ try the “definition” in the spirit of directional derivatives as exploited in the calculus of variations, see

(1.3.6),

Dua(u
(k); v)w = lim

t→0

a(u + tw; v)− a(u; v)

t
, u(k) ∈ V , v, w ∈ V0 . (3.8.6)

The next statement recalls a fact that we have come across in a similar form when computing direc-

tional derivatives of functionals in the calculus of variations approach, see Section 1.3.1: For a sufficiently

smooth mapping the directional derivative is linear in the direction (variation), see 45.

In the current context the mapping is u 7→ {v 7→ a(u; v)}, that is, a mapping from the trial space V into

the space of linear forms (→ Def. 1.3.22) on the test space V0 . Thus, its derivative in some u ∈ V can

be expected to be a linear mapping from V0 → {linear forms on V0}.
Directional derivative of a variational form

If (u, v) 7→ a(u; v) depends smoothly on u, then

(v, w) 7→ Dua(u
(k); v)w is a bilinear form V0 ×V0 7→ R.

Example 3.8.8 (Derivative of non-linear u 7→ a(u; ·))

We revisit the non-linear variational problem from Ex. 3.8.1 with

a(u; v) :=
∫

Ω
κ(x) grad u · grad v dx +

∫

∂Ω
Ψ(u) v dS

Evidently, the derivative Dua(u; v)w from (3.8.6) is linear in the sense that

Du(b(u; v) + c(u; v))w = Dub(u; v)w + Duc(u; v)w ∀v, w ∈ V0 .

Hence we can separately compute the derivative of the two terms contributing to a:

First, we tackle the bilinear term, for which the derivative is straightforward, because for every bilinear form

(→ Def. 1.3.22) c : V0 ×V0 7→ R holds

Duc(u, v)w = lim
t→0

c(u + tw, v)− c(u, v)

t
= c(v, w) , (3.8.9)
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analogous the computations on page 148 that yielded the linear variational problem associated with a

quadratic minimization problem. (3.8.9) can also be regarded as another incarnation of the fact that the

derivative of a linear mapping is constant: Duc(u, v)w does not depend on u!

Next, apply formula (3.8.6) to the non-linear boundary term in (2.9.8), that is, here

b(u; v) :=
∫

∂Ω
Ψ(u)v dS , u, v ∈ H1(Ω) .

b(u + tw; v)− b(u; v) =
∫

∂Ω
(Ψ(u + tw)−Ψ(u))v dS , u, v ∈ H1(Ω) .

Assume Ψ : R 7→ R is smooth with derivative Ψ′ and employ Taylor expansion for fixed w ∈ H1(Ω) and

t→ 0

b(u + tw; v)− b(u; v) =
∫

∂Ω
tΨ′(u)wv dS + O(t2) .

Dub(u
(k) ; v)w = lim

t→0

b(u + tw; v)− b(u; v)

t
=
∫

∂Ω
Ψ′(u)w v dS .

= a bilinear form in v, w on H1(Ω)× H1(Ω)!

This example also demonstrates how to actually compute Dua(u
(k); v)w needed in (3.8.4)

The manipulations above rely on techniques already addressed in Ex. 1.3.16 on page 1.3.16.

3.8.3 Galerkin discretization of linearized variational problem

We have found the following variational problem for the computation of the Newton update (“in function

space”)

w ∈ V0: a(u(k); v) + Dua(u
(k); v)w = ℓ(v) ∀v ∈ V0 ,

u(k+1) := u(k) + w .
(3.8.4)

Idea: (3.8.4) is a linear variational problem (→ Def. 1.4.8)!

w ∈ V0: c(w, v) = g(v) ∀v ∈ V0 ,

c(w, v) = Dua(u
(k) ; v)w , g(v) := ℓ(v)− a(u(k); v) .

Tackle it by means of Galerkin discretization!

Newton-Galerkin iteration for (1.3.24)

Given u
(k)
N ∈ V

(k)
N ➣ u

(k+1)
N ∈ V

(k+1)
N from

wN ∈ V
(k+1)
0,N : Dua(u

(k)
N ; vN)wN = ℓ(vN)− a(u

(k)
N ; vN) ∀vN ∈ V

(k+1)
0,N ,

u
(k+1)
N := P

(k+1)
N u

(k)
N + wN .

(3.8.10)

Newton update
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Note: different Galerkin trial/test spaces V
(k)
N , V

(k)
0,N may be used in different steps of the iteration!

(It may enhance efficiency to use Galerkin trial/test spaces of a rather small dimension in the beginning

and switch to larger when the iteration is about to converge.)

Warning! If V
(k)
N 6= V

(k+1)
N you cannot simply add u

(k)
N and w

➣ Linear projection operator P
(k+1)
N : V

(k)
N 7→ V

(k+1)
N required in (3.8.10)

Any of the Lagrangian finite element spaces introduced in Section 3.5 will supply valid VN/V0,N . Offset

functions can be chosen according to the recipes from Section 3.6.6.

Important aspect: termination of iteration, see [14, Section 2.4.3].

Option: termination based on relative size of Newton update, with w, u
(k+1)
N from (3.8.10)

STOP, if ‖w‖ ≤ τ
∥∥∥u

(k+1)
N

∥∥∥ , (3.8.11)

where ‖·‖ is a relevant norm (e.g., energy norm) on V
(k+1)
N and τ > 0 a prescribed relative tolerance.

?! Review question(s) 3.8.12. (Finite element discretization of non-linear variational problems)

1. Why is numerical quadrature indispensable for a general purpose finite element code?

2. The unit square [0, 1]2 can be mapped onto a general non-degenerate quadrilateral K by means

of a mapping ΦK composed of (i) an affine mapping Φ
aff

K (→ Def. 3.6.136) and (ii) a mapping

R2 → R2, x̂ 7→ dx̂1x̂2. Find formulas for both Φ
aff

K and d ∈ R2 in terms of the vertex coordinates

a1, . . . , a4 of K.

Learning outcomes

Skills to be acquired in Chapter 3:

• Familiarity with all aspects of abstract Galerkin discretization of a linear variational problem.

• Knowledge of the role of the main ingredients for a finite element Galerkin discretization: variational

problem, mesh, global and local shape functions.

• Understanding of properties of finite element Galerkin matrices, in particular, their sparsity patterns.

• Ability to implement the (approximate, by means of quadrature) computation of element matrices

and element right hand side vectors for Lagrangian finite elements and rather general 2nd-order

elliptic boundary value problems

• Grasp of rationale and realization of local assembly of finite element Galerkin matrices and right

hand side vectors.

• Use of LehrFEM finite element MATLAB library to implement a finite element simulation code for a

given 2nd-order elliptic boundary value problem.

• Ability to deal with non-zero essential boundary conditions in a finite element context.

vectors, and dealing with more general shapes of cells.
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Chapter 4

Finite Differences (FD) and Finite Volume

Methods (FV)

Now we examine two approaches to the discretization of scalar linear 2nd-order elliptic BVPs that offer an

alternative to finite element Galerkin methods discussed in Chapter 3.

What these methods have in common with (low degree) Lagrangian finite element methods is

✦ that they rely on meshes (→ Section 3.4.1) tiling the computational domain Ω,

✦ they lead to sparse linear systems of equations.

Contents

4.1 Finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
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Remark 4.0.1 (Collocation approach on “complicated” domains)

Section 1.5.3.2 taught us spline collocation methods. A crucial insight was that collocation methods (see

beginning of Section 1.5.3 for a presentation of the idea), which target the boundary value problem in

ODE/PDE form, have to employ discrete trial spaces comprised of continuously differentiable functions,

see Rem. 1.5.120.

It is very difficult to contruct spaces of piecewise polynomial C1-functions on non-tensor product domains

for d = 2, 3 and find suitable collocation nodes, cf. (1.5.116).

Therefore we skip the discussion of collocation methods for 2nd-order elliptic BVPs on Ω ⊂ Rd, d = 2, 3.
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4.1 Finite differences

A finite difference scheme for a 2-point boundary value problem was presented in Section 1.5.4, which

you are advised to browse again. The gist of this finite difference method was the following:

Construction of finite difference methods

Replace the derivatives in the differential equation with difference quotients connecting approximate

values of the solutions at the nodes of a grid/mesh.

Recall: Finite differences target the “ODE/PDE-formulation” of the boundary value problem.

Our current goal: extension to higher dimensions

2D model problem:

Homogeneous Dirichlet BVP for Laplacian:

−∆u = −∂2u

∂x2
1

− ∂2u

∂x2
2

= f in Ω :=]0, 1[2 ,

u = 0 on ∂Ω .

Discretization based on

M = (triangular) tensor-product grid

(meshwidth h = (1 + N)−1, N ∈ N)

lexikographic (line-by-line) ordering/numbering of

nodes ofM ✄

Fig. 178

1

N+1

NN−1

N*N

2 3

N+2 N+3 2N

N(N−1)+1

4.1.1 Grid-based difference quotients

☞ First step of finite difference approach to −∆: approximation of derivatives by symmetric difference

quotients.

This is nothing new: we did this in (1.5.144). The following formulas generalize the symmetric second

difference quotient (1.5.138) to partial derivatives.

∂2

∂x2
1

u
|x=(ξ,η)

≈ u(ξ − h, η)− 2u(ξ, η) + u(ξ + h, η)

h2
,

∂2

∂x2
2

u
|x=(ξ,η)

≈ u(ξ, η − h)− 2u(ξ, η) + u(ξ, η + h)

h2
.

(4.1.2)

−∆u|x=(ξ,η) ≈
1

h2

(
4u(ξ, η) − u(ξ − h, η)− u(ξ + h, η)− u(ξ, η − h)− u(ξ, η + h)

)
.

Second step: use this approximation at grid point p = (ih, jh). This will connect the five point values

u(ih, jh), u((i − 1)h, jh), u((i + 1)h, jh), u(ih, (j − 1)h), u(ih, (j + 1)h).
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Approximations µi,j to the point values u(ih, jh)
will be the unknowns of the finite difference method.

Centering the above difference quotients at grid points yields linear relationships between the unknowns:

1

h2

(
4u(ih, jh) − u(ih− h, jh)− u(ih + h, jh)− u(ih, jh − h)− u(ih, jh + h)

)
= f (ih, jh) ,

1

h2

(
4µi,j − µi−1,j − µi+1,j − µi,j−1− µi,j+1

)
= f (ih, jh) . (4.1.3)

Also this is familiar from the discussion in 1D, see (1.5.143). Yet, in 1D the association of the point values

and of components of the vector~µ of unknowns was straightforward and suggested by the linear ordering

of the nodes of the grid. In 2D we have much more freedom.

One option on tensor-product grids is the line-by-line ordering (lexikographic ordering) depicted in Fig. 178.

This allows a simple indexing scheme:

u(p) ↔ µi,j ↔ µ(j−1)N+i

(4.1.3) ➤
−µ(j−2)N+i − µ(j−1)N+i−1 + 4µ(j−1)N+i − µ(j−1)N+i+1− µjN+i

h2
= f (ih, jh)︸ ︷︷ ︸

=ϕ(j−1)N+i

. (4.1.4)

➤ linear system of N2 equations A~µ = ~ϕ with N2 × N2 block-tridiagonal Poisson matrix

A :=
1

h2




T −I 0 · · · · · · 0

−I T −I
...

0 −I T −I
...

...
. . .

. . .
. . . 0

... −I T −I
0 · · · · · · 0 −I T




, T :=




4 −1 0 0

−1 4 −1
...

0 −1 4 −1
...

...
. . .

. . .
. . .

... −1 4 −1
0 · · · · · · 0 −1 4




∈ R
N,N (4.1.5)
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A =




0

0




✁ band structure of Poisson matrix

(The MATLAB command

A = gallery(’poisson’,n)

creates a sparse n2× n2 Poisson matrix.)

Remark 4.1.6 (Extra smoothness of source function in finite difference approach)

Obviously, we have to require f ∈ C0(Ω) in order to render (4.1.3) meaningful.

FD approach entails more regular source functions compared to finite element methods, for which

f ∈ L2(Ω) is enough.

(However, when numerical quadrature (→ Section 3.6.5) is used for the computation of the right hand side

vector ~ϕ as in Section 3.3.6, then point evaluation of f has to be possible and f ∈ C0(Ω) will also be

required.)

Remark 4.1.7 (Stencil notation)

One row of the linear system of equations arising from the finite difference discretization of the 2D model

problem on the tensor product mesh depicted in Fig. 178:

1

h2

(
4µi,j − µi−1,j − µi+1,j − µi,j−1− µi,j+1

)
= f (ih, jh) . ((4.1.3))

Note: unknowns µi,j indexed by position of the grid node they are associated with.
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Fig. 179 ip1
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−1 −14j

i

j + 1

j− 1

i− 1

h
← stencil anchored at (ih, jh) ∈ Ω.

stencil notation:




−1
−1 4 −1

−1




h

A stencil as given above is a way to describe a row of

a linear system of equations operating on unknowns

associated with the nodes of a grid without imposing

a global numbering.

The stencil description is particularly convenient in the case of translation invariance, where the stencils

are the same for (almost) all nodes of the grid. Then, instead of specifying the matrix of the linear system

of equations, it suffices to describe the stencil.

Stencils are not confined to tensor product grids:

Fig. 180

4
√

3− 2
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√
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√
3

− 2
3

√
3
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3

√
3

− 2
3

√
3

− 2
3

√
3

h

← Stencil for discretization of −∆

by means of linear Lagrangian fi-

nite elements on a grid consist-

ing of equilateral triangles.

2

3

√
3 ·



−1 −1
−1 6 −1

−1 −1




h

4.1.2 Finite differences and finite elements

Already in Section 1.5.4 we saw that the linear system of equations popping out of the finite difference

discretization of the linear two-point BVP (1.5.119) was the same as that obtained via the linear finite

Galerkin approach on the same mesh.

In two dimensions we will also come to this conclusion! So, let us derive the Galerkin matrix and right hand side vector
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for the 2D model problem on the tensor product mesh depicted in Fig. 178. To begin with we convert it into

a triangular meshM by splitting each square into two equal triangles by inserting a diagonal (green lines

in Fig. 178). On this mesh we use linear Lagrangian finite elements as in Section 3.3.

Then we repeat the considerations of Section 3.3.

Linear Lagrangian finite element Galerkin discretization of 2D model problem → Section 3.3: V0,N =
S0

1,0(M) (global shape functions =̂ “tent functions”,→ Fig. 92)

Fig. 181

a1 a2

a3

h

h
K

Element stiffness matrix from (3.3.23):

AK = 1
2




2 −1 −1
−1 1 0
−1 0 1


 .

(← numbering of local shape functions)

Element

use three-point quadrature formula (3.6.159)

~ϕK = 1
6h2




f (a1)
f (a2)
f (a3)


 .

Fig. 182
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➁

➂

➂

➂

➂
➂

➂

K1

K2

K3

K4

K5

K6

p

Local assembly:

← green: local vertex numbers

Contributions to load vector component

associated with node p:

From K1 : (~ϕK1
)2

From K2 : (~ϕK2
)3

From K3 : (~ϕK3
)3

From K4 : (~ϕK4
)1

From K5 : (~ϕK5
)1

From K6 : (~ϕK6
)2

~ϕp = h2 f (p) .

Assembly of finite element Galerkin matrix from element (stiffness) matrices (→ Section 3.6.4):
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Fig. 183
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Fig. 184
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4 −1−1

−1

−1

➤ N2 × N2 linear system of equations h2A~µ = h2~ϕ, A =̂ Poisson matrix (4.1.5)

(Most) finite difference schemes ↔
finite element Galerkin schemes

with numerical quadrature

on structured meshes

(4.1.8) Pros and cons of “finite difference approach”

Discussion: finite differences vs. finite element Galerkin methods

(here focused on 2nd-order linear scalar problems)

✦ Finite element methods can be used on general triangulations and structured (tensor-product)

meshes alike, which delivers superior flexibility in terms of geometry resolution (advantage FEM).

✦ The correct treatment of all kinds of boundary conditions (→ Section 2.7). naturally emerges from

the variational formulations in the finite element method (advantage FEM).

✦ Finite difference approach cannot deal with second-order elliptic boundary value problems with dis-

continuous diffusion coefficient (α in (2.4.5), (2.9.16)), which does not cause difficulties for finite

element methods.

✦ Finite element methods have built-in “safety rails” because there are clear criteria for choosing viable
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finite element spaces and once this is done, there is no freedom left to go astray (advantage FEM).

✦ Finite element methods are harder to understand (advantage FD, but only with students who have

not attended this course!)

Then, why are “finite difference methods” ubiquitous in scientific and engineering simulations ?

When people talk “finite differences” they have in mind structured meshes (translation invariant, tensor

product structure) and use the term as synonym for “discretization on structured meshes”. The popularity

of structured meshes is justified:

• structured meshes allow regular data layout and vectorization, which boost the performance of al-

gorithms on high performance computing hardware.

→ course “High Performance Computing”

• translation invariant PDE operators give rise to simple Galerkin matrices that need not be assembled

and stored (recall the 5-point-stencil for −∆) and support very efficient matrix×vector operations.

✞
✝

☎
✆Use structured meshes whenever possible!

4.2 Finite volume methods (FVM)

4.2.1 Discrete balance laws

Focus: linear scalar 2nd-order elliptic boundary value problem in 2D (→ Section 2.6), homogeneous

Dirichlet boundary conditions (→ Section 2.7), uniformly positive scalar heat conductivity κ =
κ(x)

− div(κ(x) grad u) = f in Ω , u = 0 on ∂Ω .

Finite volume methods for 2nd-order elliptic BVP are inspired by the conservation principle (2.6.3).

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V . (2.6.3)

Physics requires that this holds for all (infinitely many) “control volumes” V ⊂ Ω.

Since discretization has to lead to a finite number of equations, the idea is to demand that (2.6.3) holds for

only a finite number of special control volumes.

First ingredient of FVM: (finitely many) control volumes
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Fig. 185

.

Ck

Ci

Cj

Γik
nik

pi

pj

pk Concrete choice:

Control volumes =

(polygonal) cells of a mesh M̃ = {Ci}i
covering computational domain Ω.

Associate cell Ci ↔ nodal value µi

Meaning: µi ≈ u(pi), pi = “center” of Ci

The conservation law (2.6.3) had to be linked to the flux law (2.6.5) in order to give rise to a 2nd-order

scalar PDE see (2.6.8)–(2.6.10).

Correspondingly, “heat conservation in control volumes” has to be supplemented by a rule that furnishes

the heat flux between two adjacent control volumes.

Second ingredient of FVM: local numerical fluxes

For two adjacent cells Ck, Ci with common edge Γik := Ci ∩ Ck.

Numerical flux Jik = Ψ(µi, µk) ≈
∫

Γik
j · nik dS

(Ψ = numerical flux function, j = (heat) flux, see (2.6.2), nik =̂ edge normal. )

How to obtain a system of equations from combining (2.6.3) with a numerical flux?

Idea: consider balance law on (finitely many !) control volumes Ci

∫

∂Ci

j · ni dS =
∫

Ci

f dx ⇒ ∑
k∈Ui

Jik =
∫

Ci

f dx .

✎ notation: Ui := {j : Ci and Cj share edge, Cj ∈ M̃},
pi = node associated with control volume Ci.

System of equations (M̃ := ♯M̃ equations, unknowns µi):

∑
k∈Ui

Ψ(µi , µk) =
∫

Ci

f dx ∀i = 1, . . . , M̃ . (4.2.1)

Further approximation: 1-point quadrature for approximate evaluation of integral over Ci,

∑
k∈Ui

Ψ(µi , µk) = |Ci| f (pi) ∀i = 1, . . . , M̃ . (4.2.2)
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Note: homogeneous Dirichlet problem ➢ only “interior” control volumes in (4.2.1)

4.2.2 Dual meshes

Dual meshes are a commonly used technique for the construction of control volumes for FVM, based on

conventional FE triangulationM of Ω (→ Section 3.4.1).

Focus: dual mesh for triangular meshM in 2D, Ω polygon (this triangular mesh is often called the primal

mesh)

(4.2.3) Voronoi dual meshes

Popular choice: Voronoi dual mesh

Fig. 186

Write V(M) = {p1, . . . , pM} = nodes ofM.

Define Voronoi cells

Ci := {x ∈ Ω: |x− pi| < |x− p j| ∀j 6= i} .

(4.2.4)

Voronoi dual mesh M̃ := {Ci}M
i=1

Construction of Voronoi dual cells:

edges→ perpendicular bisectors

nodes→ circumcenters of triangles

straightforward generalization to 3D

Fig. 187

Ci

pi

Remark 4.2.5 (Geometric obstruction to Voronoi dual meshes)
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Fig. 188

. .

.ω

⇐ Obtuse angle ω:

➢ circumcenter 6∈ triangle

➢ Ci ∩ Cj 6= ∅ 6⇒
nodes i, j connected by edge

➢ geometric construction breaks down

➢ connectivity of unknowns hard to determine

Theorem 4.2.6. Angle condition for Voronoi dual meshes

The following Angle condition ensures that the Voronoi cells belonging to adjacent nodes of a trian-

gular mesh have a common edge (Ci ∩ C j 6= ∅ ⇔ nodes i, j connected by edge ofM):

(i) sum of angles facing interior edge ≤ π,

(ii) angles facing boundary edges ≤ π/2.

Note: Condition (ii) important only for FV methods with unknowns attached to boundary vertices, that is,

in the case of non-Dirichlet boundary conditions, cf. Rem. 4.2.11.

Definition 4.2.7. Delaunay triangulation

Triangular meshes satisfying the angle conditions (i) and (ii) from Thm. 4.2.6 are called

Delaunay triangulations.

(4.2.8) Barycentric dual meshes

Another popular choice: Barycentric dual mesh

Fig. 189

Dual cells:

edges→ union of lines connecting

barycenters and midpoints of

edges ofM
nodes→ barycenters of triangles

No geometric obstructions

Definition 4.2.9. Barycenter of a triangle

The barycenter of a triangle with vertices

a1, a2, a3 ∈ Rd is the point p := 1
3(a

1 + a2 +

a3).
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(4.2.10) “Centers” of dual control volumes

For both the Voronoi construction and barycentric dual meshes: natural choice for “centers” pi of control

volumes = vertices of triangular (primal) mesh.

Remark 4.2.11 (FV: Incorporation of homogeneous Dirichlet boundary conditions)

Assume choice of “centers” of control volumes according to § 4.2.10

Homogeneous Dirichlet boundary conditions (→ Section 2.7) u = 0 on ∂Ω are taken into account by

✦ considering only control volumes (dual cells) located in the interior of Ω in (4.2.1),

✦ setting µk = 0 for neighboring control volumes (dual cells) that abut ∂Ω. This makes sense, because

the centers of those control volumes will be located on ∂Ω, where u is supposed to vanish.

Remark 4.2.12 (Treatment of Neumann boundary conditions in finite volume schemes)

Consider finite volume method based on dual meshes for 2nd-order elliptic Neumann problem:

− div(α(x) grad u) = f in Ω , (α(x) grad u) · n = h on ∂Ω . (2.10.2)

The value of u on ∂Ω is unknown.

➣ keep balance equations for control volumes associated with (primal) vertices on the boundary ∂Ω.

Remember (2.7.3): h = −j · n, that is, the Neumann data h ∈ L2(∂Ω) already provide the flux!

Taking for granted a numerical flux function Ψ, we find the following modified instance of (4.2.1) for a

control volume Ci adjacent to ∂Ω:

∑
k∈Ui

Ψ(µi, µk)−
∫

∂Ci∩∂Ω

h dS = |Ci| f (pi) .

4.2.3 Relationship of finite element and finite volume methods

Hardly surprising, finite volume methods and finite element Galerkin discretizations are closely related.

This will be explored in this section for a model problem.

Setting:

✦ We consider the homogeneous Dirichlet problem for the Laplacian ∆

−∆u = f in Ω , u = 0 on ∂Ω . (4.2.13)
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✦ Discretization by finite volume method based on a triangular meshM and on Voronoi dual cells→
Fig. 186:

Assumption: M = Delaunay triangulation of Ω ⇔ angle condition

Number of control volumes = number of interior nodes ofM

(4.2.14) Numerical flux by interpolation

Still missing: specification of numerical flux function Ψ : R2 7→ R for each dual edge

Idea: obtain numerical flux from

Fourier’s law (2.6.5) applied to a (sufficiently smooth) uN : Ω 7→ R

reconstructed from dual cell values µi.

Natural approach, since µi is read as approximation of u(pi), where the “center” pi of the dual cell Ci

coincides with an interior node xi ∈ V(M) of the triangular meshM:

uN = I1~µ :=
N

∑
i=1

µib
i
N , (4.2.15)

where N = ♯V(M) = number of dual cells, size of vector~µ,

bi
N =̂ nodal basis function (“tent function”) of S0

1,0(M) belonging to the node inside Ci.

uN =̂ piecewise linear interpolant of vertex values µi

Note that uN is not smooth across inner edges of M. However, we do not care when computing j :=
κ(x) grad uN , because this flux is only needed at edges of the dual mesh, which lie inside triangles ofM
(with the exception of single points that are irrelevant for the flux integrals).

Fig. 190
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Illustration of point evaluation

vertex values µi on V(M)

Fig. 191

p.w. linear interpolant uN := I1~µ ∈ S0
1,0(M)

Choice of numerical flux: Jik := −
∫

Γik

grad I1~µ · nik dS (4.2.16)
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Using the numerical flux (4.2.16) in (4.2.1) ➣ one row of finite volume discretization matrix from the

equations

∑
k∈Ui

∫

Γik

grad I1~µ · nik dS = µi

∫

∂Ci

grad bi
N dS

︸ ︷︷ ︸
= matrix entry −(A)ii

+ ∑
j∈Ui

µj

(
∑

k∈Ui

∫

Γik

grad b
j
N · nik dS

)

︸ ︷︷ ︸
= matrix entry −(A)ij

= −
∫

Ci

f (x)dx .

⇒ (A)ij = −
∫

∂Ci

grad b
j
N · ni dS , i, j ∈ {1, . . . , N} . (4.2.17)

where ni =̂ exterior unit normal vector to ∂Ci.

Fig. 192

pi

pj

ΓK
i

K1

K2

Notations used in the formulas be-

low:

pi, pj =̂ vertices of primal mesh (“lo-

cation of unknowns µi, µj)

K1, K2 =̂ triangles adjacent to edge

connecting pi and pj

Part of the boundary of the control

volume Ci:

ΓK
i := ∂Ci ∩ K .

Now, consider i 6= j↔ off-diagonal entries of A:

First, we recall that the intersection of the support of the “tent function” b
j
N with ∂Ci is located inside

K1 ∪ K2, see Fig. 192.

(A)ij = −
∫

Γ
K1
i

grad b
j
N · ni dS−

∫

Γ
K2
i

grad b
j
N · ni dS .

↔ assembly of (A)ij from contributions of the two cells K1 and K2, cf. Section 3.3.5, page 3.3.5.

Next observe that grad b
j
N is piecewise constant, which implies

div grad b
j
N = 0 in K1 , div grad b

j
N = 0 in K2 . (4.2.18)
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Fig. 193
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pi

pj

Γij

K1

K2

e1

e2

eij

Now apply Gauss’ theorem

Thm. 2.5.7 to the domains Ci ∩ K1

and Ci ∩ K2 (shaded in figure).

Also use again that grad b
j
N ≡

const on K1 and K2.

Another important observation; con-

clusion from grad λi-formula from

Section 3.3.5:

grad b
j
N ⊥ e1 in K1 ,

grad b
j
N ⊥ e2 in K2 .

(4.2.18) ⇒
∫

∂(Kl∩Ci)

grad b
j
N · n dS = 0 ,

(A)ij =
1

2

∫

e1

grad b
j
N |K1

· ne1
dS +

1

2

∫

eij

grad b
j
N |K1
· n1

eij
dS

+
1

2

∫

eij

grad b
j
N |K2
· n2

eij
dS +

1

2

∫

e2

grad b
j
N |K1

· ne2 dS . (4.2.19)

On the other hand, an entry of finite element Galerkin matrix Ã based on linear Lagrangian finite element

space S0
1 (M) can be computed as, see Section 3.3.5:

(Ã)ij =
∫

K1

grad b
j
N · grad bi

N dx +
∫

K2

grad b
j
N · grad bi

N dx .

Conduct local integration by parts using Green’s first formula from Thm. 2.5.9 and taking into account

(4.2.18) and the linearity of the local shape functions

(Ã)ij =
∫

∂K1

(grad b
j
N |K1
· n1)b

i
N dS +

∫

∂K2

(grad b
j
N |K2

· n2)b
i
N dS

= 1
2 |e1| grad b

j
N |K1

· ne1
+ 1

2 |eij| grad b
j
N |K1

· n1
eij
+

1
2 |e2| grad b

j
N |K2

· ne2 +
1
2 |eij| grad b

j
N |K2

· n2
eij

.

This is the same value as for (A)ij from (4.2.19)! Similar considerations apply to the diagonal entries

(A)ii and (Ã)ii.

The finite volume discretization and the finite element Galerkin discretization spawn the same system

matrix for the model problem (4.2.13).
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Learning outcomes

The chapter aims to impart

• the gist of the “finite difference approach”: starting from strong form of a partial differential equation

replace derivatives by difference quotients anchored on a regular grid (finite lattice).

• awareness that finite difference schemes can usually be recovered as finite element discretization

(plus quadrature) on special (regular) meshes.

• the principles of the finite volume discretization of 2nd-order elliptic boundary value problems.

• the idea of using dual meshes as a tool to construct control volumes for a finite volume discretization.
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Chapter 5

Convergence and Accuracy

In this chapter we resume the discussion of Section 1.6 of accuracy of a Galerkin solution uN of a vari-

ational boundary value problem. More precisely, we are going to study the asymptotic convergence of

relevant norms ‖u− uN‖ of the discretization error u− uN (u =̂ exact solution) as we let the dimension

of the discrete trial space tend to ∞, see Rem. 1.6.2.

Focus: (as in all previous chapters) finite element Galerkin discretization of linear scalar 2nd-order elliptic

boundary value problems in 2D, 3D
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(5.0.1) Prerequisite knowledge

Familiarity with the following concepts is essential for understanding the material in this chapter:

➣ Boundary value problems (from equilibrium models, diffusion models): Section 2.5, Section 2.7,

➣ Variational formulation: Section 2.9, see also (2.4.5), (2.9.16), (3.1.4),

➣ Some Sobolev spaces and their norms: Section 2.3

➣ Abstract Galerkin discretization: Section 3.2,

➣ Lagrangian finite elements: Section 3.5, Section 3.3.
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5.1 Galerkin Error Estimates

(5.1.1) Linear variational problems revisited → § 1.4.7, Section 2.4.1

Abstract setting for this section: linear variational problem (1.4.9) in the form

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (3.2.3)

✦ V0 =̂ (real) vector space, a space of functions Ω 7→ R for scalar 2nd-order elliptic variational

problems,

✦ a : V0×V0 7→ R =̂ a bilinear form, see Def. 1.3.22,

✦ ℓ : V0 7→ R =̂ a linear form, see Def. 1.3.22,

☞ We want (3.2.3) to be related to a quadratic minimization problem (→ Def. 2.2.32):

Assumption 5.1.2.

The bilinear form a : V0 ×V0 7→ R in (3.2.3) is symmetric and positive definite (→ Def. 2.2.40).

a supplies an inner product on V0

a induces energy norm ‖·‖
a

on V0 (→ Def. 2.2.43)

☞ We want (3.2.3) to be well posed, remember Def. 2.4.13 and the discussion in Section 2.4.2.

Thm. 2.4.21 motivates the next assumption.

Assumption 5.1.3.

The right hand side functional ℓ : V0 7→ R from (3.2.3) is continuous w.r.t. to the energy norm (→
Def. 2.2.43) induced by a:

∃C > 0: |ℓ(u)| ≤ C‖u‖
a
∀u ∈ V0 . (2.2.55)

☞ An assumption to appease fastidious mathematicians, see § 2.4.18 for further discussion:

Assumption 5.1.4.

V0 equipped with the energy norm ‖·‖
a

is a Hilbert space, that is, complete (→ Def. 2.3.10).

Theorem 5.1.5. Existence and uniqueness of solution of linear variational problem

Under Ass. 5.1.2–Ass. 5.1.4 the linear variational problem has a unique solution u ∈ V0.

This repeats Cor. 2.4.20 from § 2.4.18 and is also known as Riesz representation theorem for continuous

linear functionals.
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Remark 5.1.6 (Well-posed 2nd-order linear elliptic variational problems)

For instance, thanks to the Poincaré-Friedrichs inequality from Thm. 2.3.31, Ass. 5.1.2 is satisfied for the

bilinear form of a second-order linear elliptic (pure) Dirichlet problem, see (2.5.16), (2.4.5), with

a(u, v) :=
∫

Ω
(α(x) grad u) · grad v dx , u, v ∈ H1

0(Ω) , (5.1.7)

and uniformly positive definite (→ Def. 2.2.18) coefficient tensor α : Ω 7→ Rd,d, see Section 2.2.3.

A second-order linear elliptic Neumann problem involves the sam bilinear form (5.1.7), but Ass. 5.1.2 holds

only on the smaller space

H1
∗(Ω) := {v ∈ H1(Ω):

∫

Ω
v(x)dx = 0} , (2.9.15)

thanks to second Poincaré-Friedrichs inequality from Thm. 2.9.20.

For the right hand side functional of a 2nd-order Neumann problem, see (2.10.2), (2.9.16),

ℓ(v) :=
∫

Ω
f (x)v(x)dx +

∫

∂Ω
h(x)v(x)dS , v ∈ H1(Ω) ,

we found in Section 2.3, see (2.3.30), and § 2.10.7, that f ∈ L2(Ω) and h ∈ L2(∂Ω) ensures Ass. 5.1.3.

Ass. 5.1.4 for a from (5.1.7) is a deep result in the theory of Sobolev spaces [3, Sect. 5.2.3, Thm. 2]. It has

been stated earlier as Thm. 2.3.27.

(5.1.8) Galerkin discretization error

Now consider Galerkin discretization of (3.2.3) (→ Section 3.2) based on Galerkin trial/test space

V0,N ⊂ V0 , N := dim V0,N < ∞ ,

which leads to the discrete variational problem

uN ∈ V0,N : a(uN , vN) = ℓ(vN) ∀vN ∈ V0,N . (3.2.8)

Thm. 3.2.9 guarantees existence and uniqueness of the Galerkin solution uN ∈ V0,N

Goal: Bound relevant norm of discretization error u− uN

Here: Relevant norm = energy norm ‖·‖
a

Remember why the energy norm is a “relevant norm”:
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➣ Bounds of ‖u− uN‖a provide bounds for the error in energy , see § 1.6.8, (1.6.11)

|J(u)− J(uN)| = 1
2 |a(u, u)− a(uN , uN)|=| 12a(u + uN , u− uN)|
(2.2.44)

≤ 1
2‖u− uN‖a · ‖u + uN‖a .

(No doubt, energy is a key quantity for the solution of an equilibrium problem, which is defined as the

minimizer of a potential energy functional.)

Other “relevant norms” were discussed in Section 1.6.1,Section 2.3:

• the mean square norm or L2(Ω)-norm, see Def. 2.3.4,

• the supremum norm or L∞(Ω)-norm, see Def. 1.6.5.

(5.1.9) Bounds for error of Galerkin solutions in energy norm

The Galerkin approach allows a remarkably simple bound of the energy norm of the discretization error

u− uN :

a(u, v) = ℓ(v) ∀v ∈ V0 ,
a(uN , vN) = ℓ(v) ∀vN ∈ V0,N

V0,N⊂V0
=⇒ a(u− uN , vN) = 0 ∀vN ∈ V0,N .

Galerkin orthogonality

a(u− uN , vN) = 0 ∀vN ∈ V0,N . (5.1.10)

[Geometric meaning for inner product a(·, ·)→]
Fig. 194

eN := u− uN

V0

V0,N

u

uN

Supplement 5.1.11.

In linear algebra we learned that an symmetric positive definite bilinear form (→ Def. 2.2.40) on a (finite-

dimensional) vector spaces induces a Euclidean geometry with meaningful notions of length (→ Def. 2.2.43)

and angle. This carries over to Hilbert spaces and makes it possible for us to draw “geometric” pictures

like Fig. 194. △

Parlance: Discretization error eN := u− uN “a(·, ·)-orthogonal” to discrete trial/test space VN

Remark 5.1.12 (Pythagoras’ theorem)

Fig. 195

eN := u− uN

V0

V0,N

u

uN

vN

If a(·, ·) is inner product on V “Pythagoras’ theorem” tells

us, see Fig. 195:

‖u− vN‖2
a
= ‖u− uN‖2

a
+ ‖uN − vN‖2

a
. (5.1.13)

This is immediate from (5.1.10) and the bilinearity of

a(·, ·).
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In Euclidean geometry: the point in a hyperplane nearest to a given point is its orthogonal projection onto

the hyperplane. The next theorem states this for the inner product a(·, ·) and V0,N instead of a hyperplane,

see Fig. 195 for an illustration.

Notice that (5.1.13) with vN = 0 gives a simple formula for computation of energy norm of Galerkin

discretization error in numerical experiments with known solution u of (3.2.3) and uN of (3.2.8):

‖u− uN‖2
a
= ‖u‖2

a
− ‖uN‖2

a
. (5.1.14)

Theorem 5.1.15. Cea’s lemma

Under Ass. 5.1.2–Ass. 5.1.4 the energy norm of the Galerkin discretization error for (3.2.3) satis-

fies

‖u− uN‖a = inf
vN∈V0,N

‖u− vN‖a .

Proof. Use bilinearity of a and Galerkin orthogonality (5.1.10): for any vN ∈ V0,N

‖u− uN‖2
a
= a(u− uN , u− uN) = a(u− vN , u− uN) + a(vN − uN , u− uN)︸ ︷︷ ︸

=0

.

Next, use the Cauchy-Schwartz inequality for the inner product a:

a(u, v) ≤ ‖u‖
a
‖v‖

a
∀u, v ∈ V0 .

‖u− uN‖2
a
≤ ‖u− vN‖a · ‖u− uN‖a ,

and cancel one factor ‖u− uN‖a.
✷

An alternative proof can invoke Pythagoras’ theorem (5.1.13):

(5.1.13) ⇒ ‖u− uN‖2
a
= ‖u− vN‖2

a
− ‖uN − vN‖2

a
≤ ‖u− vN‖2

a
∀vN ∈ V0,N .

We highlight an obvious, but fundamental consequence of Thm. 5.1.15:

Optimality of Galerkin solutions:

‖u− uN‖a
︸ ︷︷ ︸

↑

= inf
vN∈V0,N

‖u− vN‖a
︸ ︷︷ ︸

↑

, (5.1.17)

((energy) norm of) discretization error best approximation error

☞ As regards the energy norm, the Galerkin solution is the best possible solution we can obtain

in a given trial space.

Thus, Cea’s lemma Thm. 5.1.15 permits us to assess accuracy of Galerkin solution w.r.t. the energy norm

‖·‖
a

by just studying the capability of functions in V0,N to approximate u!
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(5.1.18) More accurate solutions by refinement

Thm. 5.1.15 “Monotonicity” of best approximation: consider different trial/test spaces

V0,N , V ′0,N ⊂ V0 ,

V0,N ⊂ V ′0,N

⇒ inf
vN∈V ′0,N

‖u− vN‖a ≤ inf
vN∈V0,N

‖u− vN‖a .

Thus, when we measure the discretization error in the energy norm we can

enhance accuracy by simply enlarging (“refining”) the trial space.

(5.1.19) Refinement of finite element spaces

Now return to Lagrangian finite element (→ Section 3.5) Galerkin discretization of linear 2nd-order elliptic

variational problems.

How to achieve refinement of a (Lagrangian) FE space ?

• h-refinement: replaceM (underlying V0,N) → M′ (underlying larger discrete trial space V ′0,N′)

Example 5.1.20 (Regular/uniform refinement of triangular mesh in 2D)

Fig. 196
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 2D triangular mesh

 # Vertices  :  45,      # Elements  :  64,      # Edges  :  108 Fig. 197
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 2D triangular mesh

 # Vertices  :  153,      # Elements  :  256,      # Edges  :  408 Fig. 198
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 2D triangular mesh

 # Vertices  :  561,      # Elements  :  1024,      # Edges  :  1584

Fig. 199

K

T1
T2

T3

T4

Regular refinement of triangle K into four congruent triangles T1, T2, T3, T4

➣ Creates so-called nested meshes

(Each cell of the coarse meshM′ is a union of cells of the fine meshM)

S0
p(M) ⊂ S0

p(M′) ,

that is, h-refinement through global regular refinement is a true refinement in the sense that its creates a

larger finite element space, which contains the original finite element space.
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• p-refinement: replace V0,N := S0
p(M), p ∈ N with V ′0,N := S0

p+1(M) ⇒ V0,N ⊂ V ′0,N

The extreme case of p-refinement amounts to the use of global polynomials on Ω as trial and test functions

➣ (polynomial) spectral Galerkin method, see Section 1.5.2.1.

Combination of h-refinement and p-refinement ? OF COURSE (hp-refinement, [7])

Example 5.1.21 (Global regular refinement in BETL)

The implementation of the class betl2::volume2dGrid::hybrid::Grid in BETL provides the member func-

tion

void globalRefine( i n t numRefines);

that carries out numRefines global regular refinement steps of the initial mesh. So far, it is only imple-

mented for triangular meshes.

To perform refinements, additional information about the geometry of the object, that is approximated by

the initial mesh, is needed. In BETL, this is provided via the so-called GeometryMapper. The only addi-

tional geometry specification that is implemented so far is the specification for a disc (see SphereMapper

in Library/grid/geometry_sphere_mapper.hpp), projecting the new vertices onto the sphere.

If no specific geometry information is known, the IdentityMapper should be used for a specification (see

Library/grid/geometry_identity_mapper.hpp). For this choice, the new vertices will not be

transformed. See Code 5.1.22, Line 11-Line 21, for the usage of the GeometryMappers.

To access the different meshes created by refinement, one has to use different specializations of Grid-

ViewFactory:

t ypedef eth::grids::utils::GridViewFactory<grid_t,view> gridview_t;

• In order to access the bottom level, i.e. the finest grid, the so-called leaf view we define

t ypedef eth::grid::GridViewTypes::LeafView view;

• If we want to access higher level, i.e. coarser meshes, we have to rely on

t ypedef eth::grid::GridViewTypes::LevelView view;

In the latter case, in addition to the grid_ptr object, the instantiation also needs an integer i,

specifying the index of the level, see Code 5.1.22, Line 5. BETL adopts the convention that level i

represents the mesh after numRefines - i refinements.

C++11 code 5.1.22: Reading and refining a mesh with BETL ➺ GITLAB

1 // read mesh from file, see also Code 3.6.20

2 b ig : : Inpu t i n p u t ( basename ) ;

3 // wrap input interface around the given input

4 typedef b e t l 2 : : i n p u t : : I n p u t I n te r f a c e < b ig : : Inpu t > i n p I n t e r f a c e _ t ;

5 i n p I n t e r f a c e _ t i n p I n t e r f a c e ( i n p u t ) ;
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6 // instantiate the grid implementation as a dynamic object

7 typedef b e t l 2 : : volume2dGrid : : hybr id : : Gr id g r i d _ t ;

8 typedef s td : : shared_ptr < eth : : g r i d : : Grid < g r i d _ t : : g r i d T r a i t s _ t > >

g r i d _ p t r _ t ;

9 g r i d _ p t r _ t g r i d _ p t r ( new g r i d _ t ( i n p I n t e r f a c e ) ) ;

10 // Types for selecting details of refinement.

11 typedef b e t l 2 : : GeometryMapper< g r i d _ t : : g r i d T r a i t s _ t > geomBaseMapper_t ;

12 typedef b e t l 2 : : Ident i tyMapper < g r i d _ t : : g r i d T r a i t s _ t > geomMapper_t ;

13 typedef s td : : shared_ptr <geomBaseMapper_t> baseMapper_ptr_t ;

14 // get a reference to the member data of the grid managing the
refinement

15 auto& re fhand le r = g r i d _ p t r −> re f inement ( ) ;

16 // create an instance ot the geomMapper_t, which specifies

17 // the geometry used for the refinement.

18 baseMapper_ptr_t geomMapper ( new geomMapper_t ) ;

19 // select refinement procedure (only regular refinement available)

20 const auto e lementCo l lec t ion = g r i d _ p t r −> l e a f E n t i t i e s <0 >() ;

21 r e fhand le r . reg is terMapping ( geomMapper , e lementCo l lec t ion ) ;

22 // refine numRefines times

23 g r i d _ p t r −> globalRefine ( numRefines ) ;

24 // create a grid view factory of the finest level (leaf view)

25 typedef eth : : g r i d s : : u t i l s : : GridViewFactory< g r i d _ t ,

eth : : g r i d : : GridViewTypes : : LeafView > g r i d _ f a c t o r y _ t ;

26 g r i d _ f a c t o r y _ t grid_factory ( g r i d _ p t r ) ;

27 // get number of elements, edges and vertices from the leaf view

28 const in t numElements = grid_factory . getView ( ) . s ize ( 0 ) ;

29 const in t numEdges = grid_factory . getView ( ) . s ize ( 1 ) ;

30 const in t numNodes = grid_factory . getView ( ) . s ize ( 2 ) ;

The next code demonstrates the use of LevelViews in order to access intermediate refinement level of

a sequence of meshes created by refinement.

C++11 code 5.1.23: Accessing refined meshes in BETL, Code 5.1.22 cnt’d ➺ GITLAB

1 // fetch numbers of geometric entities for all levels starting with the
second finest, i.e. level 1

2 for ( i n t l ev = 1; lev <= numRefines ; ++ lev ) {

3 typedef eth : : g r i d s : : u t i l s : : GridViewFactory< g r i d _ t ,

4 eth : : g r i d : : GridViewTypes : : LevelView > l e v e l _ g r i d _ f a c t o r y _ t ;

5 l e v e l _ g r i d _ f a c t o r y _ t leve l_gr id_factory ( g r i d _ p t r , l ev ) ;

6 const in t levelNumElements = leve l_gr id_factory . getView ( ) . s ize ( 0 ) ;

7 const in t levelNumEdges = leve l_gr id_factory . getView ( ) . s ize ( 1 ) ;

8 const in t levelNumNodes = leve l_gr id_factory . getView ( ) . s ize ( 2 ) ;

9 }

Note that the loop of Line 2 traverses the meshes from fine to coarse.
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?! Review question(s) 5.1.24. (Estimates for Galerkin discretization error)

1. Explain the notion of “Galerkin orthogonality” and prove it for the Galerkin discretization of a linear

variational problem with symmetric positive definite bilinear form.

2. Let the bilinear form a : V ×V → R on a normed real vector space satisfy

|a(u, v)| ≤ C‖u‖‖v‖ ∀u, v ∈ V , |a(v, v)| ≥ γ‖v‖2 ∀v ∈ V ,

for some constants C > 0, γ > 0. Derive a bound for the norm ‖u− uN‖ of the Galerkin dis-

cretization error for a linear variational problem with bilinear form a in terms of the best approximation

error for its exact solution u ∈ V.

3. Give an example for a 2nd-order linear elliptic boundary value problem for −∆ for which finite el-

ement discretization by means of S0
1 (M), M a triangular mesh, will always produce the exact

solution.

4. Start from a hybrid mesh with nc cells, ne edges, and np vertices. Develop a formula that gives the

numbers of cells, edges, and vertices of the mesh created by k steps of regular refinement.

5.2 Empirical (Asymptotic) Convergence of FEM

(5.2.1) Introduction and fundamental notions

Already in Section 1.6.2 we examined with the “convergence” of approximate solutions obtained through

discretization. Recall that studying convergence boils down to determining dependence of some norm of

the discretization error on a discretization parameter (→ § 1.6.22).

In this section we study the convergence of Galerkin solutions obtained from Lagrangian finite element

discretization of linear scalar 2nd-order elliptic variational problems (→ Section 2.9) empirically . This

means that we conduct numerical experiments, in which we measure norms of the discretization errors.

Of course, this can be done only for finite sequences of discrete models. However, if these cover a

sufficiently wide range of discretization parameters, they will provide evidence of general laws governing

convergence. We have already seen this in Exp. 1.6.23 and Exp. 1.6.35. Yet, Exp. 1.6.34 warns that one

must not jump to premature conclusions from poorly chosen sample sets of discretization parameters.

Our model problem: Dirichlet problem for Poisson equation on a polygonal domain Ω ⊂ R2:

−∆u = f ∈ L2(Ω) in Ω , u = g ∈ C0(∂Ω) on ∂Ω , (5.2.2)

+ Lagrangian finite element discretization on triangular meshes (→ Section 3.5.1).

From Section 1.6.2 recall✎
✍

☞
✌

that convergence is an asymptotic notion with focus on infinite sequences of discrete models associ-

ated with a sequence of discretization parameters that tends to a limit value.

Focus on asymptotics entails studying a
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norm of the discretization error as function of a (real, cardinal) discretization parameter.

The discretization parameter must be linked to the resolution (“capability to approximate generic solution”)

of the Galerkin trial/test space V0,N. Possible choices are

✦ the number of unknowns N := dim V0,N as a measure of the “cost” of a discretization, see Sec-

tion 1.6.2. The implied limit is N → ∞.

✦ the maximum “size” of mesh cells, expressed by the mesh width hM (→ Def. 5.2.3), see below. The

natural limit is hM → 0.

✦ the local polynomial degree p in the limit p→ ∞, in the case of p-refinement.

Definition 5.2.3. Mesh width

Given a meshM = {K}, its mesh width hM is defined as

hM := max{diam K: K ∈ M} , diam K := max{|p− q|: p, q ∈ K} .

This generalizes the concept of “mesh width” introduced in Section 1.5.2.2.

Also remember

• the two main types of asymptotic converge (→ Def. 1.6.24, [5, Def. 4.1.31]):

algebraic convergence and exponential convergence.

• how to gather qualitatively and quantitative information about convergence from error norms mea-

sured in a numerical experiment, see § 1.6.27, [5, Rem. 4.1.33].

Remark 5.2.4 (Approximate computation of norms (II), see also Rem. 1.6.20)

Even if the exact solution u of a boundary value problem is known and a finite element solution uN , it will

usually be all but impossible to determine the exact value of ‖u− uN‖ for all relevant norms like ‖·‖L2(Ω),

|·|H1(Ω), ‖·‖L∞(Ω), etc.

In the case of norms involving an integral ‖u− uN‖ has to be computed by means of numerical quadrature,

which will boil down to the cell-wise application of a local quadrature rule (3.6.132), as discussed in Sec-

tion 3.6.5.

Danger: The inevitable quadrature error may dominate the discretization error!

Safeguard: (Bolstered by theory) Chose local quadrature of “sufficiently high order”!

Guideline: Chose order 2p + 1, when using finite element methods based on local polynomial degree p.

In this case and for h-refinement the quadrature error will shrink faster than the finite element discretization

error and it will not “pollute” the observed asymptotic behavior of ‖u− uN‖L2(Ω), |u− uN |H1(Ω).

All examples in this section rely on “overkill quadrature”: the order of the local quadrature rule is much

higher than even demanded by the above guideline. Hence, the impact of quadrature errors can be

ignored.
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Example 5.2.5 (Approximate computation of norms of the discretization errors in BETL)

Code 5.2.6 listed below demonstrates how to compute L2(Ω)-norm and H1(Ω)-seminorm (energy norm)

of the discretization error for Lagrangian finite elements.

It handles the following three steps:

✦ Reconstruction of the finite element solution (for the L2(Ω)-norm) and its gradient (for the H1(Ω)-
seminorm) from a vector of basis expansion coefficients, see Code 5.2.6, Line 2-Line 10. The

interpretation of the entries of the coefficient vector is supplied by an associated FESpace object.

✦ Definition of the reference solution. In this example we will use an analytic solution as a reference

solution (exact solution), see Code 5.2.6, Line 12-Line 23.

✦ Actual computation of the error norm, see Code 5.2.6, Line 25-Line 26, based on the data prepared

in the previous steps.

For all steps, so-called grid functions are used in BETL:

• In the reconstruction-step, objects of type InterpolationGridFunction are used, see

Library/functional/interpolation_grid_function.hpp,

• while for the reference solution we use the class type fem::AnalyticalGridFunction, see

Library/functional/analytical_grid_function.hpp.

The instantiation of an object of class type InterpolationGridFunction needs a eth::grids::utils::GridViewFactory

object, a fe::FESpace object and a vector of type Eigen::Matrix< numeric_t, Eigen::Dynamic, 1 >

whose length corresponds to the number of d.o.f. stored in the fe::FESpace object. It reconstructs the

finite element solution from the supplied vector.

The class type fem::AnalyticalGridFunction was already used in Code 3.6.184, Line 18, to create a grid

function describingthe Dirichlet data. Remember that in addition to a eth::grids::utils::GridViewFactory

object, the class fem::AnalyticalGridFunction requires an functor as input argument that provides an

evaluation operator

result_t opera tor() (globalCoord_t x) const;

The method fem::makeAnalyticalGridFunction from ➺ GITLAB acts as a wrapper so that analytical grid

functions can also be built from lambda functions.

Grid functions provide the following member functions:

✦ The bracket operator operator()(q,e) does an evaluation on the grid of the underlying function

f, i.e. f(q,e), where q represents a local quadrature point and e corresponds to a cell.

✦ inner(g) takes another grid function g and calculates the inner product 〈 f , g〉L2(Ω) based on a

quadrature rule defined by the following predefined QuadRuleList, see § 3.6.164 for a definition:

using DefaultQuadratureList = QuadRuleList<

QuadRule< eth::base::RefElType::SEGMENT, 6 >,

QuadRule< eth::base::RefElType::TRIA ,25 >,

QuadRule< eth::base::RefElType::QUAD ,25 > >

✦ norm() calculates the L2(Ω)-norm of the underlying function f , i.e. ‖ f‖L2(Ω), using the above

mentioned DefaultQuadratureList.
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If the user wants to use other quadrature rules to evaluate an inner product of two grid functions, the class

InnerProduct, that is called by the member functions above, can be used directly, see Library/functional/grid_function

For the error computations, we will additionally need operations that work for all grid functions (see

Code 5.2.6, Line 25). The operations are defined in Library/functional/grid_function_operations

Let f and g be two grid functions and λ be a scalar of a certain type. Then the following operations (and

combinations of them) can be performed:

✦ f + g: returns the grid function representing the sum of the two grid functions.

✦ f − g: returns the grid function representing the difference of the two grid functions.

✦ λ ∗ f : returns the grid function representing the grid function f scaled by a scalar λ.

The partial listing of the mainfile ➺ GITLAB shown in Code 5.2.6 computes the discretisation error of the

Galerkin solution of a Dirichlet boundary value problem by means of linear Lagrangian finite elements on

a sequence of meshes that is obtained via the global refinement routine from Code 5.1.22. Listed are only

the error computations on the leaf view, i.e. the finest level 0. For the other levels, the computations are

analogous and can be found in the mainfile itself.

C++11 code 5.2.6: Computation of L2(Ω)- and H1(Ω)-norm of the finite element discretiza-

tion error ➺ GITLAB

1 // types for handling the finite element solution and its gradient

2 typedef Interpolat ionGridFunction < g r i d _ fa c to r y _ t , typename

3 DH_t : : fespace_t , numeric_t > func_t ;

4 typedef Interpolat ionGridFunction < g r i d _ fa c to r y _ t , typename

5 DH_t : : fespace_t , numeric_t , fe : : FEDi f f : : Grad> grad_func_t ;

6 // wrap the finite element solution into a grid function

7 // (sol represents the coefficient vector of the solution)

8 func_ t uh ( grid_factory , dh . fespace ( ) , so l ) ;

9 // get the gradient of the finite element solution

10 grad_func_t grad_uh ( grid_factory , dh . fespace ( ) , so l ) ;

11 // Define the analytic solution from a lambda function

12 const auto sol_exact_double = [ ] ( const coord_t& x ) {

13 Eigen : : Matr ix <numeric_t , 1 , 1> res ; res << 0.5∗cos ( x ( 0 ) )∗cos ( x ( 1 ) ) ;

return res ; } ;

14 // create an AnalyticalGridFunction object

15 const auto exactFunc =

16 fem : : makeAna ly t ica lGr idFunc t ion ( grid_factory , so l_exact_double ) ;

17 // define the gradient of the analytic solution

18 const auto grad_sol_exact_double = [ ] ( const coord_t& x ) {

19 Eigen : : Matr ix <numeric_t , 2 , 1> res ;

20 res << −0.5∗ s in ( x ( 0 ) ) ∗cos ( x ( 1 ) ) ,−0.5∗cos ( x ( 0 ) )∗ s in ( x ( 1 ) ) ; return

res ; } ;

21 // create another AnalyticalGridFunction object

22 const auto grad_exactFunc =

23 fem : : makeAna ly t ica lGr idFunc t ion ( grid_factory , grad_sol_exact_double ) ;

24 // Compute the L2(Ω)/H1(Ω)-norm of the error

25 L2_er ror_vec tor ( numRefines ) = ( uh − exactFunc ) . norm ( ) ;

26 H1_error_vector ( numRefines ) = ( grad_uh − grad_exactFunc ) . norm ( ) ;
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Experiment 5.2.7 (Convergence for linear and quadratic Lagrangian finite elements in energy

norm)

Setting: Ω =]0, 1[2, f (x1, x2) = 2π2 sin(πx1) sin(πx2), x ∈ Ω, g = 0

➢ Smooth solution u(x, y) = sin(πx) sin(πy).

• Galerkin finite element discretization based on triangular meshes and

– linear Lagrangian finite elements, V0,N = S0
1,0(M) ⊂ H1

0(Ω) (→ Section 3.3),

– quadratic Lagrangian finite elements, V0,N = S0
2,0(M) ⊂ H1

0(Ω) (→ Ex. 3.5.3),

• quadrature rule (3.6.162) for assembly of local load vectors (→ Section 3.6.5),

Monitored: H1(Ω)-semi-norm (→ Def. 2.3.23) of the Galerkin discretization error u− uN

Approximate (∗) computation of |u− uN |H1(Ω) on a sequence of meshes (created by successive

regular refinement (→ Ex. 5.1.20) of coarse initial mesh)

(∗): use of local quadrature rule (3.6.162) (on current FE mesh)
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 2D triangular mesh
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Unstructured triangular meshes of Ω =]0, 1[2 (two coarsest specimens)
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Again, recall the two types of convergence (algebraic convergence vs. exponential convergence) from

Def. 1.6.24 and how to detect them in a numerical experiment by inspecting appropriate graphs, see

§ 1.6.27.

Observations: • Algebraic rates of convergence in terms of N and h
• Quadratic Lagrangian FE converge with double the rate of linear Lagrangian FE

Recall: Rates of algebraic convergence can be estimated by linear least squares fitting→ Code 1.6.30.

In Fig. 200 and Fig. 201 these estimated rates are indicated by the slopes of hypothenuses of triangles

(ger. “Steigungsdreieck”). We find

linear Lagrangian finite elements: |u− uN |H1(Ω) = O(hM) = O(N−
1
2 )

quadratic Lagrangian finite elements: |u− uN |H1(Ω) = O(h2
M) = O(N−1)

Experiment 5.2.8 (Convergence of linear and quadratic Lagrangian finite elements in L2-

norm)

Setting as above in Exp. 5.2.7, Ω =]0, 1[2.

Monitored: asymptotics of the L2(Ω)-semi-norm of the Galerkin discretization error (approximate compu-

tation of ‖u− uN‖L2(Ω) by means of local quadrature rule (3.6.162) on a sequence of meshes created by

successive regular refinement (→ Ex. 5.1.20) of coarse initial mesh).
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Fig. 202
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Observations: • Linear Lagrangian FE (p = 1) ➽ ‖u− uN‖0 = O(h2
M) = O(N−1)

• Quadratic Lagrangian FE (p = 2) ➽ ‖u− uN‖0 = O(h3
M) = O(N−1.5)

For the “conversion” of convergence rates with respect to the mesh width hM and N := dimS0
p(M),

note that in 2D for Lagrangian finite element spaces with fixed polynomial degree (→ Section 3.5) and

meshes created by global (that is, carried out everywhere) regular refinement

N = O(h−2
M) . (5.2.9)

See Section 5.3.5, page 414 for further discussion, (5.3.66) for a more general relationship.

Experiment 5.2.10 (h-convergence of Lagrangian FEM on L-shaped domain)

Setting: model problem (5.2.2) on Ω =] − 1, 1[2\(]0, 1[×] − 1, 0[), exact solution (in polar coordinates,

see § 2.4.24)

u(r, ϕ) = r
2/3 sin(2/3ϕ) ➢ f = 0, g = u|∂Ω.

Fig. 204

Exact solution u

Fig. 205

Norm of gradient: ‖grad u‖
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Note: grad u has a so-called singularity at 0, that is, “‖grad u(0)‖ = ∞”.

• Galerkin finite element discretization based on triangular meshes and

– linear Lagrangian finite elements, V0,N = S0
1,0(M) ⊂ H1

0(Ω) (→ Section 3.3),

– quadratic Lagrangian finite elements, V0,N = S0
2,0(M) ⊂ H1

0(Ω) (→ Ex. 3.5.3),

• linear/quadratic interpolation of Dirichlet data to obtain offset function u0 ∈ S0
p,0(M), p = 1, 2, see

Section 3.6.6, Ex. 3.6.174.

Sequence of meshes created by successive regular refinement (→ Ex. 5.1.20) of coarse initial mesh, see

Fig. 206 and Fig. 207.

Fig. 206
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Unstructured triangular meshes of Ω =]− 1, 1[2\(]0, 1[×]− 1, 0[) (two coarsest specimens)

Approximate computation of |u− uN |H1(Ω) by using local quadrature formula (3.6.162) on FE meshes.
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H1(Ω)-semi-norm of discretization error on “L-shaped” domain (−↔ p = 1, −↔ p = 2)

Observations: • For both p = 1, 2: ‖u− uN‖1 = O(N−1/3)
• No gain from higher polynomial degree
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Conjecture: singularity of grad u at x = 0 seems to foil faster algebraic convergence of quadratic La-

grangian finite element solutions!

Experiment 5.2.11 (Convergence of Lagrangian FEM for p-refinement)

✦ Model BVP as in Exp. 5.2.7 ➣ unit square domain Ω =]0, 1[2,

Exp. 5.2.10 ➣ L-shaped domain Ω =]− 1, 1[2\(]0, 1[×]− 1, 0[).

✦ Galerkin finite element discretization based on S0
p(M), p = 1, 2, 3, 5, 6, 7, 8, 9, 10, built on a fixed

coarse triangular mesh of Ω.

➤ p-refinement

Monitored: H1(Ω)-semi-norm (energy norm) and L2(Ω)-norm of discretization error as functions of poly-

nomial degree p and N := dimS0
p(M).

(Computation of norms by means of local quadrature rule of order 19!. This renders the error in norm

computations introduced by numerical quadrature negligible.)

Meaningful discretization parameters for asymptotic study of error norms:

✦ polynomial degree p for Lagrangian finite element space,

✦ N := dim V0,N as a measure of the “cost” of a discretization, see Section 1.6.2.
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Ω =]0, 1[2: behavior of |u− uN |H1(Ω) for different polynomial degrees.

Lagrangian FEM: p-convergence for smooth (analytic) solution

Observation:
exponential convergence of FE discretization error, cf. the behavior of the discretization

error of spectral collocation and polynomial spectral Galerkin methods in 1D, Exp. 1.6.23.
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Fig. 212
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Lagrangian FEM: p-convergence for solution with singular gradient (L-shaped domain)

Observation: Only algebraic convergence of FE discretization error!

The suspect: “singular behavior” of grad u at x = 0.

(5.2.12) Summary of observations

Observations on convergence of Galerkin finite element solutions of 2nd-order elliptic BVPs obtained by

means of Lagrangian finite elements:

✦ For h-refinement we generally observe algebraic convergence of H1(Ω)-/L2(Ω)-norms of the dis-

cretization errors in meshwidth/problem size.

✦ The rate of convergence seems to depend on

• the kind of error norm considered,

• properties of the exact solution u of the boundary value problem,

• the (uniform) polynomial degree of the Lagrangian finite element space.

✦ In general ‖u− uN‖L2(Ω) seems to converge faster than |u− uN |H1(Ω).

The following sections will be devoted to providing some mathematical underpinning for these observation,

which will yield deeper insights into the asymptotic behavior of finite element discretization errors.

5.3 A Priori Finite Element Error Estimates

(5.3.1) A priori versus a posteriori error estimates

We are interested in a priori estimates of norms of the discretization error u− uN , where u is the exact

solution of a linear 2nd-order elliptic boundary value problem and uN its finite element Galerkin approxi-

mation.

A priori estimate: bounds for error norms available before computing approximate solutions.

m
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A posteriori estimate: bounds for error norms based on an approximate solution

already computed.

We repeat our assumptions: The variational formulation of the elliptic boundary value problem leads to a

linear variational problem (3.2.3) with symmetric and positive definite bilinear form a (→ Ass. 5.1.2) and

a-continuous right hand side functional (→ Ass. 5.1.3).

(5.3.2) General policy for obtaining a priori error estimates in energy norm

➣ Results of Section 5.1 provide handle on a priori estimate for Galerkin discretization error:☛
✡

✟
✠Optimality (5.1.17) of Galerkin solution a priori error estimates

Thm. 5.1.15 ➤ Estimate energy norm of Galerkin discretization error u− uN by bounding the

best approximation error for exact solution u in finite element space:

‖u− uN‖a
︸ ︷︷ ︸

↑

≤ inf
vN∈V0,N

‖u− vN‖a
︸ ︷︷ ︸

↑

, (5.1.17)

(norm of) discretization error best approximation error

How to estimate best approximation error inf
vN∈V0,N

‖u− vN‖V ?

➣ Well, given solution u seek candidate function wN ∈ V0,N with

‖u− wN‖V ≈ inf
vN∈VN

‖u− vN‖V .

Natural choice: wN by interpolation/averaging of (unknown, but existing) u

Thus, the task of bounding the Galerkin discretization error is reduced to interpolation error esti-

mates.

5.3.1 Estimates for linear interpolation in 1D

In this section we first study interpolation error estimates in one spatial dimension, in order to elucidate

the general approach and the structure of the estimates.

Computational domain (→ Section 1.4): interval Ω = [a, b]

Given: mesh of Ω (→ Section 1.5.2.2): M := {]xj−1, xj[: j = 1, . . . , M}, M ∈ N
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Fig. 214 x1 x2 x3 · · ·a b

u
Piecewise linear interpolant of u ∈ C0([a, b])

I1u ∈ S0
1 (M) , (5.3.3)

(I1u)(xj) = u(xj) , j = 0, . . . , M . (5.3.4)

➣ [5, Section 3.3.2]

Goal: Bound suitable norm (→ Section 1.6.1) of interpolation error u− I1u
in terms of geometric quantities (∗) characterizingM.

(∗): A typical such quantity is the mesh width hM := max
j
|xj − xj−1|, cf. Def. 5.2.3.

Now we investigate different norms of the interpolation error. Beforehand, recall the various norms on

spaces of (bounded/integrable) functions, the supremum norm ‖·‖L∞(]a,b[) (→ Def. 1.6.5), the L2-norm

‖·‖L2(]a,b[) (→ Def. 1.6.7), and the H1-(semi)norm |·|H1(]a,b[) (→ Def. 1.6.14, see also Def. 2.3.23).

✦ ‖u− I1u‖L∞([a,b]), see [5, Section 4.1.2] and [5, Section 4.5.1]: from [5, Thm. 4.1.37] for n = 1: for

u ∈ C2([a, b])

max
xj−1≤x≤xj

u(x)− (I1u)(x) = 1
4 u′′(ξt)(xj − xj−1)

2 , for some ξt ∈]xj−1, xj[ , (5.3.5)

with local linear interpolant (I1u)(x) =
x− xj−1

xj − xj−1
u(xj)−

xj − x

xj − xj−1
u(xj−1) . (5.3.6)

(5.3.5) interpolation error estimate in L∞([a, b])

‖u− I1u‖L∞([a,b]) ≤ 1
4h2
M‖u′′‖L∞([a,b]) . (5.3.7)

This is obtained by simply taking the maximum over all local norms of the interpolation error.

However, we should actually target the energy norm. Hence, we also have to study other norms of the

interpolation error:

✦ norm ‖u− I1u‖L2([a,b]): All mesh cells contribute to this norm: with I1u from (5.3.6)

‖u− I1u‖2
L2([a,b]) =

M

∑
j=1

‖u− I1u‖2
L2(]xj−1,xj[)

=
M

∑
j=1

xj∫

xj−1

|(u− I1u)(x)|2 dx . (5.3.8)

➣ Idea: localization

(Estimate error on individual mesh cells and sum local bounds)

This idea is very natural for piecewise linear interpolation, because it is local in the sense that I1u on a cell

K depends only on the values of u on K!

Recall integrating by parts

1∫

0

u(ξ)v′(ξ)dξ = −
1∫

0

u′(ξ)v(ξ) + (u(1)v(1) − u(0)v(0))︸ ︷︷ ︸
boundary terms

∀u, v ∈ C1
pw([0, 1]) . (1.3.40)
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Apply this formula twice, for u ∈ C2([xj−1, xj]), x ∈ [xj−1, xj], thus removing derivatives from u:

x∫

xj−1

(xj − x)(ξ − xj−1)

xj − xj−1
u′′(ξ)dξ +

xj∫

x

(x− xj−1)(xj − ξ)

xj − xj−1
u′′(ξ)dξ

= −
x∫

xj−1

xj − x

xj − xj−1
u′(ξ)dξ +

(xj − x)(x− xj−1)

xj − xj−1
u′(x)

+

xj∫

x

x− xj−1

xj − xj−1
u′(ξ)dξ − (xj − x)(x− xj−1)

xj − xj−1
u′(x)

=
xj − x

xj − xj

(
u(xj−1)− u(x)

)
+

x− xj−1

xj − xj−1

(
u(xj)− u(x)

)

=
xj − x

xj − xj−1
u(xj−1) +

x− xj−1

xj − xj−1
u(xj)

︸ ︷︷ ︸
=I1u(x)

−u(x) . (5.3.9)

We also appealed to the fundamental theorem of calculus, which is (1.3.40) for v ≡ 1. What we have

obtained is a (kernel) representation formula for the local interpolation error I1u− u of the form

(I1u− u)(x) =
∫ xj

xj−1

G(x, ξ) u′′(ξ)dξ . (5.3.10)

with G(x, ξ) =





(xj − x)(ξ − xj−1)

xj − xj−1
for xj−1 ≤ ξ < x ,

(x− xj−1)(xj − ξ)

xj − xj−1
for x ≤ ξ ≤ xj .

, which satisfies

|G(x, ξ)| ≤ |xj − xj−1| ⇒
xj∫

xj−1

G(x, ξ)2 dξ ≤ |xj − xj−1|3 . (5.3.11)

The following figures display the kernel function G for 1D linear interpolation and for xj−1 = 0 , xj = 1 .
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The next step relies on the Cauchy-Schwarz inequality (2.2.44) in the form
∫

Ω
u(x)v(x)dx ≤ ‖u‖L2(Ω)‖v‖L2(Ω) ∀u, v ∈ L2(Ω) , (1.6.13)
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which is applied to the representation (5.3.10):

xj∫

xj−1

|u(x)− I1u(x)|2 dx =

xj∫

xj−1

∣∣∣∣∣∣∣

xj∫

xj−1

G(x, ξ) u′′(ξ)dξ

∣∣∣∣∣∣∣

2

dx

(2.3.30)

≤
xj∫

xj−1





xj∫

xj−1

G(x, ξ)2 dξ ·
xj∫

xj−1

|u′′(ξ)|2 dξ





dx .

(5.3.12)

As a consequence of (5.3.11) we can drop the kernel function G from right hand side of (5.3.12)

(5.3.11)⇒ ‖u− I1u‖2
L2(]xj−1,xj[)

=

xj∫

xj−1

|u(x)− I1u(x)|2 dx ≤ |xj − xj−1|4
xj∫

xj−1

|u′′(ξ)|2 dξ . (5.3.13)

Apply this estimate on [xj−1, xj], note that |xj − xj−1| ≤ hM for any j, sum over all cells of the mesh

M and take square root.

(5.3.13) ⇒ ‖u− I1u‖L2([a,b]) ≤ h2
M
∥∥u′′

∥∥
L2([a,b])

. (5.3.14)

✦ norm |u− I1u|H1([a,b]): In light of Def. 2.3.23 of the H1([a, b])-seminorm, we first differentiate repre-

sentation formula (5.3.10): for xj−1 < x < xj, using the explicit piecewise linear representation of G,

d

dx
(I1u− u)(x) =

xj∫

xj−1

∂G

∂x
(x, ξ)u′′(ξ)dξ

=

xj∫

xj−1

− ξ − xj−1

xj − xj−1
u′′(ξ)dξ +

xj∫

xj−1

xj − ξ

xj − xj−1
u′′(ξ)dξ .

Again, the Cauchy-Schwarz inequality (1.6.13) is useful and yields

xj∫

xj−1

∣∣∣∣
d

dx
(I1u− u)(x)

∣∣∣∣
2

dx =

xj∫

xj−1

∣∣∣∣∣∣∣

xj∫

xj−1

∂G

∂x
(x, ξ)u′′(ξ)dξ

∣∣∣∣∣∣∣

2

dx

≤
xj∫

xj−1





xj∫

xj−1

∣∣∣∣
∂G

∂x
(x, ξ)

∣∣∣∣
2

︸ ︷︷ ︸
≤1

dξ ·
xj∫

xj−1

|u′′(ξ)|2 dξ





dx .

(5.3.15)

|u− I1u|2H1(]xj−1,xj[)
≤ (xj − xj−1)

2

xj∫

xj−1

|u′′(ξ)|2 dξ . (5.3.16)
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As above, apply this estimate on [xj−1, xj], use |xj − xj−1| ≤ hM, sum over all cells of the meshM
and take square root.

(5.3.16) ⇒ |u− I1u|H1([a,b]) ≤ hM
∥∥u′′

∥∥
L2([a,b])

. (5.3.17)

What we learn from this example:

1. We have to rely on smoothness of the interpolant u to obtain bounds for norms of the interpolation

error. In the above estimates, we have to take for granted boundedness/square integrability of the

second derivative.

2. The bounds for the norms of the interpolation error involve norms of derivatives of the interpolant.

3. For smooth u we find algebraic convergence (→ Def. 1.6.24) of norms of the interpolation error in

terms of mesh width hM → 0.

5.3.2 Error estimates for linear interpolation in 2D

Given:
✦ polygonal domain Ω ⊂ R2

✦ triangular meshM of Ω

(→ Def. 3.4.2)

Fig. 217

Ω

Section 5.3.1 introduced piecewise linear interpolation on a mesh/grid in 1D. The next definition gives the

natural 2D counterpart on a triangular mesh, which is closely related to the piecewise linear reconstruction

(interpolation) operator from (4.2.15), see Fig. 190,Fig. 191.

Definition 5.3.18. Linear interpolation in 2D

The linear interpolation operator I1 : C0(Ω̄) 7→ S0
1 (M) is defined by

I1u ∈ S0
1 (M) , I1u(p) = u(p) ∀p ∈ V(M) .

!
This is a valid definition only because a function vN ∈ S0

1 (M) is uniquely determined by its

values in the vertices of the mesh (→ 3.3.10), which are the interpolation nodes for the linear

Lagrangian finite element space.

Recalling the definition of the nodal basis B = {bp
N : p ∈ V(M)} of S0

1 (M) from (3.3.13), where b
p
N is

the “tent function” associated with node p, an equivalent definition is, cf. (3.6.175),

I1u = ∑
p∈V(M)

u(p) b
p
N , u ∈ C0(Ω) . (5.3.19)
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Task: ☞ For “sufficiently smooth” u : Ω 7→ R (↔ u ∈ C∞(Ω̄) to begin with) estimate

interpolation error norm ‖u− I1u‖H1(Ω) .

Interpolation error estimation: localization trick

Again, linear interpolation in 2D according to Def. 5.3.18 is local in the sense that I1u inside a

triangle K depends only on u on K.

Idea: Localization

I1 local ➣ first, estimate ‖u− I1u‖2
H1(K), K ∈ M,

then, global estimate via summation as in Section 5.3.1.

➣ Focus on single triangle K ∈ M

Crucial for localization to work: linear interpolation operator I1 : C0(Ω̄) 7→ S0
1 (M) can be defined purely

locally by

I1u|K = u(a1)λ1 + u(a2)λ2 + u(a3)λ3 , (5.3.21)

for each triangle K ∈ M with vertices a1, a2, a3 (λk =̂ barycentric coordinate functions = local shape

functions for S0
1 (M), see Fig. 99).

(5.3.22) Representation formula for interpolation error

The main steps parallel those for the 1D case in Section 5.3.1 though the technicalities are much more

intricate. We start with a representation formula for local interpolation errors, cf. (5.3.9). Its derivation

solely relies on elementary formulas from calculus.

Fig. 218

a1

a2

a3

K

ω1

ω2

ω3

u ∈ C2(K̄): by mean value formula ∀x ∈ K,

u(a j) = u(x) + grad u(x) · (a j − x)+
∫ 1

0
(a j− x)⊤D2u(x+ ξ(a j− x))(a j− x)(1− ξ)dξ ,

(5.3.23)

D2u(x) =

(
∂2u
∂x1

2 (x)
∂2u

∂x1∂x2
(x)

∂2u
∂x1∂x2

(x) ∂2u
∂x2

2 (x)

)
=̂ Hessian.

The formula (5.3.23) is easily verified by applying integration by parts (1.3.40) in the form

f (b)− f (a) =
[
ξ f ′(ξ)

]b
a
−
∫ b

a
ξ f ′′(ξ)dξ = f ′(a)(b − a) +

∫ b

a
(b− ξ) f ′′(ξ)dξ .

to the function f (t) = u(ta j + (1− t)x) with a = 0, b = 1. Use the multi-dimensional chain rule to

express the derivatives of f through derivatives of u:

f ′(t) = grad u(ta j + (1− t)x) · (a j − x) ,

f ′′(t) = (a j − x)⊤D2u(ta j + (1− t)x)(a j − x) .
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Next, use (5.3.23) to replace u(a j) in the formula (5.3.21) for local linear interpolation. Also use the

identities for the barycentric coordinate functions

3

∑
j=1

λj(x) = 1 , x =
3

∑
j=1

ajλj(x) . (5.3.24)

I1u(x) =
3

∑
j=1

u(a j)λj(x) = u(x) ·
3

∑
j=1

λj(x)

︸ ︷︷ ︸
=1

+ grad u(x) ·
3

∑
j=1

(a j − x)λj(x)

︸ ︷︷ ︸
=0

+R(x) ,

with R(x) :=
3

∑
j=1

(∫ 1

0
(a j − x)⊤D2u(x + ξ(a j − x))(a j − x)(1− ξ)dξ

)
λj(x) . (5.3.25)

Again, as in the case of (5.3.9) for 1D linear interpolation we have arrived at an integral representation

formula for the local interpolation error:

(u− I1u)(x) =
3

∑
j=1

(∫ 1
0 (a

j − x)TD2u(x + ξ(a j − x))(a j − x)(1− ξ)dξ
)

λj(x) . (5.3.26)

(5.3.27) Estimate for L2-norm of interpolation error

Together with the triangle inequality, the trivial bound |λj| ≤ 1 yields

‖u− I1u‖L2(K) ≤
3

∑
j=1



∫

K




1∫

0

(a j − x)TD2u(x + ξ(a j − x))(a j − x)(1− ξ)dξ




2

dx




1
2

.

To estimate an expression of the form

∫

K

(∫ 1

0
(a j − x)TD2u(x + ξ(a j − x))(a j − x)(1− ξ)dξ

)2

dx , (5.3.28)

we may assume, without loss of generality, that aj = 0.

➣ Task: estimate terms (where 0 is a vertex of K!)

∫

K

(∫ 1

0
x⊤D2u((1− ξ)x)x(1− ξ)dξ

)2

dx =
∫

K

(∫ 1

0
x⊤D2u(ξx)x ξ dξ

)2

dx .

Denote γ =̂ angle of K at vertex 0,

h =̂ length of longest edge of K.
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K is contained in the sector

S := {x = (r cos ϕ
r sin ϕ): 0 ≤ r < h, 0 ≤ ϕ ≤ γ}

Lemma 5.3.29. Auxiliary estimate on sector

For any ψ ∈ L2(S) holds

∫

S




1∫

0

|y|2ψ(τy)τ dτ




2

dy ≤ h4

8
‖ψ‖2

L2(S) .

Fig. 219

0
h

S

γ

Using polar coordinates (r, ϕ), ŝϕ = (cos ϕ
sin ϕ), see [8, Bsp. 8.5.3], and Cauchy-Schwarz inequality (2.3.30):

∫

S




1∫

0

|y|2]ψ(τy)τ dτ




2

dy =

γ∫

0

h∫

0




1∫

0

r2ψ(τrŝϕ)τ dτ




2

r drdϕ

=

γ∫

0

h∫

0




r∫

0

ψ(σŝϕ)σ dσ




2

r drdϕ ≤
γ∫

0

h∫

0

r∫

0

ψ2(σŝϕ)σ dσ ·
r∫

0

σ dσ r drdϕ

≤ 1
2

γ∫

0

h∫

0

ψ2(σŝϕ)σ dσdϕ ·
h∫

0

r3 dr .

Use |z⊤Ay| ≤ ‖A‖F|z||y|, A ∈ R
n,n, z, y ∈ R

n, and then apply § 5.3.27 with y := x− a j, τ = 1− ξ

‖u− I1u‖2
L2(K) ≤ 3

8h4
K

∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
2

L2(K)
, (5.3.30)

with Frobenius matrix norm

∥∥∥D2u(x)
∥∥∥

2

F
:=

2

∑
i,j=1

∣∣∣∣∣
∂2u

∂xi∂xj
(x)

∣∣∣∣∣

2

(→ [5, Def. 7.5.37]),

size of triangle hK := diam K := max{|p− q|: p, q ∈ K}

(5.3.31) Estimate of local H1-seminorm of the interpolation error

Estimate for gradient: from (5.3.23) we infer the local integral representation formula, which can also be

obtained by taking the gradient of (5.3.26).

grad I1u(x) =
3

∑
j=1

u(a j) grad λj(x)

=
3

∑
j=1

(
u(x) + grad u(x) · (a j − x) +

∫ 1

0
. . . dξ

)
grad λj(x)

= u(x)
3

∑
j=1

grad λj(x)

︸ ︷︷ ︸
=0

+
3

∑
j=1

(a j − x)⊤ grad λj(x)

︸ ︷︷ ︸
=I

· grad u(x) + G(x) ,
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with G(x) :=
3

∑
j=1

(∫ 1

0
(a j − x)⊤D2u(x + ξ(a j − x))(a j − x)(1− ξ)dξ

)

︸ ︷︷ ︸
cf. (5.3.28)

grad λj(x) .

Note that grad
3

∑
j=1

λj(x) = grad 1 = 0 and

3

∑
j=1

grad λj(x)(a
j − x)⊤ =

3

∑
j=1

grad λj(x)(a
j)⊤ = grad

( 3

∑
j=1

λj(x)a
j
)
= grad x = I . (5.3.32)

As an immediate consequence of the formulas from Section 3.3.5

grad λ1 = − |e1|
2|K| n1 =

1

2|K| (a
2 − a3)⊥ =

1

2|K|

(
a2

2 − a3
2

a3
1 − a2

1

)
,

grad λ2 = − |e2|
2|K| n2 =

1

2|K| (a
3 − a1)⊥ =

1

2|K|

(
a3

2 − a1
2

a1
1 − a3

1

)
,

grad λ3 = − |e3|
2|K| n3 =

1

2|K| (a
1 − a2)⊥ =

1

2|K|

(
a1

2 − a2
2

a2
1 − a1

1

)
,

we conclude

(3.6.119) ➤ | grad λj(x)| ≤
hK

2|K| , x ∈ K . (5.3.33)

‖grad(u− I1u)‖2
L2(K) ≤

h2
K

4|K|2 ‖R‖
2
L2(K)

(5.3.30)

≤ 3
8

h6
K

4|K|2
∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
2

L2(K)
. (5.3.34)

Summary of local interpolation error estimates for linear interpolation according to Def. 5.3.18:

Lemma 5.3.35. Local interpolation error estimates for 2D linear interpolation

For any triangle K and u ∈ C2(K) the following holds

‖u− I1u‖2
L2(K) ≤ 3

8 h4
K

∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
2

L2(K)
, (5.3.30)

‖grad(u− I1u)‖2
L2(K) ≤ 3

24

h6
K

|K|2
∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
2

L2(K)
. (5.3.34)

(5.3.36) Shape regularity

Note: the estimates of Lemma 5.3.35 are structurally similar to the 1D estimates (5.3.13) and (5.3.16) in

the sense that the bounds involve L2-norms of second derivatives and factors depending on the cell size.

New aspect compared to Section 5.3.1: shape of K enters error bounds of Lemma 5.3.35.
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This dependence on shape can be reduced to a single number:

Definition 5.3.37. Shape regularity measure

For a simplex K ∈ R
d we define its shape regularity measure as the ratio

ρK := hd
K : |K| ,

and the shape regularity measure of a simplicial meshM = {K}

ρM := max
K∈M

ρK .

Important:

☛
✡

✟
✠shape regularity measure ρK is an invariant of a similarity class of triangles.

(= if a triangle is transformed by scaling, rotation, and translation, the shape regularity measure does not

change)

➣ Sloppily speaking, ρK depends only on the shape, not the size of K

For triangle K: ρK large ⇔ K “distorted” ⇔ K has small angles

Fig. 220

ρk small

Fig. 221

ρk large

Fig. 222

ρk large

The shape regularity measure ρM is often used to gauge the quality of meshes produced by mesh gen-

erators.

Now we return to estimates for norms of the interpolation error for piecewise linear interpolation I1. The

final step is to add up the local estimates from Lemma 5.3.35 over all triangles of the mesh and take the

square root.

Theorem 5.3.38. Error estimate for piecewise linear interpolation

For any u ∈ C2(Ω̄) and 2D piecewise linear interpolation I1 : C0(Ω) → S0
1 (M),M a triangular

mesh, holds

‖u− I1u‖L2(Ω) ≤
√

3
8 h2
M
∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
L2(Ω)

,

‖grad(u− I1u)‖L2(Ω) ≤
√

3
24 ρMhM

∥∥∥
∥∥∥D2u

∥∥∥
F

∥∥∥
L2(Ω)

.

where hM denotes the mesh width (→ Def. 5.2.3) and ρM the shape regularity measure (→
Def. 5.3.37) ofM.
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Remark 5.3.39 (Energy norm and H1(Ω)-norm)

Objection! Well, Cea’s lemma Thm. 5.1.15 refers to the energy norm, but Thm. 5.3.38 provides esti-

mates in H1(Ω)-norm only!

☞ For uniformly positive definite (→ Def. 2.2.18) and bounded coefficient tensor α : Ω 7→ Rd,d, cf.

(2.2.17),

∃0 < α− < α+: α−‖z‖2 ≤ zTα(x)z ≤ α+‖z‖2 ∀z ∈ R
d, x ∈ Ω ,

and the energy norm (→ Def. 2.2.43) induced by

a(u, v) :=
∫

Ω
(α(x) grad u) · grad v dx , u, v ∈ H1

0(Ω) , (5.1.7)

we immediately find the equivalence (= two-sided uniform estimate)

√
α−|v|H1(Ω) ≤ ‖v‖a ≤

√
α+|v|H1(Ω) ∀v ∈ H1(Ω) . (5.3.40)

Thus, interpolation error estimates in |·|H1(Ω) immediately translate into estimates in terms of the energy

norm (with bounds for the coefficient entering the constants).

5.3.3 The Sobolev Scale of Function Spaces

Interpolation error estimates like in Thm. 5.3.38 hinge on smoothness of the interpoland u: the bounds in

Thm. 5.3.38 the term
∥∥∥∥D2u

∥∥
F

∥∥
L2(Ω)

. This norm conveys two messages:

✦
∥∥∥∥D2u

∥∥
F

∥∥
L2(Ω)

< ∞ is a smoothness requirement.

✦ The size of
∥∥∥∥D2u

∥∥
F

∥∥
L2(Ω)

is a measure for the smoothness of u.

In this section we take a closer look at norms involving derivatives and their capability to indicate the

smoothness of a function. In fact, in the guise of the H1(Ω)-seminorm from Def. 2.3.23 we have already

come across an example for such a norm. Thus, what we pursue in this section can also be regarded as

a generalization of H1(Ω).

Definition 5.3.41. Higher order Sobolev spaces/norms

The m-th order Sobolev norm, m ∈ N0, for u : Ω ⊂ Rd 7→ R (sufficiently smooth) is defined by

‖u‖2
Hm(Ω) :=

m

∑
k=0

∑
α∈Nd ,|α|=k

∫

Ω
|Dαu|2 dx , where Dαu :=

∂|α|u
∂xα1

1 · · · ∂x
αd
d

.

Sobolev space Hm(Ω) := {v : Ω 7→ R: ‖v‖Hm(Ω) < ∞} .

To understand this definition recall the multi-index notation (3.4.9), (3.4.10)

(5.3.42) Purposes of Sobolev spaces
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Gripe (as in Section 2.3): Don’t bother me with these Sobolev spaces !

Response: Well, these concepts are pervasive in the numerical analysis literature and you have to be

familiar with them, in particular, with the notations.

Reassuring: Again, it is only the norms ‖u‖Hm(Ω) that matter for us !

Now, we have come across an additional purpose of Sobolev spaces and their norms:

provide framework for variational

formulation of elliptic BVP

(→ Section 2.3)

Sobolev

spaces

provide norms ‖·‖Hm(Ω) that

measure strength of singularities of

functions

☛
✡

✟
✠Sobolev scale: . . . ⊂ H3(Ω) ⊂ H2(Ω) ⊂ H1(Ω) ⊂ L2(Ω)

Observation: bounds in Thm. 5.3.38 = “principal parts” of Sobolev norms, that is, the parts containing

the highest partial derivatives.

Definition 5.3.43. Higher order Sobolev semi-norms

The m-th order Sobolev semi-norm, m ∈ N, for sufficiently smooth u : Ω 7→ R is defined by

|u|2Hm(Ω) := ∑
α∈Nd ,|α|=m

∫

Ω
|Dαu|2 dx .

Elementary observation: |p|Hm(Ω) = 0 ⇔ p ∈ Pm−1(R
d)

By density arguments we can rewrite the interpolation error estimates of Thm. 5.3.38 in terms of

Sobolev semi-norms:

Corollary 5.3.44. Error estimate for piecewise linear interpolation in 2D

Under the assumptions/with notations of Thm. 5.3.38

‖u− I1u‖L2(Ω) ≤
√

3
8 h2
M|u|H2(Ω) ,

|u− I1u|H1(Ω) ≤
√

3
24 ρM hM|u|H2(Ω) ,

∀u ∈ H2(Ω) .

Remark 5.3.45 (Continuity of interpolation operators)

An interpolation operator like I1 maps functions to functions; it represents a linear mapping (= operator)

between two function spaces. If we specify norms on these spaces, we may ask whether this mapping is

continuous in the sense of the following definition, which generalizes Def. 2.2.56.
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Definition 5.3.46. Continuous linear operator

A linear mapping T : X → Y between two normed vector spaces X and Y is continuous or

bounded, if and only if

∃C > 0: : ‖Tv‖Y ≤ C‖v‖X ∀v ∈ X .

In order to investigate the continuity of I1 apply the△-inequality to the estimates of Cor. 5.3.44:

‖I1u‖L2(Ω) ≤ ‖u‖L2(Ω) +
√

3
8 h2
M|u|H2(Ω) ≤ 2‖u‖H2(Ω) , (5.3.47)

if lengths are scaled such that hM ≤ 1. In light of Def. 5.3.46 estimate (5.3.47) means that I1 : H2(Ω) 7→
L2(Ω) is a continuous linear mapping.

The same conclusion could have been drawn from the following fundamental result:

Theorem 5.3.48. Sobolev embedding theorem

m >
d

2
⇒ Hm(Ω) ⊂ C0(Ω) ∧ ∃C = C(Ω) > 0: ‖u‖∞ ≤ C‖u‖Hm(Ω) ∀u ∈ Hm(Ω) .

Yet, for d > 1 the nodal interpolation operator I1 : H1(Ω) 7→ L2(Ω) is not continuous, as we learn from

Ex. 2.4.22.

5.3.4 Anisotropic interpolation error estimates

Look at the following triangular cells with “bad shape regularity” (ρK “large”): very small/large angles:

Fig. 223 Fig. 224

The estimates of Lemma 5.3.35 might suggest that we face huge local interpolation errors, once ρK

becomes large.

Issue: are the estimates of Lemma 5.3.35 sharp ?

We will try to find this out experimentally by computing the best possible constants in the estimates

‖u− I1u‖L2(K) ≤ CK,2h2
k‖u‖H2(K) , ‖u− I1u‖H1(K) ≤ CKhK‖u‖H2(K) .

Note: Merely translating, rotating, or scaling K does not affect the constants CK,2 and CK. Therefore,

we can restrict ourselves to “canonical triangles”. Every general triangle can be mapped to one of these

by translating, rotating, and scaling.

CK,2 := sup
u∈H2(K)\{0}

‖u− I1u‖L2(K)

‖u‖H2(K)

, CK := sup
u∈H2(k)\{0}

‖u− I1u‖H1(K)

‖u‖H2(K)

,
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on triangle K := convex
{
(0

0), (
1
0), (

px
py
)
}

.

Fig. 225

10
px

py
K

Sampling the space of “canonical” triangles

(modulo similarity)

0 ≤ px, py ≤ 1 .

+ Numerical computation of CK, CK,2

implementation by A. Inci (spectral polynomial

Galerkin method)
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Fig. 229

Fig. 230

h

1 x

y

triangle K := convex
{
(0

0), (
1
0), (

1/2

h )
}

, h > 0,

u(x, y) = x(1− x), 0 < x < 1.

✁ linear interpolant of u on K as h→ 0

The interpolant becomes steeper and steeper as h → 0:

‖u‖2
H2(K) =

3031
1440 h , ‖u− I1u‖2

H1(K) =
29

2880 h + 1
12 h + 1

32h−1 , ‖u− I1u‖2
L2(K) =

29
2889 h

‖u− I1u‖2
H1(K)

‖u‖2
H2(K)

≥ 269
6062 +

45
3031 h−2 ,

‖u− I1u‖2
L2(K)

‖u‖2
H2(K)

=
29

6062
.

Experiment 5.3.49 (Good accuracy on “bad” meshes)

Ω =]0, 1[2, u(x1, x2) = sin(πx1) sin(πx2), BVP −∆u = f , u|∂Ω = 0, finite element Galerkin dis-

cretization on triangular meshes, VN = S0
1,0(M).

☞ meshes created by random distortion of tensor product grids

Fig. 231
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 2D triangular mesh

 # Vertices  :  41,      # Elements  :  64,      # Edges  :  56 Fig. 232
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 2D triangular mesh

 # Vertices  :  145,      # Elements  :  256,      # Edges  :  208

5. Convergence and Accuracy, 5.3. A Priori Finite Element Error Estimates 409



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Fig. 233
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Monitored: for different mesh resolutions, H1(Ω)-seminorm of discretization error as function of small-

est/largest angle in the mesh.

Observation: Accuracy does not suffer much from distorted elements !

Remark 5.3.50 (Gap between interpolation error and best approximation error)

Exp. 5.3.49 raises doubts whether the interpolation error can be trusted to provide good, that is, reasonably

sharp bounds for the best approximation error.

In this example we will see that

inf
vN∈S0

p(M)
‖u− vN‖1 ≪

∥∥u− Ipu
∥∥

H1(Ω)
is possible !

Fig. 235 h

δ

Elementary cell of “bad mesh”Mbad

Fig. 236 h

δ

Elementary cell of “good mesh”Mgood

On “bad” mesh : sup
u∈H2(Ω)

‖u− I1u‖H1(Ω)

‖u‖H2(Ω)

→ ∞ as h/δ → ∞,

On “good” mesh : sup
u∈H2(Ω)

‖u− I1u‖H1(Ω)

‖u‖H2(Ω)

uniformly bounded in h/δ.

Yet, inf
vN∈S0

1 (Mbad)
‖u− vN‖H1(Ω) ≤ inf

vN∈S0
1 (Mgood)

‖u− vN‖H1(Ω) ∀u ∈ H2(Ω) .
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5.3.5 General approximation error estimates

In Section 5.3.2 we only examined the behavior of norms of the interpolation error for piecewise linear

interpolation into S0
1 (M), that is, the case of Lagrangian finite elements of degree p = 1.

However, Exp. 5.2.7 sent the clear message that quadratic Lagrangian finite elements achieve faster

convergence of the energy norm of the Galerkin discretization error, see Fig. 200,Fig. 201.

m
On the other hand quadratic finite elements could not deliver faster convergence in Exp. 5.2.10.

In this section we learn about theoretical results that shed light on these observations and extend the

results of Section 5.3.2.

(5.3.51) L∞ interpolation error estimate in 1D

The faster convergence of quadratic Lagrangian FE in Exp. 5.2.7 does not come as a surprise: recall the

estimate from [5, Eq. (4.5.12)]:

∥∥u− Ipu
∥∥

L∞([a,b])
≤ h

p+1
M

(p + 1)!

∥∥∥u(p+1)
∥∥∥

L∞([a,b])
∀u ∈ Cp+1([a, b]) ,

where Ipu is theM-piecewise polynomial interpolant of u of local degree p. It generalizes (5.3.7), where

this result was stated for p = 1.

➣
∥∥u− Ipu

∥∥
L∞([a,b])

= O(h
p+1
M ) !

(5.3.52) Local interpolation onto higher degree Lagrangian finite element spaces

M: triangular/tetrahedral/quadrilateral/hybrid mesh of domain Ω (→ Section 3.4.1)

Recall (→ Section 3.5): nodal basis functions of p-th degree Lagrangian finite element space S0
p(M)

defined via interpolation nodes, cf. (3.5.4).

Set of interpolation nodes: N = {p1, . . . , pN} ⊂ Ω , N = dimS0
p(M) .

➣ General nodal Lagrangian interpolation operator (agrees with I1 from Def. 5.3.18 for p = 1)

Ip :





C0(Ω) 7→ S0
p(M)

u 7→ Ip(u) :=
N

∑
l=1

u(pl)b
l
N

, (5.3.53)

where bl
N are the nodal basis functions.

(3.5.4) ⇒ Ip(u)(pl) = u(pl) , l = 1, . . . , N (Interpolation property!) .

By virtue of the location of the interpolation nodes, see Ex. 3.5.3, Ex. 3.5.7, and Fig. 138, the nodal

interpolation operators are purely local:

∀K ∈ M: Ipu|K =
Q

∑
i=1

u(qK
i ) bi

K , (5.3.54)
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qK
i , i = 1, . . . , Q = local interpolation nodes in cell K ∈ M, see Ex. 3.5.3, Ex. 3.5.7, and Fig. 138,

bK
i , i = 1, . . . , Q = local shape functions: bK

i (q
K
j ) = δij.

Example 5.3.55 (Piecewise quadratic interpolation → Ex. 3.5.3)

For a triangle K = convex{a1, a2, a3} and p = 2 the piece-

wise quadratic interpolation operator on K is given by

I2u|K = −
3

∑
i=1

λi(1− 2λi) u(ai)

+ ∑
1≤i<j≤3

4λiλj u(1
2 (a

i + aj)) .

local shape functions, see (3.5.6)Fig. 237 a1

a2

a3

a12

a13
a23

K

The following theorem summarizes best approximation results for affine equivalent Lagrangian FE spaces

S0
p(M) (→ Section 3.5) on meshM of a bounded polygonal/polyhedral domain Ω ⊂ Rd. It is the result

of many years of research in approximation theory, see [7, Sect. 3.3], [1].

Theorem 5.3.56. Best approximation error estimates for Lagrangian finite elements

Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded polygonal/polyhedral domain equipped with a mesh M
consisting of simplices or parallelepipeds. Then, for each k ∈ N, there is a constant C > 0
depending only on k and the shape regularity measure ρM such that

inf
vN∈S0

p(M)
‖u− vN‖H1(Ω) ≤ C

(
hM

p

)min{p+1,k}−1

‖u‖Hk(Ω) ∀u ∈ Hk(Ω) . (5.3.57)

This theorem is a typical example of finite element analysis results that you can find in the literature. It is

important to know what kind of information can be gleaned from statements like that of Thm. 5.3.56.

Remark 5.3.58 (“Generic constants”)

A statement like (5.3.57) is typical of a priori error estimates in the numerical analysis literature, which

often come in the form

‖u− uN‖X ≤ C · “discretization parameter” · ‖u‖Y ,

where

✦ C > 0 is not specified precisely or only claimed to exist (“there is”, though, in principle, they could

be computed),

✦ C must neither depend on the exact solution u nor the discrete solution uN ,

✦ the possible dependence of C on problem parameters or discretization parameters has to stated

unequivocally.

5. Convergence and Accuracy, 5.3. A Priori Finite Element Error Estimates 412



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Such constants C > 0 are known as generic constants. Customarily, different generic constants are even

denoted by the same symbol (“C” is most common). The use of generic constants is an alternative to the

Landau-O notation (1.6.25).

(5.3.59) Nature of a priori estimates → Section 1.6.2

In combination with Cea’s lemma (Thm. 5.1.15) Thm. 5.3.56 implies a priori estimates of the energy norm

of the finite element Galerkin discretization error (see also Rem. 5.3.39) of the form

‖u− uN‖a ≤ C

(
hM

p

)min{p+1,k}−1

‖u‖Hk(Ω) , (5.3.60)

where u is the exact solution of the discretized 2nd-order elliptic boundary value problem.

(5.3.60) does not give concrete information about ‖u− uN‖a, because

✦ we do not know the value of the “generic constant” C > 0, see Rem. 5.3.58,

✦ as u is unknown, a bound for ‖u‖Hk(Ω) may not be available.

A priori error estimates like (5.3.60) exhibit only the trend of the (norm of) the discretization error as

discretization parameters hM (mesh width), p (polynomial degree) are varied.

Supplement 5.3.61.

The estimate of Thm. 5.3.56 is sharp: the powers of hM and p cannot be increased. △

(5.3.62) The message of asymptotic a priori convergence estimates

What questions can Thm. 5.3.56 and (5.3.60) answer? What do they tell us about the accuracy and

efficiency of a Lagrangian finite element Galerkin discretization of a 2nd-order elliptic BVP? Closely related

discussions have been have developed for numerical quadrature, see [5, Section 5.4], and higher order

single step methods for initial value problems from ODEs, see [5, Rem. 11.4.1]. You are advised to review

these passages in order to understand the parallels.

Question 5.3.63. What computational effort buys us what error (measured in energy norm)?

Bad luck (→ § 5.3.59): actual error norm remains elusive! Therefore, rephrase the question so that it fits

the available information about the effect of changing discretization parameters on the error:

Question 5.3.64. What increase in computational effort buys us a prescribed decrease of the (energy

norm of the) error?

The answer to this question offers an a priori gauge of the asymptotic efficiency of a discretization method.

Convention: computational effort ≈ number of unknowns N = dimS0
p(M) (problem size)
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(5.3.65) The price of a finite element space

Framework: family M of simplicial meshes of domain Ω ⊂ Rd, d = 1, 2, 3, created by

global regular refinement of a single initial mesh: h-refinement

Important specimens of such families of meshes are provided by sequences of simplicial meshes created

by global regular refinement (→ Ex. 5.1.20). This refinement rule has distinct benefits:

✦ it avoids greater distortion of “child cells” w.r.t. their parents,

✦ it spawns meshes with fairly uniform size hK of cells.

A mathematical way to express these insights:

uniform shape-regularity: ∃C > 0: ρM ≤ C ,

local quasi-uniformity ∃C > 0: max{hK/hK′ , K, K′ ∈ M} ≤ C ,
∀M ∈M .

Now, for meshes ∈ M, we investigate “N-dependence”, N = dimS0
p(M), of energy norm of finite

element discretization error:

Counting argument N = dimS0
p(M) ≈ pdh−d

M ⇒ hM
p
≈ N−1/d . (5.3.66)

dimensions of local spaces, Lemma 3.4.11 ∼ ♯M ∼ ♯V(M), E(M) etc.

Notation: ≈ =̂ uniform equivalence on the set M, that is, each side can be bounded by a constant

times the other, and the constants can be chosen independently of the meshM ∈M

(5.3.67) Dimensions of Lagrangian finite element spaces on triangular meshes

d = 2: for triangular meshesM, by Lemma 3.4.11

dimS0
p(M) = ♯{nodes(M)}+ ♯{edges(M)} (p− 1) + ♯M 1

2(p− 1)(p− 2) .

1 basis function per vertex

p− 1 basis functions per edge
1
2(p− 1)(p− 2) “interior” basis functions

Geometric considerations: the number of triangles sharing a vertex can be bounded in terms of ρM,

because ρM implies a lower bound for the smallest angles of the triangular cells.

∃C = C(ρM): ♯{Kj ∈ M: Ki ∩ K j 6= ∅} ≤ C (i = 1, 2, . . . , #.M) .

If every vertex belongs only to a small number of triangles, the number ♯{nodes(M)} can be bounded

by C · ♯M, where C > 0 will depend on ρM only. The same applies to the edges.

♯{nodes(M)}, ♯{edges(M)} ≈ ♯M .

dimS0
p(M) ≈ (♯M)p2 , (5.3.68)
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with constants hidden in ≈ depending on ρM only.

Now, we merge (5.3.60) and (5.3.66):

u ∈ Hk(Ω)
Thm. 5.3.56⇒ inf

vN∈S0
p(M)

‖u− vN‖H1(Ω) ≤ CN−
min{p,k−1}

d ‖u‖Hk(Ω) , (5.3.69)

with C > 0 depending only on d, k, and ρM.

Convergence of best approximation error for Lagrangian finite elements

(5.3.69) ➣ Energy norm of the discretization error features algebraic convergence

(→ Def. 1.6.24) in the problem size (= number of unknowns) with a

rate =
min{p, k− 1}

d
.

We observe that

✦ the rate of convergence is limited by the polynomial degree p of the Lagrangian FEM,

✦ the rate of convergence is limited by the smoothness of the exact solution u, measured by

means of the Sobolev index k, see Section 5.3.3,

✦ the rate of convergence will be worse for d = 3 than for d = 2, the effect being more

pronounced for small k or p.

(5.3.71) Asymptotic efficiency of Lagrangian finite elements

Now we answer Question 5.3.64 (“What increase in computational effort buys us a prescribed decrease

of the (energy norm of the) error?”):

Assumption: a priori error estimate (5.3.69) is sharp

∃C = C(u, . . .) > 0: error norm(N) ≈ CN−
min{p,k−1}

d ∀M ∈M .

error norm(N1)

error norm(N2)
≈
(

N1

N2

)−min{p, k− 1}
d .

✓
✒

✏
✑

reduction of (the energy norm of)

the error by a factor ρ > 1
requires

increase of the problem size

by factor ρ
d

min{p,k−1}
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Discussion: Solution u ∈ Hk(Ω) ➣ optimal asymptotic efficiency for p = k− 1

(Here, u ∈ Hk(Ω) is supposed to be sharp in the sense that we cannot take for granted u ∈ Hk+1(Ω).)

Remark 5.3.72 (General asymptotic estimates)

Recall (→ Section 1.6.2): convergence is an asymptotic notion

Now we deduce asymptotic estimates for the best approximation errors from Thm. 5.3.56, and (5.3.69), in

particular, for the case N → ∞, where N is the dimension of the finite element space:

For the exact solution u we assume: u ∈ Hk(Ω), k ∈ N.

• h-refinement: p fixed, hM → 0 forM ∈M:

(5.3.69) ⇒ algebraic convergence w.r.t. N

☞ p ≤ k− 1 inf
vN∈S0

p(M)
‖u− vN‖1 = O(N−p/d) (5.3.73)

Here the polynomial degree of the Lagrangian finite elements limits the rate of algebraic conver-

gence.

☞ k ≤ p + 1 inf
vN∈S0

p(M)
‖u− vN‖1 = O(N−(k−1)/d) (5.3.74)

Here, the smoothness (measured in the Sobolev scale) is the limiting factor for the rate of algebraic

convergence.

Note: for very smooth solution u, i.e. k≫ 1, polynomial degree p limits speed of convergence
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• p-refinement: M ∈M fixed, p→ ∞:

☞ p large inf
vN∈S0

p(M)
‖u− vN‖1 = O(N−(k−1)/d) (5.3.75)

Note: arbitrarily fast (super-)algebraic convergence for very smooth solutions u ∈ C∞(Ω).
(However, the exponential convergence observed in Exp. 5.2.11 is not captured by the approxi-

mation error estimates of Thm. 5.3.56.)

?! Review question(s) 5.3.76. (Convergence of finite element solutions)

1. What does the statement “Exponentially convergent Galerkin schemes are better than algebraically

convergent methods” allude to?

2. It is known that the solution u of a scalar 2nd-order elliptic boundary value problem belongs to

H2(Ω), but fails to be contained in H3(Ω).

(a) Describe the convergence of the H1(Ω)-norm of the discretization error one can expect from a

finite element Galerkin discretization by means of degree p, p ∈ N, Lagrangian finite elements

on a sequence of meshes obtained by regular refinement.

(b) Which convergence of ‖u− uN‖H1(Ω) in terms of polynomial degree p will probably be ob-

served for finite element solutions uN ∈ S0
p(M),M fixed, and increasing p?

3. Appealing to Thm. 8.4.42 explain why for a bounded polygonal domain Ω ⊂ R
2 and I1 : C0(Ω)→

S0
1 (M) denoting the nodal interpolation operator according to Def. 5.3.18 the interpolation error

estimate

‖u− I1u‖L2(Ω) ≤ ChM‖u‖H1(Ω) ∀u ∈ H1(Ω) ,

with C > 0 depending only on the shape regularity measure ρM of a triangular meshM cannot

be true.

4. If M′ has been created by regular refinement of a triangular mesh M, how are ρM and ρmesh′

related?

5. For which exponents a > 0 does the function x 7→ xα belong to the Sobolev space Hm(]0, 1[),
m ∈ N?

5.4 Elliptic Regularity Theory

Crudely speaking, in Section 5.3.5 we saw that the asymptotic behavior of the Lagrangian finite element

Galerkin discretization error (for 2nd-order elliptic BVPs) can be predicted provided that

• we use families of meshes, whose cells have rather uniform size and whose shape regularity measure

is uniformly bounded,
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• we have an idea about the smoothness of the exact solution u, that is, we know u ∈ Hk(Ω) for a

(maximal) k, see Thm. 5.3.56.

Knowledge about the mesh can be taken for granted, but

how can we guess the smoothness of the (unknown !) exact solution u ?

A (partial) answer is given in this section.

Focus: Scalar 2nd-order elliptic BVP with homogeneous Dirichlet boundary conditions

− div(σ(x) grad u) = f in Ω , u = g on ∂Ω .

To begin with, we summarize the available information:

➣ Known: u solves BVP + Information about coefficient σ, domain

Ω, source function f , boundary data g
︸ ︷︷ ︸

u will belong to a certain class of functions (e.g. subspace S ⊂ H1(Ω))

Example 5.4.1 (Elliptic lifting result in 1D)

d = 1, Ω =]0, 1[, coefficient σ ≡ 1, homogeneous Dirichlet boundary conditions:

u′′ = f , u(0) = u(1) = 0 .

Obvious from Def. 5.3.41: f ∈ Hk(Ω) ⇒ u ∈ Hk+2(Ω) (a lifting theorem)

Can this be generalized to higher dimensions d > 1?

Partly so:

Theorem 5.4.2. Smooth elliptic lifting theorem

If ∂Ω is C∞-smooth, ie. possesses a local parameterization by C∞-functions, and σ ∈ C∞(Ω),
then, for any k ∈ N,

u ∈ H1
0(Ω) and − div(σ grad u) ∈ Hk(Ω)

u ∈ H1(Ω) , − div(σ grad u) ∈ Hk(Ω) and grad u · n = 0 on ∂Ω
⇒ u ∈ Hk+2(Ω) .

In addition, for such u there is C = C(k, Ω, σ) such that

‖u‖Hk+2(Ω) ≤ C‖div(σ grad u)‖Hk(Ω) .
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Fig. 240 c1
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What about non-smooth ∂Ω ?

These are very common in engineering applications

(“CAD-geometries”).

✁ polygonal domain with corners ci

How will the corners affect the smoothness of solu-

tions of

u ∈ H1
0(Ω): ∆u = f ∈ C∞(Ω)?

Example 5.4.3 (Corner singular functions)

This example answers some of the questions asked above by exhibiting locally harmonic functions satis-

fying homogeneous Dirichlet boundary conditions that, nevertheless, feature a singularity at a corner of

the domain:

Fig. 241

ϕc

ϕ = 0

ϕ = ω r

Ω

corner singular function

us(r, ϕ) = r
π
ω sin(

π

ω
ϕ) , (5.4.4)

r ≥ 0 , 0 ≤ ϕ ≤ ω .

(in local polar coordinates)

us = 0 on ∂Ω locally at c!

Straightforward computation (in polar coordinates): ∆us = 0 in Ω !

To see this recall: ∆ in polar coordinates:

∆u =
1

r

∂

∂r
(r

∂u

∂r
) +

1

r2

∂2u

∂ϕ2
. (5.4.5)

(5.4.4)
=⇒ ∆us(r, ϕ) =

1

r

∂

∂r

(
r

π

ω
r

π
ω−1 sin(

π

ω
ϕ)
)
+

1

r2
r

π
ω

∂

∂ϕ
cos(

π

ω
ϕ)

π

ω

=
(π

ω

)2
r

π
ω−2 sin(

π

ω
ϕ)−

(π

ω

)2
r

π
ω−2 sin(

π

ω
ϕ) = 0 .

What is “singular” about these functions? Plot them for ω = 3π
2 , cf. Exp. 5.2.10
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Fig. 242

us for ω = 3π
2

Fig. 243

‖grad us‖ for ω = 3π
2

Recall gradient (2.4.26) in polar coordinates

grad u =
∂u

∂r
er +

1

r

∂u

∂ϕ
eϕ . (2.4.26)

(5.4.4)
=⇒ grad us(r, ϕ) =

π

ω
r

π
ω−1

(
sin(π

ω ϕ)er + cos(π
ω ϕ)

)
eϕ .

ω > π (“re-entrant corner”) =⇒ “grad us(0) = ∞”

How does this “blow-up” of the gradient affect the Sobolev regularity (that is, the smoothness as expressed

through “us ∈ Hk(Ω)”) of the corner singular function us?

We try to compute |u|H2(D), with (in polar coordinates, see Fig. 241)

D := {(r, ϕ):0 < r < 1, 0 < ϕ < ω} .

By tedious computations we find

ω > π ⇒
∫

D

∥∥∥D2us(r, ϕ)
∥∥∥

2

F
rd(r, ϕ) = ∞ .

Def. 5.3.41
=⇒

{
ω > π ⇒ us 6∈H2(D)

}
.

Bad news: With the exception of “concocted/manufactured” examples,

corner singular functions like (5.4.4) will be present in the solution of linear

scalar 2nd-order elliptic BVP on polygonal domains!

The meaning of “being present” is elucidated in the following theorem:
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Theorem 5.4.6. Corner singular function decomposition

Let Ω ⊂ R2 be a polygon with J corners ci. Denote the polar coordinates in the corner ci by (ri, ϕi)
and the inner angle at the corner ci by ωi. Additionally, let f ∈ Hl(Ω) with l ∈ N0 and l 6= λik− 1,

where the λik are given by the singular exponents

λik =
kπ

ωi
for k ∈ N . (5.4.7)

Then u ∈ H1
0(Ω) with −∆u = f in Ω can be decomposed

u = u0 +
J

∑
i=1

ψ(ri) ∑
λik<l+1

κik sik(ri, ϕi) , κik ∈ R , (5.4.8)

with regular part u0 ∈ Hl+2(Ω), cut-off functions ψ ∈ C∞(R+) (ψ ≡ 1 in a neighborhood of 0),

and corner singular functions

λik 6∈ N: sik(r, ϕ) = rλik sin(λik ϕ) ,

λik ∈ N: sik(r, ϕ) = rλik(ln r) sin(λik ϕ).
(5.4.9)

✓
✒

✏
✑Ω ⊂ R2 has re-entrant corners ⇒ if u solves ∆u = f in Ω, u = 0 on ∂Ω, then

u 6∈ H2(Ω) in general.

Theorem 5.4.10. Elliptic lifting theorem on convex domains [?, Thm. 3.2.1.2]

[Elliptic lifting theorem on convex domains] If Ω ⊂ Rd convex, u ∈ H1
0(Ω), ∆u ∈ L2(Ω) ⇒

u ∈ H2(Ω).

Terminology: if conclusion of Thm. 5.4.10 true → Dirichlet problem 2-regular.

Similar lifting theorems also hold for Neumann BVPs, BVPs with smooth coefficients.

(5.4.11) Causes for non-smoothness of solutions of elliptic BVPs

Causes for poor Sobolev regularity of solution u of BVPs for − div(σ(x) grad u) = f :
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• Corners of ∂Ω, see above

• Discontinuities of σ
→ singular functions at “material corners”

• Mixed boundary conditions

• Non-smooth source function f

σ(x) ≡ σ1

σ(x) ≡ σ2

σ(x) ≡ σ3

c

“material corner” at c

?! Review question(s) 5.4.12. (Elliptic regularity)

1. Compute the gradient of the corner singular function from (5.4.4) in Cartesian coordinates.

2. Exhibit a corner singular function un that satisfies, on the wedge shaped domain Ω displayed in

Fig. 241, ∆un = 0 and grad un · n = 0 on ∂Ω (close to the corner c). Use polar coordinates.

3. Consider the one-dimensional boundary value problem u′′ = f in ]0, 1[, u(0) = u(1) = 0. Which

Sobolev regularity will the weak solution u ∈ H1
0(]0, 1[) posses, if f is piecewise smooth with a

single discontinuity?

5.5 Variational Crimes

Variational crime = instead of solving (exact) discrete (linear) variational problem

uN ∈ V0,N : a(uN , vN) = f (vN) ∀vN ∈ V0,N , (3.2.8)

we solve the perturbed variational problem

ũN ∈ V0,N : aN(ũN , vN) = fN(vN) ∀vN ∈ V0,N . (5.5.1)

this causes a perturbation of Galerkin solution uN and we end up with a perturbed solution ũN ∈ V0,N.

Approximations aN(·, ·) ≈ a(·, ·), fN(·) ≈ f (·) are usually due to

• the use of numerical quadrature → Section 3.6.5,

• an approximation of the oundary ∂Ω → Section 3.7.4.

We are all sinners! Variational crimes are inevitable in practical FEM, recall Rem. 1.5.5!

Which “variational petty crimes” can be tolerated?
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Guideline for acceptable variational crimes

Variational crimes must not affect (type and rate) of asymptotic convergence!

This requirement must be met for all boundary value problems the finite element methods has been

designed to solve, in particular, for problems with smooth solutions, for which maximal rates of algebraic

convergence can be achieved (→ Rem. 5.3.72).

Hence, when probing the impact of variational crimes in a numerical experiment, always choose test

problems with smooth solutions.

5.5.1 Impact of numerical quadrature

Model problem: on polygonal/polyhedral Ω ⊂ Rd:

u ∈ H1
0(Ω): a(u, v) :=

∫

Ω
σ(x) grad u · grad v dx = f (v) :=

∫

Ω
f v dx . (5.5.3)

Assumptions: σ satisfies (2.6.6), σ ∈ C0(Ω), f ∈ C0(Ω)

• Galerkin finite element discretization, VN := S0
p(M) on simplicial meshM

• Approximate evaluation of a(uN , vN), f (vN) by a fixed stable local numerical quadrature rule (→
Section 3.6.5)

➤ perturbed bilinear form aN, right hand side fN (see (5.5.1))

Focus: h-refinement (key discretization parameter is the mesh width hM)

Experiment 5.5.4 (Impact of numerical quadrature on finite element discretization error)

Ω =]0, 1[2, σ ≡ 1, f (x, y) = 2π2 sin(πx) sin(πy), (x, y)T ∈ Ω

➢ solution u(x, y) = sin(πx) sin(πy), g = 0.

Details of numerical experiment:

• Quadratic Lagrangian FE (VN = S0
2 (M)) on triangular meshesM, obtained by regular refinement

• “Exact” evaluation of bilinear form by very high order quadrature

• fN from one point quadrature rule (3.6.161) of order 2
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Fig. 244
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H1(Ω)-norm of discretization error on unit square (−↔ rule (3.6.161), − ↔ rule (3.6.162))

Observation: Use of quadrature rule of order 2 ⇒ Algebraic rate of convergence (w.r.t. N)

drops from α = 1 to α = 1/2 !

Finite element theory [2, Ch. 4,§4.1] tells us that the above guideline can be met, if the

local numerical quadrature rule has sufficiently high order. The quantitative results can be con-

densed into the following rules of thumb:

‖u− uN‖1 = O(h
p
M) at best

Quadrature rule of order 2p− 1 sufficient for right

hand side functional fN.

‖u− uN‖1 = O(h
p
M) at best

Quadrature rule of order 2p− 1 sufficient for bilin-

ear form aN.

5.5.2 Approximation of boundary

We focus on 2nd-order scalar linear variational problems as in the previous section.

Experiment 5.5.5 (Impact of linear boundary approximation on FE convergence)

Setting: Ω := B1(0) := {x ∈ R2: |x| < 1}, u(r, ϕ) = cos(rπ/2) (polar coordinates)

➢ f = π
2r sin(rπ/2) + π

2 cos(rπ/2)

• Sequences of unstructured triangular meshesM obtained by regular refinement (of coarse mesh

with 4 triangles) + linear boundary fitting.

• Galerkin FE discretization based on VN := S0
1,0(M) or VN := S0

2,0(M).

• Recorded: approximate norm |u− uN |1,Ωh
, evaluated using numerical quadrature rule (3.6.162).

(FE solution extended beyond the domain covered by M (“mesh interior”) to Ω (“full domain”) by

means of polynomial extrapolation.)
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Fig. 246
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Linearly boundary fitted unstructured triangular meshes of Ω = B1(0).
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Dashed lines in Fig. 248, Fig. 249: error norms computed on polygonal domain covered by the mesh 6= Ω;

this spurious “error norm” suggests no deterioration of the convergence!

Rule of thumb deduced from sophisticated finite element theory:

If V0,N = S0
p(M), use boundary fitting with polynomials of degree p.

A technique for higher order boundary approximation by means of parametric finite elements on curved

cells was presented in Section 3.7.4.

5.6 Duality Techniques

5.6.1 Linear output functionals
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(5.6.1) Setting

Adopt abstract setting of Section 5.1:

linear variational problem (1.4.9) in the form

u ∈ V0: a(u, v) = ℓ(v) ∀v ∈ V0 , (3.2.3)

✦ V0 =̂ (real) vector space, a space of functions Ω 7→ R for scalar 2nd-order elliptic variational

problems, usually “energy space” H1(Ω)/H1
0(Ω), see Section 2.3

✦ a : V0×V0 7→ R =̂ a bilinear form, see Def. 1.3.22,

✦ ℓ : V0 7→ R =̂ a linear form, see Def. 1.3.22,

✦ Ass. 5.1.2,Ass. 5.1.3,Ass. 5.1.4 are supposed to hold ➣ existence, uniqueness, and stability of

solution u by Thm. 5.1.5.

(Examples of 2nd-order linear BVPs discussed in Rem. 5.1.6, Section 2.9)

Galerkin discretization using V0,N ⊂ V0 ➢ discrete variational problem

uN ∈ V0,N : a(uN , vN) = f (vN) ∀vN ∈ V0,N . (3.2.8)

New twist: we are interested mainly/only in the number F(u), where

F : V0 7→ R is an output functional.

Mathematical terminology: functional =̂ mapping from a function space into R

Example 5.6.2 (Output functionals)

Some output functionals for solutions of PDEs commonly encountered in applications:

• mean values, see Exp. 5.6.6 below

• total heat flux through a surface (for heat conduction model→ Section 2.6), see Exp. 5.6.12 below

• total surface charge of a conducting body (for electrostatics→ Section 2.2.2)

• total heat production (Ohmic losses) by stationary currents

• total force on a charged conductor (for electrostatics→ Section 2.2.2)

• lift and drag in computational fluid dynamics (aircraft simulation)

• and many more . . .

• monostatic radar cross section for wave scattering problems in frequency domain

We consider output functionals with special properties, which are rather common in practice:
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Assumption 5.6.3. Linearity of output functional

The output functional F is a linear form (→ Def. 1.3.22) on V0

To put the next assumption into context, please recall Ass. 5.1.3 and § 2.4.31.

Assumption 5.6.4. Continuity of output functional → Def. 2.2.56

The output functional is continuous w.r.t. the energy norm in the sense that

∃C f > 0: |F(v)| ≤ C f‖v‖a ∀v ∈ V0 .

Now consider Galerkin discretization of (3.2.3) based on Galerkin trial/test space V0,N ⊂ V0, N :=
dim V0,N < ∞ ➣ discrete variational problem

uN ∈ V0,N : a(uN , vN) = ℓ(vN) ∀vN ∈ V0,N . (3.2.8)

What would you dare to sell as an approximation of F(u)? Of course, . . .☛
✡

✟
✠Galerkin solution uN ∈ V0,N ➥ approximate output value F(uN)

(5.6.5) A simple estimate

How accurate is F(uN), that is, how big is the output error |F(u) − F(uN)|?

Linearity (→ Ass. 5.6.3) and continuity Ass. 5.6.4 conspire to furnish a very simple estimate

|F(u) − F(uN)| ≤ C f ‖u− uN‖a .

A priori estimates for ‖u− uN‖a ➼ estimates for |F(u) − F(uN)|

Hence, Thm. 5.3.56 immediately tells us the asymptotic convergence of linear and continuous output func-

tionals defined for solutions of 2nd-order scalar elliptic BVPs and Lagrangian finite element discretization.

Experiment 5.6.6 (Approximation of mean temperature)

Heat conduction model (→ Section 2.6), scaled heat conductivity κ ≡ 1, on domain Ω =]0, 1[2, fixed

temperature u = 0 on ∂Ω:

−∆u = f in Ω , u = 0 on ∂Ω .

Heat source function f (x, y) = 2π2 sin(πx) sin(πy), (x, y)T ∈ Ω

➢ solution u(x, y) = sin(πx) sin(πy).

mean temperature F(u) =
1

|Ω|
∫

Ω
u dx .

Details of finite element Galerkin discretization:

• Sequence of triangular meshesM created by regular refinement.
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• Galerkin discretization: V0,N := S0
1,0(M) (linear Lagrangian finite elements→ Section 3.3).

• Quadrature rule (3.6.162) of order 6 for assembly of right hand side vector

(more than sufficiently accurate→ guidelines from Section 5.5.1)

Expected: algebraic convergence in hM with rate 1 of approximate mean temperature

Fig. 250
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Observation: Mean value converges twice as fast as expected: algebraic convergence O(h2
M)!

Theorem 5.6.7. Duality estimate for linear functional output

Define the dual solution gF ∈ V0 to F as solution of the dual variational problem

gF ∈ V0: a(v, gF) = F(v) ∀v ∈ V0 .

Then

|F(u) − F(uN)| ≤ ‖u− uN‖a inf
vN∈V0,N

‖gF − vN‖a . (5.6.8)

Proof. For any vN ∈ V0,N:

F(u) − F(uN) = a(u− uN , gF)
(∗)
= a(u− uN , gF − vN) ≤ ‖u− uN‖a ‖gF − vN‖a .

(∗)← by Galerkin orthogonality (5.1.10).
✷

If gF can be approximated well in V0,N, then the output error can converge→ 0 (much) faster

than ‖u− uN‖a.

Example 5.6.9 (Approximation of mean temperature cnt’d → Exp. 5.6.6)

✦ The mean temperature functional (5.6.8) is obviously linear→ Ass. 5.6.3

✦ By the Cauchy-Schwarz inequality (2.3.30) it clearly satisfies Ass. 5.6.4 even with ‖·‖
a
= ‖·‖L2(Ω),

let alone for ‖·‖
a
= |·|H1(Ω) on H1

0(Ω).
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What is gF ∈ H1
0(Ω) in this case? By Thm. 5.6.7 it is the solution of the variational problem

∫

Ω
grad gF · grad v dx = F(v) =

1

|Ω|
∫

Ω
v dx ∀v ∈ H1

0(Ω) .

The associated 2nd-order BVP reads

−∆gF =
1

|Ω| in Ω, gF = 0 on ∂Ω .

Now recall the elliptic lifting theory Thm. 5.4.10 for convex domains: since Ω =]0, 1[2 is convex, we

conclude gF ∈ H2(Ω).

By interpolation estimate of Thm. 5.3.38 (I1 =̂ linear interpolation onto S0
1 (M))

inf
vN∈S0

1 (M)
|gF − vN|H1(Ω) ≤ |gF − I1gF|H1(Ω) ≤ ChM|gF|H2(Ω) ,

where C > 0 may depend on Ω and the shape regularity measure (→ Def. 5.3.37) ofM.

Plug this into the duality estimate (5.6.8) of Thm. 5.6.7 and note that u ∈ H2(Ω) by virtue of Thm. 5.4.10

and f ∈ L2(Ω):

|F(u) − F(uN)| ≤ ChM · |u− uN |H1(Ω)︸ ︷︷ ︸
≤ChM if u∈H2(Ω)

≤ Ch2
M ,

where the “generic constant” C > 0 depends only on Ω, u, ρM.

Again, by the elliptic lifting theory Thm. 5.4.10 we infer that u ∈ H2(Ω) holds for this example since

f ∈ L2(Ω).

5.6.2 Case study: Boundary flux computation

Model problem (process engineering):

Long pipe carrying turbulent flow of coolant (water)

Ω ⊂ R2 : cross-section of pipe

κ : (scaled) heat conductivity of pipe material

(assumed homogeneous, κ = const)

Assumption: Constant temperatures uo, , ui at out-

er/inner wall Γo, Γi of pipe

Task: Compute heat flow pipe→ water

Fig. 252

Ω (pipe)

Γi

Γo

Water

Mathematical model: elliptic boundary value for stationary heat conduction (→ Section 2.6)

− div(κ grad u) = 0 in Ω , u = ux on Γx , x ∈ {i, o} . (5.6.10)

Heat flux through Γi: J(u) :=
∫

Γi

κ grad u · n dS . (5.6.11)

5. Convergence and Accuracy, 5.6. Duality Techniques 429



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Relate to abstract framework: (5.6.10) ∼= (3.2.3), V0
∼= H1

0(Ω) (→ Section 2.9)

(Actually, u ∈ H1(Ω), but by means of offset functions we can switch to the variational space H1
0(Ω),

see Section 2.2.3,Section 3.6.6.)

Numerical method: finite element computation of heat conduction in pipe

(e.g. linear Lagrangian finite element Galerkin discretization, Section 3.3)

Expectation: Algebraic convergence |J(u)− J(uN)| = O(h2
M) for regular h-refinement

This expectation is based on the analogy to Exp. 5.6.6 (Approximation of mean temperature), where

duality estimates yielded O(h2
M) convergence of the mean temperature error in the case of Galerkin

discretization by means of linear Lagrangian finite elements on a sequence of meshes obtained by regular

refinement. Now, it seems, we can follow the same reasoning.

Experiment 5.6.12 (Computation of heat flux)

✦ Setting: model problem “heat flux pipe to water”, see (5.6.10) and Fig. 252.

✦ Linear output functional from (5.6.11)

✦ Domain Ω = BRo(0) \ BRi
(0) := {x ∈ R2: Ri < |x| < Ro} with Ro = 1 and Ri = 1/2

✦ Dirichlet boundary data ui = 60◦C on Γi, uo = 10◦C on Γo, heat source f ≡ 0, heat conductivity

κ ≡ 1.

➢ Exact solution: u(r, ϕ) = C1 ln(r) + C2,

➢ Exact heat flux: J = 2πκC1,

with C1 := (uo − ui)/(ln Ri − ln Ro),
C2 := (ln Roui − ln Riuo)/(ln Ri − ln Ro).

Details of linear Lagrangian finite element Galerkin discretization:

• Sequences of unstructured triangular meshes M obtained by regular refinement of coarse mesh

(from grid generator).

• Galerkin FE discretization based on V0,N := S0
1,0(M).

• Approximate evaluation of a(uN , vN), f (vN) by six point quadrature rule (3.6.162) (“overkill quadra-

ture”, see Section 5.5.1)

• Approximate evaluation of J(uN) by 4 point Gauss-Legendre quadrature rule on boundary edges of

M.

• Linear boundary approximation (circle replaced by polygon).

• Recorded: errors |J − J(uN)| on sequence of meshes.
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Fig. 253
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Fig. 255
10

−2
10

−1
10

0

10
1

10
2

 Convergence: standard boundary flux, linear FE

 Mesh width [log scale]

 B
ou

nd
ar

y 
flu

x 
[lo

g 
sc

al
e]

p = 1.02

Observation:

Algebraic convergence of output error for J from

(5.6.11) only with rate 1 (in mesh width hM)!

(This is not the fault of the piecewise linear bound-

ary approximation, which is sufficient when using

piecewise linear Lagrangian finite elements, see Sec-

tion 5.5.2.)

Why was our expectation mistaken ?

Suspicion: the output functional J fails to meet requirements of duality estimates of Thm. 5.6.7:

boundary flux functional J from (5.6.11) is not continuous on H1(Ω)!

(5.6.13) Non-continuity of boundary flux functional

How can we corroborate our suspicion that J from (5.6.11) fails to be continuous? First remember

Def. 2.2.56.

Idea: find u ∈ H1(Ω), for which “J(u) = ∞”,

cf. investigation of non-continuity of point evaluation functional on H1(Ω)→ Ex. 2.4.22.

5. Convergence and Accuracy, 5.6. Duality Techniques 431



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

On Ω = {x ∈ R2: ‖x‖ < 1} (unit disk) consider

u(x) = (1− ‖x‖)α =: g(‖x‖) ,
1

2
< α < 1 ,

and the boundary flux functional (5.6.11) on ∂Ω.

☞ On the one hand, using the expression (2.4.26) for the gradient in polar coordinates,

J0(v) =
∫

∂Ω

∂u

∂r
(x)dS(x) = 2π α(1− r)α−1

|r=1“ = ∞′′ .

☞ On the other hand, straightforward computation of improper integral using (2.4.27):

|u|2H1(Ω) =
∫

Ω

‖grad u(x)‖2 dx = 2π

1∫

0

|g′(r)|2r dr = 2πα2

1∫

0

(1− r)2α−2r dr

= 2πα2

1∫

0

s2α−2(1− s)ds = 2πα

[
s2α−1

2α− 1
− s2α

2α

]s=1

s=0

= 2π
1

2α− 1
< ∞ .

Def. 2.3.25
=⇒ u ∈ H1(Ω) (u ∈ C0(Ω) and u ∈ C∞(Ω \ {0}) !) .

§ 5.6.13 ➣ Thm. 5.6.7 cannot be applied

(Potentially) poor convergence of flux obtained from straightforward evaluation of J(uN) for

FE solution uN ∈ S0
1,0(M)!

Apparently there is no remedy, because the boundary flux functional (5.6.11) seems to be enforced on us

by the problem: we are not allowed to tinker with it, are we?

“Recovering” continuity of boundary flux functional

Trick:
use fixed cut-off function ψ ∈ C0(Ω) ∩ H1(Ω), ψ ≡ 1 on Γi, ψ|Γo

= 0

∫

Γi

κ grad u · n dS =
∫

Γi

(κ grad u · n)ψ dS =
∫

Ω
div(κ grad u)︸ ︷︷ ︸

=0

ψ + κ grad u · grad ψ dx

use J∗(u) :=
∫

Ω
κ grad u · grad ψ dx . (5.6.15)

Obviously (∗): J∗ : H1(Ω) 7→ R continuous & J∗(u) = J(u) for solution of (5.6.10)

(∗): By the Cauchy-Schwarz inequality (2.3.30), since κ = const,

|J∗(u)| ≤ κ‖grad u‖L2(Ω)‖grad ψ‖L2(Ω) ≤ C|u|H1(Ω) ,
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with C := κ‖grad ψ‖L2(Ω), which is a constant independent of u, as ψ is a fixed function.

Objection: You cannot just tamper with the output functional of a problem just because you do not like

it!

Rebuttal: Of course, one can replace the output function J with another one J∗ as long as

J(u) = J∗(u) for the exact solution u of the BVP,

because the objective is not to “evaluate J”, but to obtain an approximation for J(u)!

Experiment 5.6.16 (Computation of heat flux cnt’d → Exp. 5.6.12)

Further details on flux evaluation:

• Galerkin FE discretization based on V0,N := S0
1,0(M) or V0,N := S0

2,0(M).

• Approximate evaluation of J∗(uN) by six point quadrature rule (3.6.162) (“overkill quadrature”, see

Section 5.5.1)

• Cut-off function with linear decay in radial direction

• Recorded: errors |J − J(uN)| and |J − J∗(uN)|.
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Unstable flux J

Stable flux J
∗

✁ Convergence of |J(u) − J(uN)| and |J(u) −
J∗(uN)| for linear Lagrangian finite element dis-

cretization.

Additional observations:

• Algebraic convergence |J(u) − J∗(uN)| = O(h2
M) (rate 2 !) for alternative output functional J∗

from (5.6.15).

• Dramatically reduced output error!

Remark 5.6.17 (Finding continuous replacement functionals)

Now you will ask: How can we find good (continuous) replacement functionals, if we are confronted with

an unbounded output functional on the energy space?

Unfortunately, there is no recipe, and sometimes it does not seem to be possible to find a suitable J∗ at

all, for instance in the case of point evaluation, cf. Ex. 2.4.22.
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Good news: another opportunity to show off how smart you are!

5.6.3 L2-estimates

So far we have only studied the energy norm (↔ H1(Ω)-norm, see Rem. 5.3.39) of the finite element

discretization error for 2nd-order elliptic BVP.

The reason was the handy tool of Cea’s lemma Thm. 5.1.15.

What about error estimates in other “relevant norms”, e.g„

• in the mean square norm or L2(Ω)-norm, see Def. 2.3.4,

• in the supremum norm or L∞(Ω)-norm, see Def. 1.6.5?

In this section we tackle ‖u− uN‖L2(Ω). We largely reuse the abstract framework of Section 5.6.1: linear

variational problem (3.2.3) with exact solution u ∈ V0, Galerkin finite element solution uN ∈ V0,N, see

p. 425, and the special framework of linear 2nd-order elliptic BVPs, see Rem. 5.1.6: concretely,

a(u, v) :=
∫

Ω
κ(x) grad u · grad v dx , u, v ∈ H1

0(Ω) .

Experiment 5.6.18 (L2-convergence of FE solutions→ Exp. 5.2.8)

Setting: Ω =]0, 1[2, D ≡ 1, f (x, y) = 2π2 sin(πx) sin(πy), (x, y)⊤ ∈ Ω

➢ u(x, y) = sin(πx) sin(πy).

• Sequence of triangular meshesM, created by regular refinement.

• FE Galerkin discretization based on S0
1,0(M) or S0

2 (M).

• Quadrature rule (3.6.162) for assembly of local load vectors (→ Section 3.6.5).

• Approximate L2(Ω)-norm by means of quadrature rule (3.6.162).
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Observations: • Linear Lagrangian FE (p = 1) ➽ ‖u− uN‖0 = O(N−1)
• Quadratic Lagrangian FE (p = 2) ➽ ‖u− uN‖0 = O(N−1.5)

(5.6.19) L2 interpolation error

Recall the interpolation error estimate of Thm. 5.3.38

‖u− I1u‖L2(Ω) = O(h2
M) vs. |u− I1u|H1(Ω) = O(hM) ,

on a family of meshes with uniformly bounded shape regularity measure.

☞ Higher rate of algebraic convergence of the interpolation error when measured in the weaker L2(Ω)-
norm compared to the stronger H1(Ω)-norm.

Therefore a similar observation in the case of the finite element approximation error is not so surprising.

(5.6.20) Duality techniques for L2-estimates

Now we supply a rigorous underpinning and explanation of the behavior of ‖u− uN‖L2(Ω) that we have

observed and expect.

Idea: Consider special continuous linear “output functional”

F(v) :=
∫

Ω
v · (u− uN)dx !

This is not a practical output functional, because its evaluation will not be possible even if the finite element

solution uN is available. Nevertheless, this F is well defined, because existence and uniqueness of both

u and uN are guaranteed.

This functional is highly relevant for L2-estimates, because

F(u) − F(uN) = ‖u− uN‖2
L2(Ω) !

➣ estimates for the output error will provide bounds for ‖u− uN‖L2(Ω)!

Note: Both u and uN are fixed functions ∈ H1(Ω)!

➣ Linearity of F (→ Ass. 5.6.3) is obvious.

➣ Continuity F : H1
0(Ω) 7→ R (→ Ass. 5.6.4) is clear, use Cauchy-Schwarz inequality (2.3.30).

Duality estimate of Thm. 5.6.7 can be applied:

Thm. 5.6.7

F(u) − F(uN) = ‖u− uN‖2
L2(Ω) ≤ C|u− uN|H1(Ω) inf

vN∈V0,N

|gF − vN |H1(Ω) , (5.6.21)
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where C > 0 may depend only on κ, and the dual solution gF ∈ H1
0(Ω) satisfies

a(gF, v) = F(v) ∀v ∈ V0 ⇔
∫

Ω

κ(x) grad gF · grad v dx =
∫

Ω

v(u− uN)dx ∀v ∈ H1
0(Ω)

⇓
− div(κ(x) grad gF) = u− uN in Ω , gF = 0 on ∂Ω . (5.6.22)

Assumption 5.6.23. 2-regularity of homogeneous Dirichlet problem

We assume that the homogeneous Dirichlet problem with coefficient κ is 2-regular on Ω: There is

C > 0, which depends on Ω only such that

u ∈ H1
0(Ω)

div(κ(x) grad u) ∈ L2(Ω)
⇒ u ∈ H2(Ω) and |u|H2(Ω) ≤ C‖div(κ(x) grad u)‖L2(Ω) .

By the elliptic lifting theorem for convex domains Thm. 5.4.10 we know

κ C1-smooth & Ω convex =⇒ Ass. 5.6.23 is satisfied.

(5.6.24) Estimates under assumption of 2-regularity

Ass. 5.6.23 in conjunction with (5.6.22) yields

|gF|H2(Ω) ≤ C‖u− uN‖L2(Ω) , (5.6.25)

where C > 0 depends only on Ω.

Now we can appeal to the general best approximation theorem for Lagrangian finite element spaces

Thm. 5.3.56:

inf
vN∈S0

p(M)
|gF − vN|H1(Ω) ≤ C

hM
p
|gF|H2(Ω)

(5.6.25)

≤ C
hM

p
‖u− uN‖L2(Ω) , (5.6.26)

where the “generic constants” C > 0 depend only on Ω and the shape regularity measure ρM (→
Def. 5.3.37).

Combine (5.6.21) and (5.6.26) and cancel one power of ‖u− uN‖L2(Ω): With C > 0 depending only

on Ω, κ, and the shape regularity measure ρM we conclude

Ass. 5.6.23 ⇒ ‖u− uN‖L2(Ω) ≤ C hM
p ‖u− uN‖H1(Ω) .

for h-refinement: gain of one factor O(hM) (vs. H1(Ω)-estimates)

Is it important to assume 2-regularity, Ass. 5.6.23 or merely a technical requirement of the theoretical

approach?
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Experiment 5.6.27 (L2-estimates on non-convex domain cf. Exp. 5.2.10)

Setting: Ω =]− 1, 1[2\(]0, 1[×]− 1, 0[), D ≡ 1, u(r, ϕ) = r2/3 sin(2/3ϕ) (polar coordinates)

➢ f = 0, Dirichlet data g = u|∂Ω.

Finite element Galerkin discretization and evaluations as in Exp. 5.6.18.

Fig. 259
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Observation: For both (p = 1, 2) ➽ algebraic convergence ‖u− uN‖0 = O(N−2/3)

Comparison with Exp. 5.2.10: for both linear and quadratic Lagrangian FEM

‖u− uN‖L2(Ω) = O(N−2/3) ←→ ‖u− uN‖H1(Ω) = O(N−1/3) ,

that is, we again observe a doubling of the rate of convergence for the weaker norm.

No gain through the use of quadratic FEM, because of limited smoothness of both u and dual solution gF.

For both the solution and the dual solution the gradient will have a singularity at 0.

Remark 5.6.28 (Usefulness of L2-estimates)

To begin with, the L2-estimates derived in this section are mainly motivated by curiosity: can we expect

the higher rates of convergence that we are accustomed to for weaker norms of interpolation errors also

from weaker norm of Galerkin discretization errors.

However, comparing observed convergence in L2-norm with what is predicted by theory, should be used

for testing the correctness of finite element codes, following the procedure of § 5.8.8.

5.7 Discrete Maximum Principle

So far we have investigated the accuracy of finite element Galerkin solutions: we studied relevant norms

‖u− uN‖ of the discretization error.
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Now new perspective: structure preservation by FEM

To what extent does the finite element solution uN inherit key structural properties of the solution u of

a 2nd-order scalar elliptic BVP?

This issue will be discussed for a special structural property of the solution of the linear 2nd-order elliptic

BVP (inhomogeneous Dirichlet problem) in variational form (→ Section 2.9)

u ∈ g̃ + H1
0(Ω): a(u, v) :=

∫

Ω
κ grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

0(Ω) . (5.7.1)

where g̃ =̂ offset function, extension of Dirichlet data g ∈ C0(∂Ω), see Section 2.4.1, (2.4.7),

κ =̂ bounded and uniformly positive definite diffusion coefficient, see (2.6.6).

(5.7.1) ←→ BVP (PDE-form)

− div(κ(x) grad u) = f in Ω , u = g on ∂Ω .

Recall (→ Section 2.6): (5.7.1) models stationary temperature distribution in body, when temperature on

its surface is prescribed by g.

Intuition:
✦ In the absence of heat sources maximal and minimal temperature attained on surface.

✦ In the presence of a heat source ( f ≥ 0) the temperature minimum will be attained on

surface ∂Ω.

✦ If f ≤ 0 (heat sink), then the maximal temperature will be attained on the surface.

In fact this is a theorem, cf. Section 2.8.

Theorem 5.7.2. Maximum principle for 2nd-order elliptic BVP

For u ∈ C0(Ω) ∩ H1(Ω) holds the maximum principle

− div(κ(x) grad u) ≥ 0 =⇒ min
x∈∂Ω

u(x) = min
x∈Ω

u(x) ,

− div(κ(x) grad u) ≤ 0 =⇒ max
x∈∂Ω

u(x) = max
x∈Ω

u(x) .

∆u = 0

Maximum/minimum on ∂Ω

Fig. 261
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Proof. ➊: case − div(κ(x) grad u) = 0

Section 2.2.3➣ u solves quadratic minimization problem

u = argmin
v∈H1(Ω)
v=g on ∂Ω

∫

Ω

κ(x)‖grad v(x)‖2 dx .

If u had a global maximum at x∗ in the interior of Ω, that is

∃δ > 0: u(x∗) ≥ max
x∈∂Ω

u(x) + δ .

Now “chop off” the maximum and define

w(x) := min{u(x), u(x∗)− δ} , x ∈ Ω . (5.7.3)

Fig. 262

u

Fig. 263

w

∫

Ω
κ(x)‖grad u(x)‖2 dx ≥

∫

Ω
κ(x)‖grad w(x)‖2 dx .

Obviously, w ∈ C0(Ω), and as a continuous function which is piecewise in H1 the function w will also

belong to H1(Ω) (→ Thm. 2.3.35). However

∫

Ω

κ(x)‖grad w(x)‖2 dx <

∫

Ω

κ(x)‖grad u(x)‖2 dx ,

which contradicts the definition of u as the global minimizer of the quadratic energy functional.

➋: case f := − div(κ(x) grad u) < 0

Section 2.2.3➣ u solves quadratic minimization problem

u = argmin
v∈H1(Ω)
v=g on ∂Ω

∫

Ω

1
2κ(x)‖grad v(x)‖2 − f (x)u(x)dx .

5. Convergence and Accuracy, 5.7. Discrete Maximum Principle 439



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

The function w from (5.7.3) satisfies w ≤ u. Thus
∫

Ω

− f (x)︸ ︷︷ ︸
≥0

u(x)dx ≥
∫

Ω

− f (x)︸ ︷︷ ︸
≥0

w(x)dx .

Hence, again w realizes a smaller value of the energy functional than u. ✷

Now we consider a finite element Galerkin discretization of (5.7.1) by means of linear Lagrangian finite

elements (→ Section 3.5), using offset functions supported near ∂Ω as explained in Section 3.6.6.

➣ finite element Galerkin solution uN ∈ S0
1 (M) ⊂ C0(Ω)

Issue: does uN satisfy a maximum principle, that is, can we conclude

f ≥ 0 =⇒ min
x∈∂Ω

uN(x) = min
x∈Ω

uN(x) ,

f ≤ 0 =⇒ max
x∈∂Ω

uN(x) = max
x∈Ω

uN(x) ?
(5.7.4)

(5.7.5) Maximum principle for finite difference discretization

Recall from Section 4.1: finite difference discretization of

−∆u = 0 in Ω :=]0, 1[2 , u = g on ∂Ω,

on an M×M tensor product mesh

M := {[(i − 1)h, ih]× [(j− 1)h, jh], 1 ≤ i, j ≤ M} , M ∈ N .

Unknowns in the finite difference method: µij ≈ u((ih, jh)T ), 1 ≤ i, j ≤ M− 1.

Unknowns are solutions of a linear system of equations, see (4.1.4)

1

h2

(
4µi,j − µi−1,j − µi+1,j − µi,j−1− µi,j+1

)
= 0 , 1 ≤ i, j ≤ M− 1 , (5.7.6)

where values corresponding to points on the boundary are gleaned from g:

µ0,j := g(0, hj) , µM,j := g(1, hj) , µi,0 := g(hi, 0) , µi,M := g(hi, 1) , 1 ≤ i, j < M .

Fig. 264

Fig. 265

4 −1

−1

−1

−1
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The finite difference solution (µi,j)1≤i,j<M
will attain its maximal value somewhere:

∃n, m ∈ {1, . . . , M− 1}: µn,m = µmax := max
0≤i,j≤M

µi,j .

Assume: (nh, mh)T in the interior ⇔ 1 ≤ n, m < M

Be aware of the following two facts:

µn−1,m, µn+1,m, µn,m−1, µn,m+1 ≤ µn,m ,

µn,m = 1
4

(
µn−1,m + µn+1,m + µn,m−1 + µn,m+1

)
(average!) .

(5.7.7)

⇓← “averaging argument”

µn−1,m = µn+1,m = µn,m−1 = µn,m+1 = µn,m !

The same argument can now target the neighboring grid points ((n − 1)h, mh)T , ((n + 1)h, mh)T ,

(nh, (m − 1)h)T , (nh, (m + 1)h)T . By induction we find:

µi,j = µmax ∀0 ≤ i, j ≤ M ,

that is, the finite difference solution has to be constant!

The finite difference solution can attain its maximum in the interior only in the case of constant

boundary data g!

Maximum principle satisfied for f = 0!

Remark 5.7.8 (Importance of discrete maximum principle)

Discretizations that satisfy the maximum principles will be positivity preserving: they yield non-negative

solutions for non-negative sources and boundary values (Why?). This can be essential, when we want to

compute a quantity that must never drop below zero, like a density or absolute temperatures.

(5.7.9) Maximum principle for linear finite element Galerkin discretization

Now we try to generalize the considerations of the previous paragraph to the discretization by means of

linear Lagrangian finite elements (space S0
1 (M) ⊂ H1(Ω)) on a triangular mesh (of a polygonal domain

Ω ⊂ R2) see Section 3.3.

Ã ∈ RM,M =̂ S0
1 (M)-Galerkin matrix for a from (5.7.1) (M := ♯V(M))

Row of this matrix connects all nodal values µj = uN(x
j) of the

finite element Galerkin solution uN ∈ S0
1 (M) according to

(Ã)iiµi + ∑
j 6=i

(Ã)ijµj = (~ϕ)i , xi interior node ,

where µj := g(xj) for xj ∈ ∂Ω.
Fig. 266
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This formula holds even in the case of Dirichlet boundary conditions, as can be seen from the first row of

(3.6.189).

Next we note that the components of the load vector ~ϕ inherit the sign of f , because the nodal basis

functions for S0
1 (M) (→ Section 3.3.3) are non-negative.

(~ϕ)i =
∫

Ω
f (x)bi

N(x)dx ⇒





f ≥ 0 ⇒ (~ϕ)i ≥ 0 ∀i ,
f = 0 ⇒ (~ϕ)i = 0 ∀i ,
f ≤ 0 ⇒ (~ϕ)i ≤ 0 ∀i .

The above averaging argument from § 5.7.5 carries over, if the entries of Ã satisfy the following conditions:

• (Ã)ii > 0 (positive diagonal) , (5.7.10)

• (Ã)ij ≤ 0 for j 6= i (non-positive off-diagonal entries) , (5.7.11)

• ∑
j

(Ã)ij = 0 , if xi is interior node . (5.7.12)

(Re-

call [5, Def. 1.8.8]: matrix Ã satisfying (5.7.10)–(5.7.12) is diagonally dominant.)

Averaging arguent: For an interior vertex xi is µi a convex combination of the nodal values in adjacent

vertices

µi = ∑
j 6=i

ωjµj , ωj > 0 , ∑
j 6=i

ωj = 1 , since ωj := − (Ãij)

(Ã)ii

.

min
j 6=i

µj ≤ µi ≤ max
j 6=i

µj ,

where the index j always runs through all the vertices for which (Ã)ij 6= 0.

averaging argument uN(x
i) = max

y∈V(M)
uN(y) can only hold for an interior node xi,

if µN = const.

Since uN ∈ S0
1 (M) attains its extremal values at nodes of the mesh, the maximum principles

holds for it in the case f = 0 provided that (5.7.10)–(5.7.12) are satisfied.

More general case f ≤ 0 ⇒ (~ϕ)i ≤ 0:

Then the averaging argument again rules out the existence of an interior maximum for an non-constant

solution. The case f ≥ 0 follows similarly.

When will (5.7.10)–(5.7.12) hold for S0
1 (M)-Galerkin matrix?

First consider κ ≡ 1, ↔ −∆u = f
(The linear finite element discretization of this BVP was scrutinized in Section 3.3)
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From formula (3.3.23) for element matrix & assembly, see

Fig. 101:

(Ã)ij = − cot α− cot β = −sin(α + β)

sin α sin β
.

⇓
(Ã)ij ≤ 0 ⇔ α + β < π .

Fig. 267

xi

xj
α

β

Moreover

∑
x∈V(M)

bx
N ≡ 1 ⇒ ∑

j

(Ã)ij = 0 (↔ (5.7.12)) .

The condition (5.7.10)↔ (Ã)ii > 0 is straightforward.

Theorem 5.7.13. Maximum principle for linear FE solution of Poisson equation

The linear finite element solution of

−∆u = 0 in Ω ⊂ R
2 , u = g on ∂Ω,

on a triangular meshM satisfies the maximum principle (5.7.4), ifM is a Delaunay triangulation.

Remark 5.7.14 (Maximum principle for linear FE for 2nd-order elliptic BVPs)

For S0
1 (M)-Galerkin discretization of (5.7.1) on triangular mesh, the conditions (5.7.10)–(5.7.12) are

fulfilled,

if all angles of triangles ofM≤ π

2
.

Remark 5.7.15 (Maximum principle for higher order Lagrangian FEM)

Even when using p-degree Lagrangian finite elements with nodal basis functions associated with interpo-

lation nodes, see Section 3.5.1, the discrete maximum principle will fail to hold on any mesh for p > 1.

5.8 Validation and Debugging of Finite Element Codes

In this section you will learn about an important application of a priori finite element convergence results

which you will never find mentioned in any textbook: the detection of programming errors (“debugging”)

in finite element codes. On one hand, whenever, for a well-defined numerical experiment the observed

convergence rates are worse than those predicted by theory, the code must be faulty. One the other hand,
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convergence matching theory is circumstantial evidence (no proof, however) for the correctness of the

implementation.

Also applies to debugging

a code ✄

Fig. 268

(5.8.1) The code under scrutiny (“model problem”)

At our disposal is a code that implements a Lagrangian finite element discretization (→ Section 3.5) of

general scalar linear second-order elliptic variational problems (→ Section 2.9, Section 2.10) on domains

Ω ⊂ Rd, d = 2, 3:

u ∈ H1(Ω)

u = g on ΓD
:
∫

Ω

α(x) grad u · grad v + γ(x)u v dx +
∫

ΓN

λ(x)u v dS(x)

=
∫

Ω

f v dx +
∫

ΓN

h v dS(x) ∀v ∈ H1
ΓD
(Ω) , (5.8.2)

where, based on a partition ∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, the trial and test space is the Sobolev space

(→ Def. 2.3.23)

H1
ΓD
(Ω) :=

{
v ∈ H1(Ω): v = 0 on ΓD

}
. (5.8.3)

☞ (5.8.2) is the variational formulation for a boundary value problem with mixed Dirichlet, Neumann, and

Robin boundary conditions as in Ex. 2.7.8.

• The source function f ∈ L2(Ω), Dirichlet data g ∈ C0(ΓD), Neumann data h ∈ L2(ΓN), coefficient

functions α : Ω → Rd,d (uniformly positive definite→ Def. 2.2.18), γ : Ω → R
+
0 , λ : ∂Ω → R

+
0

can be set within the code by defining suitable function classes.

• The code can handle general simplicial meshes (which may be read from file, see Section 3.6.1).

The mesh implicitly defines the domain Ω.

• The code can compute the Galerkin finite element solution of (5.8.2) based on the Lagrangian finite

element trial and test space V0,N := S0
p(M) ∩ H1

ΓD
(Ω) (→ Def. 3.5.2) for fixed uniform local

polynomial degree p ∈ N.

Note that the techniques presented in this section are applicable to finite element discretization of

variational problems way beyond this model setting.
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Task:
✦ Code validation: gather evidence for the correctness of the code.

✦ Code debugging: detect and located errors in the code.

It will turn out that asymptotic estimates for error norms as provided by (5.3.60), Thm. 5.3.56 and in

Section 5.6.3 are key tools for tackling this task. (This is another reason why finite element convergence

theory is relevant for anyone programming finite element methods.)✬

✫

✩

✪

For testing we will take for granted the availability of sequences of meshesM0,M1,M2, . . ., which

satisfy (see § 5.3.65 for related requirements)

1) that the meshwidth decreases geometrically: hk = qhk−1 for some 0 < q < 1, where hk is the

meshwidth ofMk.

2) that all cells ofMk have about the same size hk. This feature is called quasi-uniformity .

3) that the shape regularity measure (→ Def. 5.3.37) all meshes stays below a common bound, a

property called uniform shape regularity.

Note that Item 1 & Item 3 imply that the number of cells increases in geometric progression: ♯Mk =
σ ♯Mk−1 for some σ > 1 (usually σ = 4 in 2D),

Sequences of meshes complying with the above requirements can, for instance, be generated by succes-

sive (global) regular refinement of a coarse initial mesh, see Ex. 5.1.20. Refer to ?? for how to conduct

regular refinement with a DUNE-type interface. Also Gmsh provides a menu item which triggers global

regular refinement of the current mesh.

Simple global regular refinement may sometimes create meshes endowed with “too much struc-

ture” to observe “generic convergence behavior”.

In this case small random perturbations of vertex positions (mesh jiggling) can restore “truly

unstructured meshes”.

Sequences of meshes with the above properties were used in the numerical experiments of Section 5.2

and in Exp. 5.5.4, Exp. 5.5.5, Exp. 5.6.6, Exp. 5.6.12, Exp. 5.6.18.

(5.8.4) Observing asymptotic convergence

As explained in Rem. 5.3.72 we expect algebraic convergence of the energy norm (and of the L2(Ω)-norm

as well) of the discretization error in terms of the dimension of the finite element space.

We assume: asymptotic convergence estimates are sharp, cf. § 5.3.71: with a possibly unknown conver-

gence rate α > 0 we have for a targeted norm ‖·‖
∃C = C(u, . . .) > 0: ‖u− uN‖ ≈ CN−α ∀Mk . (5.8.5)

(u =̂ exact solution, uN =̂ finite element Galerkin solution, ≈ =̂ “approximate equality”; lower and upper

bound with two (slightly) different constants ≈ 1)

According to our assumptions on the sequence of meshes, by § 5.3.67, the dimensions Nk := dimS0
p(Mk)

will also grow in geometric progression (κ = 4 for 2D triangular mesh)

Nk ≈ κNk−1 for some κ > 1 ⇒ Nk ≈ κkN0 . (5.8.6)
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Write uk for the finite element Galerkin solution on Mk, combine (5.8.5) and (5.8.6) and use the △-

inequality

‖uk − uk−1‖ ≤ ‖uk − u‖+ ‖u− uk−1‖ ≈ CN0

(
κ−kα + κ−(k−1)α

)
≈ C′N−α

k , (5.8.7)

with a constant C′ > 0 independent of Nk.✎
✍

☞
✌

Measured norms of differences of Galerkin solutions of consecutive meshes in the sequence

should display algebraic convergence for Nk → ∞.

Consult § 1.6.27 for instructions on how to tell algebraic convergence from empiric error norms.

Caveat: Computing ‖uk − uk−1‖ entails forming the difference of finite element functions on different

meshes.

(5.8.8) Method of manufactured solutions → [6]

This technique has widely been used in numerical experiments exploring the asymptotic behavior of norms

of discretization errors, as in Exp. 1.6.23, the experiments of Section 5.2, Exp. 5.5.4, and many more.

➊ Pick a simple domain Ω (polygon in 2D) that allows exact triangulation with straight edges.

➋ Choose smooth exact solution u ∈ C∞(Ω) with a simple analytic expression (∗) and compute

corresponding source function f , boundary data g, and coefficient λ (analytically from the strong

form of the BVP). Symbolic computation (Mathematica, MAPLE) should be used.

➌ Choose coefficient functions α, γ, and λ given by simple analytic expressions; start with constants.

➍ Solve the resulting “manufactured BVP” on a sequence (M0,M1,M2, . . . ,ML) of meshes as

introduced above.

➎ Compute the finite element Galerkin solutions uk ∈ S0
p(Mk) on meshMk, k = 0, . . . , m, and the

norms ‖u− uk‖ of the discretization errors. Use “overkill quadrature” for computation of local error

norms, see Rem. 5.2.4.

➏ Estimate the rate of algebraic convergence (→ Def. 1.6.24) following the recipe in § 1.6.27, Code 1.6.30,

and plot the errors versus meshwidths in doubly logarithmic scale. Ignore coarse meshes if they give

rise to “outliers” due to pre-asymptotic effects as in Exp. 1.6.34.

➐ If the measured rate well matches the predicted rate from (5.3.73)

➣ code has passed test

Beware of polynomial exact solutions u ∈ Pp! (Why?) On the other hand, if the above test fails

for non-polynomial u, the next step should be to probe u ∈ Pp (Why?).

(5.8.9) Direct testing of (bi-)linear forms

This approach can be used to examine specific parts of the variational formulation. We abbreviate with

b(·, ·) a continuous and symmetric bilinear form on H1(Ω), with ℓ a continuous (→ Def. 2.2.56) linear

form on H1(Ω). They satisfy

∃Cr > 0: ℓ(v) ≤ Cr‖v‖H1(Ω) ∀v ∈ H1(Ω) , (5.8.10)
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∃Cc > 0: b(v, w) ≤ Cc‖v‖H1(Ω)‖w‖H1(Ω) ∀v, w ∈ H1(Ω) . (5.8.11)

The Galerkin matrix for b and the right hand side vector associated with ℓ can be tested through the

following steps:

➊ Pick a simple domain Ω (polygon in 2D) that allows exact triangulation with straight edges.

➋ Choose a smooth function w ∈ C∞(Ω) that is not a polynomial.

➌ Compute b(w, w) and ℓ(w) exactly, that is analytically, which is often feasible, if Ω is a square or a

circle. Symbolic computation (Mathematica, MAPLE) is advisable.

➍ With the finite element code evaluate Ikw, where Ik : C0(Ω) → S0
p(Mk) is the local nodal interpo-

lation operator as introduced in § 5.3.52, (5.3.53). Write~νk ∈ R
Nk for the vector of basis expansion

coefficients of Ikw.

➎ Use the code to compute the S0
p(Mk)- Galerkin matrix Bk ∈ R

Nk,Nk for b. Also compute the vector

~ρk ∈ RNk arising from the S0
p(Mk)-Galerkin discretization of ℓ.

➏ Using the asymptotic interpolation error estimates of Thm. 5.3.56 and the continuity of b:

b(w, w)−~ν⊤k Bk~νk = b(w, w)− b(Ikw, Ikw) = b(w + Ikw, w− Ikw)

(5.8.11)

≤ Cc‖w + Ikw‖H1(Ω) ‖w− Ikw‖H1(Ω)

≤ Cc‖w‖H1(Ω)

(
1 + Ch

p
k ‖w‖Hp+1(Ω)

)(
Ch

p
k ‖w‖Hp+1(Ω)

)
= O(h

p
k ) .

Again, we invoke Thm. 5.3.56 and continuity:

ℓ(w)−~ν⊤k ~ρk = ℓ(w)− ℓ(Ikw) = ℓ(w− Ikw)
(5.8.10)

≤ Cr‖w− Ikw‖H1(Ω)

≤ CrCh
p
k ‖w‖Hp+1(Ω) = O(h

p
k ) .

➐ In both estimates the values on left hand side are readily available (b(w, w) and ℓ(w) are supposed

to be known!) and theory predicts a rather precise rate p of algebraic convergence for them. If this

rate materializes in empiric data

➣ code has passed test

If code fails test, repeat with “simpler” w, for instance with w ∈ Pp(Rd), which implies b(w, w) −
~ν⊤k Bk~νk = 0. because in this case w ∈ S0

p(Mk) for all ℓ.

Learning Outcomes

Essential knowledge and skills acquired in this chapter:

• State, prove and understand Cea’s Lemma and its relevance for the finite element Galerkin dis-

cretization of elliptic BVP.

• Known the meaning of h-refinement and p-refinement.
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• Ability to determine empirical (algebraic) convergence rates of various norms of a finite element

discretization error.

• Ability to predict the asymptotic algebraic convergence of the energy norm and L2-norm the finite

element discretization error for scalar 2nd-order elliptic BVP.

• Familiarity with features of an elliptic BVP (corners, discontinuous coefficients) that can thwart the

fastest possible convergence of a Lagrangian finite element discretization for h-refinement.

• Knowledge of how to choose the appropriate order of quadrature and boundary approximation so

as to preserve the optimal rate of convergence (for h-refinement).

• Use duality techniques to obtain improved error estimates for the evaluation of linear and continuous

output functionals. Understanding of the importance of continuity of output functionals.

• Knowledge of the (discrete) maximum principle for scalar 2nd-order elliptic boundary value prob-

lems.

• An idea of common strategies for the debugging and validation of a general finite element code.
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Chapter 6

2nd-Order Linear Evolution Problems

(6.0.1) Introduction

This chapter is devoted to time-dependent problems = evolution problems.

Prerequisite knowledge is

• the theory and variational formulation of 2nd-order elliptic BVP Chapter 2,

• basic concepts and algorithms for finite elements, Section 3.2, Section 3.4, Section 3.5,

• knowledge about single step methods for ODEs, [4, Chapter 11].

In particular, we study scalar linear partial differential equations for which one coordinate direction is

special and identified with time and denoted by the independent variable t. The other coordinates are

regarded as spatial coordinates and designated by x = (x1, . . . , xd)
T.

Why is time special? It seems to be just another dimension.

! In contrast to space, time has a direction from past to future and this makes the temporal direction

special.

(6.0.2) Outline
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6.2.4 Timestepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
6.2.5 CFL-condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

This chapter exclusively deals with linear evolution problems. We can distinguish two fundamental classes,

dissipative and conservative evolutions. This is reflected by he structure of the chapter, which comprises

two sections, Section 6.1 devoted to dissipative (parabolic) evolutions, Section 6.2 addressing conservative

(hyperbolic) evolutions. Each section first develops variational formulations, then discretization in space,

and, finally, discretization in time. Results on convergence are reviewed and discussed.

(6.0.3) Space-time domains

For time-dependent PDEs (x↔ spatial variable, t↔ time variable)

➣ solution will be a “function of time and space”: u = u(x, t)

The domain for such PDEs will have tensor product structure (tensor product of spatial domain and a

bounded time interval):

Computational domain:

Ω̃ := Ω×]0, T[⊂ R
d+1 .

space-time cylinder

Ω ⊂ Rd =̂ spatial domain (satisfying assump-

tions of Section 2.2.1)

T > 0 =̂ final time

Data prescribed for u on ∂Ω̃ have different names:

On Ω× {0} → initial conditions,

on ∂Ω×]0, T[→ (spatial) boundary conditions.

Fig. 269

Ω

Ω

Ω̃

T

0

Space
Boundary conditions

Initial conditions

T
im

e

Remark 6.0.4 (Temporally varying spatial domains)

The spatial sections of a space-time domain Ω̃ need not be constant, that is, Ω̃ can also be of arbitrary

shape. However, the mathematical and numerical treatment of this situation is a challenge; even the dis-

tinction between initial conditions and boundary conditions becomes blurred. Thus we confine ourselves

to space-time cylinders.

(6.0.5) Terminology for time-dependent problems
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Extending the notion of a “boundary value problem”:

PDE for u(x, t) + initial conditions + boundary conditions

︸ ︷︷ ︸
= evolution problem

Note: No boundary conditions are prescribed on Ω× {T} (“final conditions”): time is supposed to have

a “direction” that governs the flow of information in the evolution problem, cf. § 6.0.1.

evolution problems (on bounded spatial domains) are also known as

initial-boundary value problems (IBVP).

Remark 6.0.6 (Initial time)

Why do we always pick initial time t = 0 in this chapter?

The modelled physical systems will usually be time-invariant, so that we are free to shift time. Remember

the analoguous situation with autonomous ODE, see [4, Section 11.1].

6.1 Parabolic initial-boundary value problems

6.1.1 Heat equation

Section 2.6 treated stationary heat conduction: no change of temperature with time (temporal equilibrium).

For this situation we derived a mathematical model that boils down to a second order scalar linear elliptic

boundary value problem for the temperature u = u(x) as a function of the spatial variable x ∈ Ω, see

§ 2.6.7 and Section 2.7 for a discussion of boundary conditions.

Now we consider the evolution (change in time) of a temperature distribution u = u(x, t) in a solid body

occupying a bounded region of space Ω ⊂ Rd over a finite time period [0, T].

(6.1.1) Notations for heat conduction modelling

We use the following symbols in connection with mathematical modelling of transient heat conduction:

Ω ⊂ R
d : space occupied by solid body (bounded spatial computational domain),

x ∈ Ω : spatial independent variable

: (differential operators acting in space are sometimes tagged with subscript x)

t : time variable, ∂
∂t /

d
dt =̂ partial/total derivative w.r.t. time,

κ = κ(x) : (spatially varying) heat conductivity ([κ] = W
Km ),

T > 0 : final time for “observation period” [0, T],
u0 : Ω 7→ R : initial temperature distribution in Ω,

g : ∂Ω× [0, T] 7→ R : surface temperature, varying in space and time: g = g(x, t),
f : Ω× [0, T] 7→ R : time-dependent heat source/sink ([ f ] = W

m3 ): f = f (x, t).
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Goal: derive PDE governing transient heat conduction.

The tools and concepts from Section 2.6 will be used again: Heat flux (→ § 2.6.1), energy conservation,

and a flux law (→ § 2.6.4).

(6.1.2) Derivation of heat equation

For transient heat conduction the energy balance law (2.6.3) has to be supplemented by a storage term

reflecting the fact that heat can accumulate:

✬

✫

✩

✪

Conservation of energy :

d

dt

∫

V
ρu dx +

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V (6.1.3)

energy stored in V power flux through ∂V heat generation in V

ρ = ρ(x): (spatially varying) heat capacity ([ρ] = JK−1), uniformly positive, cf. (2.6.6).

As in § 2.6.7, now apply Gauss’ Theorem Thm. 2.5.7

∫

V
div j(x)dx =

∫

∂V
j(x) · n(x)dS(x) , j : Ω→R

d ,

to the power flux integral in (6.1.3). This converts the surface integral to a volume integral over div j and

we get

d

dt

∫

V
ρu dx +

∫

V
div j dx =

∫

V
f dx for all “control volumes” V

Now appeal to another version of the fundamental lemma of the calculus of variations, see Lemma 2.5.12,

this time involving piecewise constant test functions.

Local form of energy balance law (Heat equation)

∂

∂t
(ρu)(x, t) + (divx j)(x, t) = f (x, t) in Ω̃ . (6.1.4)

For standard materials the heat flux is linked to temperature variations by Fourier’s law (→ § 2.6.4):

j(x) = −κ(x) grad u(x) , x ∈ Ω . (2.6.5)

From here we let all differential operators like grad and div act on the spatial independent variable x. As

earlier, the independent variables x and t will be omitted frequently. Watch out!

Now, plug Fourier’s law

j(x) = −κ(x) grad u(x) , x ∈ Ω , (2.6.5)

into the local form of the energy balance law (6.1.4).
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∂

∂t
(ρu)− div(κ(x) grad u) = f in Ω̃ := Ω×]0, T[ . (6.1.5)

(6.1.6) Evolution problem for heat conduction

A pointed out in § 6.0.5 the PDE (6.1.5) has to be supplemented with initial conditions for (x, t) ∈ Ω×{0}
and boundary conditions for (x, t) ∈ ∂Ω×]0, T[. A simple and intuitive choice is

Dirichlet boundary conditions (fixed surface temperatur) on ∂Ω×]0, T[:

u(x, t) = g(x, t) for (x, t) ∈ ∂Ω×]0, T[ . (6.1.7)

+ initial conditions for t = 0:

u(x, 0) = u0(x) for all x ∈ Ω . (6.1.8)

Terminology: (6.1.5) & (6.1.7) & (6.1.8) is a specimen of a

2nd-order parabolic initial-boundary value problem

(6.1.9) (Spatial) boundary conditions for 2nd-order parabolic IBVPs

As in Section 2.7 we appeal to physical intuition about heat conduction to justify that all of the following

spatial boundary conditions make sense for the heat equation (6.1.5).

On ∂Ω]0, T[ we can impose any of the boundary conditions discussed in Section 2.7:

• Dirichlet boundary conditions u(x, t) = g(x, t), see (6.1.7) (fixed surface temperature),

• Neumann boundary conditions j(x, t) · n = −h(x, t) (fixed heat flux through surface),

• radiation boundary conditions j(x, t) · n = Ψ(u(x, t)),
and any combination of these as discussed in Ex. 2.7.8, yet, only one of them at any part of ∂Ω×]0, T[,
see Rem. 2.7.7.

For second order parabolic evolutions we can/must use the same spatial boundary conditions as for

stationary second order elliptic boundary value problems.

Remark 6.1.10 (Compatible boundary and initial data)

We consider spatial Dirichlet boundary conditions (6.1.7) for the heat equation (6.1.5).

Natural regularity requirements for the temperature u and the Dirichlet data g:

u and g are continuous in time and space
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➣ Natural compatibility requirement at initial time for u0 ∈ C0(Ω)

g(x, 0) = u0(x) ∀x ∈ ∂Ω .

6.1.2 Spatial variational formulation

(6.1.11) Model second-order linear parabolic evolution problem

Now we study the linear 2nd-order parabolic initial-boundary value problem with pure Dirichlet boundary

conditions, introduced in the preceding section:

∂

∂t
(ρ(x)u)− div(κ(x) grad u) = f in Ω̃ := Ω×]0, T[ , (6.1.5)

u(x, t) = g(x, t) for (x, t) ∈ ∂Ω×]0, T[ , (6.1.7)

u(x, 0) = u0(x) for all x ∈ Ω . (6.1.8)

Here ρ and κ are uniformly positive (→ Def. 2.2.18) and bounded integrable functions on Ω. The source

function f = f (x, t) may depend on space an time and fulfills f (·, t) ∈ L2(Ω).

Imposed: Homogeneous Dirichlet boundary conditions g ≡ 0

The general case can be reduced to this by using the offset function trick, see Section 3.6.6, and solve

the parabolic initial-boundary value problem for w(x, t) := u(x, t)− g̃(x, t), where g̃(·, t) is an extension

of the Dirichlet data g to Ω̃. Then w will satisfy homogeneous Dirichlet boundary conditions and solve an

evolution equation with a modified source function f̃ (x, t).

(6.1.12) Derivation of spatial variational formulation

Now we pursue the formal derivation of the spatial variational formulation of (6.1.5)–(6.1.7).

The steps completely mirror those discussed in Section 2.9, § 2.9.1. This paragraph should be reviewed

again.

STEP 1: test PDE with functions v ∈ H1
0(Ω)

(Rule: do not test, where the solution is known, that is, on the boundary ∂Ω )

Note: test function does not depend on time: v = v(x)!

STEP 2: integrate over domain Ω

∫

Ω

(
d

dt
(ρu) − div(κ(x) grad u)

)
v(x)dx =

∫

Ω

f (x)v(x) dx ∀v : Ω→ R , v|∂Ω = 0 .
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STEP 3: perform integration by parts in space

(by using Green’s first formula, Thm. 2.5.9)

∫

Ω

d

dt
(ρu)(x) v(x) + κ(x)grad u(x) · grad v(x) dx−

∫

∂Ω

κ(x) grad u(x) · n(x) v(x)︸︷︷︸
=0

dS(x) =
∫

Ω

f (x)v(x) dx ∀v : Ω→ R , v|∂Ω = 0 .

Supplement 6.1.13.

For the concrete PDE (6.1.5) and boundary conditions (6.1.7) refer to Ex. 2.9.2 for a discussion of these

steps in the stationary context. For more general boundary conditions study Ex. 2.9.6 to refresh yourself

on how to obtain variational formulations. The derivation will include another STEP 4, which recasts

boundary terms using the spatial boundary conditions. △

The final step is the selection of an appropriate Sobolev space with respect to the dependence on the

spatial variable. Following the guideline from Section 2.3.1 we pick the largest space, for which both

left and right hand side of the formal variational problem are still well defined for every time t. With the

arguments from Section 2.3.4 we find the space H1
0(Ω).

Since the coefficient ρ must not depend on time, we arrive at the following variational problem:

✬

✫

✩

✪

Spatial variational form of (6.1.5)–(6.1.7): seek t ∈]0, T[ 7→ u(t) ∈ H1
0(Ω)

∫

Ω

ρ(x)u̇(t)v dx +
∫

Ω

κ(x) grad u(t) · grad v dx =
∫

Ω

f (x, t)v(x)dx ∀v ∈ H1
0(Ω) , (6.1.14)

u(0) = u0 ∈ H1
0(Ω) . (6.1.15)

Remark 6.1.16 (Function space valued functions)

What does it mean, when we write u(t)? Be aware that t 7→ u(t) describes a function space valued

function on ]0, T[, here assigning to every instance of time a function in H1
0(Ω):

u :]0, T[→ H1
0(Ω) .

Also note that grad = gradx acts on the spatial independent variables that are suppressed in the

notation u(t). Hence t 7→ gradx u(t) is a function space valued function, too, with values in (L2(Ω))d.

✎ Notation: u̇(t) = ∂u
∂t (t) =̂ (partial) derivative w.r.t. time: ∂u

∂t (t) ∈ H1
0(Ω)
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(6.1.17) Abstract linear parabolic evolution problems

Shorthand abstract notation for (6.1.14) (with obvious correspondences):

t ∈]0, T[ 7→ u(t) ∈ V0 :

{
m(u̇(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .
(6.1.18)

Again, here ℓ(t) =̂ linear form valued function on ]0, T[.

Concretely for evolution problem (6.1.5), (6.1.7), (6.1.8):

m(u̇, v) :=
∫

Ω

ρ(x)u̇(t)v dx , u, v ∈ H1
0(Ω) ,

a(u, v) :=
∫

Ω

κ(x) grad u(t) · grad v dx , u, v ∈ H1
0(Ω) ,

ℓ(t)(v) :=
∫

Ω

f (x, t)v(x)dx , v ∈ H1
0(Ω) .

Note that both m and a are symmetric, positive definite bilinear forms (→ Def. 2.2.40).

➣ Both m and a induce related energy norms ‖·‖a and ‖·‖m (→ Def. 2.2.43)

Since the bilinear formm does not depend on time, we conclude

m(u̇, v) =
∫

Ω

ρ(x)u̇(t)v dx =
d

dt

∫

Ω

ρ(x)u(t)v dx =
d

dt
m(u, v) ,

and we can rewrite (6.1.18) equivalently as follows:

t ∈]0, T[ 7→ u(t) ∈ V0 :





d

dt
m(u(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .
(6.1.19)

This is a linear evolution problem in the sense that the mapping that associates the solution u = u(x, t)
to the data (ℓ, u0) is linear.

6.1.3 Stability of parabolic evolution problems

Now we are concerned with the stability of linear parabolic evolution problems, also known as well-

posedness (→ Def. 2.4.13), more precisely, whether

1. solutions of (6.1.19) exist and are unique,

2. relevant norms of the solution can be bounded by suitable norms of the data u0, f (and g for Dirichlet

boundary conditions (6.1.7)).
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Similar considerations for (stationary) abstract variational problems can be found in Section 2.4.2.

We investigate only whether ‖u(t)‖H1(Ω) depends continuously on u0 for all times t in the case f ≡ 0.

For the sake of simplicity we restrict ourselves to constant coefficients ρ ≡ 1 and κ ≡ 1. (The general

case is not more difficult, because both ρ and κ are bounded and uniformly positive, see (2.6.6).)

We use that by the first Poincaré-Friedrichs inequality from Thm. 2.3.31

∃γ > 0: |v|2H1(Ω) ≥ γ‖v‖2
L2(Ω) ∀v ∈ H1

0(Ω) . (6.1.20)

In fact, Thm. 2.3.31 reveals γ = diam(Ω)−2, but the numerical value of γ is not important for our

considerations.

Remark 6.1.21 (Differentiating bilinear forms with time-dependent arguments)

Consider (temporally) smooth u : [0, T] 7→ V0, v : [0, T] 7→ V0 and a symmetric bilinear form b :
V0 × V0 7→ R. We are concerned with computing the temporal derivative d

dtb(u(t), v(t)), because this

will be a key step in the proof of stability estimates.

Perform formal Taylor expansion:

b(u(t + τ), v(t + τ)) = b(u(t) + u̇(t)τ + O(τ2), v(t) + v̇(t)τ + O(τ2))

= b(u(t), v(t)) + τ(b(u̇(t), v(t)) + b(u(t), v̇(t))) + O(τ2) .

d

dt
b(u(t), v(t)) = lim

τ→0

b(u(t + τ), v(t + τ))− b(u(t), v(t))

τ

= b(u̇(t), v(t)) + b(u(t), v̇(t)) .

This is a general product rule, see [4, Eq. (2.4.9)].

Lemma 6.1.22. Decay of solutions of parabolic evolutions

For f ≡ 0 the solution u(t) of (6.1.14) satisfies

‖u(t)‖m ≤ e−γt‖u0‖m , ‖u(t)‖a ≤ e−γt‖u0‖a ∀t ∈]0, T[ ,

where γ > 0 is the constant from (6.1.20), and ‖·‖a, ‖·‖m stand for the energy norms induced by

a(·, ·) and m(·, ·), respectively.

Proof. Multiply the solution of the parabolic IBVP with an exponential weight function:

w(t) := exp(γt)u(t) ∈ H1
0(Ω) ⇒ ẇ := dw

dt (t) = γw(t) + exp(γt) du
dt (t) , (6.1.23)

solves the parabolic IBVP

m(ẇ, v) + ã(w, v) = 0 ∀v ∈ V ,

w(0) = u0 ,
(6.1.24)
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with ã(w, v) = a(w, v)− γm(w, v), γ from (6.1.20). To see this, use that u(t) solves (6.1.19) with f ≡ 0
(elementary calculation).

Note: (6.1.20) ⇒ ã(v, v) ≥ 0 ∀v ∈ V

We show the exponential decay of ‖·‖m-norm of solution:

d
dt

1
2‖w‖

2
m = d

dt
1
2m(w, w)

Rem. 6.1.21
= m(ẇ, w) = −ã(w, w) ≤ 0 (6.1.25)

This confirms that t 7→ ‖w(t)‖m is a decreasing function, which involves

(6.1.25) ⇒ ‖w(t)‖m ≤ ‖w(0)‖m ,

and the first assertion of the Lemma is evident. Next, we verify the exponential decay of |·|H1(Ω)-norm of

solution by a similar trick:

1
2

d
dt‖w‖

2
ã

Rem. 6.1.21
= ã( d

dt w, w) = −m( d
dt w, d

dt w) ≤ 0 ⇒ ‖w(t)‖
ã
≤ ‖w(0)‖

ã
,

‖w(t)‖2
a ≤ ‖w(0)‖2

a − γ(‖w(0)‖2
m − ‖w(t)‖2

m︸ ︷︷ ︸
≥0 by (6.1.25)

) .

Reverting the transformation (6.1.23) gives the estimates for |u|H1(Ω).
✷

Dissipation of energy in parabolic evolutions

Exponential decay of energy during parabolic evolution without excitation

(“Parabolic evolutions dissipate energy”)

Note that if the source term f does not depend on time, then the lemma asserts exponential convergence

(in time) of u = u(t) solution of (6.1.14) to the solution u∗ = u∗(x) ∈ of the stationary boundary value

problem

∫

Ω

κ(x) grad u∗(x) · grad v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0(Ω) .

Exponential convergence (in time) to “equilibrium solution” in the case of time-independent

excitation

6.1.4 Method of lines

Idea: Apply Galerkin discretization (→ Section 3.2) to abstract linear parabolic variational

problem (6.1.19).

Recall from Section 3.2 that the fundamental ideas behind Galerkin discretization are

(I) the use of finite dimensional subspaces of the function spaces as trial and test spaces

➣ discrete variational problem,

(II) the choice of ordered bases in order to convert the discrete variational problem into a system of

equations for unknown expansion coefficients.
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We pursue this steps for the following abstract linear parabolic evolution problem posed over a vector

space V0:

t ∈]0, T[ 7→ u(t) ∈ V0 :

{
m(u̇(t), v) + a(u(t), v) = ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .
(6.1.19)

1st step: replace V0 with a finite dimensional subspace V0,N, N := dim V0,N < ∞

(Spatially) discrete parabolic evolution problem

t ∈]0, T[ 7→ u(t) ∈ V0,N :

{
m(u̇N(t), vN) + a(uN(t), vN) = ℓ(t)(vN) ∀vN ∈ V0,N ,

uN(0) = projection/interpolant of u0 in V0,N .
(6.1.27)

2nd step: introduce (ordered) basis BN := {b1
N, . . . , bN

N} of V0,N

Next plug in basis expansion of uN(t) with time-dependent coefficients µi:

uN(t) =
N

∑
i=1

µi(t)b
i
N . (6.1.28)

Note that the basis functions themselves do not depend on time, of course.

Method-of-lines ordinary differential equation

Combining (6.1.27) and (6.1.28) we obtain

(6.1.27) ⇒





M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) for 0 < t < T ,

~µ(0) = ~µ0 .
(6.1.30)

with

✄ s.p.d. stiffness matrix A ∈ RN,N, (A)ij := a(b
j
N , bi

N) (independent of time),

✄ s.p.d. mass matrix M ∈ RN,N, (M)ij := m(b
j
N , bi

N) (independent of time),

✄ source (load) vector~ϕ(t) ∈ RN, (~ϕ(t))i := ℓ(t)(bi
N) (time-dependent),

✄ ~µ0 =̂ coefficient vector of a projection of u0 onto V0,N.

Note:

(6.1.30) is an ordinary differential equation (ODE) for t 7→ ~µ(t) ∈ RN

Conversion (6.1.19) ➙ (6.1.30) through Galerkin discretization in space only is known as method of lines.

(6.1.30) =̂ a semi-discrete evolution problem

Discretized in space ←→ but still continuous in time

(6.1.31) Galerkin matrices in the method of lines ODE

For the concrete linear parabolic evolution problem (6.1.14)–(6.1.15) and spatial finite element discretiza-

tion based on a finite element trial/test space V0,N ⊂ H1(Ω) we can compute

• the mass matrix M as the Galerkin matrix for the bilinear form (u, v) 7→
∫

Ω
ρ(x)u(x)v(x)dx,

u, v ∈ L2(Ω),
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• the stiffness matrix A as Galerkin matrix arising from the bilinear form (u, v) 7→
∫

Ω
κ(x) grad u(x) ·

grad v(x)dx, u, v ∈ H1(Ω).

The calculations are explained in Section 3.6.4 and Section 3.6.5 and may involve numerical quadrature.

Remark 6.1.32 (Spatial discretization options)

Beside the Galerkin approach any other method for spatial discretization of 2nd-order elliptic BVPs can be

used in the context of the method of lines: the matrices A, M may also be generated by finite differences

(→ Section 4.1), finite volume methods (→ Section 4.2), or collocation methods (→ Section 1.5.3).

6.1.5 Timestepping

For implementation we need a fully discrete evolution problem. This requires additional discretization in

time:

semi-discrete evolution problem (6.1.30) + timestepping fully discrete evolution problem

Benefit of method of lines: we can apply already known integrators for initial value problems for ODEs to

(6.1.30).

(6.1.33) Numerical integration of ordinary differential equations

First, refresh central concepts from numerical integration of initial value problems for ODEs, see [4, Chap-

ter 11], [4, Chapter 12]:

• single step methods of order p, see [4, Def. 11.3.5] and [4, Section 11.3.2], defined as recursions in

state space based on discrete evolution operators.

• explicit and implicit Runge-Kutta single step methods, see [4, Section 11.4], [4, Section 12.3], en-

coded by Butcher scheme [4, Eq. (11.4.11)], [4, Eq. (12.3.20)].

• the notion of a stiff initial value problem (→ [4, Notion 12.2.9]),

• the definition of the stability function of a single step method, see [4, Thm. 12.3.27],

• the concept of L-stability [4, Def. 12.3.38] and how to verify it for Runge-Kutta methods.

6.1.5.1 Single step methods

(6.1.34) Fundamentals of single step methods

Recall: single step methods (→ [4, Def. 11.3.5]) for ODE d
dt~µ = F(t,~µ)

✦ are based on a temporal mesh {0 = t0 < t1 < . . . < tM−1 < tM := T}
(with local timestep size τj = tj − tj−1),
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✦ compute sequence

(
~µ(j)

)M

j=0
of approximations~µ(j) ≈ µ(tj) to the solution of (6.1.30) at the nodes

of the temporal mesh according to

~µ(j) := Ψ
tj−1,tj~µ(j−1) := Ψ(tj−1, tj,~µ

(j−1)) , j = 1, . . . , M ,

where Ψ is the discrete evolution defining the single step method, see [4, Def. 11.3.5]. Usually, we

will have formulas for Ψ involving only evaluations of F at a few points in time.

Example 6.1.35 (Euler timestepping → [4, Section 11.2])

The Euler method is the simplest conceivable timestepping scheme. Here, we target the abstract varia-

tional initial value problem

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) for 0 < t < T ,

~µ(0) = ~µ0 .
(6.1.30)

Explicit Euler method [4, Eq. (11.2.7)] =̂ replace d
dt in (6.1.30) with forward difference quotient, see [4,

Rem. 11.2.8]:

(6.1.30) M~µ(j) = M ~µ(j−1) − τj

(
A~µ(j−1) −~ϕ(tj−1)

)
, j = 1, . . . , M− 1 . (6.1.36)

Implicit Euler method [4, Eq. (11.2.13)]: replace d
dt in (6.1.30) with backward difference quotient

(6.1.30) M~µ(j) = M ~µ(j−1) − τj

(
A~µ(j) −~ϕ(tj)

)
, j = 1, . . . , M− 1 . (6.1.37)

Note that both (6.1.36) and (6.1.37) require the solution of a linear system of equations in each step

(6.1.36): ~µ(j) = ~µ(j−1) + τjM
−1(~ϕ(tj−1)−A~µ(j−1)) ,

(6.1.37): ~µ(j) = (τjA + M)−1
(

M~µ(j−1) + τj~ϕ(tj)
)

.

Recall [4, Section 11.3.2]: both Euler method are of first order.

Example 6.1.38 (Crank-Nicolson timestepping)

Crank-Nicolson method = implicit midpoint rule: replace d
dt in (6.1.30) with symmetric difference quotient

and average right hand side:

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t)

⇓

M
~µ(j) −~µ(j−1)

τ
= − 1

2A
(
~µ(j) +~µ(j−1)

)
+ 1

2(~ϕ(tj) +~ϕ(tj−1)) . (6.1.39)

This yields a method that is 2nd-order consistent.

Both the Euler method from Ex. 6.1.35 and the Crank-Nicolson timestepping from Ex. 6.1.38 belong to a

famous class of single step methods, the
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Runge-Kutta single step methods → [4, Section 11.4], [4, Section 12.3]

Definition 6.1.40. General Runge-Kutta method → [4, Def. 12.3.18]

For coefficients bi, aij ∈ R, ci := ∑
s
j=1 aij, i, j = 1, . . . , s, s ∈ N, the discrete evolution Ψ

s,t of an

s-stage Runge-Kutta single step method (RK-SSM) for the ODE ẏ = f(t, y), is defined by

ki := f(t + ciτ, y + τ
s

∑
j=1

aijkj) , i = 1, . . . , s , Ψ
t,t+τy := y + τ

s

∑
i=1

biki .

The ki ∈ Rd are called increments.

(6.1.41) Butcher scheme

Shorthand notation for s-stage Runge-Kutta methods: Butcher scheme → [4, Eq. (12.3.20)]

c A

bT =̂

c1 a11 a12 . . . . . . a1s

c2 a21
. . . a2s

...
...

. . .
...

cs as1
... ass

b1 b2 . . . . . . bs

, c, b ∈ R
s, A ∈ R

s,s . (6.1.42)

(6.1.43) Application of general Runge-Kutta timestepping to method of lines ODE

Concretely for linear parabolic evolution after spatial semi-discretization: Application of s-stage Runge-

Kutta method to the method of lines ODE

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) ⇔ ~̇µ = M−1(~ϕ(t)−A~µ(t))︸ ︷︷ ︸

=f(t,~µ)

. (6.1.30)

Then simply plug this into the formulas of Def. 6.1.40.

Timestepping scheme for (6.1.30): compute~µ(j+1)
from~µ(j)

through

~κi ∈ R
N : M~κi +

s

∑
m=1

τaimA~κm = ~ϕ(tj + ciτ)−A~µ(j) , i = 1, . . . , s , (6.1.44)

~µ(j+1) = ~µ(j) + τ
s

∑
m=1

~κmbm . (6.1.45)

Note: For an implicit RK-method (6.1.44) is a linear system of equations of size Ns. Using the Kro-

necker product of matrices for A ∈ Km,n and B ∈ Kl,k, m, n, l, k ∈ N, defined as (→ [4, Def. 1.4.16])

A⊗ B :=




(A)11B (A)1,2B . . . . . . (A)1,nB

(A)2,1B (A)2,2B
...

...
...

...
...

...
...

(A)m,1B (A)m,2B . . . . . . (A)m,nB



∈ K

nl,nk ,
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(6.1.44) can be recast into the following form

(6.1.44) ⇔ (Is ⊗M + τA⊗A)



~κ1
...

~κs


 =



~ϕ(tj + c1τ)−A~µ(j)

...

~ϕ(tj + csτ)−A~µ(j)


 . (6.1.46)

6.1.5.2 Stability

In Section 6.1.3 we have seen that the energy norm and L2-norm of solutions of linear parabolic evolution

problems remain bounded for all times. The same arguments confirm that this remains true for the solution

~µ(t) of the semi-discrete evolution (6.1.30). However, some well-established single step methods applied

to (6.1.30) may not enjoy this stability.

Experiment 6.1.47 (Convergence of Euler timestepping for M.O.L. ODE)

Parabolic evolution problem in one spatial dimension (IBVP):

∂u

∂t
=

∂2u

∂x2
in [0, 1]×]0, 1[ , (6.1.48)

u(t, 0) = u(t, 1) = 0 for 0 ≤ t ≤ 1 , u(0, x) = sin(πx) for 0 < x < 1 . (6.1.49)

exact solution u(t, x) = exp(−π2t) sin(πx) . (6.1.50)

✦ Spatial finite element Galerkin discretization by means of linear finite elements (V0,N = S0
1,0(M))

on equidistant meshM with meshwidth h := 1
N+1 → Section 1.5.2.2.

✦ uN,0 := I1u0 by linear interpolation onM, see Section 5.3.1.

✦ Timestepping by explicit and implicit Euler method (6.1.36), (6.1.37) with uniform timestep τ := 1
M .

We obtain tridiagonal N × N Galerkin matrices, see (1.5.77):

A =
1

h




2 −1 0 0
−1 2 −1

0
. . .

. . .
. . .

. . .
. . .

. . . 0
−1 2 −1

0 0 −1 2




, M =
h

6




4 1 0 0
1 4 1

0
. . .

. . .
. . .

. . .
. . .

. . . 0
1 4 1

0 0 1 4




.

MATLAB code 6.1.51: Euler timestepping for (6.1.48)

1 f u n c t io n [errex,errimp] = sinevl(N,M,u)

2 % Solve fully discrete two-point parabolic evolution problem (6.1.48)
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3 % in [0, 1]×]0, 1[. Use both explicit and implicit Euler method for
timestepping

4 % N: number of spatial grid cells

5 % M: number of timesteps

6 % u: handle of type @(t,x) to exact solution

7

8 i f (nargin < 3), u = @(t,x) (exp(-(p i^2)*t).*s in(p i*x)); end %
Exact solution

9

10 h = 1/N; tau = 1/M; % Spatial and temporal meshwidth

11 x = h:h:1-h; % Spatial grid, interior points

12

13 % Finite element stiffness and mass matrix

14 Amat = g a l l e r y(’tridiag’,N-1,-1,2,-1)/h;

15 Mmat = h/6*g a l l e r y(’tridiag’,N-1,1,4,1);

16 Xmat = Mmat+tau*Amat;

17

18 mu0 = u(0,x)’; % Discrete initial value

19 mui = mu0; mue = mu0;

20

21 %Timestepping

22 erre = 0; erri = 0;

23 f o r k=1:M

24 mue = mue - tau*(Mmat\(Amat*mue)); % explicit Euler step

25 mui = Xmat\(Mmat*mui); % implicit Euler step

26 utk = u(k*tau,x)’;

27 erre = erre + norm(mue-utk)^2; % Computation of error norm

28 erri = erri + norm(mui-utk)^2;

29 end

30

31 errex = s q r t(erre*h*tau);

32 errimp = s q r t(erri*h*tau);

C++11 code 6.1.52: Euler timestepping for (6.1.48) ➺ GITLAB

2 // arguments:

3 // int N number of spatial grid cells

4 // int M number of timesteps

5 //

6 // returns:

7 // tuple containing

8 // the error from explicit Euler timestepping

9 // the error from implict Euler timestepping

10 //

11 // Solve fully discrete two-point parabolic evolution problem (6.1.48)

12 // in [0, 1]×]0, 1[. Use both explicit and implicit Euler method for
timestepping

13 s td : : tup le <double , double> sinevl ( i n t N, i n t M)

14 {

15 //exact solution
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16 const auto u = [ ] ( double t , Eigen : : ArrayXd& x ) {

17 return s td : : exp(−p i ∗p i ∗ t ) ∗ ( p i ∗x ) . s in ( ) ;

18 } ;

19 const double h = 1 .0 /N; //spatial meshwidth

20 const double tau = 1 .0 /M; //temporal meshwidth

21 Eigen : : ArrayXd x = Eigen : : ArrayXd : : LinSpaced (N − 1 , h , 1.0 − h ) ;

//spatial grid, interior
points

22

23 //finite element stiffness and mass matrix

24 Eigen : : SparseMatr ix <double> Amat = NPDE : : t r i d i a g o n a l (N − 1 , −1.0,

2 .0 , −1.0) / h ;

25 Eigen : : SparseMatr ix <double> Mmat = NPDE : : t r i d i a g o n a l (N − 1 , 1 .0 ,

4 .0 , 1 .0 ) ∗h / 6 . 0 ;

26 Eigen : : SparseMatr ix <double> Xmat = Mmat + tau∗Amat ;

27

28 Eigen : : VectorXd mu0 = u (0 , x ) ; //discrete initial values

29

30 Eigen : : VectorXd mui = mu0;

31 Eigen : : VectorXd mue = mu0;

32

33 //timestepping

34 double er re = 0 .0 ;

35 double e r r i = 0 .0 ;

36 for ( i n t k = 1; k <= M; k++) {

37 mue = mue − tau ∗ (Mmat / ( Amat∗mue) ) ; //explicit Euler timestep

38 mui = Xmat / ( Mmat∗mui ) ; //implicit Euler timestep

39 Eigen : : VectorXd utk = u ( k∗ tau , x ) ;

40 //computation of error norms

41 double norme = (mue − utk ) . norm ( ) ;

42 double normi = ( mui − utk ) . norm ( ) ;

43 er re = er re + norme∗norme ;

44 e r r i = e r r i + normi∗normi ;

45 }

46

47 return s td : : make_tuple ( s td : : s q r t ( e r re ∗h∗ tau ) ,

s td : : s q r t ( e r r i ∗h∗ tau ) ) ;

48 }

Evaluation of approximate space-time L2-norm of the discretization error:

err2 := hτ ·
M

∑
j=1

N

∑
i=1

|u(tj, xi)− µ
(j)
i |2 . (6.1.53)

(N =̂ no. of grid points in space, M =̂ no. of timesteps. )

Space-time (discrete) L2-norm of error for explicit Euler timestepping:
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N\M 50 100 200 400 800 1600 3200

5 Inf 0.009479 0.006523 0.005080 0.004366 0.004011 0.003834

10 Inf Inf Inf Inf 0.001623 0.001272 0.001097

20 Inf Inf Inf Inf Inf Inf 0.000405

40 Inf Inf Inf Inf Inf Inf Inf

80 Inf Inf Inf Inf Inf Inf Inf

160 Inf Inf Inf Inf Inf Inf Inf

320 Inf Inf Inf Inf Inf Inf Inf

Space-time (discrete) L2-norm of error for implicit Euler timestepping:

N\M 50 100 200 400 800 1600 3200

5 0.007025 0.001828 0.000876 0.002257 0.002955 0.003306 0.003482

10 0.009641 0.004500 0.001826 0.000461 0.000228 0.000575 0.000749

20 0.010303 0.005175 0.002509 0.001149 0.000461 0.000116 0.000058

40 0.010469 0.005345 0.002681 0.001321 0.000634 0.000289 0.000116

80 0.010511 0.005387 0.002724 0.001364 0.000677 0.000332 0.000159

160 0.010521 0.005398 0.002734 0.001375 0.000688 0.000343 0.000170

320 0.010524 0.005400 0.002737 0.001378 0.000691 0.000346 0.000172

For explicit Euler timestepping we observe a glaring instability (exponential blow-up) in case of large

timestep combined with fine mesh.

Implicit Euler timestepping incurs no blow-up for any combination of spatial and temporal mesh

width.

Experiment 6.1.54 (MATLAB ode45 for discrete parabolic evolution)

Same IBVP and spatial discretization as in Exp. 6.1.47.

Timestepping by means of adaptive explicit Runge-Kutta timestepping using MATLAB’s standard integrator

ode45, see [4, Rem. 11.5.23].

Monitored:
✦ Number of timesteps as a function of spatial meshwidth h,

✦ discrete L2-error (6.1.53).

C++11 code 6.1.55: ode45 applied semi-discrete (6.1.48)

1 f u n c t io n [Nsteps,err] = peode45(N,tol,u)

2 % Solving fully discrete two-point parabolic evolution problem (6.1.48)

3 % in [0, 1]×]0, 1[ by means of adaptiv MATLAB standard Runge-Kutta
integrator.

4 i f (nargin < 3), u = @(t,x) (exp(-(p i^2)*t).*s in(p i*x)); end %
Exact solution

5

6 % Finite element stiffness and mass matrix, see Sect. 1.5.2.2

7 h = 1/N; % spatial meshwidth

8 Amat = g a l l e r y(’tridiag’,N-1,-1,2,-1)/h;

9 Mmat = h/6*g a l l e r y(’tridiag’,N-1,1,4,1);

10 x = h:h:1-h; % Spatial grid, interior points
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11

12 mu0 = u(0,x)’; % Discrete initial value

13 fun = @(t,muv) -(Mmat\(Amat*muv)); % right hand side of ODE

14

15 opts = odeset(’reltol’,tol,’abstol’,0.01*tol);

16 [t,mu] = ode45(fun,[0,1],mu0,opts);

17

18 Nsteps = l ength(t);

19 [T,X] = meshgrid(t,x); err = norm(mu’-u(T,X),’fro’);

C++11 code 6.1.56: ode45 applied semi-discrete (6.1.48) ➺ GITLAB

2 // arguments:

3 // int N number of spatial grid cells

4 // double tol tolerance value for ode45 integrator

5 //

6 // returns:

7 // tuple containing

8 // the number of steps taken

9 // the error

10 //

11 // Solve fully discrete two-point parabolic evolution problem (6.1.48)

12 // in [0, 1]×]0, 1[ by means of an adaptive Runge-Kutta integrator.

13 s td : : tup le < in t , double> pode ( i n t N, double t o l )

14 {

15

16 // Lambda function providing xact solution

17 const auto u = [ ] ( const Eigen : : ArrayXXd& T , const Eigen : : ArrayXXd&

X) {

18 return (−p i ∗p i ∗T) . exp ( ) ∗ ( p i ∗X) . s in ( ) ;

19 } ;

20

21 const double h = 1 .0 /N; //spatial meshwidth

22 Eigen : : ArrayXd x = Eigen : : ArrayXd : : LinSpaced (N − 1 , h , 1.0 − h ) ;

//spatial grid, interior
points

23

24 //finite element stiffness and mass matrix

25 Eigen : : SparseMatr ix <double> Amat = NPDE : : t r i d i a g o n a l (N − 1 , −1.0,

2 .0 , −1.0) / h ;

26 Eigen : : SparseMatr ix <double> Mmat = NPDE : : t r i d i a g o n a l (N − 1 , 1 .0 ,

4 .0 , 1 .0 ) ∗h / 6 . 0 ;

27

28 Eigen : : VectorXd mu0 = u ( Eigen : : ArrayXd : : Constant (N − 1 , 0 .0 ) , x ) ;

//discrete initial
values

29

30 //right hand side of ODE

31 auto odefun = [&Amat , &Mmat ] ( const Eigen : : VectorXd& x ,

Eigen : : VectorXd& dxdt , const double t ) {
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32 dxdt = −Mmat / ( Amat∗x ) ;

33 } ;

34

35 //solve the system

36 Eigen : : ArrayXXd mu;

37 Eigen : : ArrayXd ts ;

38 s td : : t i e ( ts , mu) = NPDE : : ode45 ( odefun , 0 .0 , 1 .0 , mu0, 0.01∗ t o l ,

t o l ) ;

39

40 i n t Nsteps = ts . s ize ( ) ;

41 Eigen : : ArrayXXd T ;

42 Eigen : : ArrayXXd X;

43 s td : : t i e (T , X) = NPDE : : meshgrid ( ts , x ) ;

44

45 double e r r = (mu − u (T , X) ) . mat r ix ( ) . norm ( ) ;

46

47 return s td : : make_tuple ( Nsteps , e r r ) ;

48 }
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Observations:

✦ ode45: dramatic increase of no. of timesteps for hM → 0 without gain in accuracy.

✦ Implicit Euler achieves better accuracy with only 100 equidistant timesteps!

This reminds us of the stiff initial value problems studied in [4, Section 12.2]:

Notion 6.1.57. Stiff IVP → [4, Notion 12.2.9]

An initial value problem for an ODE is called stiff, if stability imposes much tighter timestep con-

straints on explicit single step methods than the accuracy requirements.

Admittedly, this is a fuzzy notion. Yet, it cannot be fleshed out on the abstract level, but has to be discussed

for concrete evolution problem, which is done next.
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Let us try to understand, why semi-discrete parabolic evolutions (6.1.30) arising from the method of lines

lead to stiff initial value problems.

(6.1.58) Diagonalization of method-of-lines ODE

Analysis technique: Diagonalization, cf. [4, Eq. (12.1.37)]

Diagonalization (also called spectral decomposition) is a very versatile technique for decomposing a big

problem into decoupled small problems. Here we discuss it for the method-of-lines ODE (6.1.30):

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) . (6.1.30)

Let ~ϕ1, . . . ,~ϕN ∈ RN denote the N linearly independent generalized eigenvectors satisfying

A~ψi = λiM~ψi , ~ψ
⊤
j M~ψi = δij , 1 ≤ i, j ≤ N . (6.1.59)

with positive eigenvalues λi > 0. Introducing the regular square matrices

T =
(
~ψ1, . . . ,~ψN

)
∈ R

N,N , (6.1.60)

D := diag(λ1. . . . , λN) ∈ R
N,N , (6.1.61)

we can rewrite (6.1.59) as

AT = MTD , T⊤MT = I . (6.1.62)

Supplement 6.1.63.

The existence of eigenvectors~ϕi with positive associated eigenvalues is guaranteed, since both A and M
are positive definite: Thus, the generalized eigenvalue problem (6.1.59) can be transformed to a standard

eigenvalue problem for a symmetric matrix by multiplying from left and right with the inverse of the “square

root” M1/2 of M, see [4, Section 8.3]. Then apply the result that every symmetric matrix can be diagonal-

ized by means of an orthogonal transformation [4, Cor. 7.1.9]. △

Diagonalization approach ➊: Expand~µ(t) in the eigenvectors ~ψi (with time-dependent expansion coeffi-

cients)

~µ(t) =
N

∑
k=1

ηk(t)~ψk , (6.1.64)

and plug this expansion into

M
{

d
dt~µ(t)

}
+ A~µ(t) = ~ϕ(t) . (6.1.30)

Using (6.1.59) this yields

N

∑
k=1

d
dt ηk(t)M~ψk + ηk(t)λkM~ψk = ~ϕ(t) .

Multiply from left with ~ψ
⊤
i , i = 1, . . . , N, and use (6.1.59) again:

d
dt ηi(t) + λiηi(t) = ~ψ

⊤
i ~ϕ(t) .
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We have ended up with N decoupled scalar linear ODEs.

Diagonalization approach ➋: Using compact matrix notations, set

~µ(t) = T~η(t) ⇔ T⊤M~µ(t) =~η(t) .

Substitute this in (6.1.30) and invoke (6.1.62):

MT d
dt~η(t) + MTD~η(t) = ~ϕ(t) .

Then multiply this equation from left with T⊤ and use (6.1.62) again:

d
dt~η(t) + D~η(t) = T⊤~ϕ(t) .

Through both approaches, setting ~η = (η1, . . . , ηN)
⊤ ∈ RN, we have thus arrived at the transformed

ODE

(6.1.30)
~η:=T⊤M~µ
=⇒ d

dt~η(t) + D~η = T⊤~ϕ(t) . (6.1.65)

(Note that, thanks to the M-orthogonality of the ψi stated in (6.1.59), (6.1.64) is equivalent to ~η =

T⊤M~µ.)

➤ Since D is diagonal, (6.1.65) amounts to N decoupled scalar ODEs (for eigencomponents ηi of~µ).

Note: for~ϕ≡ 0, λ > 0 : ηi(t) = exp(−λit)ηi(0)→ 0 for t→ ∞

(6.1.66) Diagonalization applied to explicit Euler timestepping

As in [4, Eq. (12.1.40)] the above diagonalizing transformation can be applied to the explicit Euler timestep-

ping (6.1.36) (for ~ϕ≡ 0, uniform timestep τ > 0)

~µ(j) = ~µ(j−1) − τM−1A~µ(j−1)
~η:=T⊤M~µ

~η(j) =~η(j−1) − τD~η(j−1) ,

that is, the decoupling of eigencomponents carries over to the explicit Euler method: for i = 1, . . . , N

η
(j)
i = η

(j−1)
i − τλiη

(j−1) ⇒ η
(j)
i = (1− τλi)

jη
(0)
i . (6.1.67)

|1− τλi| < 1 ⇔ lim
j→∞

η
(j)
i = 0 .

The condition |1− τλi| < 1 enforces a

timestep size constraint: τ <
2

λi

in order to achieve the qualitatively correct behavior lim
j→∞

η
(j)
i = 0 and to avoid blow-up lim

j→∞
|η(j)

i | = ∞:

the timestep size constraint (6.1.66) is necessary only for the sake of stability (not in order to guarantee a

prescribed accuracy).

6. 2nd-Order Linear Evolution Problems, 6.1. Parabolic initial-boundary value problems 471



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

This accounts to the observed blow-ups in Exp. 6.1.47. On the other hand, adaptive stepsize control [4,

Section 11.5] manages to ensure the timestep constraint, but the expense of prohibitively small timesteps

that render the method grossly inefficient, if some of the λi are large.

Remark 6.1.68 (von Neumann stability analysis)

The diagonalization approach to the stability analysis of timestepping methods for fully discrete linear

evolution problems is a generalization of the classical von Neumann stability analysis, which applies to

cases, where the eigenfunctions of the generalized eigenvalue problem (6.1.59) are Fourier harmonics

(sines/cosines).

This special version of stability analysis will be covered in Section 8.4.2.

The next numerical demonstrations and Lemma show that λmax := maxi λi will inevitably become huge

for finite element discretization on fine meshes.

Experiment 6.1.69 (Behavior of generalized eigenvalues of A~µ = λM~µ)

Bilinear forms associated with parabolic IBVP and homogeneous Dirichlet boundary conditions

a(u, v) =
∫

Ω

grad u · grad v dx , m(u, v) =
∫

Ω

u(x)v(x)dx , u, v ∈ H1
0(Ω) .

Linear finite element Galerkin discretization, see Section 1.5.2.2 for 1D, and Section 3.3 for 2D.

Numerical experiments in 1D & 2D:

• Ω =]0, 1[, equidistant meshes→ Exp. 6.1.47

• “disk domain” Ω = {x ∈ R2: ‖x‖ < 1}, sequence of regularly refined meshes.

Monitored: largest and smallest generalized eigenvalue

MATLAB LehrFEM [1] code 6.1.70: Computation of extremal generalized eigenvalues

1 % LehrFEM MATLAB script for computing Dirichlet eigenvalues of
Laplacian

2 % on a unit disc domain.

3

4 GD_HANDLE = @(x,varargin)zeros(s iz e(x,1),1); % Zero Dirichlet data

5 H0 =[ .25 .2 .1 .05 .02 .01 0.005]’; % target mesh widths

6 NRef = l ength(H0); % Number of refinement steps

7

8 % Variables for mesh widths and eigenvalues

9 M_W = zeros(NRef,1); lmax = M_W; lmin = M_W;

10

11 % Main refinement loop

12 f o r iter = 1:NRef

13
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14 % Set parameters for mesh

15 C = [0 0]; % Center of circle

16 R = 1; % Radius of circle

17 BBOX = [-1 -1; 1 1]; % Bounding box

18 DHANDLE = @dist_circ; % Signed distance function

19 HHANDLE = @h_uniform; % Element size function

20 FIXEDPOS = []; % Fixed boundary vertices of the mesh

21 DISP = 0; % Display flag

22

23 % Mesh generation

24 Mesh =

init_Mesh(BBOX,H0(iter),DHANDLE,HHANDLE,FIXEDPOS,DISP,C,R);

25 Mesh = add_Edges(Mesh); % Provide edge information

26 Loc = get_BdEdges(Mesh); % Obtain indices of edges on ∂Ω

27 Mesh.BdFlags = zeros(s iz e(Mesh.Edges,1),1);

28 Mesh.BdFlags(Loc) = -1; % Flag boundary edges

29 Mesh.ElemFlag = zeros(s iz e(Mesh.Elements,1),1);

30 M_W(iter) = get_MeshWidth(Mesh); % Get mesh width

31

32 f p r i n t f (’Mesh on level %i: %i elements, h =

%f\n’,iter,s iz e(Mesh,1),M_W(iter));

33 % Assemble stiffness matrix and mass matrix

34 A = assemMat_LFE(Mesh,@STIMA_Lapl_LFE,P7O6());

35 M = assemMat_LFE(Mesh,@MASS_LFE,P7O6());

36 % Incorporate Dirichlet boundary data (nothing to do here)

37 [U,FreeNodes] = assemDir_LFE(Mesh,-1,GD_HANDLE);

38 A = A(FreeNodes,FreeNodes);

39 M = M(FreeNodes,FreeNodes);

40

41 % Use MATLAB’s built-in eigs-function to compute the

42 % extremal eigenvalues, see [4, Section 7.4].

43 NEigen = 6;

44 d = eigs(A,M,NEigen,’sm’); lmin(iter) = min(d);

45 d = eigs(A,M,NEigen,’lm’); lmax(iter) = max(d);

46 end

47

48 f i g u r e; p l o t(M_W,lmin,’b-+’,M_W,lmax,’r-*’); g r id on;

49 set(gca,’XScale’,’log’,’YScale’,’log’,’XDir’,’reverse’);

50 t i t l e (’\bf Eigenvalues of Laplacian on unit disc’);

51 x l a b e l(’{\bf mesh width h}’,’fontsize’,14);

52 y l a b e l(’{\bf generalized eigenvalues}’,’fontsize’,14);

53 legend(’\lambda_{min}’,’\lambda_{max}’,’Location’,’NorthWest’)

54 p = p o l y f i t( log(M_W), log(lmax),1);

55 add_Slope(gca,’east’,p(1));

56

57 p r i n t -depsc2 ’../../../Slides/NPDEPics/geneigdisklfe.eps’;
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Observation:

✦ λmin := mini λi does hardly depend on the mesh width.

✦ λmax := maxi λi displays a O(h−2
M) growth as hM → 0

Remark 6.1.71 (Spectrum of elliptic operators)

The observation made in Exp. 6.1.69 is not surprising! Now we establish them as general property of finite

element Galerkin matrices for second-order linear scalar variational problems.

To do so, let us translate the generalized eigenproblem “back to the ODE/PDE level”:

A~µ = λM~µ (6.1.72)

m
uN ∈ V0,N : a(uN , vN) = λm(uN , vN) ∀vN ∈ V0,N .

← “undo Galerkin discretization”

u ∈ H1
0(Ω):

∫

Ω
grad u · grad v dx = λ

∫

Ω
u · v dx ∀v ∈ H1

0(Ω) .

⇓
−∆u = λu in Ω , u = 0 on ∂Ω , (6.1.73)

which is a so-called elliptic eigenvalue problem.

It is easily solved in 1D on Ω =]0, 1[:

(6.1.73) =̂
d2u

dx2
(x) = λu(x) , 0 < x < 1 , u(0) = u(1) = 0 .

⇒ uk(x) = sin(kπx) ↔ λk = (πk)2 , k ∈ N .

Note that we find an infinite number of eigenfunctions and eigenvalues, parameterized by k ∈ N. Assum-

ing that the λk are sorted, the eigenvalues tend to ∞ for k→ ∞:

λk = O(k2) for k→ ∞ .
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Of course, the matrix eigenvalue problem (6.1.72) can have a finite number of eigenvectors only. Crudely

speaking, they correspond to those eigenfunctions uk(x) = sin(kπx) that can be resolved by the mesh

(if uk “oscillates too much”, then it cannot be represented on a grid). These are the first N so that we find

in 1D for an equidistant mesh

λmax = O(N2) = O(h−2
M) .

This is heuristics, but the following Lemma will a precise statement.

Lemma 6.1.74. Behavior of of generalized eigenvalues

LetM be a simplicial mesh and A, M denote the Galerkin matrices for the bilinear forms a(u, v) =∫
Ω

grad u · grad v dx and m(u, v) =
∫

Ω
u(x)v(x)dx, respectively, and V0,N := S0

p,0(M). Then

the smallest and largest generalized eigenvalues of A~µ = λM~µ, denoted by λmin and λmax, satisfy

1

diam(Ω)2
≤ λmin ≤ C , λmax ≥ Ch−2

M ,

where the “generic constants” (→ Rem. 5.3.58) depend only on the polybomial degree p, the do-

main Ω, and the shape regularity measure ρM.

Proof. (partial) We rely on the Courant-Fischer min-max theorem [4, Thm. 7.3.41] that, among other

consequencees, expresses the boundaries of the spectrum of a symmetric matrix through the extrema of

its Rayleigh quotient

T = TT ∈ R
N,N ⇒ λmin(T) = min

~ξ∈RN\{0}

~ξ
T

T~ξ

~ξ
T~ξ

, λmax(T) = max
~ξ∈RN\{0}

~ξ
T

T~ξ

~ξ
T~ξ

.

Apply this to the generalized eigenvalue problem (Recall the concept of a “square root” M1/2 of an s.p.d.

matrix M, see [4, Section 8.3])

A~µ = λM~µ
~ζ:=M

1/2~µ⇔ M−1/2AM−1/2

︸ ︷︷ ︸
=:T

~ζ = λ~ζ .

λmin = min
~µ 6=0

~µTA~µ

~µTM~µ
, λmax = max

~µ 6=0

~µTA~µ

~µTM~µ
. (6.1.75)

As a consequence we only have to find bounds for the extrema of a generalized Rayleigh quotient, cf. [4,

Eq. (7.3.37)]. This generalized Rayleigh quotient can be expressed as

~µTA~µ

~µTM~µ
=

a(uN , uN)

m(uN , uN)
, ~µ=̂ coefficient vector for uN . (6.1.76)

Now we discuss a lower bound for λmax, which can be obtained by inserting a suitable candidate function

into (6.1.76).

Discussion for special setting: V0,N = S0
1 (M) on triangular meshM

Candidate function: “tent function” uN = bi
N (→ Section 3.3.3) for some node xi ∈ V(M) of the

mesh!
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By elementary computations as in Section 3.3.5 we find

a(bi
N , bi

N) ≈ C , m(bi
N , bi

N) ≤ C max
K∈U (xi)

h2
K , (6.1.77)

where the generic constants C > 0 depend on the shape regularity measure ρM only.

(6.1.75) & (6.1.77) ⇒ λmax ≥ Ch−2
M .

This provides the estimate (from below) for the largest eigenvalue.
✷

Lemma 6.1.74 & (6.1.66) imply concrete timestep constraint for explicit Euler method in the case of spatial

Galerkin discretization by means of Lagrangian finite elements

τ < Ch2
M , (6.1.78)

with C > 0 depending only on polynomial degree and the shape regularity measure ρM.

From [4, Section 12.3] we already know that some implicit single step methods are not affected by stability

induced timestep constraints. This can be confirmed by rigorous analysis.

(6.1.79) Diagonlization applied to implicit Euler timestepping

Recall [4, § 12.3.2]: apply diagonalization technique, see (6.1.65), to implicit Euler timestepping with

uniform timestep τ > 0

~µ(j) = ~µ(j−1) − τM−1A~µ(j)
~η:=T⊤M~µ

~η(j) =~η(j−1) − τD~η(j) ,

that is, the decoupling of eigencomponents carries over to the implicit Euler method: for i = 1, . . . , N

η
(j)
i = η

(j−1)
i − τλiη

(j) ⇒ η
(j)
i =

(
1

1+τλi

)j
η
(0)
i . (6.1.80)

[ ∣∣∣∣
1

1 + τλi

∣∣∣∣ < 1 and λi > 0 ⇒
]

lim
j→∞

η
(j)
i = 0 ∀τ > 0 . (6.1.81)

☞ The implicit Euler method for (6.1.30) will never suffer blow-up regardless of timestep size; it is uncon-

ditionally stable.

(6.1.82) Diagonalization applied to general Runge-Kutta timestepping

The diagonalization trick from § 6.1.58 can be applied to general Runge-Kutta single step methods (RKSSM,

→ Def. 6.1.40). We can start from the increment equations

~κi ∈ R
N : M~κi +

s

∑
m=1

τaimA~κm = ~ϕ(tj + ciτ)−A~µ(j) , i = 1, . . . , s , (6.1.44)

~µ(j+1) = ~µ(j) + τ
s

∑
m=1

~κmbm . (6.1.45)
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and apply diagonalization using

AT = MTD , D =




λ1
. . .

. . .

λN


 , T⊤MT = I , (6.1.62)

and the transformed coefficient and increment vectors:

~µ(j) = T~η(j) ,

~κi = T~ζ i

⇔ T⊤M~µ(j) = ~η(j) ,

T⊤M~κ = ~ζ .

We multiply the increment equations (6.1.44) with T⊤ from left and rewrite them in terms of~ζi and~η(j)
:

T⊤MT︸ ︷︷ ︸
=I

~ζi +
s

∑
m=1

τaim T⊤AT︸ ︷︷ ︸
=D

~ζm = T⊤~ϕ(tj + ciτ)− T⊤AT︸ ︷︷ ︸
=D

~η(j) , i = 1, . . . , s ,

~η(j+1) =~η(j) + τ
s

∑
m=1

~ζmbm .

We can write these equations in components taking into account that D is diagonal with diagonal entries

λj, j = 1, . . . , N.

(
~ζi

)
k
+

s

∑
m=1

τaimλk

(
~ζm

)
k
=
(

T⊤~ϕ(tj + ciτ)
)

k
− λk

(
~η(j)

)
k

, i = 1, . . . , s , k = 1, . . . , N ,

(6.1.83)

(
~η(j+1)

)
k
=
(
~η(j)

)
k
+ τ

s

∑
m=1

(
~ζm

)
k
bm . (6.1.84)

Compare this with the formulas arising when applying the same Runge-Kutta single step method to the

scalar ODE η̇ = −λη + ψ(t):

κi = −λ(η(j) + τ
s

∑
m=1

aimκm) + ψ(tj + ciτ) i = 1, . . . , s ,

η(j+1) = η(j) + τ
s

∑
m=1

bmκm .

Obviously, (6.1.83) for fixed k and λk = λ and (6.1.82) describe the same recursion. Summing up, we

have found that the following diagram commutes

M d
dt~µ + Aµ = 0

transformation~η = TTM~µ−−−−−−−−−−−−−→ d
dt ηi = −λiηi , i = 1, . . . , N

RK-SSM

y
yRK-SSM

~µ(j) = Ψ
τ~µ(j−1) transformation~η = TTM~µ−−−−−−−−−−−−−→ ~η

(j)
i = Ψ̃τ

i~η
(j−1)
i , i = 1, . . . , N .

(6.1.85)

The bottom line is

that we have to study the behavior of the RK-SSM only for linear scalar ODEs ẏ = −λy, λ > 0.

This is the gist of the model problem analysis discussed in [4, Section 12.3].

There we saw that everything boils down to inspecting the modulus of a rational stability function on C,

see [4, Thm. 12.3.27]. This gave rise to the concept of L-stability, see [4, Def. 12.3.38]. Here, we will not

delve into a study of stability functions.
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Unconditional stability of single step methods

Necessary condition for unconditional stability of a single step method for semi-discrete parabolic

evolution problem (6.1.30)(“method of lines”):

The discrete evolution Ψτ
λ : R 7→ R of the single step method applied to the scalar ODE ẏ = −λy

satisfies

λ > 0 ⇒ lim
j→∞

(Ψτ
λ)

jy0 = 0 ∀y0 ∈ R, ∀τ > 0 . (6.1.87)

Definition 6.1.88. L(π)-stability

A single step method satisfying (6.1.87) is called L(π)-stable.

Example 6.1.89 (L(π)-stable Runge-Kutta single step methods)

Simplest L(π)-stable Runge-Kutta single step method = implicit Euler timestepping (6.1.37).

Next we list two commonly used higher order L(π)-stable Runge-Kutta methods, specified through their

Butcher schemes, see (6.1.42):

1
3

5
12 − 1

12
1 3

4
1
4

3
4

1
4

(6.1.90)

RADAU-3 scheme (order 3)

λ λ 0
1 1− λ λ

1− λ λ
, λ := 1− 1

2

√
2 , (6.1.91)

SDIRK-2 scheme (order 2)

More examples → [4, Ex. 12.3.44]. The class of RADAU methods provides L(π)-stable Runge-Kutta

methods up to arbitrary order.

6.1.6 Convergence

Now we investigate the asymptotic algebraic convergence for fully discretized second-order linear parabolic

evolution problem, when Lagrangian finite elements in space are used together with some Runge-Kutta

single step method. Here we have two natural discretization parameters, namely the mesh width (→
Def. 5.2.3) of the finite element mesh, and the size τ of the (uniform) timestep.

For general considerations about asymptotic convergence and its meaning refer to § 5.3.59 and § 5.3.62.

We start with a question: Why should one prefer complicated implicit L(π)-stable Runge-Kutta single step

methods (→ Ex. 6.1.89) to the simple implicit Euler method?

Silly question! Because these methods deliver “better accuracy”!

However, we need some clearer idea of what is meant by this. To this end, we now study the dependence

of (a norm of) the discretization error for a parabolic IBVP on the parameters of the spatial and temporal

discretization.
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Experiment 6.1.92 (Convergence of fully discrete timestepping in one spatial dimension)

✦ 1D parabolic evolution problem: d
dt u− u′′ = f (t, x) on ]0, 1[×]0, 1[

✦ exact solution u(x, t) = (1 + t2)e−π2t sin(πx), source term accordingly

✦ Linear finite element Galerkin discretization equidistant mesh, see Section 1.5.2.2, V0,N = S0
1,0(M),

✦ piecewise linear spatial approximation of source term f (x, t)
✦ implicit Euler timestepping (→ Ex. 6.1.35) with uniform timestep τ > 0

Monitored: error norm

(
τ

M

∑
j=1

|u− uN(τj)|2H1(Ω)

) 1
2
.

The norms |u− uN(τj)|H1(Ω) were approximated by high order local quadrature rules, whose impact can

be neglected.
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✁ hM- and τ-dependence of error norm

Obervation:

τ small: error norm ≈ hM
hM small: error norm ≈ τ

The error seems to behave like

error norm ≈ C1hM+C2τ . (6.1.93)

Recall from Section 5.3.5, Thm. 5.1.15, Thm. 5.3.56:

energy norm of spatial finite element discretization error O(hM) for hM → 0

Since the implicit Euler method is first order consistent we expect

temporal timestepping error O(τ)

(6.1.93) ➣ conjecture: total error is sum of spatial and temporal discretization error.

From Fig. 274 we draw the compelling conclusion:

• for big mesh width hM (spatial error dominates) further reduction of timestep size τ is useless,

• if timestep τ is large (temporal error dominates), refinement of the finite element space does not

yield a reduction of the total error.

Experiment 6.1.94 (Higher order timestepping for 1D heat equation)

✦ same IBVP as in Exp. 6.1.92,

✦ spatial discretization on equidistant grid, very small meshwidth h = 0.5 · 10−4, VN = S0
1,0(M).
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Various timestepping methods

(➣ different orders of consistency)

• implicit Euler timestepping (6.1.37), first order

• Crank-Nicolson-method (6.1.39), order 2

• SDIRK-2 timestepping (→ Ex. 6.1.89), order 2

• Gauss-Radau-Runge-Kutta collocation meth-

ods with s stages, order 2s− 1
Note: all methods L(π)-stable (→ Def. 6.1.88), ex-

cept for Crank-Nicolson-method.
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(evaluated by high order quadrature)

We observe that higher-order L(π)-stable Runge-Kutta timestepping leads to a faster algebraic decay of

the temporal discretization error, the rate matching the theoretical order of the methods. This can be

observed until we reach the spatial discretization error which is ≈ 10−9 in Fig. 275.

(6.1.95) Spatial and temporal error contributions

Theoretical results confirm the conjecture suggested from observation (6.1.93) in Exp. 6.1.92:

“Meta-theorem” 6.1.96. Convergence of solutions of fully discrete parabolic evolution prob-

lems

Assume that

✦ the solution of the parabolic IBVP (6.1.5)–(6.1.8) is “sufficiently smooth” (both in space and

time),

✦ its spatial Galerkin finite element discretization relies on degree p Lagrangian finite elements

(→ Section 3.5) on uniformly shape-regular families of meshes,

✦ timestepping is based on an L(π)-stable single step method of order q with uniform timestep

τ > 0.

Then we can expect an asymptotic behavior of the total discretization error according to

(
τ

M

∑
j=1

|u− uN(τj)|2H1(Ω)

) 1
2 ≤C(h

p
M+τq) , (6.1.97)

where C > 0 must not depend on hM, τ.

This has been dubbed a “meta-theorem”, because quite a few technical assumptions on the exact solu-

tion and the methods have been omitted in its statement. Therefore it is not a mathematically rigorous

statement of facts. More details in [5].

A message contained in (6.1.97):

total discretization error = spatial error + temporal error
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§ 5.3.59 still applies: (6.1.97) does not give information about actual error, but only about the trend of

the error, when discretization parameters hM and τ are varied.

Nevertheless, as in the case of the a priori error estimates of Section 5.3.5, we can draw conclusions

about optimal refinement strategies in order to achieve prescribed error reduction.

As in Section 5.3.5 we make the assumption that the estimates (6.1.97) are sharp for all contributions to

the total error and that the constants are the same (!)

contribution of spatial error ≈ Ch
p
M , hM =̂ mesh width (→ Def. 5.2.3) ,

contribution of temporal error ≈ Cτq , τ =̂ timestep size .
(6.1.98)

This suggests the following change of hM, τ in order to achieve error reduction by a factor of ρ > 1:

reduce mesh width by factor ρ
1/p

reduce timestep by factor ρ
1/q

(6.1.98)
=⇒ error reduction by ρ > 1 . (6.1.99)

Refinement for fully discrete parabolic evolution problems

Guideline: spatial and temporal resolution have to be adjusted in tandem

Remark 6.1.101 (Potential inefficiency of conditionally stable single step methods)

Terminology: A timestepping scheme is labelled conditionally stable, if blow-up can be avoided by us-

ing sufficient small timesteps (timestep constraint). Examples: all explicit Runge-Kutta

methods

Now we can answer the question, why a stability induced timestep constraint like (6.1.78), that is,

τ ≤ O(h−2
M) (6.1.102)

can render a single step method grossly inefficient for integrating semi-discrete parabolic IBVPs.

(6.1.99) ➣ in order to reduce the error by a fixed factor ρ one has to reduce both timestep and mesh-

width by some other fixed factors (asymptotically). More concretely, for the timestep τ:

(6.1.99) ➣ accuracy requires reduction of τ by a factor ρ1/q

(6.1.102) ➣ stability entails reduction of τ by a factor (ρ1/p)2 = ρ2/p.

1

q
<

2

p
⇒ stability enforces smaller timestep than required by accuracy

⇒ timestepping is inefficient!

When faced with conditional stability (6.1.102), for the sake of efficiency

use high-order spatial discretization combined with low order timestepping.

However, this may not be easy to achieve
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✦ because high-order timestepping is much simpler than high-order spatial discretization,

✦ because limited spatial smoothness of exact solution (→ results of Section 5.4 apply!) may impose

a limit on q in (6.1.97).

Concretely: 5th-order ode45 timestepping (q = 5)

1
q=

2
p

➣ use degree-10 Lagrangian FEM!

Moreover, high-order convergence of spatial discretization error is conditional on sufficient smoothness of

the solution u(t) for all times, remember (5.3.69).

Remark 6.1.103 (Guessing timestep constraint)

Even if the timestep constraint τ < O(h−1
M) does not thwart the efficiency of the full discretization (finite

elements in space & Runge-Kutta timestepping), the actual stability threshold for τ may not be easy to

guess, because the estimates for the spectrum of the generalized eigen

Experiment 6.1.104 (Convergence for conditionally stable Runge-Kutta timestepping)

Parabolic IBVP of Exp. 6.1.92:

✦
d
dt u− u′′ = f (t, x) on ]0, 1[×]0, 1[

✦ exact solution u(x, t) = (1 + t2)e−π2t sin(πx), source term accordingly

✦ Linear finite element Galerkin discretization equidistant mesh, see Section 1.5.2.2, V0,N = S0
1,0(M),

✦ piecewise linear spatial approximation of source term f (x, t)

✦ explicit Euler timestepping (6.1.36) with uniform timestep τ ∼ h2 close to the stability limit.

Monitored: error norms

(
τ

M

∑
j=1

|u− uN(τj)|2H1(]0,1[)

) 1
2

,

(
τ

M

∑
j=1

‖u− uN(τj)‖2
L2(]0,1[)

) 1
2
.
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In comparison with Exp. 6.1.92: degraded rate of convergence O(
√

τ) for L2-H1 space-time norm, be-

cause conditional stability prevents us from employing sufficient refinement in space.
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?! Review question(s) 6.1.105. (Parabolic evolution problems)

1. How will the assertion of Thm. 6.1.96 will probably have to be altered in case we face u(t) ∈
Hm(Ω), m ≥ 2, but u(t) 6∈ Hm+1(Ω) for all times t.

2. The spatial Galerkin semi-discretization of the evolution problem

t ∈]0, T[ 7→ u(t) ∈ V0 :





d

dt
m(u(t), v) + a(u(t), v)ℓ(t)(v) ∀v ∈ V0 ,

u(0) = u0 ∈ V0 .

leads to an ordinary differential equation, which can be written in the form d
dt~µ = F(~µ). Give an

expression for F with detailed formulas for all components.

3. Consider the evolution problem

t ∈]0, T[ 7→ u(t) ∈ H1(Ω) :
d

dt

∫

Ω

u(t)v dS +
∫

Ω

grad u(t) · grad v dx = 0 ∀v ∈ H1(Ω) .

We perform spatial finite element Galerkin semi-discretization based on S0
1 (M) in the spirit of the

method of lines.

(a) Which problem does the application of explicit Runge-Kutta timestepping face?

(b) Show that implicit Euler timestepping is feasible.

4. Show that Crank-Nicolson timestepping (6.1.39) for a standard parabolic evolution problem with

s.p.d. bilinear forms m(·, ·) and a(·, ·) is unconditionally stable.

6.2 Wave equations

This section is dedicated to a class of initial-boundary value problems (IBVP) that have the same structure

as (abstract) parabolic IBVP (→ § 6.1.17) except for the occurrence of second derivatives in time. This

will have profound consequences as regards properties of solutions and choice of timestepping schemes.

(6.2.1) A conservative evolution

Lemma 6.1.22 teaches that in the absence of time-dependent sources the rate of change of temperature

will decay exponentially in the case of heat conduction.

Now we will encounter a class of evolution problems where temporal and spatial fluctuations will not be

damped and will persist for good:

This will be the class of linear conservative wave propagation problems
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As before these initial-boundary value problems (IBVP) will be posed on a space time cylinder Ω̃ :=
Ω×]0, T[⊂ Rd+1 (→ Fig. 269), where Ω ⊂ Rd, d = 2, 3, is a bounded spatial domain as introduced in

the context of elliptic boundary value problems, see Section 2.2.1.

The unknown will be a function u = (x, t) : Ω̃ 7→ R.

6.2.1 Vibrating membrane

(6.2.2) Repetition: linear elastic string and membrane models

Recall the stationary simplfied (linearized) models for taut string (1D) and membrane (2D):

✦ Tense string model (→ Section 1.4), shape of string described by continuous displacement function

u : Ω := [a, b] 7→ R, u ∈ H1([a, b]).

✦ Taut membrane model (→ Section 2.2.1), shape of membrane given by displacement function u :
Ω 7→ R, u ∈ H1(Ω), over base domain Ω ⊂ R2.

Fig. 278

Force f (x)

x
a b

(a, ul)

(b, ur)

u(x)

u

Tense string↔ u : [a, b] 7→ R
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Taut membrane↔ u : Ω 7→ R

In Section 2.2.3 we introduced the general variational formulation: with Dirichlet data (elevation of frame/pin-

ning conditions) given by g ∈ C0(∂Ω),

V := {v ∈ H1(Ω): v|∂Ω = g}

we seek

u ∈ V:
∫

Ω

σ(x) grad u · grad v dx =
∫

Ω

f (x)v(x)dx , ∀v ∈ H1
0(Ω) , (6.2.3)

where f : Ω 7→ R =̂ density of vertical force,

σ : Ω 7→ R =̂ uniformly positive stiffness coefficient (characteristic of material of the mem-

brane).

(6.2.4) Transient membrane model with inertial forces
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Now we switch to a dynamic setting: we allow variation of displacement with time, u = u(x, t), the

membrane is allowed to vibrate.

Recall (secondary school): Newton’s second law of motion (law of inertia)

F = m a (6.2.5)

force = mass · acceleration (6.2.6)

Apply this in a local version (stated for densities) to membrane

force density f (x, t) = ρ(x) · ∂2u

∂t2
(x, t) , (6.2.7)

where
✦ ρ : Ω 7→ R+ =̂ uniformly positive mass density of membrane, [ρ] = kg m−2,

✦ ü := ∂2u
∂t2 =̂ vertical aceleration (second temporal derivative of position).

Now, we assume that the force f in (2.4.4) is due to inertia forces only and express these using (6.2.7):

(2.4.4)

(6.2.7) ∫

Ω

σ(x) grad u(x, t) · grad v(x)dx = −
∫

Ω

ρ(x) · ∂2u

∂t2
(x, t)dx ∀v ∈ H1

0(Ω) .

Why the “−”-sign? Because, here the inertia force enters as a reaction force.

Homogeneous linear wave equation in variational form (Dirichlet boundary conditions):

u ∈ V(t):
∫

Ω

mass density

ρ(x) · ∂2u

∂t2
(x, t) v(x)dx +

∫

Ω
stiffness

σ(x) grad u(x, t) · grad v(x)dx = 0 ∀v ∈ H1
0(Ω)

(6.2.8)

l

u ∈ V(t): m(ü, v) + a(u, v) = 0 ∀v ∈ V0 . (6.2.9)

where V(t) := {v :]0, T[ 7→ H1(Ω): v(x, t) = g(x, t) for x ∈ ∂Ω, 0 < t < T}
(with continuous time-dependent Dirichlet data g : ∂Ω×]0, T[ 7→ R.)

The bilinear forms a and m (→ Def. 2.2.40) in (6.2.9) are the same as those in (6.1.18), § 6.1.17 (except

for the notation for the coefficient σ). In particular, both a and m are symmetric and positive definite (→
Def. 2.2.40). Thus they induce energy norms ‖·‖a and ‖·‖m (→ Def. 2.2.43).

(6.2.10) Wave equation

Undo integration by parts by reverse application of Green’s first formula Thm. 2.5.9:

(6.2.8) ⇒
∫

Ω

{
ρ(x)

∂2u

∂t2
(x, t)− divx(σ(x)(gradx u)(x, t))

}
v(x)dx = 0 ∀v ∈ H1

0(Ω) .

(6.2.11)

Here it is indicated that the differential operators grad and div act on the spatial independent variable x
only. As in the case of the heat equation (→ § 6.1.2) this will tacitly be assumed below.
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Now appeal to the fundamental lemma of calculus of variations in higher dimensions Lemma 2.5.12. This

gives a PDE on the space-time cylinder Ω̃, see § 6.0.3.

(6.2.11)
Lemma 2.5.12

=⇒ ρ(x)
∂2u

∂t2
− div(σ(x) grad u) = 0 in Ω̃ . (6.2.12)

(6.2.12) is called a (homogeneous) wave equation. A general wave equation is obtained, when an

additional exciting vertical force density f = f (x, t) comes into play:

ρ(x)
∂2u

∂t2
− div(σ(x) grad u) = f (x, t) in Ω̃ . (6.2.13)

(6.2.14) Initial and boundary conditions

The wave equations (6.2.12), (6.2.13) have to be supplemented by

• spatial Dirichlet boundary conditions: v(x, t) = g(x, t) for x ∈ ∂Ω, 0 < t < T,

• two initial conditions

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0 for x ∈ Ω ,

with initial data u0, v0 ∈ H1(Ω), satisfying the compatibility conditions u0(x) = g(x, 0) for x ∈ ∂Ω.

(6.2.12) & boundary conditions & initial conditions = hyperbolic evolution problem

Excuse me, why do we need two initial conditions in contrast to the heat equation?

Remember that

• (6.2.12) is a second-order equation also in time (whereas the heat equation is merely first-order),

• for second order ODEs ÿ = f(y) we need two initial conditions

y(0) = y0 and ẏ(0) = v0 , (6.2.15)

in order to get a well-posed initial value problem, see [4, Rem. 11.1.23].

The physical meaning of the initial conditions (6.2.15) in the case of the membrane model is

• u0 =̂ initial displacement of membrane, u0 ∈ H1(Ω) “continuous”,

• v0 =̂ initial vertical velocity of membrane.

Remark 6.2.16 (Boundary conditions for wave equation)
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The message of § 6.1.9 also applies to the wave equation (6.2.12):

On ∂Ω×]0, T[ we can impose any of the boundary conditions discussed in Section 2.7:

• Dirichlet boundary conditions u(x, t) = g(x, t) (membrane attached to frame),

• Neumann boundary conditions j(x, t) · n = 0 (free boundary, Ex. 2.5.18)

• radiation boundary conditions j(x, t) · n = Ψ(u(x, t)),
and any combination of these as discussed in Ex. 2.7.8, yet, only one of them at any part of ∂Ω×]0, T[,
see Rem. 2.7.7.

(6.2.17) Wave equation as first order system in time

Usual procedure [4, Rem. 11.1.23]: higher-order ODE can be converted into first-order ODEs by introduc-

ing derivatives as additional solution components. This approach also works for the second-order (in time)

wave equation (6.2.12):

Additional unknown: velocity v(x, t) =
∂u

∂t
(x, t)

ρ(x)
∂2u

∂t2
− div(σ(x) grad u) = 0

{
u̇ = v ,

ρ(x)v̇ = div(σ(x) grad u)
in Ω̃ (6.2.18)

with initial conditions

u(x, 0) = u0(x) , v(x, 0) = v0(x) for x ∈ Ω . (6.2.19)

6.2.2 Wave propagation

Now we study properties of solutions of solutions of IBVPs for the wave equations (6.2.8)/(6.2.12).

(6.2.20) Cauchy problem

Constant coefficient wave equation (ρ ≡ 1) for d = 1, Ω = R (so-called Cauchy problem for the wave

equation):

c > 0:
∂2u

∂t2
− c2 ∂2u

∂x2
= 0 , u(x, 0) = u0(x) ,

∂u

∂t
(x, 0) = v0(x) , x ∈ R . (6.2.21)

Change of variables: ξ = x + ct, τ = x− ct: ũ(ξ, τ) := u( ξ+τ
2 , ξ−τ

2c ).

Applying the chain rule we immediately see

u satisfies (6.2.21)
∂2ũ

∂ξ∂τ
= 0 ⇒ ũ(ξ, τ) = F(ξ) + G(τ) ,
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for any F, G ∈ C2(R) !

The initial conditions from (6.2.21) fix the functions F and G: for all x ∈ R

u(x, 0) = F(x) + G(x) = u0(x) ,

∂u

∂t
= c

∂ũ

∂ξ
(x, x)− c

∂ũ

∂τ
(x, x) = cF′(x)− cG′(x) = v0(x) .

u(x, t) = 1
2(u0(x + ct) + u0(x− ct)) + 1

2c

∫ x+ct
x−ct v0(s)ds . (6.2.22)

(6.2.22) = d’Alembert solution of Cauchy problem (6.2.21).

(6.2.23) Finite speed of propagation

A simple consequence of the solution formula (6.2.22) for the Cauchy problem for the wave equation with

constant coefficients:

Fig. 280 x

u(x, tj)

0

t1

t2

t3

t4

t5

t6

v0 = 0 ➤ initial data u0 travel with speed c in op-

posite directions

finite speed of propagation is typical feature of

solutions of wave equations

Note: (6.2.22) meaningful even for discontinuous

u0, v0 !

➡ “generalized solutions” !

finite speed of propagation
“point value” u(x̄, t̄), (x̄, t̄) ∈ Ω̃, may not depend on initial values

outside proper subdomain of Ω !

Example 6.2.24 (Domain of dependence/influence for 1D wave equation, constant coefficient

case)

Consider d = 1, initial-boundary value problem (6.2.21) for wave equation:

c > 0:
∂2u

∂t2
− c2 ∂2u

∂x2
= 0 , u(x, 0) = u0(x) ,

∂u

∂t
(x, 0) = v0(x) , x ∈ R . (6.2.21)

Intuitive: from D’Alembert formula (6.2.22)
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Fig. 281 x
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D−(x̄, t̄)

domain of dependence of (x̄, t̄) ∈ Ω̃

Fig. 282 x

t

I0

D+(I0)

c

1

domain of influence of I0 ⊂ R

Domain of dependence: the value of the solution in (x̄, t̄) (•) will depend only on data in the yellow triangle

in Fig. 281.

Domain of influence: intial data in I0 will be relevant for the solution only in the yellow triangle in Fig. 282.

Theorem 6.2.25. Domain of dependence for isotropic wave equation →[2, 2.5, Thm. 6]

Let u : Ω̃ 7→ R be a (classical) solution of ∂2u
∂t2 − c∆u = 0. Then

(
|x− x0| ≥ R ⇒ u(x, 0) = 0 ,

∂u
∂t (x, 0) = 0

)
⇒ u(x, t) = 0 , if |x− x0| ≥ R + ct .

(6.2.26) Wave propagation: conservation of energy

The solution formula (6.2.22) clearly indicates that in 1D and in the absence of boundary conditions the

solution of the wave equation will persist undamped for all times.

This absence of damping corresponds to a conservation of total energy, which is a distinguishing fea-

ture of conservative wave propagation phenomena.

Now, we examine this for the model problem

u ∈ H1
0(Ω):

∫

Ω

ρ(x) · ∂2u

∂t2
v dx +

∫

Ω

σ(x) grad u · grad v dx = 0 ∀v ∈ H1
0(Ω) (6.2.27)

l

u ∈ V0: m(ü, v) + a(u, v) = 0 ∀v ∈ V0 . (6.2.28)

Here we do not include the case of non-homogeneous spatial Dirichlet boundary conditions through an

affine trial space. This can always be taken into account by offset functions, see the remark after (6.1.8).
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Theorem 6.2.29. Energy conservation in wave propagation

If u : Ω̃ 7→ R solves (6.2.28), then

t 7→ 1
2m(

∂u

∂t
,

∂u

∂t
) + 1

2a(u, u) ≡ const .

kinetic energy elastic (potential) energy, see (2.2.7)

Proof. The “formal proof” boils down to a straightforward application of the product rule (→ Rem. 6.1.21)

together with the symmetry of the bilinear forms m and a.

Introduce the total energy and apply the product rule from Rem. 6.1.21

E(t) := 1
2m(

∂u

∂t
,

∂u

∂t
) + 1

2a(u, u) .

dE

dt
(t) = m(ü, u̇) + a(u̇, u) = 0 for solution u of (6.2.28) ,

because this is what we conclude from (6.2.28) for the special test function v(x) = u̇(x, t) for any

t ∈]0, T[.
✷

6.2.3 Method of lines

(6.2.30) Spatial Galerkin semi-discretization

The method of lines approach to the wave equation (6.2.27), (6.2.28) is exactly the same as for the heat

equation, see Section 6.1.4.

Idea: Apply Galerkin discretization (→ Section 3.2) in space to abstract linear hyperbolic variational

problem (6.1.19).

t ∈]0, T[ 7→ u(t) ∈ V0 :





m(
d2u

dt2
(t), v) + a(u(t), v) = 0 ∀v ∈ V0 ,

u(0) = u0 ∈ V0 ,
du

dt
(0) = v0 ∈ V0 .

(6.2.31)

1st step: replace V0 with a finite dimensional subspace V0,N, N := dim V0,N < ∞

Spatially discrete linear wave equation/hyperbolic evolution problem

t ∈]0, T[ 7→ u(t) ∈ V0,N :





m(
d2uN

dt2
(t), vN) + a(uN(t), vN) = 0 ∀vN ∈ V0,N ,

uN(0) = projection/interpolant of u0 in V0,N ,

duN

dt
(0) = projection/interpolant of v0 in V0,N .

(6.2.32)

2nd step: introduce (ordered) basis BN := {b1
N , . . . , bN

N} of trial/test space V0,N

(6.2.32) ⇒





M
{

d2

dt2~µ(t)
}
+ A~µ(t) = 0 for 0 < t < T ,

~µ(0) = ~µ0 ,
d~µ
dt (0) = ~ν0 .

(6.2.33)
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✄ s.p.d. stiffness matrix A ∈ RN,N, (A)ij := a(b
j
N , bi

N) (independent of time),

✄ s.p.d. mass matrix M ∈ RN,N, (M)ij := m(b
j
N , bi

N) (independent of time),

✄ source (load) vector~ϕ(t) ∈ RN, (~ϕ(t))i := ℓ(t)(bi
N) (time-dependent),

✄ ~µ0 =̂ coefficient vector of a projection of u0 onto V0,N.

✄ ~ν0 =̂ coefficient vector of a projection of v0 onto V0,N.

Note:
(6.2.33) is a 2nd-order ordinary differential equation (ODE) for t 7→ ~µ(t) ∈ R

N

Remark 6.2.34 (First-order semidiscrete hyperbolic evolution problem)

Completely analoguous to § 6.2.17, introduce separate unknown function for the velocity:

M
{

d2

dt2~µ(t)
}
+ A~µ(t) = 0

← auxiliary unknown~ν = ~̇µ




d

dt
~µ(t) = ~ν(t) ,

M
d

dt
~ν(t) = −A~µ(t) ,

, 0 < t < T . (6.2.35)

with intial conditions

~µ(0) = ~µ0 , ~ν(0) = ~ν0 . (6.2.36)

6.2.4 Timestepping

(6.2.37) Method-of-lines ODE

The method of lines approach gives us the semi-discrete hyperbolic evolution problem = 2nd-order ODE:

M
{

d2

dt2~µ(t)
}
+ A~µ(t) = 0 , ~µ(0) = ~µ0 ,

d~µ

dt
(0) = ~η0 . (6.2.38)

Key features of (6.2.38) ➡ to be respected “approximately” by timestepping:

✦
reversibility: (6.2.38) invariant under time-reversal t← −t

✦ energy conservation, cf. Thm. 6.2.29: EN(t) := 1
2

d~µ

dt
·Md~µ

dt
+ 1

2~µ ·A~µ = const

Experiment 6.2.39 (Euler timestepping for 1st-order form of semi-discrete wave equation)
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Model problem: wave propagation on a square

membrane

∂2u

∂t2
− ∆u = 0 on ]0, 1[2×]0, 1[ ,

u(x, t) = 0 on ∂Ω×]0, T[ ,

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = 0 .

✦ Initial data u0(x) = max{0, 1
5 − ‖x‖}, v0(x) = 0,

✦ M =̂ “structured triangular tensor product mesh”, see Fig. 178, n squares in each direction,

✦ linear finite element space VN,0 = S0
1,0(M), N := dimS0

1,0(M) = (n− 1)2,

✦ All local computations (→ Section 3.6.5) rely on 3-point vertex based local quadrature formula “2D

trapezoidal rule” (3.3.49). More explanations will be given in Rem. 6.2.45 below.

✦ A = N × N Poisson matrix, see (4.1.5), scaled with h := n−1,

✦ mass matrix M = hI, thanks to quadrature formula, see Rem. 6.2.45.

Timestepping: implicit and explicit Euler method (→ Ex. 6.1.35, [4, Section 11.2]) for 1st-order ODE

(6.2.35), timestep τ > 0:

~µ(j) −~µ(j−1) = τ~ν(j−1) ,

M(~ν(j) −~ν(j−1)) = −τA~µ(j−1) .

explicit Euler

~µ(j) −~µ(j−1) = τ~ν(j) ,

M(~ν(j) −~ν(j−1)) = −τA~µ(j) .

implicit Euler

Monitored: behavior of (discrete) kinetic, potential, and total energy

E
(j)
kin = (~ν(j))TM~ν(j) , E

(j)
pot = (~µ(j))TA~µ(j) , j = 0, 1, . . . .

Explicit Euler timestepping:
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Implcit Euler timestepping:
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Observation: neither method conserves energy,

☞ explicit Euler timestepping ➣ steady increase of total energy

☞ implicit Euler timestepping ➣ steady decrease of total energy

(6.2.40) Störmer-Verlet timestepping

Exp. 6.2.39 ➣ Euler methods violate energy conservation!

(The same is true of all explicit Runge-Kutta methods, which lead to an increase of the

total energy over time, and L(π)-stable implicit Runge-Kutta method, which make the

total energy decay.)

Let us try another simple idea for the 2nd-order ODE (6.2.33):

Replace
d2

dt2
~µ with symmetric difference quotient (1.5.138)

M
{

d2

dt2~µ(t)
}
+ A~µ(t) = 0 (6.2.38)

M
~µ(j+1)− 2~µ(j) +~µ(j−1)

τ2
= −A~µ(j) , j = 0, 1, . . . . (6.2.41)

This is a two-step method, the Störmer scheme/explicit trapezoidal rule

By Taylor expansion: Störmer scheme is a 2nd-order method

However, from where do we get~µ(−1)
? Two-step methods need to be kick-started by a special initial step:

This is constructed by approximating the second initial condition by a symmetric difference quotient:

d

dt
~µ(0) = ~ν0

~µ(1) −~µ(−1)

2τ
= ~ν0 . (6.2.42)
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(6.2.43) Leapfrog timestepping

For the semi-discrete wave equation we again consider the explicit trapezoidal rule (Störmer scheme):

M
~µ(j+1) − 2~µ(j) +~µ(j−1)

τ2
= −A~µ(j) , j = 1, . . . . (6.2.41)

Inspired by Rem. 6.2.34 we introduce the auxiliary variable

~ν(j+1/2) :=
~µ(j+1) −~µ(j)

τ
,

which can be read as an approximation of the velocity v := u̇.

This leads to a timestepping scheme, which is algebraically equivalent to the explicit trapezoidal rule:

leapfrog timestepping (with uniform timestep τ > 0):

M
~ν(j+ 1

2 ) −~ν(j− 1
2 )

τ
= −A~µ(j) ,

~µ(j+1) −~µ(j)

τ
= ~ν(j+ 1

2 ) ,

j = 0, 1, . . . , (6.2.44)

+ initial step ~ν(− 1
2 ) +~ν( 1

2 ) = 2~ν0 .

~µ(j−1) ~µ(j) ~µ(j+1)
~ν(j− 1

2 ) ~ν(j+ 1
2 )

t

work per step:

1× evaluation A×vector,

1× solution of linear system for M

Remark 6.2.45 (Mass lumping)

Required in each step of leapfrog timestepping: solution of linear system of equations with (large sparse)

system matrix M ∈ RN,N
➣ expensive!

Trick for (bi-)linear finite element Galerkin discretization: V0,N ⊂ S0
1 (M):

use vertex based local quadrature rule

(e.g. “2D trapezoidal rule” (3.3.49) on triangular mesh)

∫

K
f (x)dx ≈ |K|

♯V(K) ∑
p∈V(K)

f (p) , V(K) := set of vertices of K .
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(For a comprehensive discussion of local quadrature rules see Section 3.6.5)

Mass matrix M will become a diagonal matrix (due to defining equation (3.3.13) for nodal basis

functions, which are associated with nodes of the mesh).

This so-called mass lumping trick was was used in the finite element discretization of Exp. 6.2.39.

Experiment 6.2.46 (Energy conservation for leapfrog)

Model problem and discretization as in Exp. 6.2.39.

Leapfrog timestepping with constant timestep size τ = 0.01

MATLAB code 6.2.47: Computing behavior of energies for Störmer timestepping

1 f u n c t io n lfen(n,m)

2 % leapfrom timestepping for 2D wave equation, computation of energies

3 % n: spatial resolution (no. of cells in one direction)

4 % m: number of timesteps

5

6 % Assemble stiffness matrix, see Sect. 4.1, (4.1.5)

7 N = (n-1)^2; h = 1/n; A = g a l l e r y(’poisson’,n-1)/(h*h);

8

9 % initial displacement u0(x) = max{0, 1
5 − ‖x‖}

10 [X,Y] = meshgrid(0:h:1,0:h:1);

11 U0 = 0.2-s q r t((X-0.5).^2+(Y-0.5).^2);

12 U0( f i n d(U0 < 0)) = 0.0;

13 u0 = reshape(U0(2:end-1,2:end-1),N,1);

14 v0 = zeros(N,1); % initial velocity

15

16 % loop for Störmer timestepping, see (6.2.41)

17 tau = 1/m; % uniform timestep size

18 u = u0+tau*v0-0.5*tau^2*A*u0; % special initial step

19 u_old = u0;

20 [pen,ken] = geten(A,tau,u0,u); % compute potential and kinetic
energy

21 E = [0.5*tau,pen,ken,pen+ken];

22 f o r k=1:m-1

23 u_new = -(tau^2)*(A*u) + 2*u - u_old;

24 [pen,ken] = geten(A,tau,u,u_new);

25 E = [E;(k+0.5)*tau,pen,ken,pen+ken];

26 u_old = u; u = u_new;

27 end

28

29 f i g u r e(’name’,’Leapfrog energies’);

30 p l o t(E(:,1),E(:,3),’r-’,E(:,1),E(:,2),’b-’,E(:,1),E(:,4),’m-’);

31 x l a b e l(’{\bf time t}’,’fontsize’,14);

32 y l a b e l(’{\bf energies}’,’fontsize’,14);

33 legend(’kinetic energy’,’potential energy’,’total

energy’,’location’,’south’);
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34 t i t l e ( s p r i n t f(’Spatial resolution n = %i, %i timesteps’,n,m));

35

36 p r i n t(’-depsc’, s p r i n t f(’../../../../rw/Slides/NPDEPics/leapfrogen%d.eps’,m))

MATLAB code 6.2.48: Computing potential and kinetic energiy for Störmer timestepping

1 f u n c t io n [pen,ken] = geten(A,ts,u_old,u_new)

2 % Compute the current approximate potential and kinetic energies for
u_old

3 % and u_new from Sörmer timestepping

4 %E
(j)
kin = τ−2(~µ(j) −~µ(j−1))TM(~µ(j) −~µ(j−1)) , E

(j)
pot =

1
4(~µ

(j) +~µ(j−1))TA(~µ(j) +~µ(j−1)) , j =
0, 1, . . . .

5 meanv = 0.5*(u_old+u_new); pen = dot(meanv,A*meanv); % potential
energy

6 dtemp = (u_new-u_old)/ts; ken = dot(dtemp,dtemp); % kinetic energy

MATLAB code 6.2.49: Computing behavior of energies for Störmer timestepping ➺ GITLAB

2 // arguments:

3 // integer n Spatial resolution (no. of cells in one direction)

4 // integer m Number of timesteps

5 void l fen ( i n t n , i n t m) {

6 // Leapfrog timestepping for 2D wave equation, computation of
energies

7

8 //assemble stiffness matrix, see Sect. 4.1, (4.1.5)

9 i n t N = ( n − 1) ∗ (n − 1) ;

10 double h = 1 .0 / n ;

11 Eigen : : Matr ixXd A = NPDE : : poisson ( n − 1) / ( h∗h ) ;

12

13 //initial displacement u0(x) = max{0, 1
5 − ‖x‖}

14 Eigen : : ArrayXXd X;

15 Eigen : : ArrayXXd Y;

16 Eigen : : ArrayXd gr idcoords = Eigen : : ArrayXd : : LinSpaced ( n − 1 , h , 1.0

− h ) ;

17 s td : : t i e (X, Y) = NPDE : : meshgrid ( gr idcoords , gr idcoords ) ;

18 Eigen : : ArrayXXd U0 = 0.2 − ( ( X − 0 .5 ) . square ( ) + (Y −
0 .5 ) . square ( ) ) . s q r t ( ) ;

19 U0 = U0.max ( 0 . 0 ) ;

20 Eigen : : Map<Eigen : : VectorXd > u0 (U0 . data ( ) , U0 . s ize ( ) ) ;

21

22 //initial velocity

23 Eigen : : VectorXd v0 = Eigen : : VectorXd : : Zero (N) ;

24

25 //loop for Störmer timestepping, see (6.2.41)

26 double tau = 1 .0 /m; //uniform timestep size

27 Eigen : : VectorXd u = u0 + tau∗v0 − 0.5∗ tau∗ tau∗A∗u0 ; //special
initial step

28 Eigen : : VectorXd u_old = u0 ;

29 double pen ;
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30 double ken ;

31 s td : : t i e ( pen , ken ) = geten (A, tau , u0 , u ) ; //compute potential and
kinetic energy

32 Eigen : : Matr ixXd E(m, 4) ;

33 E. row ( 0 ) << 0.5∗ tau , pen , ken , pen + ken ;

34 for ( i n t k = 1; k < m; k++) {

35 Eigen : : VectorXd u_new = −( tau∗ tau ) ∗ (A∗u ) + 2∗u − u_old ;

36 s td : : t i e ( pen , ken ) = geten (A, tau , u , u_new) ;

37 E. row ( k ) << ( k + 0 .5 ) ∗ tau , pen , ken , pen + ken ;

38 u_old = u ;

39 u = u_new ;

40 }

41

42 mgl : : F igure f i g ;

43 f i g . p l o t (E . co l ( 0 ) , E . co l ( 2 ) , " r−" ) . l a b e l ( " k i n e t i c ene rgy " ) ;

44 f i g . p l o t (E . co l ( 0 ) , E . co l ( 1 ) , " b−" ) . l a b e l ( " p o t e n t i a l ene rgy " ) ;

45 f i g . p l o t (E . co l ( 0 ) , E . co l ( 3 ) , "m−" ) . l a b e l ( " t o t a l ene rgy " ) ;

46 f i g . legend ( ) ;

47 f i g . x l a b e l ( " { \ b t i m e t } " ) ;

48 f i g . y l a b e l ( " { \ b e n e r g i e s } " ) ;

49 s td : : s t r i ngs t ream t i t l e ;

50 t i t l e << " S p a t i a l r e s o l u t i o n n = " << n << " , " << m << "

t i m e s t e p s " ;

51 f i g . t i t l e ( t i t l e . s t r ( ) ) ;

52 s td : : s t r i ngs t ream fi lename ;

53 f i lename << " l e a p f r o g e n " << m << " . eps " ;

54 f i g . save ( f i lename . s t r ( ) ) ;

55 }

MATLAB code 6.2.50: Computing potential and kinetic energiy for Störmer timestepping

➺ GITLAB

2 // arguments:

3 // Matrix A stiffnes matrix

4 // double ts timestep size

5 // Vector u_old previous solution

6 // Vectur u_new current solution

7 // returns:

8 // tuple containing

9 // the potential energy

10 // the kinetic energy

11 s td : : tup le <double , double> geten ( const Eigen : : Matr ixXd& A, double ts ,

const Eigen : : VectorXd& u_old , const Eigen : : VectorXd& u_new) {

12 // Compute the current approximate potential and kinetic energies for
u_old

13 // and u_new from Sörmer timestepping

14 // E
(j)
kin = τ−2(~µ(j) −~µ(j−1))TM(~µ(j) −~µ(j−1)) , E

(j)
pot =

1
4(~µ

(j) +~µ(j−1))TA(~µ(j) +~µ(j−1)) , j = 0, 1, . . . .

15 Eigen : : VectorXd meanv = 0.5∗ ( u_old + u_new) ;

16 Eigen : : VectorXd dtemp = ( u_new − u_old ) / t s ;
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17 double pen = meanv . dot (A∗meanv ) ;

18 double ken = dtemp . dot ( dtemp ) ;

19 return s td : : make_tuple ( pen , ken ) ;

20 }

21 #pragma endgeten

22

23 // 6.2.49

24 //

25 /*LSTBEGIN2*/

26 // arguments:

27 // integer n Spatial resolution (no. of cells in one direction)

28 // integer m Number of timesteps

29 void l f e n ( i n t n , i n t m) {

30 // Leapfrog timestepping for 2D wave equation, computation of
energies

31

32 //assemble stiffness matrix, see Sect. 4.1, (4.1.5)

33 i n t N = ( n − 1) ∗ (n − 1) ;

34 double h = 1 .0 / n ;

35 Eigen : : Matr ixXd A = NPDE : : poisson ( n − 1) / ( h∗h ) ;

36

37 //initial displacement u0(x) = max{0, 1
5 − ‖x‖}

38 Eigen : : ArrayXXd X;

39 Eigen : : ArrayXXd Y;

40 Eigen : : ArrayXd gr idcoords = Eigen : : ArrayXd : : LinSpaced ( n − 1 , h , 1.0

− h ) ;

41 s td : : t i e (X, Y) = NPDE : : meshgrid ( gr idcoords , gr idcoords ) ;

42 Eigen : : ArrayXXd U0 = 0.2 − ( ( X − 0 .5 ) . square ( ) + (Y −
0 .5 ) . square ( ) ) . s q r t ( ) ;

43 U0 = U0.max ( 0 . 0 ) ;

44 Eigen : : Map<Eigen : : VectorXd > u0 (U0 . data ( ) , U0 . s ize ( ) ) ;

45

46 //initial velocity

47 Eigen : : VectorXd v0 = Eigen : : VectorXd : : Zero (N) ;

48

49 //loop for Störmer timestepping, see (6.2.41)

50 double tau = 1 .0 /m; //uniform timestep size

51 Eigen : : VectorXd u = u0 + tau∗v0 − 0.5∗ tau∗ tau∗A∗u0 ; //special
initial step

52 Eigen : : VectorXd u_old = u0 ;

53 double pen ;

54 double ken ;

55 s td : : t i e ( pen , ken ) = geten (A , tau , u0 , u ) ; //compute potential and
kinetic energy

56 Eigen : : Matr ixXd E(m, 4) ;

57 E. row ( 0 ) << 0.5∗ tau , pen , ken , pen + ken ;

58 for ( i n t k = 1; k < m; k++) {

59 Eigen : : VectorXd u_new = −( tau∗ tau ) ∗ (A∗u ) + 2∗u − u_old ;

60 s td : : t i e ( pen , ken ) = geten (A , tau , u , u_new) ;

61 E. row ( k ) << ( k + 0 .5 ) ∗ tau , pen , ken , pen + ken ;

62 u_old = u ;
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63 u = u_new ;

64 }

65

66 mgl : : F igure f i g ;

67 f i g . p l o t (E . co l ( 0 ) , E . co l ( 2 ) , " r−" ) . l a b e l ( " k i n e t i c ene rgy " ) ;

68 f i g . p l o t (E . co l ( 0 ) , E . co l ( 1 ) , " b−" ) . l a b e l ( " p o t e n t i a l ene rgy " ) ;

69 f i g . p l o t (E . co l ( 0 ) , E . co l ( 3 ) , "m−" ) . l a b e l ( " t o t a l ene rgy " ) ;

70 f i g . legend ( ) ;

71 f i g . x l a b e l ( " { \ b t i m e t } " ) ;

72 f i g . y l a b e l ( " { \ b e n e r g i e s } " ) ;

73 s td : : s t r i ngs t ream t i t l e ;

74 t i t l e << " S p a t i a l r e s o l u t i o n n = " << n << " , " << m << "

t i m e s t e p s " ;

75 f i g . t i t l e ( t i t l e . s t r ( ) ) ;

76 s td : : s t r i ngs t ream fi lename ;

77 f i lename << " l e a p f r o g e n " << m << " . eps " ;

78 f i g . save ( f i lename . s t r ( ) ) ;

79 }

80 /*LSTEND2*/

81

82 i n t main ( i n t argc , char∗ args [ ] )

83 {

84 l f e n (30 , 100) ;

85 }
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Leapfrog is (nearly) energy conserving

(no energy drift, only small oscillations)

This behavior is explained by the deep mathemtical

theorie of symplectic integrators, see [3].

6.2.5 CFL-condition

Experiment 6.2.51 (Blow-up for leapfrog timestepping)
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✁ Exp. 6.2.46 repeated with τ = 0.04
Observation:

Leapfrog suffers a blow-up: exponential increase of

energies!

A similar behavior is observed with the explicit Eu-

ler scheme for the semi-discrete heat equation, in

case the timestep constraint is violated, see Sec-

tion 6.1.5.2.

(6.2.52) Diagonalization of method-of-lines ODE → § 6.1.58

➣ (as in Section 6.1.5.2) Stability analysis of leapfrog timestepping based on diagonalization:

∃ orthogonal T ∈ R
N,N : T⊤M−1/2AM−1/2T = D := diag(λ1. . . . , λN) .

where the λi > 0 are generalized eigenvalues for A~ξ = λM~ξ ➤ λi ≥ γ for all i (γ is the constant

introduced in (6.1.20)).

Next, apply transformation~η := TTM1/2~µ to the 2-step formulation (6.2.41)

(6.2.41)
~η:=T⊤M

1/2~µ
=⇒ ~η(j+1)− 2~η(j) +~η(j−1) = −τ2D~η(j) .

Again, we have achieved a complete decoupling of the timestepping for the eigencomponents.

η
(j+1)
i − 2η

(j)
i + η

(j−1)
i = −τ2λiη

(j)
i , i = 1, . . . , N , j = 1, 2, . . . . (6.2.53)

In fact, (6.2.53) is what we end up with then applying Störmers scheme to the scalar linear 2nd-order

ODE η̈i = −λiηi. In a sense, the commuting diagram (6.1.85) remains true for 2-step methods and

second-order ODEs.

(6.2.53) is a linear two-step recurrence formula for the sequences (η
(j)
i )

j
.

Try: η
(j)
i = ξ j for some ξ ∈ C \ {0}

Plug this into (6.2.53)

ξ2 − 2ξ + 1 = −τ2λiξ ⇔ ξ2 − (2− τ2λi)ξ + 1 = 0 .

⇒ two solutions ξ± = 1
2

(
2− τ2λi ±

√
(2− τ2λi)2 − 4

)
.

We can get a blow-up of some solutions of (6.2.53), if |ξ+| > 1 of |ξ−| > 1. From secondary school we

know Vieta’s formula

ξ+ · ξ− = 1 ⇒

{
ξ± ∈ R and ξ+ 6= ξ− ⇒ |ξ+| > 1 or |ξ−| > 1

}
,

{
ξ− = ξ∗+ ⇒ |ξ−| = |ξ+| = 1

}
,
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where ξ∗+ designates complex conjugation. So the recurrence (6.2.53) has only bounded solution, if and

only if

discriminant D := (2− τ2λi)
2 − 4 ≤ 0 ⇔ τ ≤ 2√

λi
. (6.2.54)

←→ stability induced timestep constraint for leapfrog timestepping

(6.2.55) The CFL-condition

Special setting: spatial finite element Galerkin discretization based on fixed degree Lagrangian finite

element spaces (→ Section 3.5), meshes created by uniform regular refinement.

Under these conditions a generalization of Lemma 6.1.74 shows

Stability of leapfrog timestepping entails τ ≤ O(hM) for hM → 0

This is known as Courant-Friedrichs-Lewy (CFL) condition

Remark 6.2.56 (Geometric interpretation of CFL condition in 1D)

Setting:

✦ 1D wave equation, (spatial) boundary conditions ignored (“Cauchy problem”),

c > 0:
∂2u

∂t2
− c2 ∂2u

∂x2
= 0 , u(x, 0) = u0(x) ,

∂u

∂t
(x, 0) = v0(x) , x ∈ R . (6.2.21)

✦ Linear finite element Galerkin discretization on equidistant spatial meshM := {[xj−1, xj]: j ∈ Z},
xj := hj (meshwidth h), see Section 1.5.2.2.

✦ Mass lumping for computation of mass matrix, which will become h · I, see Rem. 6.2.45.

✦ Timestepping by Sörmer scheme (6.2.41) with constant timestep τ > 0.

Fig. 290

t

xxj−1 xj xj+1

tk−1

tk

tk+1

✁ flow of information in one step of Störmer scheme

Since the method is a two-step method, information

from time-slices tk and tk−1 is needed.
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Below: yellow region =̂ domain of dependence (d.o.d.) of (x̄, t̄)

Fig. 291

t

x

(x̄, t̄)

h

τ

cτ < h: numerical domain of dependence

(marked with —) contained in d.o.d.

➪ CFL-condition met

Fig. 292

t

x

(x̄, t̄)

h

τ

cτ > h: numerical domain of dependence

(marked with —) not contained in d.o.d.

➪ CFL-condition violated

Fig. 293

t

x

(x̄, t̄)

h

τ

u0

(• =̂ coarse grid, ■ =̂ fine grid, =̂ d.o.d)

✁ 1D consideration:

sequence of equidistant space-time grids of Ω̃ with

τ = γh (τ/h = meshwidth in time/space)

If γ > CFL-constraint (here γ > c−1), then

analytical domain

of dependence
6⊂ numerical domain

of dependence

▲ initial data u0 outside numerical domain of dependence cannot influence approximation at grid point

(x̄, t̄) on any mesh no convergence !✞
✝

☎
✆CFL-condition ⇔ analytical domain of dependence ⊂ numerical domain of dependence

Will the CFL-condition thwart the efficient use of leapfrog, see Rem. 6.1.101 ?

To this end we need an idea about the convergence of the solutions of the fully discrete method:
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“Meta-theorem” 6.2.57. Convergene of fully discrete solutions of the wave equation

Assume that

✦ the solution of the IBVP for the wave equation (6.2.27) is “sufficiently smooth”,

✦ its spatial Galerkin finite element discretization relies on degree p Lagrangian finite elements

(→ Section 3.5) on uniformly shape-regular families of meshes,

✦ timestepping is based on the leapfrog method (6.2.44) with uniform timestep τ > 0 satisfying

(6.2.54).

Then we can expect an asymptotic behavior of the total discretization error according to

(
τ

M

∑
j=1

‖u− uN(τj)‖2
H1(Ω)

) 1
2 ≤C(h

p
M+τ2) , (6.2.58)

(
τ

M

∑
j=1

‖u− uN(τj)‖2
L2(Ω)

) 1
2 ≤ C(h

p+1
M +τ2) , (6.2.59)

where C > 0 must not depend on hM, τ. L.F. is 2nd-order !

“expect”: unless lack of regularity of the solution u interferes, cf. Section 5.4, § 5.4.11.

As in the case of Thm. 6.1.96 (☞ nothing new!) we find:

total discretization error = spatial error + temporal error

§ 5.3.59 still applies: (6.2.58) does not give information about actual error, but only about the trend of

the error, when discretization parameters hM and τ are varied.

Nevertheless, as in the case of the a priori error estimates of Section 5.3.5, we can draw conclusions

about optimal y refinement strategies in order to achieve prescribed error reduction.

As in Section 5.3.5 we make the assumption that the estimates (6.2.58) are sharp for all contributions to

the total error and that the constants are the same (!)

contribution of spatial (energy) error ≈ Ch
p
M , hM =̂ mesh width (→ Def. 5.2.3) ,

contribution of temporal error ≈ Cτ2 , τ =̂ timestep size .
(6.2.60)

This suggests the following change of hM, τ in order to achieve error reduction by a factor of ρ > 1:

reduce mesh width by factor ρ
1/p

reduce timestep by factor ρ
1/2

(6.1.98)
=⇒ (energy) error reduction by ρ > 1 . (6.2.61)

Guideline: spatial and temporal resolution have to be adjusted in tandem

Parallel zu Rem. 6.1.101 we may wonder whether the timestep constraint τ < O(hM) (asymptotically)

enforces small timesteps not required for accuracy:

When interested in error in energy norm (↔ H1(Ω)-norm):

Only for p = 1 (linear Lagrangian finite elements) the requirement τ < O(hM) stipulates the

use of a smaller timestep than accuracy balancing according to (6.2.61).
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When interested in L2(Ω)-norm:

No undue timestep constraint enforced by CFL-conditon for any (h-version) of Lagrangian

finite element Galerkin discretization.✎
✍

☞
✌

The leapfrog timestep constraint τ ≤ O(hM) does not compromise (asymptotic) efficiency, if

p ≥ 2 (p =̂ degree of spatial Lagrangian finite elements).

Learning Outcomes

Learning outcomes

After having studied this section you should

• know the transient heat equation along with suitable initial and boundary conditions for it.

• know the wave equation governing the movement of a taut elastic membrane.

• be able to state the spatial variational formulation of given second-order linear parabolic and hyper-

bolic IBVPs.

• understand the principle of the method of lines and how to apply it to convert a second-order linear

parabolic/hyperbolic IBVP into an ordinary differential equation.

• be able to apply a Runge-Kutta timestepping scheme to a spatially semi-discrete linear IBVP.

• why semi-discrete second-order linear parabolic IBVP are “stiff” and why this calls for implicit timestep-

ping based on efficiency considerations.

• be able to predict the convergence of a full discretization of a second-order linear parabolic/hyper-

bolic IBVP.

• know Störmer timestepping scheme for the linear wave equation.

6. 2nd-Order Linear Evolution Problems, 6.2. Wave equations 504



Bibliography

[1] A. Burtscher, E. Fonn, P. Meury, and C. Wiesmayr. LehrFEM - A 2D Finite Element Toolbox. SAM, ETH

Zürich, Zürich, Switzerland, 2010. http://www.sam.math.ethz.ch/ hiptmair/tmp/LehrFEMManual.pdf.

[2] L.C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI, 1998.

[3] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer Series

in Computational Mathematics. Springer, Heidelberg, 2 edition, 2006.

[4] R. Hiptmair. Numerical methods for computational science and engineering. Lecture Slides, 2015.

http://www.sam.math.ethz.ch/~hiptmair/tmp/NumCSE15.pdf.

[5] P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equa-

tions, volume 44 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.

505



Chapter 7

Convection-Diffusion Problems
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7.1 Heat conduction in a fluid

Ω ⊂ Rd =̂ bounded computational domain, d = 1, 2, 3

To begin with we want to develop a mathematical model for stationary fluid flow, for instance, the steady

streaming of water.

506



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

7.1.1 Modelling fluid flow

Flow field:

v : Ω 7→ R
d

Assumption:

v is continuous, v ∈ (C0(Ω))d

In fact, we will require that v is uniformly Lipschitz

continuous, but this is a mere technical assumption.

Fig. 294

Clearly: v(x) =̂ fluid velocity at point x ∈ Ω

➣ v corresponds to a velocity field!

Given a flow field v ∈ (C0(Ω))d we can consider the autonomous initial value problems

d

dt
y = v(y) , y(0) = x0 . (7.1.1)

Its solution t 7→ y(t) defines the path travelled by a particle carried along by the fluid, a particle trajectory,

also called a streamline.

Fig. 295

✁ particle trajectories (streamlines) in flow field of

Fig. 294.

(∗ =̂ initial particle positions)

A flow field induces a transformation (mapping) of space! to explain this, let us temporarily make the as-

sumption that
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the flow does neither enter nor leave Ω,

(this applies to fluid flow in a closed container)

Fig. 296

x0

Φ
tx0

which can be modelled by

v(x) · n(x) = 0 ∀x ∈ ∂Ω , (7.1.2)

that is, the flow is always parallel to the boundary of Ω: all particle trajectories stay inside Ω.

Now we fix some “time of interest” t > 0.

➣ mapping Φ
t :

{
Ω 7→ Ω

x0 7→ y(t)
, t 7→ y(t) solution of IVP (7.1.1) , (7.1.3)

is well-defined mapping of Ω to itself, the flow map. Obviously, it satisfies

Φ
0x0 = x0 ∀x0 ∈ Ω . (7.1.4)

In [3, Def. 11.1.39] the more general concept of an evolution operator was introduced, which agrees with

the flow map in the current setting.

Fig. 297

−1.5 −1 −0.5 0 0.5 1 1.5
4

5

6

7

8

9

10

11

 x
1

 x
2

flow field v : Ω 7→ R2

Fig. 298
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t=2

t=3
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snapshots of Φ
t(V) for control volume V

Φ
τ(V) =̂ volume occupied at time t = τ by particles that occupied V ⊂ Ω at time t = 0.

7.1.2 Heat convection and diffusion

u : Ω 7→ R =̂ stationary temperature distribution in fluid moving according to a stationary flow field v :
Ω 7→ Rd

7. Convection-Diffusion Problems, 7.1. Heat conduction in a fluid 508



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

We adapt the considerations of Sect. 2.6 that led to the stationary heat equation. Recall★

✧

✥

✦

Conservation of energy

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V . (2.6.3)

power flux through surface of V heat production inside V

From 2.6.3 by Gauss’ theorem Thm. 2.5.7
∫

V

div j(x)dx =
∫

V

f (x)dx for all “control volumes” V ⊂ Ω .

Now appeal to another version of the fundamental lemma of the calculus of variations, see Lemma 2.5.12,

this time sporting piecewise constant test functions.

local form of energy conservation:

div j = f in Ω . (2.6.8)

However, in a moving fluid a power flux through a fixed surface is already caused by the sheer fluid flow

carrying along thermal energy. This is reflected in a modified Fourier’s law (2.6.5):★

✧

✥

✦

Fourier’s law in moving fluid

j(x) = −κ grad u(x) + v(x)ρu(x) , x ∈ Ω . (7.1.5)

diffusive heat flux

(due to spatial variation of temperature)

convective heat flux

(due to fluid flow)

κ > 0 =̂ heat conductivity ([κ] = 1 W
Km ), ρ > 0 =̂ heat capavity ([ρ] = J

K m3 ), both assumed to be constant

(in contrast to the models of Sect. 2.6 and Sect. 6.1.1).

Combine equations (2.6.8) & (7.1.5):

div j = f + j(x) = −κ grad u(x) + v(x)ρu(x)

− div(κ grad u) + div(ρv(x)u) = f in Ω . (7.1.6)

Linear scalar convection-diffusion equation (for unknown temperature u)

Terminology :

− div(κ grad u) + div(ρv(x)u) = f .
↓ ↓

diffusive term convective term

(2nd-order) (1st-order)

The 2nd-order elliptic PDE (7.1.6) has to be supplemented with exactly one boundary condition on any

part of ∂Ω, see Sect. 2.7, Ex. 2.7.8. This can be any of the (“elliptic”) boundary conditions introduced in

Sect. 2.7:
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✦ Dirichlet boundary conditions: u = g ∈ C0(∂Ω) on ∂Ω (fixed surface temperatur),

✦ Neumann boundary conditions: j · n = −h on ∂Ω (fixed heat flux),

✦ (non-linear) radiation boundary conditions: j · n = Ψ(u) on ∂Ω (temperature dependent heat flux,

radiative heat flux).

Guideline: Required boundary conditions determined by highest-order term

7.1.3 Incompressible fluids

For the sake of simplicity we will mainly consider incompressible fluids.

Definition 7.1.7. Incompressible flow field

A fluid flow is called incompressible, if the associated flow map Φ
t is volume preserving,

|Φt(V)| = |Φ0(V)| for all sufficiently small t > 0, for all control volumes V .

Can incompressibility be read off the velocity field v of the flow?

To investigate this issue, again assume the “no flow through the boundary condition” (7.1.2) and recall that

the flowmap Φ
t from (7.1.3) satisfies

∂

∂t
Φ(t, x) = v(Φ(t, x)) , x ∈ Ω , t > 0 . (7.1.8)

Here, in order to make clear the dependence on independent variables, time occurs as an argument of Φ

in brackets, on par with x.

Next, formal differentiation w.r.t. x and change of order of differentiation yields a differential equation for

the Jacobian DxΦ
t,

(7.1.8) ⇒ ∂

∂t
(

Jacobian ∈ R
d,d

DxΦ)(t, x) =

Jacobian ∈ R
d,d

Dv(Φ(t, x))(DxΦ)(t, x) . (7.1.9)

Second strand of thought: apply transformation formula for integrals (3.6.150), [6, Satz 8.5.2]: for fixed

t > 0

|Φ(t, V)| =
∫

Φ(t,V)
1 dx =

∫

V
|det(DxΦ)(t, x̂)|dx̂ . (7.1.10)

Volume preservation by the flow map is equivalent to

t 7→ |Φ(t, V)| = const. ⇐⇒ d

dt
|Φ(t, V)| = 0 ,

for any control volume V ⊂ Ω.

(7.1.10) ⇒ d

dt
|Φ(t, V)| =

∫

V

∂

∂t
|det(DxΦ)(t, x̂)|dx̂ .
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Theorem 7.1.11. Differentiation formula for determinants

Let S : I ⊂ R 7→ Rn,n be a smooth matrix-valued function. If S(t0) is regular for some t0 ∈ I, then

d

dt
(det ◦S)(t0) = det(S(t0)) tr(

dS

dt
(t0)S

−1(t0)) .

∂

∂t
det(DxΦ)(t, x̂)

(7.1.9)
= det(DxΦ)(t, x̂) tr(Dv(Φ(t, x̂)) (DxΦ)(t, x̂)(DxΦ)−1(t, x̂)︸ ︷︷ ︸

=I

)

= det(DxΦ)(t, x̂) div v(Φ(t, x̂)) ,

because the divergence of a vector field v is just the trace of its Jacobian Dv! From (7.1.4) we know that

for small t > 0 the Jacobian DxΦ(t, x̂) will be close to I and, therefore, det(DxΦ)(t, x̂) 6= 0 for t ≈ 0.

Thus, for small t > 0 we conclude

d

dt
|Φ(t, V)| = 0 ⇔ div v(Φ(t, x̂)) = 0 ∀x̂ ∈ V .

Since this is to hold for any control volume V, the final equivalence is

d

dt
|Φ(t, V)| = 0 ∀ control volumes V ⇔ div v = 0 in Ω .

Theorem 7.1.12. Divergence-free velocity fields for incompressible flows

A stationary fluid flow in Ω is incompressible (→ Def. 7.1.7), if and only if its associated velocity

field v satisfies div v = 0 everywhere in Ω.

In the sequel we make the assumption: div v =
d

∑
j=1

∂vj

∂xj
= 0 .

(Note: for d = 1 this boils down to dv
dx = 0 and implies v = const.)

Then we can use the product rule in higher dimensions of Lemma 2.5.4:

div(ρv u)
Lemma 2.5.4

= ρ(u div v + v · grad u)
div v=0
= ρv · grad u . (7.1.13)

Thus, we can rewrite the scalar convection-diffusion equation (7.1.6) for an incompressible flow field

− div(κ grad u) + div(ρv(x)u) = f in Ω

← div v = 0

−κ∆u + ρv · grad u = f in Ω . (7.1.14)
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When carried along by the flow of an incompressible fluid, the temperature cannot be increased by local

compression, the effect that you can witness when pumping air. Hence, only sources/sinks can lead to

local extrema of the temperature.

Now recall the discussion of the physical intuition behind the maximum principle of Thm. 5.7.2. These

considerations still apply to stationary heat flow in a moving incompressible fluid.

Theorem 7.1.15. Maximum principle for scalar 2nd-order convection diffusion equations →
[2, 6.4.1, Thm. I]

Let v : Ω 7→ Rd be a continuously differentiable vector field. Then there holds the maximum

principle

−∆u + v · grad u ≥ 0 =⇒ min
x∈∂Ω

u(x) = min
x∈Ω

u(x) ,

−∆u + v · grad u ≤ 0 =⇒ max
x∈∂Ω

u(x) = max
x∈Ω

u(x) .

7.1.4 Transient heat conduction

In Sect. 6.1.1 we generalized the laws of stationary heat conduction derived in Sect. 2.6 to time-dependent

temperature distributions u = u(x, t) sought on a space-time cylinder Ω̃ := Ω×]0, T[. The same ideas

apply to heat conduction in a fluid:

• Start from energy balance law (6.1.3) and convert it into local form (6.1.4).

• Combine it with the extended Fourier’s law (7.1.5).

∂

∂t
(ρu)− div(κ grad u) + div(ρv(x, t)u) = f (x, t) in Ω̃ := Ω×]0, T[ . (7.1.16)

For details and notations refer to Sect. 6.1.1.

This PDE has to be supplemented with

• boundary conditions (as in the stationary case, see Sect. 2.7),

• initial conditions (same as for pure diffusion, see Sect. 6.1.1).

Under the assumption divx v(x, t) = 0 of incompressibilty (→ Def. 7.1.7 and Thm. 7.1.12) and in the

case of constant (in space) coefficients (7.1.16) is equivalent to, cf. (7.1.13),

∂
∂t (ρu)− κ∆u + ρv(x, t) · grad u = f (x, t) in Ω̃ := Ω×]0, T[ . (7.1.17)

Remark 7.1.18 (Conversion into non-dimensional form by scaling → Rem. 1.2.10)

Let us elaborate how to cast (7.1.17) into non-dimensional form, a procedure known as scaling. The first

step consists of fixing reference quantities:
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• reference length l0, [l0] = 1m,

• reference time span t0, [t0] = 1s,

• reference temperature T0, [T0] = 1K,

• reference heat capacity ρ0, [ρ0] =
J

Km3

Here we choose l0 and t0 such that vmax =
l0
t0

, vmax := max
x,t
‖v(x, t)‖.

A hint on how many reference quantities are at our disposal is offered by considering the number of

different basic SI units relevant for the model. Here those are 1K, 1m, 1s, 1J.

Then we introduce the dimensionless temperature

ũ(ξ, τ) := u(l0ξ, t0τ) , ξ ∈ R
3, τ ∈ R .

By the chain rule we obtain

gradξ ũ =
l0
u0

gradx u(x, t) ,

∆ξ ũ =
l2
0

u0
∆xu(x, t) ,

∂

∂τ
ũ =

t0

u0

∂

∂t
u(x, t) .

These expressions can be inserted into (7.1.17). In the case of constant coefficients ρ, κ, and ρ0 := ρ,

after division by ρ0 and u0 we arrive at

∂

∂τ
ũ− t0κ

l2
0ρ0

∆ξ ũ +
v

vmax
gradξ ũ =

t0

l0ρ0
f .

Check that
t0κ
l2
0ρ0

and
t0

l0ρ0
f really are dimensionless!

7.2 Stationary convection-diffusion problems

Model problem, cf. (7.1.14), modelling stationary heat flow in an incompressible fluid with prescribed

temperature at “walls of the container” (↔ Dirichlet boundary conditions).

−κ∆u + ρv(x) · grad u = f in Ω , u = 0 on ∂Ω .

Perform scaling =̂ choice of physical units: makes equation non-dimensional by fixing “reference length”,

“reference time interval”. “reference temperature”, “reference power”, see Rem. 7.1.18.

Remark 7.2.1 (Scaling of convection-diffusion equation)

As elaborated in Remark 7.1.18, page 512, scaling produces the following boundary value problem for

non-dimensional quantities, where ‖v‖L∞(Ω) ≤ 1, and ǫ := t0κ
l2
0ρ0

, see Remark 7.1.18 for the choice of

reference quantities t0, l0, ρ0.
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−ǫ∆u + v(x) · grad u = f in Ω , u = 0 on ∂Ω , (7.2.2)

diffusive term

(2nd-order term)

convective term

(1st-order term)

with ǫ > 0, ‖v‖L∞(Ω) = 1, div v = 0 → incompressible fluid, see Def. 7.1.7 .

Remark 7.2.3 (Variational formulation for convection-diffusion BVP)

Standard “4-step approach” of Sect. 2.9 can be directly applied to BVP (7.2.2) with one new twist:

Do not use integration by parts (Green’s formula, Thm. 2.5.9) on convective terms!

variational formulation for BVP (7.2.2):

u ∈ H1
0(Ω): ǫ

∫

Ω

grad u · grad v dx +
∫

Ω

(v · grad u) v dx

︸ ︷︷ ︸
bilinear form a(u,v)

=
∫

Ω

f (x)dx

︸ ︷︷ ︸
linear form ℓ(v)

∀v ∈ H1
0(Ω) .

=̂ a linear variational problem, see Sect. 2.4.1.

Obvious: a is not symmetric, see (2.2.29).

➥ a does not induce an energy norm (→ Def. 2.2.43)

As replacement for the energy norm use H1(Ω)-(semi)norm (→ Def. 2.3.23)

In this case we have to make sure that a fits the chosen norm in the sense that

∃C > 0: |a(u, v)| ≤ C|u|H1(Ω)|v|H1(Ω) ∀u, v ∈ H1
0(Ω) . (7.2.4)

←→ Terminology: (7.2.4) =̂ a is continuous on H1(Ω), cf. (3.2.4).

By Cauchy-Schwarz inequality for integrals (2.2.44): for all u, v ∈ H1
0(Ω)

|a(u, v)| ≤ ‖v‖L∞(Ω)|u|H1(Ω)‖v‖L2(Ω)

Thm. 2.3.31

≤ diam(Ω)‖v‖L∞(Ω)|u|H1(Ω)|v|H1(Ω) ,

which confirms (7.2.4)

Surprise: a is positive definite (→ Def. 2.2.40), because

∫

Ω

(v · grad u) u dx =
∫

Ω

(v u) · grad u dx

Green’s formula
= −

∫

Ω

div(v u) u dx +
∫

∂Ω

u2
︸︷︷︸
=0

v · n dS

(2.5.5) & div v=0
= −

∫

Ω

(v · grad u) u dx .
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a(u, u) = ǫ
∫

Ω
‖grad u‖2 dx > 0 ∀u ∈ H1

0(Ω) \ {0} . (7.2.5)

From this and (7.2.4) we conclude existence and uniqueness of solutions of the BVP (7.2.2) in the Sobolev

space H1
0(Ω).

7.2.1 Singular perturbation

Setting: fast-moving fluid↔ convection dominates diffusion↔ ǫ≪ 1 in (7.2.2).

Example 7.2.6 (1D convection-diffusion boundary value problem)

−ǫ
d2uǫ

dx2
+

duǫ

dx
= 1 in Ω , (7.2.7)

uǫ(0) = 0 , uǫ(1) = 0 ,

uǫ(x) = x +
exp(−x/ǫ)− 1

1− exp(−1/ǫ)
. (7.2.8)

For ǫ≪ 1:

boundary layer at x = 1

Pointwise limit:

lim
ǫ→0

uǫ(x)→ x ∀0 < x < 1 .

Fig. 299
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Obviously, the pointwise limit u0(x) = x for ǫ → 0 solves the differential equation
du0
dx = 1 (“limit equa-

tion”), which can be obtained from (7.2.7) by simply setting ǫ := 0.

“Limit problem” for (7.2.2): ignore diffusion ➣ set ǫ = 0

(7.2.2)

ǫ=0

v(x) · grad u = f (x) in Ω . (7.2.9)

Case d = 1 (Ω =]0, 1[, v = ±1)

(7.2.9)

d=1

± du

dx
(x) = f (x) ⇒ u(x) =

∫
f dx + C . (7.2.10)

What about this constant C?

If v = 1↔ fluid flows “from left to right”, so we should integrate the source from 0 to x:

u(x) = u(0) +

x∫

0

f (s)ds =

x∫

0

f (s)ds , (7.2.11)

because u(0) = 0 by the boundary condition u = 0 on ∂Ω. If v = −1 we start the integration at x = 1.

Note that this makes the maximum principle of Thm. 7.1.15 hold.
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For d > 1 we can solve (7.2.9) by the method of characteristics:

To motivate it, be aware that (7.2.9) describes pure transport of a temperature distribution in the velocity

field v, that is, the heat/temperature is just carried along particle trajectories and changes only under the

influence of heat sources/sinks along that trajectory.

Denote by u the solution of (7.2.9) and recall the differential equation (7.1.1) for a particle trajectory

dy

dt
(t) = v(y(t)) , y(0) = x0 . (7.1.1)

d

dt
u(y(t)) = grad u(y(t)) · d

dt
y(t) = grad u · v(y(t)) (7.2.9)

= f (y(t)) .

➣ Compute u(y(t)) by integrating source f along particle trajectory!

u(y(t)) = u(x0) +

t∫

0

f (y(s)) ds (7.2.12)

Taking the cue from d = 1 we choose x0 as “the point on the boundary where the particle enters Ω”.

These points form the part of the boundary through which the flow enters Ω, the inflow boundary

Γin := {x ∈ ∂Ω: v(x) · n(x) < 0} . (7.2.13)

Its complement in ∂Ω contains the outflow boundary

Γout := {x ∈ ∂Ω: v(x) · n(x) > 0} . (7.2.14)

Remark 7.2.15 (Streamlines)

→ velocity field

—: Streamline connecting Γin and Γout

—: Closed streamline

(recirculating flow)

Fig. 300
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In the case of closed streamlines the stationary pure transport problem fails to have a unique solution: on

a closed streamline u can attain “any” value, because there is no boundary value to fix u.

Return to case d = 1. In general solution u(x) from (7.2.10) will not satisfy the boundary condition

u(1) = 0! Also for u(x) from (7.2.12) the homogeneos boundary conditions may be violated where the

particle trajectory leaves Ω!
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In the limit case ǫ = 0 not all boundary conditions of (7.2.2) can be satisfied.

Notion 7.2.16. Singularly perturbed problem

A boundary value problem depending on parameter ǫ ≈ ǫ0 is called singularly perturbed, if the limit

problem for ǫ→ ǫ0 is not compatible with the boundary conditions.

Especially in the case of 2nd-order elliptic boundary value problems:

Singular perturbation = 1st-order terms become dominant for ǫ→ ǫ0

In mathematical terms, singular perturbation for boundary values for PDEs is defined as a change of type

of the PDE for ǫ = 0: in the case of (7.2.2) the type changes from elliptic to hyperbolic, see Rem. 2.1.2.

7.2.2 Upwinding

Focus: linear finite element Galerkin discretization for 1D model problem, cf. Ex. 7.2.6

−ǫ
d2u

dx2
+

du

dx
= f (x) in Ω , u(0) = 0 , u(1) = 0 . (7.2.17)

Variational formulation, see Rem. 7.2.3:

u ∈ H1
0(]0, 1[): ǫ

1∫

0

du

dx
(x)

dv

dx
(x)dx +

1∫

0

du

dx
(x) v(x)dx

︸ ︷︷ ︸
=:a(u,v)

=

1∫

0

f (x)v(x)dx

︸ ︷︷ ︸
=:ℓ(v)

∀v ∈ H1
0(]0, 1[) .

As in Sect. 1.5.2.2: use equidistant meshM (mesh width h > 0), composite trapezoidal rule (1.5.80) for

right hand side linear form, standard “tent function basis”, see (1.5.70).

linear system of equations for coefficients µi, i = 1, . . . , M− 1, providing approximations for point

values u(ih) of exact solution u.
(
− ǫ

h
− 1

2

)
µi−1 +

2ǫ

h
µi +

(
− ǫ

h
+

1

2

)
µi+1 = h f (ih) , i = 1, . . . , M− 1 , (7.2.18)

where the homogeneous Dirichlet boundary conditions are taken into account by setting µ0 = µM = 0.

Remark 7.2.19 (Finite differences for convection-diffusion equation in 1D)

As in Sect. 1.5.4 on the finite difference in 1D, we can also obtain (7.2.18) by replacing the derivatives by

suitable difference quotients:

−ǫ
d2u

dx2
+

du

dx
= f (x)

l l l

ǫ
−µi+1 + 2µi − µi−1

h2︸ ︷︷ ︸
difference quotient for d2u

dx2

+
µi+1 − µi−1

2h︸ ︷︷ ︸
symmetric d.q. for du

dx

= f (ih) .

(7.2.18)
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Example 7.2.20 (Linear FE discretization of 1D convection-diffusion problem)

✦ Model boundary value problem (7.2.17)

✦ linear finite element Galerkin discretization as described above

✦ As in Ex. 7.2.6: f ≡ 1
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FE solutions

For very small ǫ: spurious oscillations of linear FE Galerkin solution.

In order to understand this observation, study the linear finite element Galerkin discretization in the limit

case ǫ = 0

(7.2.18)

ǫ=0

µi+1− µi−1 = 2h f (ih) , i = 1, . . . , M . (7.2.21)

(7.2.21) =̂ Linear system of equations with, for even M, singular system matrix!

Explanation: the difference equations (7.2.21) do not couple grid nodes with even and odd indices. Hence,

for even M, an arbitrary constant can be added to µi, i odd, whereas the linear systems for the µj, j even,

is overdetermined. The “even-odd decoupling” inherent in (7.2.21) causes the glaring spurious oscillations

in the numerical solutions in Ex. 7.2.20 for very small ǫ.

For ǫ > 0 the Galerkin matrix will always be regular due to (7.2.5), but the linear relationship (7.2.21) will

become more and more dominant as ǫ > 0 becomes smaller and smaller. In particular, (7.2.21) sends

the message that values at even and odd numbered nodes will become decoupled, which accounts for the

oscillations.

Desired: robust discretization of (7.2.17)

= discretization that produces qualitatively correct (∗) solutions for any ǫ > 0

(∗): “qualitatively correct”, e.g., satisfaction of maximum principle, Thm. 7.1.15]
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Guideline:

Numerical methods for singularly perturbed problems must “work” for the limit problem

What is a meaningful scheme for limit problem u′ = f on an equidistant mesh of Ω :=]0, 1[?

Explicit Euler method: µi+1− µi = h f (ξi) i = 0, . . . , N ,

Implicit Euler method: µi+1 − µi = h f (ξi+1) i = 0, . . . , N .

Both Euler methods can be regarded as finite difference discretizations of u′ = f based on one-sided

difference quotients:

Explicit Euler:
du

dx
(xi) ≈

u(xi+1)− u(xi)

h
, Implicit Euler:

du

dx
(xi) ≈

u(xi)− u(xi−1)

h
.

Conversely, (7.2.21) can be obtained by relying on a symmetric difference quotient:

(7.2.21):
du

dx
(xi) ≈

u(xi+1)− u(xi−1)

2h
.

Apparently, the use of a symmetric difference quotient for discretizing the convective term incurs spurious

oscillations, see Ex. 7.2.20.

Conclusion: use one-sided difference quotients for discretization of convective term!

Which type ? (Explicit or implicit Euler ?)

Linear system arising from use of backward difference quotient
du

dx |x=xi

=
µi − µi−1

h
:

(
− ǫ

h
− 1
)

µi−1 +

(
2ǫ

h
+ 1

)
µi +−

ǫ

h
µi+1 = h f (ih) , i = 1, . . . , M− 1 , (7.2.22)

Linear system arising from use of forward difference quotient
du

dx |x=xi

=
µi+1 − µi

h
:

− ǫ

h
µi−1 +

(
2ǫ

h
− 1

)
µi +

(
− ǫ

h
+ 1
)

µi+1 = h f (ih) , i = 1, . . . , M− 1 , (7.2.23)

Example 7.2.24 (One-sided difference approximation of convective terms)

Model problem of Ex. 7.2.20, discretizations (7.2.22) and (7.2.23).
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Only the discretization of du
dx based on the backward difference quotient generates qualitatively correct

(piecewise linear) discrete solutions (a “good method”).

If the forward difference quotient is used, the discrete solutions may violate the maximum principle of

Thm. 7.1.15 (a “bad method”).

How can we tell a good method from a bad method by merely examining the system matrix?

Heuristic criterion for ǫ → 0-robust stability of nodal finite element Galerkin discretization/finite

difference discretization of singularly perturbed scalar linear convection-diffusion BVP (7.2.2) (with

Dirichlet b.c.):

(Linearly interpolated) discrete solution satisfies maximum principle (5.7.4).

m
System matrix complies with sign-conditions (5.7.10)–(5.7.12).

Nodal finite element Galerkin discretization =̂ basis expansion coefficients µi of Galerkin solution uN ∈
VN double as point values of uN at interpolation nodes. This is satisfied for Lagrangian finite element

methods (→ Sect. 3.5) when standard nodal basis functions according to (3.5.4) are used.

Recall the sign-conditions (5.7.10)–(5.7.12) for the system matrix A arising from nodal finite element

Galerkin discretization or finite difference discretization:

✦ (5.7.10): positive diagonal entries, (A)ii > 0 ,

✦ (5.7.11): non-positive off-diagonal entries, (A)ij ≤ 0, if i 6= j ,

✦ “(5.7.12)”: diagonal dominance, ∑j
(A)ij ≥ 0 .

These conditions are met for equidistant meshes in 1D

✦ for the standard S0
1 (M)-Galerkin discretization (7.2.18), provided that |ǫh−1| ≥ 1

2 ,

✦ when using backward difference quotients for the convective term (7.2.22) for any choice of ǫ ≥ 0,

h > 0,

✦ when using forward difference quotients for the convective term (7.2.23), provided that |ǫh−1| ≥
1.

Only the use of a backward difference quotient for the convective term guarantees the (discrete)

maximum principle in an ǫ→ 0-robust fashion!

Terminology: Approximation of du
dx by backward difference quotients =̂ upwinding

Example 7.2.25 (Spurious Galerkin solution for 2D convection-diffusion BVP)

✦ Triangle domain Ω = {(x, y) : 0 ≤ x ≤ 1,−x ≤ y ≤ x}.
✦ Velocity v(x) = (1

0) ➣ (7.2.2) becomes −ǫ∆u + ux = 1.

✦ Exact solution: uǫ(x1, x2) = x − 1
1−e−1/ǫ (e

−(1−x1)/ǫ − e−1/ǫ), Dirichlet boundary conditions set

accordingly
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✦ Standard Galerkin discretization by means of linear finite elements on sequence of triangular mesh

created by regular refinement.
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Exact solution

(ǫ = 10−10)

Fig. 307
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Standard Galerkin solution on x2 = 0-line

As expected: spurious oscillations mar Galerkin solution

➣ Difficulty observed in 1D also haunts discretization in higher dimensions.

Issue: extension of upwinding idea to d > 1

7.2.2.1 Upwind quadrature

Revisit 1D model problem

−ǫ
d2u

dx2
+

du

dx
= f (x) in Ω , u(0) = 0 , u(1) = 0 , (7.2.17)

with variational formulation, see Rem. 7.2.3: convective term

u ∈ H1
0(]0, 1[): ǫ

1∫

0

du

dx
(x)

dw

dx
(x)dx +

1∫

0

du

dx
(x)w(x)dx

︸ ︷︷ ︸
=:a(u,w)

=

1∫

0

f (x)w(x)dx

︸ ︷︷ ︸
=:ℓ(w)

∀w ∈ H1
0(]0, 1[) .

Linear finite element Galerkin discretization on equidistant meshM with M cells, meshwidth h = 1
M , cf.

Sect. 1.5.2.2.

We opt for the global composite trapezoidal rule

∫ 1

0
ψ(x)dx ≈ h

M−1

∑
j=1

ψ(jh) , for ψ ∈ C0(]0, 1[), ψ(0) = ψ(1) = 0 ,

for evaluation of convective term in bilinear form a:

1∫

0

duN

dx
(x)wN(x)dx ≈ h

M−1

∑
j=1

duN

dx
(jh)wN(hj) , wN ∈ S0

1,0(M) . (7.2.26)
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Note: this is not a valid formula, because
duN
dx (jh) is ambiguous, since

duN
dx is discontinuous at nodes

of the mesh for uN ∈ S0
1,0(M)!

Up to now we resolved this ambiguity by the policy of local quadrature, see Sect. 3.6.5: quadrature rule

applied locally on each cell with all information taken from that cell.

However:

✞
✝

☎
✆Convection transports information in the direction of v!

Idea:
Use upstream/upwind information to evaluate

duN
dx (jh) in (7.2.26)

duN

dx
(jh) := lim

δ→0

duN

dx
(jh−δ) =

duN

dx |]xj−1,xj[
.

=̂ upwind quadrature

Fig. 308 x7x0 x1 x2 x3 x4 x5 x6
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Upwind quadrature yields the following contribution of the discretized convective term to the linear system

using the basis expansion uN = ∑
M−1
l=1 µlb

l
N into locally supported nodal basis functions (“tent functions”)

1∫

0

M−1

∑
l=1

µl
dbl

N

dx
(x)bi

N(x)dx
(7.2.26)≈ h

µi − µi−1

h
,

where we used

• bi
N(jh) = δij, see (1.5.71),

• duN

dx |]xj−1,xj[
=

µi − µi−1

h
from (1.5.72).

Linear system from upwind quadrature:

(
− ǫ

h
− 1
)

µi−1 +

(
2ǫ

h
+ 1

)
µi +−

ǫ

h
µi+1 = h f (ih) , i = 1, . . . , M− 1 , (7.2.22)

which is the same as that obtained from a backward finite difference discretization of du
dx !

The idea of upwind quadrature can be generalized to d > 1: we consider d = 2 and linear Lagrangian

finite element Galerkin discretization on triangular meshes, see Sect. 3.3.

➊ Approximation of contribution of convective terms to bilinear form by means of global trapezoidal

rule:
∫

Ω

(v · grad uN)vN dx ≈ ∑
p∈V(M)

(
1
3 ∑

K∈Up

|K|
)
·

ambiguous for u ∈ S0
1 (M) !

v(p) · grad uN(p) vN(p) . (7.2.27)

✎ notation: Up := {K ∈ M: p ∈ K}, p ∈ V(M)
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For a continuous function ψ : Ω 7→ R the trapezoidal rule can easily be derived from the 2D composite

trapezoidal rule based on

∫

K
ψ(x)dx ≈ |K|

3
(ψ(a1) + ψ(a2) + ψ(a3)) , (3.3.49)

where the ai, i = 1, 2, 3, are the vertices of the triangle K.

∫

Ω

ψ(x)dx = ∑
K∈M

∫

K

ψ(x)dx ≈ ∑
K∈M

|K|
3
(ψ(a1

K) + ψ(a2
K) + ψ(a3

K))

≈ ∑
p∈V(M)

(
1
3 ∑

K∈Up

|K|
)

ψ(p) ,

(7.2.28)

by changing the order of summation. This formula is the global trapezoidal rule in 2D on a triangular

mesh.

➋ Fix the ambiguous value of v(p) · grad uN(p),
uN ∈ S0

1 (M), by taking the gradient from the

triangle upstream to the node p:

Fig. 309

upstream triangle

p

v(p)

Idea: Use upstream/upwind information to evaluate grad uN(p) in (7.2.27)

v(p) · grad uN(p) := lim
δ→0

v(p) · grad uN(p− δv(p)) . (7.2.29)

=̂ general upwind quadrature

Note: By (7.1.1) the vector v(p) supplies the direction of the streamline through p. Hence, −v(p) is the

direction from which information is “carried into p” by the flow.
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Contribution of convective term to the i-th row of the

final linear system of equations (test function = tent

function bi
N)

(
1
3 ∑

K∈Ui

|K|
)

︸ ︷︷ ︸
=:Ui

v(xi) · grad uN |Ku
,

where Ku is the upstream triangle of p. ✄

Fig. 310
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Using the expressions for the gradients of barycentric coordinate functions from Sect. 3.3.5

grad λ∗ = −
|ei|

2|K| n∗ , ∗ = i, j, k , see Fig. 310 ,

and the nodal basis expansion of uN , we obtain for the convective contribution to the i-th line of the final

linear system

Ui

2|Ku|


−

∥∥∥xj − xk
∥∥∥ni · v(xi)

︸ ︷︷ ︸
↔ diagonal entry

µi −
∥∥∥xi − xj

∥∥∥nk · v(xi)µk −
∥∥∥xi − xk

∥∥∥nj · v(xi)µj




By the very definition of the upstream triangle Ku we find

ni · v(xi) ≤ 0 , nk · v(xi) ≥ 0 , nj · v(xi) ≥ 0 .

➣ sign conditions (5.7.10), (5.7.11) are satisfied for the discretized convective term, (5.7.12) is obvious

from λi + λj + λk = 1, which means grad(λi + λj + λk) = 0.

Usually, the upwind quadrature discretization of the convective term will be combined with a standard finite

element Galerkin discretization of the diffusive term. In this case the finite element solution of (7.2.2) will

satisfy the maximum principle, if this is true for the discretization of the diffusive term. Criteria for this have

been established in Section 5.7, see Theorem 5.7.13 and Remark 5.7.14, page 443.

Example 7.2.30 (Upwind quadrature discretization)

✦ Ω = [0, 1]2

✦ −ǫ∆u + (1
1) · grad u = 0

✦ Dirichlet boundary conditions: u(x, y) = 1 for x > y and u(x, y) = 0 for x ≤ y
✦ Limiting case (ǫ→ 0): u(x, y) = 1 for x > y and u(x, y) = 0 for x ≤ y

✦ layer along the diagonal from (0
1) to (1

0) in the limit ǫ→ 0
✦ 2D triangular Delaunay triangulation, see Rem. 4.2.5

✦ linear finite element upwind quadrature discretization

Monitored: discrete solutions along diagonal from (0
1) to (1

0) for ǫ = 10−10.
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Fig. 311
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Upwind quadrature scheme respects maximum principle, whereas the standard Galerkin solution is ren-

dered useless by spurious oscillations.

7.2.2.2 Streamline diffusion

We take another look at the 1D upwind discretization of (7.2.17) and view it from a different perspective.

1D upwind (finite difference) discretization of (7.2.17):

(
− ǫ

h
− 1
)

µi−1 +

(
2ǫ

h
+ 1

)
µi +−

ǫ

h
µi+1 = h f (ih) .i = 1, . . . , M− 1 . (7.2.22)

m

(ǫ+h/2)
−µi−1 + 2µi − µi+1

h2︸ ︷︷ ︸
=̂ difference quotient for d2u

dx2

+
−µi−1 + µi+1

2h︸ ︷︷ ︸
=̂ difference quotient for du

dx

= f (ih) ,

for i = 1, . . . , M− 1.

✓
✒

✏
✑

Upwinding = h-dependent enhancement of diffusive term

artificial diffusion/viscosity

We also observe that the upwinding strategy just ads the minimal amount of diffusion to make the result-

ing system matrix comply with the conditions (5.7.10)–(5.7.12), which ensure that the discrete solution

satisfies the maximum principle.

Issue: How to extend the trick of adding artificial diffusion to d > 1 ?

Well, just add an extra h-dependent multiple of −∆! Let’s try.

Example 7.2.31 (Effect of added diffusion)
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Convection-diffusion boundary value problem ((7.2.2) with v = (1
0))

−ǫ∆u +
∂u

∂x1
= 0 in Ω =]0, 1[2 , u = g on ∂Ω .

Here, Dirichlet data g(x) = 1− 2|x2 − 1
2 |.

Thus, for ǫ ≈ 0 we expect u ≈ g, because the Dirichlet data are just transported in x1-direction and there

are no boundary layers.

MATLAB Code 7.2.32: Upwind finite difference solution of 2D convection-diffusion problem

1 f u n c t io n diffeffect(epsilon)

2 % MATLAB function for solving simplex convection diffusion problem from

3 % Example 7.2.31 by means of upwind finite differences

4 v = 1; % constant velocity

5 i f (nargin < 1), epsilon = 0.1; end % strength of diffusion

6 M = 300; h = 1/M; % Number of mesh cells in one direction

7 n = (M-1)*(M-1);

8 g = @(x) (1-2*abs(x(2)-0.5)); % Dirichlet data

9

10 % Assemble finite difference matrix using MATLAB’s kron command. Since

11 % the velocity is aligned with the x1-axis, the finite difference

12 % equations agree with (7.2.22) in x1-direction, and boil

13 % down to the simple second difference quotient (1.5.138) in

14 % x2-direction. Lexikographic ordering of unknowns is assumed.

15 I = speye(M-1,M-1);

16 A =

kron(I,g a l l e r y(’tridiag’,M-1,-epsilon-h*v,4*epsilon+h*v,-epsilon))

+ ...

17 epsilon*kron(g a l l e r y(’tridiag’,M-1,-1,0,-1),I);

18 % Boundary conditions enter through right hand side

19 f = zeros(n,1);

20 lowbd = zeros(1,M-1); upbd = zeros(1,M-1);

21 left = zeros(1,M-1); right = zeros(1,M-1);

22 f o r j=1:M-1

23 x = [h*j;0]; lowbd(j) = g(x); f(j) = f(j) + lowbd(j);

24 x = [h*j;1]; upbd(j) = g(x); f((M-2)*(M-1)+j) =

f((M-2)*(M-1)+j) + upbd(j);

25 x = [0;h*j]; left(j) = g(x); f((M-1)*(j-1)+1) =

f((M-1)*(j-1)+1) + (epsilon+h*v)*left(j);

26 x = [1;h*j]; right(j) = g(x); f((M-1)*j) = f((M-1)*j) +

epsilon*right(j);

27 end

28

29 % Finally, solve linear system.

30 u = A\f;

7. Convection-Diffusion Problems, 7.2. Stationary convection-diffusion problems 526



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

 x
2

 x
1

Grid with 300 x/y−cells, ε = 1.000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ = 1

 x
2

 x
1

Grid with 300 x/y−cells, ε = 0.100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ = 0.1

 x
2

 x
1

Grid with 300 x/y−cells, ε = 0.010000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ = 0.01

 x
2

 x
1

Grid with 300 x/y−cells, ε = 0.001000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ = 0.001

ǫ = 1 ǫ = 0.1 ǫ = 0.01 ǫ = 0.001

Stronger diffusion leads to “smearing” of features that the flow field transports into the interior of the

domain.

(Too much) artificial diffusion ➣ smearing of internal layers

(We are no longer solving the right problem!)

Remark 7.2.33 (Internal layers)

Fig. 313 u = 0

u = 1 (u = 0)

(u = 1)

u ≈ 0

u ≈ 1

Internal layer

v

Pure transport problem:

v · grad u = 0 in Ω ,

where Ω =]0, 1[2, v = (2
1), ǫ = 10−4,

Dirchlet b.c. that can only partly be fulfilled on

inflow boundary: u = 1 on {x1 = 0} ∪ {x2 = 1},
u = 0 on {x1 = 1} ∪ {x2 = 0}.
✁ Boundary conditions in brackets cannot be im-

posed for the limit problem.

Solution of pure transport problem with discontinuous boundary data

• displays a discontinuity across the streamline emanating from the point of discontinuity on ∂Ω,

• is smooth along streamlines.
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Qualitative solution of

−δ∆ + v · grad u = 0 in Ω ,

with δ > 0, the same boundary data ✄

➣ Smearing of internal layer !

As in Ex. 7.2.6, we would also find a boundary layer

which is marked in gold in the figure. Inside this

boundary layer the solution drops to zero abruptly.

Fig. 314

u = 0

u = 0

u = 1

u = 1

u ≈ 0

u ≈ 1

Internal layer

v

Note: the above boundary conditions actually do not supply valid Dirichlet data for a second-order elliptic

boundary value problem, because they jump at the corners, cf. Remark 2.10.6, page 173. However, they

make sense for the limit problem and a finite element discretization can also be applied in this case.

Heuristics: If the solution is smooth along streamlines, then adding diffusion in the direction of stream-

lines cannot do much harm.

What does “diffusion in a direction” mean?

☞ Think of a generalized Fourier’s law (2.6.5) for d = 2, e.g„

j(x) = −
(

1 0
0 0

)
grad u(x) .

This means, only a temperature variation in x1-direction triggers a heat flow.

➥ diffusion in a direction v ∈ R2

j(x) = −vvT grad u(x) (7.2.34)

Such an extended Fourier’s law is an example of anisotropic diffusion.

Anisotropic diffusion can simply be taken into account in variational formulations and Galerkin discretiza-

tion by replacing the heat conductivity κ/stiffness σ with a symmetric, positive (semi-)definite matrix, the

diffusion tensor.

Idea: Anisotropic artificial diffusion in streamline direction

On cell K replace: ǫ ← ǫI + δKvKvT
K︸ ︷︷ ︸

new diffusion tensor

∈ R
2,2 .

vK =̂ local velocity (e.g., obtained by averaging)

δK > 0 =̂ method parameter controlling the strength of anisotropic diffusion

This idea underlies the so-called streamline diffusion method.

7. Convection-Diffusion Problems, 7.2. Stationary convection-diffusion problems 528

http://en.wikipedia.org/wiki/Streamline_diffusion


NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Thus, (for the model problem) Galerkin discretization may target the variational problem

∫

Ω

(
ǫI + δKvKvT

K

)
grad u · grad w + v(x) · grad u w dx =

∫

Ω

f w dx ∀w ∈ H1
0(Ω) . (7.2.35)

!
This tampering affects the solution u

(solution of (7.2.35) 6= solution of (7.2.2))

Desirable: Maintain consistency of variational problem!

Definition 7.2.36. Consistent modifications of variational problems

A variational problem is called a consistent modification of another, if both possess the same

(unique) solution(s).

Note: the variational crimes investigated in Sect. 5.5 represent non-consistent modifications.

Ensuring consistency for streamline upwind variational problem:

Idea: Add anistropic diffusion through a residual term that vanishes for the

exact solution u

streamline upwind variational problem: given meshM seek u ∈ H1
0(Ω) ∩ H2(M)

∫

Ω

ǫ grad u · grad w + (v(x) · grad u)w dx

+ ∑
K∈M

δK

∫

K

(−ǫ∆u + v · grad u− f ) · (v · grad w)dx

︸ ︷︷ ︸
stabilization term

=
∫

Ω

f w dx ∀w ∈ H1
0(Ω) . (7.2.37)

☞ Note that enhanced smoothness of u, namely in addition u ∈ H2(K) for all K ∈ M, is required to

render (7.2.37) meaningful (→ Sobolev space H2(M)).

Note: in the case of Galerkin discretization based on VN,0 = S0
1 (M), we find ∆uN = 0 in each K ∈ M.

For Galerkin discretization of (7.2.37) by means of linear Lagrangian finite elements, the local control

parameters δK are usually chosen according to the rule

δK :=





ǫ−1h2
K , if

‖v‖K,∞hK

2ǫ
≤ 1 ,

hK , if
‖v‖K,∞hK

2ǫ
> 1 .
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which is suggested by theoretical investigations and practical experience, cf. 1D artificial diffusion

(7.2.22) for a reason why to choose δK ∼ hK for small ǫ.

Example 7.2.38 (Streamline-diffusion discretization)

Exactly the same setting as in Ex. 7.2.30 with the upwind quadrature approach replaced with the stream-

line diffusion method.

MATLAB Code 7.2.39: Assembling SUPG stabilization part of element matrix in LehrFEM

1 f u n c t io n Aloc = STIMASUPGLFE(Vertices, f l a g , QuadRule, VHandle,

a,d1,d2, varargin)

2 % ALOC = STIMA_SUPG_LFE(VERTICES) provides the extra terms for SUPG
stabilization to be

3 % added to the Galerkin element matrix for linear finite elements

4 %

5 % VERTICES is 3-by-2 matrix specifying the vertices of the current
element

6 % in a row wise orientation.

7 %

8 % a: diffusivity

9 % d1 d2: apriori chosen constants for SUPG-modification

10 %

11 % Flag not used, needed for interface to assemMat_LFE

12 %

13 % QUADRULE is a struct, which specifies the Gauss qaudrature that is
used

14 % to do the numerical integration:

15 % W Weights of the Gauss quadrature.

16 % X Abscissae of the Gauss quadrature.e:

17 %

18 % VHANDLE is function handle for velocity field

19

20 % Preallocate memory for element matrix

21 Aloc = zeros(3,3);

22

23 % Analytic computation of entries of element matrix using barycentric

24 % coordinates, see Sect. 3.3.5

25 l1x = Vertices(2,2)-Vertices(3,2);

26 l1y = Vertices(3,1)-Vertices(2,1);

27 l2x = Vertices(3,2)-Vertices(1,2);

28 l2y = Vertices(1,1)-Vertices(3,1);

29 l3x = Vertices(1,2)-Vertices(2,2);

30 l3y = Vertices(2,1)-Vertices(1,1);

31

32 % Compute element mapping

33

34 P1 = Vertices(1,:);

35 P2 = Vertices(2,:);

36 P3 = Vertices(3,:);

37

38 BK = [ P2 - P1 ; P3 - P1 ]; % transpose of transformation
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matrix
39 det_BK = abs(det(BK)); % twice the area of the triagle

40

41 nPoints = s iz e(QuadRule.w,1);

42

43 % Quadrature points in actual element stored as rows of a matrix

44 x = QuadRule.x*BK + ones(nPoints,1)*P1;

45

46 % Evaluate coefficient function (velocity) at quadrature nodes

47 c =VHandle(x,varargin{:});

48 % Entries of anisotropic diffusion tensor

49 FHandle=[c(:,1).*c(:,1) c(:,1).*c(:,2) c(:,2).*c(:,1)

c(:,2).*c(:,2)];

50

51 % Compute local PecletNumber for SUPG control parameter

52 hK=max([norm(P2-P1),norm(P3-P1),norm(P2-P3)]);

53 v_infK=max(abs(c(:))); PK=v_infK*hK/(2*a);

54 % Apply quadrature rule and fix constant part

55 w = QuadRule.w; e = sum((FHandle.*[w w w w]), 1);

56 te = (reshape(e,2,2)’)/det_BK;

57

58 % Compute Aloc values

59 Aloc(1,1) = (te*[l1x l1y]’)’*[l1x l1y]’;

60 Aloc(1,2) = (te*[l1x l1y]’)’*[l2x l2y]’;

61 Aloc(1,3) = (te*[l1x l1y]’)’*[l3x l3y]’;

62 Aloc(2,2) = (te*[l2x l2y]’)’*[l2x l2y]’;

63 Aloc(2,3) = (te*[l2x l2y]’)’*[l3x l3y]’;

64 Aloc(3,3) = (te*[l3x l3y]’)’*[l3x l3y]’;

65 Aloc(2,1) = (te*[l2x l2y]’)’*[l1x l1y]’;

66 Aloc(3,1) = (te*[l3x l3y]’)’*[l1x l1y]’;

67 Aloc(3,2) = (te*[l3x l3y]’)’*[l2x l2y]’;

68

69 i f (PK<=1), Aloc=d1*hK^2/a*Aloc;

70 e lse Aloc=d2*hK*Aloc; end

71

72 r e t u r n
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Observations:

• The streamline upwind method does not exactly respect the maximum principle, but offers a better

resolution of the internal layer compared with upwind quadrature (Parlance: streamline diffusion

method is “less diffusive”).

Example 7.2.40 (Convergence of SUPG and upwind quadrature FEM)

✦ Ω =]0, 1[2, model problem (7.2.2), v(x) = (2
3), right hand side f such that

uε(x, y) = xy2 − y2e2 x−1
ǫ − xe3

y−1
ǫ + e2 x−1

ǫ +3
y−1

ǫ .

✦ Finite element discretization, V0,N = S0
1 (M) und sequence of unstructured triangular “uniform”

meshes, with

• upwind quadrature stabilization from Sect. 7.2.2.1,

• SUPG stabilization according to (7.2.37).

✦ Monitored: (Approximate) L2(Ω)-norm of discretization error (computed with high-order local quadra-

ture)

Fig. 317
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Observation: SUPG stabilization does not affect O(h2
M)-convergence of ‖u− uN‖L2(Ω) for h-refinement

and hM → 0, whereas upwind quadrature leads to worse O(hM) convergence of the L2-error norm.

7.3 Transient convection-diffusion BVP

Sect. 7.1.4 introduced the transient heat conduction model in a fluid, whose motion is described by a

non-stationary velocity field (→ Sect. 7.1.1) v : Ω×]0, T[ 7→ R
d

∂

∂t
(ρu)− div(κ grad u) + div(ρv(x, t)u) = f (x, t) in Ω̃ := Ω×]0, T[ , (7.1.16)

where u = u(x, t) : Ω̃ 7→ R is the unknown temperature.

Assuming div v(x, t) = 0, as in Sect. 7.2, by scaling we arrive at the model equation for transient

convection-diffusion

∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ , (7.3.1)

supplemented with

✦ Dirichlet boundary conditions: u(x, t) = g(x, t) ∀x ∈ ∂Ω , 0 < t < T,

✦ initial conditions: u(x, 0) = u0(x) ∀x ∈ Ω.

7.3.1 Method of lines

For the solution of IBVP (7.3.1) follow the general policy introduced in Sect. 6.1.4:

➊ Discretization in space on a fixed mesh ➣ initial value problem for ODE

➋ Discretization in time (by suitable numerical integrator = timestepping)

For instance, in the case of Dirichlet boundary conditions,




∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

u(x, t) = g(x, t) ∀x ∈ ∂Ω, 0 < t < T , u(x, 0) = u0(x) ∀x ∈ Ω .
(7.3.2)

← spatial discretization

M
d~µ

dt
(t) + ǫA~µ(t) + B~µ(t) = ~ϕ(t) , (7.3.3)

where
✦~µ = ~µ(t) :]0, T[ 7→ R

N =̂ coefficient vector describing approximation uN(t) of u(·, t),

✦ A ∈ RN,N =̂ s.p.d. matrix of discretized −∆, e.g., (finite element) Galerkin matrix,

✦ M ∈ RN,N =̂ (lumped→ Rem. 6.2.45) mass matrix

✦ B ∈ RN,N =̂ matrix for discretized convective term, e.g., Galerkin matrix, upwind quadrature

matrix (→ Sect. 7.2.2.1), streamline diffusion matrix (→ Sect. 7.2.2.2).
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Example 7.3.4 (Implicit Euler method of lines for transient convection-diffusion)

1D convection-diffusion IBVP:

∂u

∂t
− ǫ

∂2u

∂x2
+

∂u

∂x
= 0 , u(x, 0) = max(1− 3|x− 1

3 |, 0) , u(0) = u(1) = 0 . (7.3.5)

✦ Spatial discretization on equidistant mesh with meshwidth h = 1/N:

1. central finite difference scheme, see (7.2.18) (↔ linear FE Galerkin discretization),

2. upwind finite difference discretization, see (7.2.22),

✦ M = hI (“lumped” mass matrix, see Rem. 6.2.45),

✦ Temporal discretization with uniform timestep τ > 0:

1. implicit Euler method, see (6.1.37),

2. explicit Euler method, see (6.1.36),

Computations with ǫ = 10−5, implicit Euler discretization, h = 0.01, τ = 0.00125:
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Observation:

• Central finite differences display spurious oscillations as in Ex. 7.2.20.

• Upwinding suppresses spurious oscillations, but introduces spurious damping.

Computations with ǫ = 10−5, spatial upwind discretization, h = 0.01, τ = 0.005:
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implicit Euler

explicit Euler

Observation: implicit Euler timestepping causes stronger spurious damping than explicit Euler timestep-

ping.

However, explicit Euler subject to tight stability induced timestep constraint for larger values of ǫ, see

Sect. 6.1.5.2.

Advice for spatial discretization for method of lines approach
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✞
✝

☎
✆Use ǫ-robustly stable spatial discretization of convective term.

Remark 7.3.6 (Choice of timestepping for m.o.l. for transient convection-diffusion)

If ǫ-robustness for all ǫ > 0 (including ǫ > 1) desired ➣ Arguments of Sect. 6.1.5.2 stipulate use of

L(π)-stable (→ Def. 6.1.88) timestepping methods (implicit Euler (6.1.37), RADAU-3 (6.1.90), SDIRK-2

(6.1.91))

In the singularly perturbed case 0 < ǫ ≪ 1 conditionally stable explicit timestepping is an option, due to

a timestep constraint of the form “τ < O(hM)”, which does not interfere with efficiency, cf. the discussion

in Sect. 6.1.6.

7.3.2 Transport equation

Focus on the situation of singular perturbation (→ Def. 7.2.16): 0 < ǫ≪ 1

➣ study limit problem (as in Sect. 7.2.1)

∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

← ǫ = 0

∂u

∂t
+ v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ . (7.3.7)

= transport equation

Now: focus on case f ≡ 0 (no sources)

Let u = u(x, t) be a C1-solution of

∂u

∂t
+ v(x, t) · grad u = 0 in Ω̃ := Ω×]0, T[ . (7.3.8)

Recall: for the stationary pure tranport problem (7.2.9) we found solutions by integrating the source

term along streamlines (following the flow direction).

➣ study the behavior of u “as seen from a moving fluid particle”

t 7→ u(y(t), t) , where y(t) solves
dy

dt
(t) = v(y(t), t) , see (7.1.1) .

By the chain rule

d

dt
u(y(t), t) = grad u(y(t), t) · dy

dt
(t) +

∂u

∂t
(y(t), t)

= grad u(y(t), t) · v(y(t), t) +
∂u

∂t
(y(t), t)

(7.3.8)
= 0 .

(7.3.9)
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A fluid particle “sees” a constant temperature!

Remark 7.3.10 (Solution formula for sourceless transport)

Situation: no inflow/outflow (e.g., fluid in a container)

v(x, t) · n(x) = 0 ∀x ∈ ∂Ω , 0 < t < T . (7.1.2)

➣ all streamlines will “stay inside Ω”, flow map Φ
t (7.1.3) defined for all times t ∈ R.

Initial value problem:

v(x, t) · grad u = 0 in Ω̃ , u(x, 0) = u0(x) ∀x ∈ Ω .

Exact solution

u(x, t) = u0(x0(x, t)) , (7.3.11)

where x0(x, t) is the position at time 0 of the fluid

particle that is located at x at time t.

Fig. 321

x0(x, t)

x

This solution formula can be generalized to any divergence free velocity field v : Ω 7→ Rd and f 6= 0.

The new aspect is that streamlines can enter and leave the domain Ω. In the former case the solution

value is given by a “transported boundary value”:

d

dt
u(y(t)) = f (y(t), t)

u(x, t) =





u0(x0) +
t∫

0

f (y(s), s)ds , if y(s) ∈ Ω ∀0 < s < t ,

g(y(s0), s0) +
t∫

s0

f (y(s), s)ds , if y(s0) ∈ ∂Ω, y(s) ∈ Ω ∀s0 < s < t ,

(7.3.12)

where we have assumed Dirichlet boundary conditions on the inflow boundary

u(x, t) = g(x, t) for x ∈ Γin := {x ∈ ∂Ω : v(x) · n(x) < 0} , cf. (7.2.13).
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7.3.3 Lagrangian split-step method

Lagrangian discretization schemes for the IBVP (7.3.2) are inspired by insight into the traits of solutions of

pure transport problems.

The variant that we are going to study separates the transient convection-diffusion problem into a pure

diffusion problem (heat equation→ Sect. 6.1.1) and a pure transport problem (7.3.7). This is achieved by

means of a particular approach to timestepping.

7.3.3.1 Split-step timestepping

Abstract perspective: consider ODE, whose right hand side is the sum of two (smooth) functions

ẏ = g(t, y) + h(t, y) , g, h : R
m 7→ R

m . (7.3.13)

There is an abstract timestepping scheme that offers great benefits if one commands efficient methods to

solve initial value problems for both ż = g(z) and ẇ = h(w).

Strang splitting single step method for (7.3.13), timestep τ := tj − tj−1 > 0: compute y(j) ≈ y(tj)

from y(j−1) ≈ y(tj−1) according to

ỹ := z(tj−1 +
1
2τ) , where z(t) solves ż = g(t, z) , z(tj−1) = y(j−1) , (7.3.14)

ŷ := w(tj) where w(t) solves ẇ = h(t, w) , w(tj−1) = ỹ , (7.3.15)

y(j) := z(tj) , where z(t) solves ż = g(t, z) , z(tj−1 +
1
2 τ) = ŷ . (7.3.16)

One timestep involves three sub-steps:

➀ Solve ż = g(t, z) over time [tj−1, tj−1 +
1
2τ] using the re-

sult of the previous timestep as initial value ↔ (7.3.14).

➁ Solve ẇ = h(t, w) over time τ using the result of ➀ as

initial value ↔ (7.3.15).

➂ Solve ż = g(t, z) over time [tj−1 +
1
2 τ, tj] using the result

of ➁ as initial value ↔ (7.3.16).

Fig. 322

ż = g(z)

ż = g(z)

ẇ = h(w)

y(j−1)

y(j)

Theorem 7.3.17. Order of Strang splitting single step method

Assuming exact solution of the initial value problems of the sub-steps, the Strang splitting single

step method for (7.3.13) is of second order.

This applies to Strang splitting timestepping for initial value problems for ODEs. Now we boldly regard

(7.3.2) as an “ODE in function space” for the unknown “function space valued function” u = u(t) :
[0, T] 7→ H1(Ω).

du

dt
= ǫ∆u + f − v · grad u

l l l
ẏ = g(y) + h(y)
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Formally, we arrive at the following “timestepping scheme in function space” on a temporal mesh 0 =
t0 < t1 < · · · < tM := T for (7.3.1):

Given approximation u(j−1) ≈ u(tj−1),

➀ Solve (autonomous) parabolic IBVP for pure diffusion from tj−1 to tj−1 +
1
2τ

(7.3.14) ↔

∂w

∂t
− ǫ∆w = 0 in Ω×]tj−1, tj−1 +

1
2τ[ ,

w(x, t) = g(x, tj−1) ∀x ∈ ∂Ω, tj−1 < t < tj−1 +
1
2τ ,

w(x, tj−1) = u(j−1)(x) ∀x ∈ Ω .

(7.3.18)

➁ Solve IBVP for pure transport (= advection), see Sect. 7.3.2,

(7.3.15) ↔

∂z

∂t
+ v(x, t) · grad z = f (x, t) in Ω×]tj−1, tj[ ,

z(x, t) = g(x, t) on inflow boundary Γin , tj−1 < t < tj ,

z(x, tj−1) = w(x, tj−1 +
1
2τ) ∀x ∈ Ω .

(7.3.19)

➂ Solve (autonomous) parabolic IBVP for pure diffusion from tj−1 +
1
2τ to tj

(7.3.16) ↔

∂w

∂t
− ǫ∆w = 0 in Ω×]tj−1 +

1
2τ, tj[ ,

w(x, t) = g(x, tj) ∀x ∈ ∂Ω , tj−1 +
1
2τ < t < tj ,

w(x, tj−1 +
1
2 τ) = z(x, tj) ∀x ∈ Ω .

(7.3.20)

Then set u(j)(x) := w(x, tj), x ∈ Ω.

Efficient “implementation” of Strang splitting timestepping, if g = g(y):
combine last sub-step ➂ with first sub-step ➀ of the next timestep

Fig. 323 t0 t1 t2 t3 t4

—: sub-step ➁, —: sub-step ➀ & ➂

Remark 7.3.21 (Approximate sub-steps for Strang splitting time)

The solutions of the initial value problems in the sub-steps of Strang splitting timestepping may be com-

puted only approximately .

If this is done by one step of a 2nd-order timestepping method in each case, then the resulting approximate

Strang splitting timestepping will still be of second order, cf. Thm. 7.3.3.1.
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7.3.3.2 Particle method for advection

Recall the discussion of the IBVP for the pure transport (= advection) equation from Sect. 7.3.2

∂u

∂t
+ v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

u(x, t) = g(x, t) on Γin×]0, T[ ,

u(x, 0) = u0(x) in Ω ,

(7.3.22)

with inflow boundary

Γin := {x ∈ ∂Ω: v(x) · n(x) < 0} . (7.2.13)

Case f ≡ 0: a travelling fluid particle sees a constant solution, see (7.3.9)

u(x, t) =

{
u0(x0) , if y(s) ∈ Ω ∀0 < s < t ,

g(y(s0), s0) , if y(s0) ∈ ∂Ω, y(s) ∈ Ω ∀s0 < s < t ,
(7.3.23)

where s 7→ y(s) solves the initial value problem
dy
ds (s) = v(y(s), s), y(t) = x (“backward particle

trajectory”). Case of general f , see Rem. 7.3.10: Since d
dt u(y(t)) = f (y(t), t)

u(x, t) =





u0(x0) +
t∫

0

f (y(s), s)ds , if y(s) ∈ Ω ∀0 < s < t ,

g(y(s0), s0) +
t∫

s0

f (y(s), s)ds , if y(s0) ∈ ∂Ω, y(s) ∈ Ω ∀s0 < s < t .

(7.3.12)

The solution formula (7.3.12) suggests an approach for solving (7.3.22) approximately.

We first consider the simple situation of no inflow/outflow (e.g., fluid in a container, see Rem. 7.3.10)

v(x, t) · n(x) = 0 ∀x ∈ ∂Ω , 0 < t < T . (7.1.2)

➀ Pick suitable interpolation nodes {pi}N
i=1 ⊂ Ω (initial ‘particle positions”)

➁ “Particle pushing”: Solve initial value problems (cf. ODE (7.1.1) for particle trajectories)

ẏ(t) = v(y(t), t) , y(0) = pi , i = 1, . . . , N ,

by means of a suitable single-step method with uniform timestep τ := T/M, M ∈ N.

➣ sequencies of solution points p
(j)
i , j = 0, . . . , M, i = 1, . . . , N

➂ Reconstruct approximation u
(j)
N ≈ u(·, tj), tj := jτ, by interpolation:

u
(j)
N (p

(j)
i ) := u0(pi) + τ

j−1

∑
l=1

f (1
2(p

(l)
i + p

(l−1)
i ), 1

2(tl + tl−1)) , i = 1, . . . , N

where the composite midpoint quadrature rule was used to approximate the source integral in (7.3.12).

This method falls into the class of
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• particle methods, because the interpolation nodes can be regarded fluid particles tracked by the

method,

• Lagrangian methods, which treat the IBVP in coordinate systems moving with the flow,

• characteristic methods, which reconstruct the solution from knowledge about its behavior along

streamlines.

For general velocity field v : Ω 7→ R
d:

✦ Stop tracking i-th trajectory as soon as an interpolation nodes p
(j)
i lies outside spatial domain Ω.

✦ In each timestep start new trajectories from fixed locations on inflow boundary Γin (“particle injec-

tion”). These interpolation nodes will carry the boundary value.

Example 7.3.24 (Point particle method for pure advection)

✦ IBVP (7.3.22) on Ω =]0, 1[2, T = 2, with f ≡ 0, g ≡ 0.

✦ Initial locally supported bump u0(x) = max{0, 1− 4
∥∥∥x− (1/2

1/4)
∥∥∥}.

✦ Two stationary divergence-free velocity fields

• v1(x) =

(− sin(πx1) cos(πx2)
cos(πx1) sin(πx2)

)
satisfying (7.1.2),

• v2(x) =

(−x2

x1

)
.

✦ Initial positions of interpolation points on regular tensor product grid with meshwidth h = 1
40 .

✦ Approximation of trajectories by means of explicit trapezoidal rule [3, Eq. (11.4.6)] (method of Heun).

Fig. 324

velocity field v1 (circvel)

Fig. 325

velocity field v2 (rotvel)

MATLAB Code 7.3.25: Confined velocity field

1 f u n c t io n V = circvel(P)

2 % Circular velocity (divergence free, zero normal component on unit
square).

3 % P: 2xN matrix of point coordinates

4 % return value: velocity vectors at points in P
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5

6 v = @(p) [-s in(p i*p(1))*cos(p i*p(2));s in(p i*p(2))*cos(p i*p(1))];

7

8 V = [];

9 f o r p=P

10 V = [V, v(p)];

11 end

MATLAB Code 7.3.26: Pass-through velocity field

1 f u n c t io n V = rotvel(P)

2 % Circular velocity

3

4 v = @(p) [-p(2); p(1)];

5

6 V = [];

7 f o r p=P

8 V = [V, v(p)];

9 end

MATLAB Code 7.3.27: Point particle method for pure advection

1 f u n c t io n partadv(v,u0,g,n,tau,m)

2 % Point particle method for pure advection problem

3 % on the unit sqaure

4 % v: handle to a function returning the velocity field for (an array)
of points

5 % u0: handle to a function returning the initial value u0 for (an
array)

6 % of points

7 % g: handle to a function g = g(x) returning the Dirichlet boundary
values

8 % n: h = 1/n is the grid spacing of the inintial point distribution

9 % tau: timestep size, m: number of timesteps, that is, T = mτ

10

11 % Initialize points

12 h = 1/n; [Xp,Yp] = meshgrid(0:h:1,0:h:1);

13 P = [reshape(Xp,1,(n+1)^2);reshape(Yp,1,(n+1)^2)];

14 % Initialize points on the boundary

15 BP = [[(0:h:1);zeros(1,n+1)],[ones(1,n+1);(0:h:1)],...

16 [(0:h:1);ones(1,n+1)],[zeros(1,n+1);(0:h:1)]];

17 U = u0(P); % Initial values

18

19 % Plot velocity field

20 hp = 1/10; [Xp,Yp] = meshgrid(0:hp:1,0:hp:1);

21 Up = zeros(s iz e(Xp)); Vp = zeros(s iz e(Xp));

22 f o r i=0:10, f o r j=0:10

23 x = v([Xp(i+1,j+1);Yp(i+1,j+1)]);

24 Up(i+1,j+1) = x(1); Vp(i+1,j+1) = x(2);

25 end; end
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26 f i g u r e(’name’,’velocity field’,’renderer’,’painters’);

27 quiver(Xp,Yp,Up,Vp,’b-’); set(gca,’fontsize’,14); hold on;

28 p l o t([0 1 1 0 0],[0 0 1 1 0],’k-’);

29 ax is([-0.1 1.1 -0.1 1.1]);

30 x l a b e l(’{\bf x_1}’); y l a b e l(’{\bf x_2}’);

31 ax is off;

32

33 fp = f i g u r e(’name’,’particles’,’renderer’,’painters’);

34 fs = f i g u r e(’name’,’solution’,’renderer’,’painter’);

35

36 % Visualize points (interior points in red, boundary points in blue)

37 f i g u r e(fp); p l o t(P(1,:),P(2,:),’r+’,BP(1,:),BP(2,:),’b*’);

38 t i t l e ( s p r i n t f(’n = %i, t = %f, \\tau = %f, %i

points’,n,0,tau,s iz e(P,2)));

39 drawnow; pause;

40

41 % Visualize solution

42 f i g u r e(fs); plotpartsol(P,U); drawnow;

43

44 t = 0;

45 f o r l=1:m

46 % Advect points (explicit trapezoidal rule)

47 P1 = P + tau/2*v(P); P = P + tau*v(P1);

48

49 % Remove points on the boundary or outside the domain

50 Pnew = []; Unew = []; l = 1;

51 f o r p=P

52 i f ((p(1) > eps) (p(1) < 1-eps) (p(2) > eps) (p(2) <

1-eps))

53 Pnew = [Pnew,p]; Unew = [Unew; U(l)];

54 end

55 l = l+1;

56 end

57

58 % Add points on the boundary (particle injection)

59 P = [Pnew, BP]; U = [Unew; g(BP)];

60

61 % Visualize points

62 f i g u r e(fp); p l o t(P(1,:),P(2,:),’r+’,BP(1,:),BP(2,:),’b*’);

63 t i t l e ( s p r i n t f(’n = %i, t = %f, \\tau = %f, %i

points’,n,t,tau,s iz e(P,2)));

64 drawnow;

65 % Visualize solution

66 f i g u r e(fs); plotpartsol(P,U); drawnow;

67

68 t = t+tau;

69 end
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7.3.3.3 Particle mesh method

The method introduced in the previous section, can be used to tackle the pure advection problem (7.3.19)

in the 2nd sub-step of the Strang splitting timestepping.

Issue: How to combine Lagrangian advection with a method for the pure diffusion problem (7.3.18)

faced in the other sub-steps of the Strang splitting timestepping?

Idea: two views

“particle temperatures” u(p
(j)
i )

l

Nodal values of finite element function u
(j)
N ∈ S0

1 (M)

Outline: algorithm for one step of size τ > 0 of Strang splitting timestepping for transient

convection-diffusion problem




∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

u(x, t) = 0 ∀x ∈ ∂Ω, 0 < t < T , u(x, 0) = u0(x) ∀x ∈ Ω .
(7.3.2)

➊ Given
✦ triangular meshM(j−1) of Ω,

✦ u
(j−1)
N ∈ S0

1,0(M(j−1))↔ coefficient vector~µ(j−1) ∈ R
Nj−1,

approximately solve (7.3.18) by a single step of implicit Euler (6.1.37) (size 1
2τ)

~ν = (M + 1
2 τǫA)−1~µ(j−1) ,

where A ∈ R
Nj−1,Nj−1 =̂ S0

1,0(M)-Galerkin matrix for −∆, M =̂ (possibly lumped) S0
1,0(M)-mass

matrix.

More advisable to maintain 2nd-order timestepping: 2nd-order L(π)-stable single step method,e.g.,

SDIRK-2 (6.1.91).

➋ Lagrangian advection step (of size τ) for (7.3.19) with

✦ initial “particle positions” pi given by nodes ofM(j−1), i = 1, . . . , Nj,

✦ initial “particle temperatures” given by corresponding coefficients νi.

➌ Remeshing: advection step has moved nodes to new positions p̃i (and, maybe, introduced new nodes

by “particle injection”, deleted nodes by “particle removal”).

➣ Create new triangular meshM(j) with nodes p̃i (+ boundary nodes), i = 1, . . . , Nj

➍ Repeat diffusion step ➊ starting with wN ∈ S0
1,0(M(j)) = linear interpolant (→ Def. 5.3.18) of

“particle temperatures” onM(j).

➣ new approximate solution u
(j)
N

Example 7.3.28 (Delaunay-remeshing in 2D)
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Delaunay algorithm for creating a 2D triangular mesh

with prescribed nodes:

① Compute Voronoi cells, see (4.2.4) &

http://www.qhull.org/.

② Connect two nodes, if their associated Voronoi

dual cells have an edge in common.

➥ MATLAB TRI = delaunay(x,y)

Fig. 326

MATLAB Code 7.3.29: Demonstration of Delaunay-remeshing

1 f u n c t io n meshadv(v,n,tau,m)

2 % Point advaction and remeshing for Lagrangian method

3 % v: handle to a function returning the velocity field for (an array)
of points

4 % n: h = 1/n is the grid spacing of the inintial point distribution

5

6 % Initialize points

7 h = 1/n; [Xp,Yp] = meshgrid(0:h:1,0:h:1);

8 P = [reshape(Xp,1,(n+1)^2);reshape(Yp,1,(n+1)^2)];

9 % Initialize points on the boundary

10 BP = [[(0:h:1);zeros(1,n+1)],[ones(1,n+1);(0:h:1)],...

11 [(0:h:1);ones(1,n+1)],[zeros(1,n+1);(0:h:1)]];

12

13 % Plot triangulation

14 fp = f i g u r e(’name’,’evolving meshes’,’renderer’,’painters’);

15 TRI = delaunay(P(1,:),P(2,:));

16 p l o t(P(1,:),P(2,:),’r+’); hold on;

triplot(TRI,P(1,:),P(2,:),’blue’); hold off;

17 t i t l e ( s p r i n t f(’n = %i, t = %f, \\tau = %f, %i

points’,n,0,tau,s iz e(P,2)));

18 drawnow; pause;

19

20 t = 0;

21 f o r l=1:m

22 % Advect points (explicit trapezoidal rule)

23 P1 = P + tau/2*v(P); P = P + tau*v(P1);

24

25 % Remove points on the boundary or outside the domain

26 Pnew = []; l = 1;

27 f o r p=P

28 i f ((p(1) > eps) (p(1) < 1-eps) (p(2) > eps) (p(2) <

1-eps))
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29 Pnew = [Pnew,p];

30 end

31 l = l+1;

32 end

33

34 P = [Pnew, BP]; % Add points on the boundary (particle injection)

35

36 % Plot triangulation

37 TRI = delaunay(P(1,:),P(2,:));

38 p l o t(P(1,:),P(2,:),’r+’); hold on;

triplot(TRI,P(1,:),P(2,:),’blue’); hold off;

39 t i t l e ( s p r i n t f(’n = %i, t = %f, \\tau = %f, %i

points’,n,t,tau,s iz e(P,2)));

40 drawnow;

41

42 t = t+tau;

43 end

Ω =]0, 1[2, velocity fields like in Ex. 7.3.24. Advection of interpolation nodes by means of explicit trape-

zoidal rule.

Start animations:

meshadv(@circvel,20,0.05,40);

meshadv(@rotvel,20,0.05,40);

Example 7.3.30 (Lagrangian method for convection-diffusion in 1D)

Same IBVP as in Ex. 7.3.4

✦ Linear finite element Galerkin discretization

with mass lumping in space

✦ Strang splitting applied to diffusive and convec-

tive terms

✦ Implicit Euler timestepping for diffusive partial

timestep

Fig. 327
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MATLAB Code 7.3.31: Lagrangian method for (7.3.5)

1 f u n c t io n lagr(epsilon,N,M)

2 % This function implements a simple Lagrangian advection scheme for the

7. Convection-Diffusion Problems, 7.3. Transient convection-diffusion BVP 545



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

1D convection-diffusion
3 % IBVP −ǫ d2u

dx2 +
du
dx = 0, u(x, 0) = max(1− 3|x− 1

3 |, 0),

4 % and homogeneous Dirichlet boundary conditions u(0) = u(1) = 0.
Timestepping employs Strang splitting

5 % applied to diffusive and convective spatial operators.

6 % epsilon: strength of diffusion

7 % N: number of cells of spatial mesh

8 % M: number of timesteps

9

10 T = 0.5; tau = T/M; %
timestep size

11 h = 1/N; x = 0:h:1; u = max(1-3*abs(x(2:end-1)-1/3),0)’; %
Initial value

12

13 [Amat,Mmat] = getdeltamat(x); % Obtain stiffness and
mass matrix

14 u = (Mmat+0.5*tau*epsilon*Amat)\(Mmat*u); % Implicit Euler timestep

15

16 f o r j=1:M+1

17 % Advection step: shift meshpoints, drop those travelling out of

Ω =]0, 1[, insert

18 % new meshpoints from the left. Solution values are just copied.

19 xm = x(2:end-1)+tau; % Transport of meshpoints (here: explicit
Euler)

20 idx = f i n d(xm < 1); % Drop meshpoints beyond x = 1

21 x = [0,tau,xm(idx),1]; % Insert new meshpoint at left end of Ω

22 u = [0;u(idx)]; % Copy nodal values and feed 0 from left

23

24 % Diffusion partial timestep

25 [Amat,Mmat] = getdeltamat(x); % Obtain stiffness and mass
matrix on new mesh

26 u = (Mmat+tau*epsilon*Amat)\(Mmat*u); % Implicit Euler step

27 end

28 end

ǫ = 10−5:
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Lagrangian advection: M = 113.000000, τ = 0.005000, t=0.130000
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Lagrangian advection: M = 126.000000, τ = 0.005000, t=0.255000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

 u

Lagrangian advection: M = 138.000000, τ = 0.005000, t=0.380000
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Lagrangian advection: M = 151.000000, τ = 0.005000, t=0.505000
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Lagrangian advection: M = 113.000000, τ = 0.005000, t=0.130000
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Lagrangian advection: M = 126.000000, τ = 0.005000, t=0.255000
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Lagrangian advection: M = 138.000000, τ = 0.005000, t=0.380000
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Lagrangian advection: M = 151.000000, τ = 0.005000, t=0.505000
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“Reference solution” computed by method of lines, see Ex. 7.3.4, with h = 10−3, τ = 5 · 10−5:
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Expl. Euler: h = 0.001000, τ = 0.000050, t=0.125050
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Expl. Euler: h = 0.001000, τ = 0.000050, t=0.375050
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Expl. Euler: h = 0.001000, τ = 0.000050, t=0.500050

 

 

implicit Euler

explicit Euler

Example 7.3.32 (Lagrangian method for convection-diffusion in 2D)

✦ IBVP (7.3.2) on Ω =]0, 1[2, T = 1,

✦ Particle mesh method based on Delaunay remeshing, see Ex. 7.3.28, and linear finite element

Galerkin discretizatin for diffusion step.

MATLAB Code 7.3.33: Particle mesh method in 2D

1 f u n c t io n ConvDiffLagr(v,epsilon,u0,n,tau,m)

2 % Point particle method for convection-diffusion problem on the unit
sqaure

3 % v: handle to a function returning the velocity field for (an array)
of points

4 % u0: handle to a function returning the initial value u0 for (an
array)

5 % of points

6 % n: h = 1/n is the grid spacing of the inintial point distribution

7 % tau: timestep size, m: number of timesteps, that is, T = mτ

8

9 % Initialize points

10 h = 1/n; [Xp,Yp] = meshgrid(0:h:1,0:h:1);

11 P = [reshape(Xp,1,(n+1)^2);reshape(Yp,1,(n+1)^2)];

12 % Initialize points on the boundary

13 BP = [[(0:h:1);zeros(1,n+1)],[ones(1,n+1);(0:h:1)],...

14 [(0:h:1);ones(1,n+1)],[zeros(1,n+1);(0:h:1)]];

15 % Construct initial mesh by Delaunay algorithm

16 TRI = delaunay(P(1,:),P(2,:));

17

18 U = u0(P); % Initial values

19

20 fp = f i g u r e(’name’,’particles’,’renderer’,’painters’);

21 fs = f i g u r e(’name’,’solution’,’renderer’,’painters’);

22

23 % Visualize mesh, points (interior points in red, boundary points in
blue)

24 % the piecewise linear approximate solution

25 f i g u r e(fp); p l o t(P(1,:),P(2,:),’r+’,BP(1,:),BP(2,:),’m*’); hold

on;

26 triplot(TRI,P(1,:),P(2,:),’blue’); hold off;

27 t i t l e ( s p r i n t f(’n = %i, t = %f, \\tau = %f, %i
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points’,n,0,tau,s iz e(P,2)));

28 drawnow;

29

30 f i g u r e(fs); trisurf(TRI,P(1,:),P(2,:),U’);

31 ax is([0 1 0 1 0 1]); x l a b e l(’{\bf x_1}’);

32 y l a b e l(’{\bf x_2}’); z l a b e l(’{\bf u}’);

33 t i t l e ( s p r i n t f(’n = %i, t = %f, \\tau = %f, %i

points’,n,0,tau,s iz e(P,2)));

34 pause;

35

36 % Initial diffusion half step (implicit Euler)

37 [Amat,Mmat] = getGalerkinMatrices(TRI,P(1,:),P(2,:)); % Compute
Galerkin matrices

38 % Isolate indices of interior points

39 j = 1; intidx = [];

40 f o r p=P

41 i f ((p(1) > eps) (p(1) < 1-eps) (p(2) > eps) (p(2) < 1-eps))

42 intidx = [intidx,j];

43 end

44 j = j+1;

45 end

46 Amat = Amat(intidx,intidx); Mmat = Mmat(intidx,intidx);

47 U(intidx) = (Mmat+0.5*epsilon*tau*Amat)\(Mmat*U(intidx));

48

49 % full(Amat), full(Mmat), return;

50

51 t = 0;

52 f o r l=1:m

53 % Advect points (explicit trapezoidal rule)

54 P1 = P + tau/2*v(P); P = P + tau*v(P1);

55

56 % Remove points on the boundary or outside the domain

57 Pnew = []; Unew = []; l = 1; j = 0;

58 f o r p=P

59 i f ((p(1) > eps) (p(1) < 1-eps) (p(2) > eps) (p(2) <

1-eps))

60 Pnew = [Pnew,p]; Unew = [Unew; U(l)];

61 j = j+1; % Counter for interior points

62 end

63 l = l+1;

64 end

65

66 % Add points on the boundary (particle injection)

67 P = [Pnew, BP];

68

69 % Delaunay algorithm for building triangulation

70 TRI = delaunay(P(1,:),P(2,:));

71 [Amat,Mmat] = getGalerkinMatrices(TRI,P(1,:),P(2,:)); % Compute
Galerkin matrices

72 Amat = Amat(1:j,1:j); Mmat = Mmat(1:j,1:j);

73 U = (Mmat+epsilon*tau*Amat)\(Mmat*Unew); % implicit Euler step
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74 U = [U; zeros(s iz e(BP,2),1)]; % zero padding for boundary nodes

75

76 % Visualize mesh, points (interior points in red, boundary points in
blue)

77 % the piecewise linear approximate solution

78 f i g u r e(fp); p l o t(P(1,:),P(2,:),’r+’,BP(1,:),BP(2,:),’m*’);

hold on;

79 triplot(TRI,P(1,:),P(2,:),’blue’); hold off;

80 t i t l e ( s p r i n t f(’n = %i, t = %f, \\tau = %f, %i

points’,n,t,tau,s iz e(P,2)));

81 drawnow;

82

83 f i g u r e(fs); trisurf(TRI,P(1,:),P(2,:),U’);

84 ax is([0 1 0 1 0 1]); x l a b e l(’{\bf x_1}’);

85 y l a b e l(’{\bf x_2}’); z l a b e l(’{\bf u}’);

86 t i t l e ( s p r i n t f(’n = %i, t = %f, \\tau = %f, %i

points’,n,t,tau,s iz e(P,2)));

87 t = t+tau;

88 end

Invocation: ConvDiffLagr(@circvel,0.001,@initvals,1/40,0.01,100)

Advantage of Lagrangian (particle) methods for convection diffusion:

No artificial diffusion required (no “smearing”)

No stability induced timestep constraint

Drawback of Lagrangian (particle) methods for convection diffusion:

Remeshing (may be) expensive and difficult.

Point advection may produce “voids” in point set.

7.3.4 Semi-Lagrangian method

Now we study a family of methods for transient convection-diffusion that takes into account transport along

streamlines, but, in constrast to genuine Lagrangian methods, relies on a fixed mesh.
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Definition 7.3.34. Material derivative

Given a velocity field v : Ω×]0, T[ 7→ R
d, the material derivative of a function f = f (x, t) at (x, t)

is

D f

Dv
(x, t0) = lim

τ→0

f (x, t0)− f (Φ−τ
t0

x, t0 − τ)

τ
, x ∈ Ω, 0 < t0 < T ,

with Φ
t
t0

the flow map (at time t0) associated with v, that is, cf. (7.1.3), (7.1.4),

dΦ
t
t0

x

dt
= v(Φt

t0
x, t− t0) , Φ

0x = x .

The material derivative
D f
Dv is the

rate of change of f experienced by a particle carried along by the flow

because Φ
t
t0

x describes the trajectory of a particle located at x at time t0 (↔ t = 0).

By a straightforward application of the chain rule for smooth f

D f
Dv (x, t) = gradx f (x, t) · v(x, t) + ∂ f

∂t (x, t) . (7.3.35)

➣ The transient convection-diffusion equation can be rewritten as (7.3.1)

∂u

∂t
− ǫ∆u + v(x, t) · grad u = f in Ω̃ := Ω×]0, T[ ,

← (7.3.35)

Du

Dv
− ǫ∆u = f in Ω̃ := Ω×]0, T[ . (7.3.36)

Idea: Backward difference (“implicit Euler”) discretization of material derivative

Du

Dv |(x,t)=(x,t0)
≈

u(x, t0)− u(Φ−τ
t0

x, t0 − τ)

τ
,

with timestep τ > 0, where t 7→ Φ
tx solves the initial value problem

dΦ
t
t0

x

dt
(t) = v(Φt

t0
x, t0 + t) , Φ

0
t0

x = x .

Semi-discretization of (7.3.36) in time (with fixed timestep τ > 0)

u(j)(x)− u(j−1)(Φ−τ
tj

x)

τ
− ǫ∆u(j)(x) = f (x, tj) in Ω ,

+ boundary conditions at t = tj ,

(7.3.37)

where u(j) : Ω 7→ R is an approximation for u(·, tj), tj := jτ, j ∈ N. Note the difference to the

method of lines (→ Sects. 6.1.4, 6.2.3, 7.3.1): in (7.3.37) semidiscretization in time was carried out first,

now followed by discretization in space, which reverses the order adopted in the method of lines.
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Cast (7.3.37) into variational form according to the recipe of Sect. 2.9 and apply Galerkin discretization

(here discussed for linear finite elements, homogeneous Dirichlet boundary conditions u = 0 on ∂Ω).

This yields one timestep (size τ) for the semi-Lagrangian method: the approximation u
(j)
N for u(jτ)

(equidistant timesteps) is computed from the previous timestep according to

u
(j)
N ∈ S0

1,0(M):
∫

Ω

u
(j)
N (x)− u

(j−1)
N (Φ−τ

tj
x)

τ
vN(x)dx + ǫ

∫

Ω

grad u
(j)
N · grad vN dx

=
∫

Ω

f (x, tj)vN(x)dx ∀vN ∈ S0
1,0(M) . (7.3.38)

Here,M is supposed to be a fixed triangular mesh of Ω.

However, (7.3.38) cannot be implemented: x 7→ u
(j−1)
N (Φ−τ

tj
x) is a finite element function that has

been “transported with the (reversed) flow” (in the sense of pullback, see Def. 3.7.2)

Fig. 331

✁ - - - =̂ image ofM (—) under Φ
−τ
tj

The pullback x 7→ vN(Φ
−τ
tj

x) of vN ∈ S0
1,0(M)

is piecewise smooth w.r.t. the mapped mesh drawn

with - - -. Hence, it is not smooth inside the cells of

M.

➣ the transported function may not be a finite element function onM,

➣ the transported function may not even be piecewise smooth onM

➤

✛

✚

✘

✙
local quadrature for the approximate computation of the integral in (7.3.38) that in-

volves u
(j−1)
N (Φ−τ

tj
x) is not possible, because accurate numerical quadrature re-

quires a (locally) smooth integrand.

Idea:

✦ replace u
(j−1)
N (yx(−τ)) with linear interpolant (→ Def. 5.3.18)

I1

(
u
(j−1)
N ◦Φ

−τ
tj

)
∈ S0

1,0(M),

✦ approximate Φ
−τ
tj

x by x− τv(x, tj) (explicit Euler).

(“streamline backtracking”)
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u
(j)
N ∈ S0

1,0(M):
∫

Ω

u
(j)
N (x)− I1(u

(j−1)
N (· − τv(·, tj)))(x)

τ
vN(x)dx + ǫ

∫

Ω

grad u
(j)
N · grad vN dx

=
∫

Ω

f (x, tj)vN(x)dx ∀vN ∈ S0
1,0(M) .

Then apply local vertex based numerical quadrature (2D trapezoidal rule (3.3.49) = global trapezoidal

rule) to the first integral. This amounts to using mass lumping, see Rem. 6.2.45.

Implementable version of (7.3.38):

u
(j)
N ∈ S0

1,0(M): 1
3 |Up|(µ(j)

p − u
(j−1)
N (p− τv(p, tj)) + τ

∫

Ω

grad u
(j)
N · grad b

p
N dx

= 1
3 |Up| f (p) , p ∈ N (M) ∩Ω , (7.3.39)

where µ
(j)
p are the nodal values of u

(j)
N ∈ S0

1,0(M) associated with the interior nodes of the meshM,

b
p
N is the “tent function” belonging to node p, |Up| is the sum of the areas of all triangles adjacent to p.

Example 7.3.40 (Semi-Lagrangian method for convection-diffusion in 1D)

Same IBVP as in Ex. 7.3.30

✦ Linear finite element Galerkin discretization

with mass lumping in space

✦ Semi-Lagrangian method: 1D version of

(7.3.38)

✦ Explicit Euler streamline backtracking

Fig. 332
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Semi−Lagrangian method: M = 100.000000, τ = 0.005000, t=0.130000
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Semi−Lagrangian method: M = 100.000000, τ = 0.005000, t=0.380000
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Semi−Lagrangian method: M = 100.000000, τ = 0.005000, t=0.505000

ǫ = 0.1:
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“Reference solution” computed by method of lines, see Ex. 7.3.4, with h = 10−3, τ = 5 · 10−5:
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explicit Euler

Example 7.3.41 (Semi-Lagrangian method for convection-diffusion in 2D)

✦ 2nd-order scalar convection diffusion problem (7.3.2), Ω :=]0, 1[2, f = 0, g = 0,

✦ velocity field

v(x) :=

(− sin(πx1) cos(πx2)
sin(πx2) cos(πx1)

)
.

✦ Initial condition: “compactly supported cone shape”

u0(x) = max(0,1-4*sqrt((x(:,1)-0.5).^2+(x(:,2)-0.25).^2));

✦ semi-Lagrangian finite element Galerkin discretization according to (7.3.38) on regual triangular

meshes of square domain Ω, see Fig. 178.

Example with ǫ = 0:
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We observe smearing of initial data due to numerical diffusion inherent in the interpolation step of the

semi-Lagrangian method.

Learning outcomes

After having digested the contents of this chapter you should

• know the mathematical model (“convection-diffusion equation”) for stationary and transient heat con-

duction in a moving (incompressible) fluid,

• understand the notion of singular perturbation and when convection-diffusion boundary value prob-

lems are singularly perturbed.

• know that standard Galerkin finite element discretization of convection-diffusion boundary value

problem runs risk of spurious oscillations of the numerical solution in the case of singular perturba-

tion.

• be familiar with the idea of upwind quadrature for a stable discretization of singularly perturbed

convection-diffusion problems.

• know stabilization throughartificial diffusion/viscosity and how it is used in the streamline diffusion

method.

• remember that the method of lines approach for singularly perturbed transient convection-diffusion

problems requires a stable discretization in space.

• comprehend the main idea of Lagrangian particle methods for transient advection.

• be familiar with the principle of semi-Lagrangian finite element methods for transient advection-

diffusion boundary value problems.
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Chapter 8

Numerical Methods for Conservation Laws

Conservation laws describe physical phenomena governed by

✦ conservation laws for certain physical quantities (e.g., mass momentum, energy, etc.),

✦ transport of conserved physical quantities.

We have already examined problems of this type in connection with transient heat conduction in Sect. 7.1.4.

There thermal energy was the conserved quantity and a prescribed external velocity field v determined

the transport. Familiarity with Chapter 7 is advantageous, but not essential for understanding this chapter.

A new aspect emerging for general conservation laws is that the transport velocity itself may depend on

the conserved quantities themselves, which gives rise to non-linear models.
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8.1 Conservation laws: Examples

Focus:
Cauchy problems

Spatial domain Ω = R
d (unbounded!)

➤ Cauchy problems are pure initial value problems (no boundary values).

Why do we restrict ourselves to Cauchy problems ?

➊ Finite speed of propagation typical of conservation laws → Thm. 8.2.43

(Potential spatial boundaries will not affect the solution for some time in the case of compactly supported

initial data, cf. situation for wave equation, where we also examined the Cauchy problem, see (6.2.21).)

➋ No spatial boundary ➣ need not worry about (spatial) boundary conditions!

(Issue of spatial boundary conditions can be very intricate for conservation laws, cf. Rem. 8.2.6)

8.1.1 Linear advection

The simplest case are models where transport governed by a given velocity field (advection/convection→
Chapter 7).

(8.1.1) Heat transport in a moving fluid

A typical specimen is the following Cauchy problem for the linear transport equation (advection equation)

→ Sect. 7.1.4, (7.1.16):

∂

∂t
(ρu) + div(v(x, t)(ρu)) = f (x, t) in Ω̃ := R

d×]0, T[ , (8.1.2)

u(x, 0) = u0(x) for all x ∈ R
d (initial conditions) . (8.1.3)

u = u(x, t) =̂ temperature, ρ > 0 =̂ heat capacity, v = v(x, t) =̂ prescibed locally Lipschitz-continuous

velocity field, v : Rd × [0, T]→ Rd.

(8.1.2) = linear scalar conservation law

➤ Conserved quantity: thermal energy (density) ρu
(Recall the derivation of (7.1.16) through conservation of energy, cf. (6.1.3).)
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Simplfied problem: assume constant heat capacity ρ ≡ 1, no sources: f ≡ 0, stationary velocity field

v = v(x) ➣ rescaled initial value problem written in conserved variables

∂u

∂t
+ div(v(x)u) = 0 in Ω̃ := R

d×]0, T[ ,

u(x, 0) = u0(x) for all x ∈ R
d (initial conditions) .

(8.1.4)

Convention: differential operator div acts on spatial independent variable only,

(div f)(x, t) :=
∂ f1

∂x1
+ · · ·+ ∂ fd

∂xd
, f(x, t) =




f1(x, t)
...

fd(x, t)


 .

A general solution formula exists for (8.1.4), based on the notion of the flow map induced by the velocity

field v = v(x), see also (7.1.3). The flow map Φ = Φ(x, t), x ∈ Rd, t ∈ R is a mapping

Φ : R
d ×R → R

d defined by
∂Φ

∂t (x, t) = v(Φ(x, t)) in Rd ×R ,

Φ(x, 0) = x for all x ∈ R
d .

(8.1.5)

See Fig. 296, Fig. 297, and Fig. 298 for visualizations. By existence and uniqueness theorems for initial

value problems for ordinary differential equations [33, Thm. 11.1.32] the flow map Φ is well defined by

(8.1.5), if v is (locally) Lipschitz continuous, which we take or granted. The flow map satisfies

Φ(Φ(x, t),−t) = x for all x ∈ R
d . (8.1.6)

Theorem 8.1.7. Solution of linear advection problem

The solution of (8.1.4) is given by

u(x, t) = |det(Dx Φ)(x, t)|−1u0(Φ(x,−t)) , (x, t) ∈ R
d ×R , (8.1.8)

where Dx Φ is the Jacobian of the flow map.

Example 8.1.9 (Constant advection in 1D)

Special case: constant coefficient linear advection in 1D

✦ d = 1
Cauchy problem

➣ spatial domain Ω = R,

✦ constant velocity v = const. .

∂u

∂t
+

∂

∂x
(vu) = 0 in Ω̃ = R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (8.1.10)

This is the 1D version of the transport equation (7.3.7) and its solution is given by formula (7.3.11), which

is a special case of the result stated in Thm. 8.1.7.

(7.3.11)

u(x, t) = u0(x− vt) , x ∈ R , 0 ≤ t < T . (8.1.11)
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Solution u = u(x, t) = initial data “travelling” with velocity v. For differentiable u0 the solution property of

u(x, t) from (8.1.11) can be verified by direct computation.

Remark 8.1.12 (Discontinuous solutions of advection equations)

To verify that (8.1.11) solves (8.1.10) in the sense of classical calculus we need u0 ∈ C1(R). However,

(8.1.10) remains meaningful even without this smoothness assumption.

The solution formula from Thm. 8.1.7 makes perfect sense even for discontinuous initial data u0!

➥ We should not expect u = u(x, t) to be differentiable in space or time.

A “weaker” concept of solution is required, see Section 8.2.3 below.

This consideration should be familiar: for second order elliptic boundary value problems, for which classical

solutions are to be twice continuously differentiable, the concept of a variational solution made it possible

to give a meaning to solutions ∈ H1(Ω) that are merely continuous and piecwise differentiable, see

Rem. 1.3.47.

Related to (8.1.11): d’Alembert solution formula (6.2.22) for 1D wave equation (6.2.21).

Remark 8.1.13 (Boundary conditions for linear advection)

Recall the discussion in Sects. 7.2.1, 7.3.2, cf. solution formula (7.3.12):

For the scalar linear advection initial boundary value problem

∂u

∂t
+ div(v(x, t)u) = f (x, t) in Ω̃ := Ω×]0, T[ , (8.1.14)

u(x, 0) = u0(x) for all x ∈ Ω , (8.1.15)

on a bounded domain Ω ⊂ Rd, boundary conditions (e.g., prescribed temperature)

u(x, t) = g(x, t) on Γin(t)×]0, T[ ,

can be imposed on the inflow boundary

Γin(t) := {x ∈ ∂Ω: v(x, t) · n(x) < 0} , 0 < t < T . (8.1.16)

Note: Γin can change with time!

Bottom line:✎
✍

☞
✌

Knowledge of local and current direction of transport

needed to impose meaningful boundary conditions!

8.1.2 Traffic modeling [7]

We design simple mathematical models for non-stationary traffic flow on a single long highway lane. This

situation often occurs, for instance, at bypasses of long highway construction sites.
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We make simplifying modeling assumptions (not quite matching reality):

✦ Identical cars and behavior of drivers (8.1.17)

✦ Uniformity of road conditions (8.1.18)

✦ Speed of a car determined only by (its distance from) the car in front (8.1.19)

8.1.2.1 Particle model

The gist of a particle model or agent based model for traffic flow is to track a finite number of individual

cars over a period of time [0, T]. Hence, the particle model is semi-discrete (still continuous in time). The

key state parameter of a car is its position on the road:

xi(t) =̂ position of i-th car at time t, i = 1, . . . , N (N =̂ total number of cars), hence the configuration

space is R
N.

We will always take for granted ordering: xi(t) < xi+1(t)

The curve t 7→ xi(t) in the x− t-plane is the trajectory of the i-th car.

(8.1.20) Velocity model

In order to describe the dynamics of the moving cars we need a velocity model.

Here: optimal velocity model

ẋi(t) = vopt(∆xi) , ∆xi(t) = xi+1(t)− xi(t) > 0 , i = 1, . . . , N − 1 . (8.1.21)

↔ relies on Assumptions (8.1.17)–(8.1.19) above, in particular (8.1.19).

The function ∆x 7→ vopt(∆x) is deduced from the assumption that

each car drives as fast as possible under safety constraints.

(drive more slowly if the you are close to the car in front)

vopt(∆x) = vmax(1−
∆0

∆x
) , (8.1.22)

with ∆0 =̂ length of a car = distance of cars in bumper to bumper traffic jam.

(8.1.21) + (8.1.22): ordinary differential equation (ODE) on state space RN

In order to get a well-posed initial value problem, the ODE has to be supplemented with initial conditions

xi(0) = xi,0 ∈ R , xi,0 ≤ xi+1,0− ∆0 . (8.1.23)

Obviously (why?): the solution of (8.1.21), (8.1.22), (8.1.23) satisfies xi(t) ≤ xi+1(t)− ∆0.
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Remark 8.1.24 (Acceleration based traffic modeling)

The speed of a car is a consequence of drivers accelerating and breaking.

➣ acceleration based modeling of car dynamics under Assumptions (8.1.17)–(8.1.19)

ẍi(t) = F(∆xi(t), ∆vi(t)) , ∆vi(t) = ẋi+1− ẋi . (8.1.25)

Models of this type are popular in practice.

Experiment 8.1.26 (Particle simulation of traffic flow)

Usually one sets vmax = 1 by rescaling of spatial/temporal units, cf. Rem. 1.2.10.
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We chose the following initial positions of cars (row

vector in MATLAB syntax)

RowVectorXd x0(77);

x0 <<

RowVectorXd::LinSpaced(26,0.0,1.0)

RowVectorXd::LinSpaced(51,2.0,3.0)

This corresponds to two clusters of evenly spaced

cars at different sections of the road.

✁ Simulation based on optimal velocity model

(8.1.22) with (dimensionless) ∆0 = 0.0180.

MATLAB code 8.1.27: Particle simulation of cars based on optimal velocity model

1 f u n c t io n [times,Y,fig] = carsim(x0,T,xL,xR,d0)

2 % Particle simulation of single lane traffic flow using the
normalization

3 % vmax = 1 and d0 := ∆0 = 1
N, where N is the

4 % total number of cars. x0 passes the intial positions of the cars.

5 % This vector is assumed to be sorted with the last component providing
the

6 % position of the rightmost car.

7

8 % Total number N of cars

9 N = l ength(x0); x0 = reshape(x0,N,1);

10 % Bumper to bumper distance d0 of the cars

11 i f (nargin < 5), d0 = (xR-xL)/(5*N); end

12 u0 = 1/d0; % Maximal number density of cars in a bumper to bumper jam

13

14 % Check validity of initial positions

15 dist0 = d i f f (x0); % compute ∆xi

16 i f (min(dist0) < 0.99*d0), d0, min(dist0), e r r o r(’Cars too

close’); end

17
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18 % right hand side of the numerical integrator according to (8.1.21) and

19 % (8.1.22) with vmax = 1. Note that x has to be a row

20 % vector. The rightmost car travels at speed vmax.

21 rhs = @(t,x) [1-d0*1./ d i f f (x);1];

22

23 % perform numerical integration using MATLAB’s standard integrator

24 options = odeset(’abstol’,1E-8,’reltol’,1E-7);

25 [times,X] = ode45(rhs,[0.0 T],x0,options);

26

27 % Compute density of cars normalized with the maximal density (∆0)−1,

28 % based on averages over N
5 equally long sections of the lane, that

29 % is δ = 5|xR−xL|
N in (8.1.30).

30 Y = []; M = f l o o r(N/6);

31 f o r k=1: l ength(times)

32 Y = [Y;cardensity(X(k,:),xL,xR,M)/u0];

33 end

34

35 % Plot positions of cars as a function of time (“fan plot”)

36 fig = f i g u r e(’name’,’positions of cars’);

37 ax is([xL xR 0 T]); hold on;

38 k = 1;

39 f o r t=times’

40 p l o t(X(k,:),t*ones(N,1),’r.’,’markersize’,1);

41 k = k+1;

42 end

43 x l a b e l(’{\bf position on lane}’,’fontsize’,14);

44 y l a b e l(’{\bf (normalized) time t}’,’fontsize’,14);

45 t i t l e ( s p r i n t f(’%d cars on lane, \\Delta_{0} = %f’,N,d0));

46 hold off;

47

48 % (Animated) plot of normalized density of cars. The times for the
frames are

49 % stored in the vector times, the density data in the matrix Y.

50 f i g u r e(’name’,’Animation of densities’);

51 f o r k=1: l ength(times)

52 s t a i r s((xL:(xR-xL)/M:xR),Y(k,:),’m’);

53 ax is([xL xR 0 1]);

54 x l a b e l(’{\bf position on lane}’,’fontsize’,14);

55 y l a b e l(’{\bf density of cars}’,’fontsize’,14);

56 t i t l e ( s p r i n t f(’%d cars on lane, time = %f’,N,times(k)));

57 drawnow;

58 end

C++ EIGEN code 8.1.28: Particle simulation of cars based on optimal velocity model

➺ GITLAB

1 // arguments:

2 // Vector x0 with initial positions of cars which is assumed to be
sorted with the last component providing the position of the
rightmost car.
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3

4 // double T endtime of simulation

5 // doubles [xL, xR] to select spatial domain

6 // double d0 := ∆0 = 1
N, where d0 is the bumper to bumper distance of the

cars
7 //

8 // returns:

9 // Vector with timesteps

10 // Matrix with all carpositions at all timesteps

11 // Matrix with cardensities at all timesteps

12 // double d0 bumper to bumper distance of the cars

13 //

14 //

15 // Particle simulation of single lane traffic flow using the
normalization

16 // vmax = 1

17 //

18 s td : : tup le <Eigen : : VectorXd , Eigen : : Matr ixXd , Eigen : : Matr ixXd , double>

carsim ( const Eigen : : VectorXd& x0 , double T , double xL , double

xR , double d0 ) {

19

20 // Total number N of cars

21 const unsigned N = x0 . s ize ( ) ;

22

23 const double u0 = 1/ d0 ; // Maximal number density of cars in a bumper
to bumper jam

24

25 // Check validity of initial positions

26 const Eigen : : VectorXd d i f f 0 = NPDE : : d i f f ( x0 ) ; // compute ∆xi

27 assert ( d i f f 0 . minCoeff ( ) > 0.99∗d0 ) ; //Cars too close

28

29 // right hand side of the numerical integrator according to (8.1.21) and

30 // (8.1.22) with vmax = 1. The rightmost car travels at speed vmax.

31 auto rhs = [ d0 ] ( const Eigen : : VectorXd& x , Eigen : : VectorXd& dxdt ,

const double t ) {

32 const unsigned N = x . s ize ( ) ;

33 //Eigen::VectorXd dxdt(N);

34 dxdt . r es ize (N) ;

35 Eigen : : VectorXd d i f f x = NPDE : : d i f f ( x ) ;

36 for ( unsigned i = 0 ; i < N−1; ++ i ) {

37 dxdt [ i ] = 1−d0 / d i f f x [ i ] ;

38 }

39 dxdt [N−1] = 1;

40 } ;

41

42 // perform numerical integration using Boost’s integrator

43 double abs to l = 1E−8;

44 double r e l t o l = 1E−7;

45

46 //solve the system

47 Eigen : : VectorXd times ;
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48 Eigen : : Matr ixXd X;

49 s td : : t i e ( t imes , X) = NPDE : : ode45 ( rhs , 0 , T , x0 , abs to l , r e l t o l ) ;

50

51 // Compute density of cars normalized with the maximal density (∆0)−1,

52 // based on averages over N
5 equally long sections of the lane, that

53 // is δ = 5|xR−xL|
N in (8.1.30).

54

55 unsigned t imesteps = times . s ize ( ) ;

56 unsigned M = N/ 6 ;

57 Eigen : : Matr ixXd Y(M, t imesteps ) ;

58 for ( unsigned k = 0; k < t imesteps ; ++k ) {

59 Y. co l ( k ) = ca rdens i t y (X, k , xL , xR , M) / u0 ;

60 }

61

62 return s td : : make_tuple ( times , X, Y, d0 ) ;

63 }

When we launch the simulation we observe that the two clusters merge and dissolve as cars “escape” to

the right. Fan-shaped patterns emerge, see Fig. 336.

(8.1.29) Extraction of macroscopic quantities

Our goal is to pass from the semi-discrete particle model to a continuum model, where the state of traffic

is described by functions.

These correspond to “macroscopic quantities” =̂ quantities describing the traffic flow detached from the

existence of individual cars.✞
✝

☎
✆Macroscopic quantities can be obtained by averaging from the microscopic particle description.

Key macroscopic quantity: (normalized) density of cars

uδ(x, t) :=
∆0

2δ
♯{i ∈ {1, . . . , N} : x− δ ≤ xi(t) < x + δ} , (8.1.30)

where δ > 0 is the spatial averaging length. (The density defined in (8.1.30) is “normalized” because it is

the ratio of the number density of cars and the maximal density ∆−1
0 . Hence, invariably, 0 ≤ uδ(x, t) ≤ 1.)

Note: uδ will crucially depend on δ

Experiment 8.1.31 (Particle simulation of traffic flow, cnt’d → Exp. 8.1.26)
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We use initial car distribution

x0 = [0:2/k:1,2:1/k:3]a

(MATLAB syntax) with k=50,200,800, ∆0 =
0.9/k, see (8.1.22), δ = 3.33/k in (8.1.30).

Simulation based on Code 8.1.27.

Initial density x 7→ uδ(x, 0) ✄
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0 1 2 3 4 5 6 7 8 9 10

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

0

0.2

0.4

0.6

0.8

1

1202 cars on lane, ∆
0
 = 0.001125

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

77 cars on lane, ∆
0
 = 0.018000,time = 1.746709

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

77 cars on lane, ∆
0
 = 0.018000,time = 3.490798

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

77 cars on lane, ∆
0
 = 0.018000,time = 5.225618

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

77 cars on lane, ∆
0
 = 0.018000,time = 7.000000

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

302 cars on lane, ∆
0
 = 0.004500,time = 1.748720

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

302 cars on lane, ∆
0
 = 0.004500,time = 3.499427

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

302 cars on lane, ∆
0
 = 0.004500,time = 5.249313

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

302 cars on lane, ∆
0
 = 0.004500,time = 7.000000

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

1202 cars on lane, ∆
0
 = 0.001125,time = 1.749661

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

1202 cars on lane, ∆
0
 = 0.001125,time = 3.499842

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

1202 cars on lane, ∆
0
 = 0.001125,time = 5.249368

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 position on lane

 (
no

rm
al

iz
ed

) 
de

ns
ity

 o
f c

ar
s

1202 cars on lane, ∆
0
 = 0.001125,time = 7.000000

Striking observation:

For N → ∞, ∆0 ∼ N−1, δ ∼ N−1 the normalized car densities uδ(x, t) seem to approach a limit density .

What is it? Can it be obtained as a solution of a “limit model”. These issues will be addressed next.

Note: We have made similar observation in the case of the mass-spring model of Section 1.2.2 in the

limit n→ ∞.

8.1.2.2 Continuum traffic model

In Exp. 8.1.31 we observed the emergence of a stable limit density in the microscopic particle model of

traffic flow according to (8.1.21) and (8.1.22), when the number of cars and their maximum density tended

to ∞ in tandem, while the spatial averaging length tends to zero.
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Now we derive a macroscopic continuum model describing this limit. This macroscopic model will be

stated in terms of macroscopic quantities, which are functions of position along the road x and time t.

Note: There are many parallels with derivation of continuum elastic string model in Section 1.2.

Remark 8.1.32 (Suitability of macroscopic models for traffic flow)

The limit N → ∞ in traffic modeling is commonly denounced as dubious, because the number of cars on

a road is way too small to render the limit a good approximation of actual traffic flow, see [7, Sect. 2.3].

Nevertheless, here we introduce a limit model, because

✦ it yields a least a qualitatively correct representation of patterns observed in real traffic flow,

✦ it provides an important model problem for scalar non-linear conservation laws, see Section 8.1.3.

Ingredients of macroscopic (continuum) traffic model:

• spatial domain Ω = R =̂ infinitely long single highway lane (→ Cauchy problem),

• traffic flow described by the macroscopic quantity

normalized density of cars u : Ω× [0, T] 7→ [0, 1] according to

uδ(x, t) :=
∆0

δ
♯{i ∈ {1, . . . , N} : x− δ ≤ xi(t) < x + δ} , (8.1.30)

• optimal velocity speed model (8.1.22) (vopt(∆x) = vmax(1−
∆0

∆x
)).

(8.1.33) Macroscopic balance laws for traffic model

However, (8.1.22) and (8.1.21) do not fit the spirit of macroscopic modeling: neither ∆xi nor ẋi(t) is a

macroscopic quantity!

Required: concept of a macroscopic velocity

Idea: spatial averaging of velocities of cars

vδ(x, t) =
∑i∈Uδ(x)

ẋi(t)

♯Uδ
(x) , (8.1.34)

Uδ(x) := {i ∈ {1, . . . , N} : x− δ ≤ xi(t) < x + δ} .

From density and velocity we derive another macroscopic quantity:

(normalized) flux of cars: qδ(x, t) = uδ(x, t)vδ(x, t) . (8.1.35)

Interpretation: q(x, t) ≈ no. of cars passing site x in unit time around instance t in time.
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approximate balance law

(“conservation of cars” in a “space-time box”)

Fig. 338

x

x

x0

t0

x1

t1

x1∫

x0

uδ(x, t1)dt−
x1∫

x1

uδ(x, t0)dt

︸ ︷︷ ︸
change of no. of cars on [x0, x1] in [t0, t1]

≈
t1∫

t0

qδ(x0, t)dx−
t1∫

t0

qδ(x1, t)dx

︸ ︷︷ ︸
no. of cars entering/leaving [x0, x1] in [t0, t1]

. (8.1.36)

(8.1.37) Traffic flow: continuum limit of particle model

Now we consider N → ∞ (many cars) and δ ∼ N−1 → 0 and drop the subscript δ, which hints at the

averaging.

The balance law (8.1.38) will remain valid in the limit and will even become exact !

x1∫

x0

u(x, t1)dt−
x1∫

x1

u(x, t0)dt

︸ ︷︷ ︸
change of no. of cars on [x0, x1] in [t0, t1]

=

t1∫

t0

q(x0, t)dx−
t1∫

t0

q(x1, t)dx

︸ ︷︷ ︸
no. of cars entering/leaving [x0, x1] in [t0, t1]

. (8.1.38)

In the “infinitely many cars” limit u(x, t), v(x, t), and q(x, t) can be expected to become (piecewise)

smooth functions. This justifies the transition to a differential (PDE) macroscopic model:

Temporarily assume that u = u(x, t) is smooth in both x and t and set x1 = x0 + h, t1 = t0 + τ. First

approximate the integrals in (8.1.38).

x1∫

x0

u(x, t1)− u(x, t0)dx = h(u(x0, t1)− u(x0, t0)) + O(h2) for h→ 0 ,

t1∫

t0

q(x1, t)− q(x0, t)dt = τ(q(x1, t0)− q(x0, t0)) + O(τ2) for τ → 0 .

Then employ Taylor expansion for the differences:

u(x0, t1)− u(x0, t0) =
∂u

∂t
(x0, t0)τ + O(τ2) for τ → 0 ,

q(x1, t0)− q(x0, t0) =
∂q

∂x
(x0, t0)h + O(h2) for h → 0 .
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Finally, divide by h and τ and take the limit τ → 0, h→ 0:

∂u

∂t
(x, t) +

∂q

∂x
(x, t) = 0 in Ω×]0, T[ . (8.1.39)

This is a first-order partial differential equation.

We still need to link u and q: From (8.1.22) (with vmax = 1 after rescaling) we deduce the macroscopic

constitutive relationship between the (averaged and normalized) density (→ (8.1.30)) of cars and their

averaged speed (→ (8.1.34)):

v(x, t) = 1− u(x, t)
(8.1.35)⇒ q(x, t) = u(x, t)(1− u(x, t)) . (8.1.40)

(8.1.39) & (8.1.40) & (8.1.35)
∂u

∂t
+

∂

∂x
(u(1− u)) = 0 in Ω×]0, T[ . (8.1.41)

+ macroscopic counterpart of initial conditions (8.1.23):

u(x, 0) = u0(x) , x ∈ R . (8.1.42)

8.1.3 Inviscid gas flow

Introduction. In this section we study modeling in fluid mechanics, a special field of continuum mechanics.

In spirit this is close to the modeling of trafic flow in Sect. 8.1.2, because the macroscopic behavior of fluids

also results from the interaction of many small particles (molecules). However, in fluid mechanics the limit

model for infinitely many particles enjoys a much more solid foundation than that for traffic, because the

number of particles involved is tremendous (≈ 1020− 1030).

Fig. 339

Gas

x

Frictionless gas flow in (infinitely) long pipe

Terminology: frictionless =̂ inviscid

Assumption: variation of gas density negligible (“near incompressibility”)

motion of fluid driven by inertia ↔ conservation of linear momentum

(8.1.43) Inviscid gas flow: balance law

We derive a continuum model for inviscid, nearly incompressible fluid in a straight infinitely long pipe↔
Ω = R (Cauchy problem).

This simple model will be based on conservation of linear momentum, whereas conservation of mass and

energy will be neglected (and violated). Hence, the crucial conserved quantity will be the momentum.

by near incompressibility

Unkown: u = u(x, t) = momentum density ∼ local velocity v = v(x, t) of fluid

☛
✡

✟
✠Conserved quantity: (linear) momentum of fluid u = u(x, t)
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➣ flux of linear momentum f ∼ v · u (after scaling: f (u) = 1
2u · u)

(“momentum u advected by velocity u”)

Conservation of linear momentum (∼ u): for all control volumes V :=]x0, x1[⊂ Ω:

x1∫

x0

u(x, t1)− u(x, t0)dx

︸ ︷︷ ︸
change of momentum in V

+

t1∫

t0

1
2u2(x1, t)− 1

2u2(x0, t)dt

︸ ︷︷ ︸
outflow of momentum

= 0 ∀0 < t0 < t1 < T . (8.1.44)

(8.1.45) Burgers equation modelling inviscid gas flow

Temporarily assume that u = u(x, t) is smooth in both x and t and set x1 = x0 + h, t1 = t0 + τ. First

approximate the integrals in (8.1.44).

x1∫

x0

u(x, t1)− u(x, t0)dx = h(u(x0 , t1)− u(x0, t0)) + O(h2) for h→ 0 ,

t1∫

t0

1
2u2(x1, t)− 1

2u2(x0, t)dt = τ(1
2 u2(x1, t0)− 1

2u2(x0, t0)) + O(τ2) for τ → 0 .

Then employ Taylor expansion for the differences:

u(x0, t1)− u(x0, t0) =
∂u

∂t
(x0, t0)τ + O(τ2) for τ → 0 ,

1
2u2(x1, t0)− 1

2u2(x0, t0) =
∂

∂x
(1

2 u2)(x0, t0)h + O(h2) for h → 0 .

Finally, divide by h and τ and take the limit τ → 0, h→ 0:

∂u

∂t
+

∂

∂x

(
1
2u2
)
= 0 in Ω×]0, T[ . (8.1.46)

(8.1.46) = Burgers equation: a one-dimensional scalar conservation law (without sources)

Remark 8.1.47 (Euler equations)

The above gas model blatantly ignores the fundamental laws of conservation of mass and of energy.

These are taken into account in a famous more elaborate model of inviscid fluid flow:

Euler equations [15], a more refined model for inviscid gas flow in an infinite pipe

∂

∂t




ρ
ρu
E


+

∂

∂x




ρu
ρu2 + p
(E + p)u


 = 0 in R×]0, T[ , (8.1.48)

u(x, 0) = u0(x) , ρ(x, 0) = ρ0(x) , E(x, 0) = E0(x) for x ∈ R ,
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where
✦ ρ = ρ(x, t) =̂ fluid density, [ρ] = kg m−1,

✦ u = u(x, t) =̂ fluid velocity, [u] = m s−1,

✦ p = p(x, t) =̂ fluid pressure, [p] = N,

✦ E = E(x, t) =̂ total energy density, [E] = J m−1.

+ state equation (material specific constitutive equations), e.g., for ideal gas

p = (γ− 1)(E− 1
2ρu2) , with adiabatic index 0 < γ < 1 .

Conserved quantities (densities):

ρ ↔ mass density , ρu ↔ momentum density , E ↔ energy density.

Underlying physical conservation principles for individual densities:

• First equation
∂ρ

∂t
+

∂

∂x
(ρu) = 0 ↔ conservation of mass,

• Second equation
∂(ρu)

∂t
+

∂

∂x
(ρu2 + p) = 0 ↔ conservation of momentum,

• Third equation
∂E

∂t
+

∂

∂x
((E + p)u) = 0 ↔ conservation of energy .

Euler equations (8.1.48) = non-linear system of conservation laws (in 1D)

As is typical of non-linear systems of conservations laws, the analysis of the Euler equations is intrinsically

difficult: hitherto not even existence and uniqueness of solutions for general initial values could be estab-

lished. Moreover, solutions display a wealth of complicated structures. Therefore, this course is confined

to scalar conservation laws, for which there is only one unknown real-valued function of space and time.

?! Review question(s) 8.1.49. (Conservation based transport problems)

1. Consider the Cauchy problem (8.1.4) for linear advection for d = 2 and the velocity field v(x) =[−x2

x1

]
. Write down the solution u = u(x, t) in terms of the initial data u0 = u0(x).

2. Show that your solution u = u(x, t) satisfies ∂u
∂t + divx(vu) = 0 in the sense of classical calculus,

if u0 is continuously differentiable.

3. In an x− t diagram sketch the trajectory of a car starting at t = 0, x = 0 and moving with constant

acceleration to right.

4. Which traffic flow conservation law arises, when (8.1.22) is replaced with vopt(∆x) = vmax cos(π
2

∆0
∆x).

8.2 Scalar conservation laws in 1D

8.2.1 Integral and differential form

What we have seen so far (except for Euler’s equations in Rem. 8.1.47)

Burgers equation:
∂u

∂t
+

∂

∂x

(
1
2u2
)
= 0 in Ω×]0, T[ , (8.1.46)
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traffic flow equation:
∂u

∂t
+

∂

∂x
(u(1− u)) = 0 in Ω×]0, T[ , (8.1.41)

linear advection:
∂

∂t
(ρu) + div(v(x, t)(ρu)) = f (x, t) in R

d×]0, T[ . (8.1.2)

Now, we learn about a class of Cauchy problems to which these three belong. First some notations and

terminology:

✦ Ω ⊂ R
d =̂ fixed (bounded/unbounded) spatial domain (Ω = R

d = Cauchy problem)

✦ computational domain: space-time cylinder Ω̃ := Ω×]0, T[, T > 0 final time

✦ U ⊂ Rm (m ∈ N) =̂ phase space (state space) for conserved quantitities ui (usually U = Rm)

➤ A vector ∈ U is often called a state.

Our focus below: scalar case m = 1

Conservation law for transient state distribution u : Ω̃ 7→ U: u = u(x, t), for 0 ≤ t ≤ T

d

dt

∫

V

u dx +
∫

∂V

f(u, x) · n dS(x) =
∫

V

s(u, x, t)dx ∀ “control volumes” V ⊂ Ω . (8.2.1)

change of amount inflow/outflow production term

Terminology: ✄ flux function f : U ×Ω 7→ R
d

✄ source function s : U ×Ω×]0, T[ 7→ R (here usually s = 0)

✦ For Burgers equation (8.1.46): f (u, x) = f (u) = 1
2 u2, s = 0,

✦ For traffic flow equation (8.1.41): f (u, x) = f (u) = u(1− u), s = 0,

✦ For linear advection (8.1.2): f(u, x) = v(x, t)u, s = f (x, t)
(Note: in this case the conserved quantity is actually ρu, which was again denoted by u)

☞ (8.2.1) has the same structure as the “conservation of energy law” (6.1.3) for heat conduction.✬

✫

✩

✪

Conservation of energy :

d

dt

∫

V
ρu dx +

∫

∂V
j · n dS =

∫

V
f dx for all “control volumes” V (6.1.3)

energy stored in V power flux through ∂V heat generation in V
In this case the heat flux was given by

Fourier’s law j(x) = −κ(x) grad u(x) , x ∈ Ω , (2.6.5)

or its extended version (7.1.5). In Fourier’s law the flux is a linear function of derivatives of u.

Conversely, for the flux function f : U ×Ω 7→ R
d in (8.2.1) we assume

f depends only on local state u, not on derivatives of u: f (u, x) = f (u(x), x).
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On the other hand we go far beyond Fourier’s law, since

f will, in general, be a non-linear function of u!

Remark 8.2.2 (Diffusive flux)

Taking into account the relationship with heat “diffusion”, a flux function of the form of Fourier’s law (2.6.5)

f(u) = −κ(x) grad u ,

is called a diffusive flux.

Now, integrate (8.2.1) over time period [t0, t1] ⊂ [0, T] (space-time box, see Fig. 338) and use the funda-

mental theorem of calculus in the time direction:

Space-time integral form of (8.2.1), cf. (8.1.44),

∫

V

u(x, t1)dx−
∫

V

u(x, t0)dx +

t1∫

t0

∫

∂V

f(u, x) · n dS(x)dt =

t1∫

t0

∫

V

s(u, x, t)dxdt (8.2.3)

for all V ⊂ Ω, 0 < t0 < t1 < T, n =̂ exterior unit normal at ∂V

[Gauss theorem Thm. 2.5.7] (local) differential form of (8.2.1):

∂

∂t
u + divxf(u, x) = s(u, x, t) in Ω̃ . (8.2.4)

div acting on spatial variable x only

+ initial condition u(x, 0) = u0(x), x ∈ Ω

Special case d = 1 ↔ (8.2.4) = one-dimensional scalar conservation law for “density” u : Ω̃ 7→ R

∂u

∂t
(x, t) +

∂

∂x
( f (u(x, t), x)) = s(u(x, t), x, t) in ]α, β[×]0, T[, α, β ∈ R ∪ {±∞} . (8.2.5)

Remark 8.2.6 (Boundary values for conservation laws)

Suitable boundary values on ∂Ω×]0, T[ ? → usually tricky question (highly f-dependent)

Reason: remember discussion in Rem. 8.1.13, meaningful boundary conditions hinge on knowledge of

local (in space and time) transport direction, which, in a non-linear conservation law, will usually depend

on the unknown solution u = u(x, t).

This obviously compounds difficulties ➣ only Cauchy problems considered in this chapter.
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8.2.2 Characteristics

In this section we will come across a surprising ostensible solution formula for non-linear scalar conser-

vation laws in one spatial dimension. Yet, at second glance, we will see that this formula has problem.

Its breakdown will teach us that discontinuous solutions are meaningful and very common in the case of

conservation laws.

We consider Cauchy problem (Ω = R) for one-dimensional scalar conservation law (8.2.5):

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ ,

u(x, 0) = u0(x) in R .
(8.2.7)

by chain rule: (8.2.7) ⇔ ∂u

∂t
+ f ′(u)

∂u

∂x
= 0 ,

l
relate with linear advection (8.1.10)

∂u

∂t
+ v

∂u

∂x
= 0 .

➣ The derivative f ′(u) plays the role of a u-dependent velocity of transport.

If this dependence was not there, the formula (8.1.11) would give us the solution. Now we will see how

this formula can be generalized.

Assumption 8.2.8. Monotonicity of f ′

The flux function f : R 7→ R is smooth ( f ∈ C2), and convex or concave [53, Def. 5.5.2].

Recall [53, Thm. 5.5.2]: f convex ⇒ derivative f ′ increasing

f concave ⇒ derivative f ′ decreasing

flux function for Burgers’ equation (8.1.46)

Fig. 340
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

 u

 (
de

riv
at

iv
e 

of
) 

flu
x 

fu
nc

tio
n

Flux function for Burgers equation, f(u) = 1/2u
2

 

 

f(u)

f‘(u)

f convex

flux function for traffic flow equation (8.1.41)

Fig. 341
−0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 u

 (
de

riv
at

iv
e 

of
) 

flu
x 

fu
nc

tio
n

Flux function for traffic flow equation, f(u) = u(1−u)

 

 

f(u)

f‘(u)

f concave

Burgers’ equation (8.1.46) and the traffic flow equation (8.1.41) will serve as main examples for scalar

conservation laws in one spatial dimension. The opposite curvatures of their flux functions will be reflected

by a “mirror symmetric” behavior of their solutions in many cases. Below most examples will be discussed

for both model problems in order to elucidate these differences, but the reader may focus on only one

model problem.
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Definition 8.2.9. Characteristic curve for one-dimensional scalar conservation law

A curve Γ := (γ(τ), τ) : [0, T] 7→ R×]0, T[ in the (x, t)-plane is a characteristic curve for the

conservation law (8.2.7), if

d

dτ
γ(τ) = f ′(u(γ(τ), τ)) , 0 ≤ τ ≤ T , (8.2.10)

where u is a continuously differentiable solution of (8.2.7).

Fig. 342 x

t

δx

δt

γ

← slow

fast→
✁ curves in an x− t-diagram, described by a func-

tion x = γ(t)
↔ movement of a point on the real axis.

✁ x− t-diagram

d

dτ
γ(τ) = speed of interface γ.

Example 8.2.11 (Characteristics for advection)

Constant linear advection (8.1.10): f (u) = vu

➸ characteristics γ(τ) = vτ + c, c ∈ R.

✄

solution (8.1.11) u(x, t) = u0(x− vt)

meaningful for any u0 ! (cf. Sect. 7.3.2)

Fig. 343

x

t

1

v

Ex. 8.2.11 reveals a close relationship between streamlines (→ Section 7.1.1) and characteristic curves.

That the latter are a true generalization of the former is also reflected by the following simple observation,

which generalizes the considerations in Section 7.3.2, (7.3.9).

Lemma 8.2.12. Classical solutions and characteristic curves

Smooth solutions of (8.2.7) are constant along characteristic curves.

Proof. Apply chain rule twice, cf. (7.3.9), and use the defining equation (8.2.10) for a characteristic

curve:

d

dτ
u(γ(τ), τ)

chain rule
=

∂u

∂x
(γ(τ), τ)

d

dτ
γ(τ) +

∂u

∂t
(γ(τ), τ)

(8.2.10)
=

∂u

∂x
(γ(τ), τ) · f ′(u(γ(τ), τ)) +

∂u

∂t
(γ(τ), τ)

chain rule
=

( ∂

∂x
f (u)

)
(γ(τ), τ) +

∂u

∂t
(γ(τ), τ) = 0 .
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✎ notation: f ′ =̂ derivative of flux function f : U ⊂ R 7→ R

So, u is constant on a characteristic curve.

➣ f ′(u) is constant on a characteristic curve.

(8.2.10) ⇒ slope of characteristic curve is constant!

Characteristic curve through (x0, 0) is a straight line (x0 + f ′(u0(x0))τ, τ), 0 ≤ τ ≤ T !

!? implicit solution formula for (8.2.7) ( f ′ monotone !):

u(x, t) = u0(x− f ′(u(x, t))t) . (8.2.13)

This is a non-linear equation for u(x, t).

(8.2.14) Breakdown of characteristic solution formula

The key problem of formula (8.2.13) is that it may have multiple solutions:

Fig. 344
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For Burger’s equation (8.1.46):

( f (u) = 1
2 u2 smooth and strictly convex)

✄ f ′(u) = u (increasing)

✁ if u0 smooth and decreasing.

➤ characteristic curves intersect !

➤ solution formula (8.2.13) becomes in-

valid

Fig. 345
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t < 1.3: solution by (8.2.13)
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Fig. 347
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For traffic flow equation (8.1.41):

( f (u) = u(1− u) smooth and strictly concave)

✄ f ′(u) = 1− 2u (decreasing)

✁ if u0 smooth and increasing.

➤ characteristic curves intersect !

➤ solution formula (8.2.13) becomes in-

valid

Fig. 348
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Fig. 349
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breakdown of classical solutions & Ex. 8.2.11 ➥ new concept of solution of (8.2.7)

Remark 8.2.15 (Meaning of characteristics)

Concerning the interpretation of characteristics in the case of the traffic flow model (??) with f (u) =
u(1− u) we find

Equation for characteristics γ̇(t) = −2u(γ(t), t) + 1 ,

Equation for car trajectories ẋ(t) = 1− u(x(t), 1).

Hence, characteristics do not give the paths of cars; cars always drive to the right, while characteristics

may be slanted to the left!

Yet, Lemma 8.2.12 tells us that for a smooth solution of a non-linear scalar conservation law, the charac-

teristic running through (x∗, t∗) ∈ R×]0, T[ gives the locus of space-time points (x, t) ∈ R×]0, T[, on

which the solution value u(x∗, t∗) depends (for t < t∗) or on which it will have an influence (for t > t∗).

For a scalar conservation law information “flows” along characteristic curves.
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Example 8.2.16 (Traffic flow: Evolution of smooth initial density)

For the traffic flow model we should always expect a unique car density for all times. Thus, in order to see

the consequences of the breakdown of the solution formula, we return to the particle model for single lane

traffic flow from Section 8.1.2.1. For a large number of cars it should give us a hint how the density will be

affected by the intersection of characteristics.

We solve the particle model, that is the evolution according to ODE (8.1.21), (8.1.22), implemented in

Code 8.1.27, for N = 3000 cars.

The initial car positions derived from a smooth car density u0

xi(0) = Φ−1

(
i− 1

N − 1

)
, i = 1, . . . , N , Φ(ξ) =

∫ ξ

0
u0(x)dx , u0(x) := 2 sin2(πx) .
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After some time a discontinuity in the density of cars crops up (“breaking wave”, see Figure 349). This

suggests that the emergence of discontinuities despite smooth initial data is an intrinsic feature of the

traffic flow model, which reflects “physical reality”.

8.2.3 Weak solutions

Of course, discontinuous solutions of (8.2.7) cannot be solutions in he sense of classical calculus. Yet, the

fact that physically meaningful solutions fail to meet the smoothness requirements for classical solutions is

familiar to us: we saw this already for the elastic string model, where we had to admit solutions with a kink

in Ex. 1.3.37. This forced us to develop weak concepts of solutions. For the elastic string models these

were solutions of the associated variational equation. In the case of conservation laws a similar concept

of weak solutions will turn out to capture all physically meaningful solutions.

The integral form of a conservation law that we have already seen in (8.2.3) points the way.
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“Space-time Gaussian theorem”

∂u

∂t
+

∂

∂x
f (u) = 0 (8.2.17)

m

div(x,t)

[
f (u)

u

]
= 0 in Ω̃ . (8.2.18)

∀ “space-time control volumes” Ṽ ⊂ Ω̃:

∫

∂Ṽ

[
f (u(x̃))

u(x̃)

]
·
[

nx(x̃)
nt(x̃)

]
dS(x̃) = 0 ,

ñ := (nx , nt)T =̂ space-time unit normal

Ṽ

ñ

x

t

(8.2.18) for space-time rectangle Ṽ =]x0, x1[×]t0, t1[ ➤ integral form of (8.2.17), cf. (8.2.3):

x1∫

x0

u(x, t1)dx−
x1∫

x0

u(x, t0)dx =

t1∫

t0

f (u(x0 , t))dt−
t1∫

t0

f (u(x1 , t))dt . (8.2.19)

Still, (8.2.19) encounters problems, if a discontinuity of u coincides with an edge of the space-time

rectangle.

The idea is similar to that behind the derivation of the weak form for 2nd-order

elliptic BVPs in Section 2.9. For the Cauchy problem

I: test the conservation law PDE with a smooth function,

II: integrate by parts one in space & time,

III: take into account the initial conditions.

STEP I: Test (8.2.18) with compactly supported smooth function Φ : Ω̃ 7→ R, Φ(·, T) = 0, and

integrate over space-time cylinder Ω̃ = R× [0, T]:

(8.2.18)

∫

Ω̃

div(x,t)

[
f (u)

u

]
Φ(x, t)dx dt = 0 .

STEP II: Perform integration by parts using Green’s first formula Thm. 2.5.9 on Ω̃:

∫

Ω̃

div(x,t)

[
f (u)

u

]
Φ(x, t)dx dt = 0

Thm. 2.5.9⇒
∫

Ω̃

[
f (u)

u

]
· grad(x,t) Φ dx dt +

∞∫

−∞

u(x, 0)Φ(x, 0)dx = 0 ,

because ∂Ω̃ = R × {0} ∪R× {T} with “normals” n = ( 0
−1) (t = 0 boundary) and n = (0

1) (t = T
boundary), which has to be taken into account in the boundary term in Green’s formula. The “t = T
boundary part” does not enter as Φ(·, T) = 0.
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Note that u(x, 0) is fixed by the initial condition: u(x, 0) = u0(x).

Definition 8.2.20. Weak solution of Cauchy problem for scalar conservation law

For u0 ∈ L∞(R), u : R×]0, T[ 7→ R is a weak solution of the Cauchy problem (8.2.7), if

u ∈ L∞(R×]0, T[) ∧
∞∫

−∞

T∫

0

{
u

∂Φ

∂t
+ f (u)

∂Φ

∂x

}
dtdx +

∞∫

−∞

u0(x)Φ(x, 0)dx = 0 ,

for all Φ ∈ C∞
0 (R× [0, T[), Φ(·, T) = 0.

Remark 8.2.21 (Properties of weak solutions)

By reversing integration by parts, it is easy to see that☛
✡

✟
✠u weak solution of (8.2.7) & u ∈ C1 ⇐⇒ u classical solution of (8.2.7).

Arguments from mathematical integration theory confirm

u ∈ L∞
loc(R×]0, T[) weak solution of (8.2.7) ⇒ u satisfies integral form (8.2.19)

for “almost all” x0 < x1, 0 < t0 < t1 < T.

8.2.4 Jump conditions

Now we want to explore the discontinuities compatible with our concept of a weak solution from Def. 8.2.20.

For piecewise smooth divergence-free vectorfield j :
Ω ⊂ R2 we find by a “pillbox thought experiment”:

“div j = 0”

m
∫

∂V

j · n dS = 0 ∀ control volumes V ⊂ Ω

Necessary condition:✎
✍

☞
✌

Continuity of normal components

across discontinuities

discontinuous divergence-free vectorfield ✄

Fig. 350

To see this, consider a slender tiny rectangle aligned with a line of discontinuity of j. In the absence of

normal continuity a net flux through its boundary will result, provided that the rectangle is small enough

(“pillbox argument”).
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Apply this insight to vectorfield on space-time domain Ω̃ = R×]0, T[:

∂u

∂t
+

∂

∂x
f (u) = 0 ⇔ div(x,t)

[
f (u)

u

]

︸ ︷︷ ︸
=:j

= 0 in Ω̃ . (8.2.18)

Normal at C1-curve Γ := τ 7→ (γ(τ), τ) in (γ(τ), τ)

ñ =
1√

1 + |ṡ|2
[

1
−ṡ

]
, ṡ :=

dγ

dτ
(τ) “speed of curve” .

To see this, recall that the normal is orthogonal to the tangent vector ( ṡ
1) and that in 2D the direction

orthogonal to (x1
x2
) is given by (−x2

x1
).

“normal continuity” of

piecewise smooth vectorfield ( f (u), u)T

m
[

1

− dγ
dτ

]
·
[
J f (u)K

JuK

]
= 0 , (8.2.22)

where J·K =̂ jump across Γ (“from left to right”, e.g.

JuK = ul − ur, where subscripts ’l’ and ’l’ designates

values in Ω̃l , Ω̃r).
Fig. 351

Γ := (γ(τ), τ)

ñ ‖
[

1
−ṡ

]

Ω̃l

Ω̃r

x

t

Terminology: (8.2.22) = Rankine-Hugoniot (jump) condition, shorthand notation:

ṡ(ul − ur) = fl − fr , ṡ :=
dγ

dτ
“propagation speed of discontinuity” (8.2.23)

(8.2.24) Discontinuity connecting constant states

The simplest situtation compliant with Rankine-Hugoniot jump condition: constant states to the left and

right of the curve of discontinuity (8.2.22):

Fig. 352 x

t

ul

ur

ṡ

1

0

u(x, t) =

{
ul ∈ R , for x < ṡt ,

ur ∈ R , for x < ṡt ,
(8.2.25)

with constant speed ṡ of discontinuity, according to

(8.2.23) given by (for ul 6= ur)

ṡ =
f (ul)− f (ur)

ul − ur
.
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8.2.5 Riemann problem

The situation of locally constant states discussed in § 8.2.24 is particularly easy.

Consider: Cauchy-problem (8.2.7) for piecewise constant initial data u0.

Definition 8.2.26. Riemann problem

u0(x) =

{
ul ∈ R , if x < 0 ,

ur ∈ R , if x > 0 .
=̂ Riemann problem for (8.2.7)

Setting, cf. Section 8.2.2: flux function f : R 7→ R smooth & convex

f ′ non-decreasing ➤ pattern of characteristic curves for Riemann problem:
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Setting, cf. Section 8.2.2: flux function f : R 7→ R smooth & concave

f ′ non-increasing ➤ pattern of characteristic curves for Riemann problem:

Fig. 355
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Definition 8.2.27. Shock

If Γ is a smooth curve in the (x, t)-plane and u a weak solution of (8.2.7), a discontinuity of u across

Γ is called a shock.

By § 8.2.24 ➤ the shock speed s is given by the Rankine-Hugoniot jump conditions:

(x0, t0) ∈ Γ: ṡ =
f (ul)− f (ur)

ul − ur
,

ul := limǫ→0 u(x0 − ǫ, t0) ,
ur := limǫ→0 u(x0 + ǫ, t0) .

(8.2.28)

Lemma 8.2.29. Shock solution of Riemann problem

For any two states ul , ul ∈ R the piecewise constant function

u(x, t) :=

{
ul for x < ṡt ,

ur for x > ṡt ,
ṡ :=

f (ul)− f (ur)

ul − ur
, x ∈ R, 0 < t < T ,

is weak solution (→ Def. 8.2.20) of the related Riemann problem (→ Section 8.2.5) for the 1D

scalar conservation law (8.2.7).

Now we study the dependence of shock solutions on the initial states ul and ur. We take a close look at

the connection between characteristics and shocks. In the following x− t diagrams, shocks are marked

with —, characteristics with — and u0 is indicated by —.
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Example 8.2.30 (Actual shock patterns in traffic flow)

In order to tell the physical relevance of shock solutions for the car density we try to obtain them approxi-

mately from the particle model of traffic flow using many cars.

We conduct a simulation of microscopic particle model of traffic flow as in Exp. 8.1.31, with initial car

distribution

x0 = [(0:0.01:4),(4.005:0.005:10)] (MATLAB syntax),

∆0 = 0.002, normalized car density by averaging.

Situation: column of fast going cars approaches a zone of dense traffic.
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Observation: abrupt changes of car density (= shocks) present in initial conditions persist throughout the

evolution. Sites of discontinuity travel with constant speed close to the speed predicted by

the jump conditions (8.2.23).

Example 8.2.31 (Fan patterns in traffic flow)

Simulation of microscopic particle model of traffic flow as in Ex. 8.1.31, initial car distribution
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x0 = [(0:0.002:4),(4.05:0.05:10)] (MATLAB syntax),

∆0 = 0.002, normalized car density by averaging.

Situation: front end of a traffic jam
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Observation: abrupt changes of car density present in initial conditions disappear and are replaced with a

zone of linearly decreasing car density, whose edges move with constant speed in opposite

direction.

No shock solution!

Example 8.2.32 (Vanishing viscosity for Burgers equation)

Recall the modeling approach explained in Sect. 8.1.3. There is no such material as an “invsicid” fluid

in nature, because in any physical system there will be a tiny amount of friction. This leads us to the

very general understanding that conservation laws can usually be regarded as limit problems ǫ = 0 for

singularly perturbed transport-diffusion problems with an “ǫ-amount” of diffusion.

In 1D, for any ǫ > 0 these transport-diffusion problems will possess a unique smooth solution. Studying

its behavior for ǫ→ 0 will tell us, what are “physically meaningful” solutions for the conservation law. This

consideration is called the vanishing viscosity method to define solutions for conservation laws.

Here we pursue this idea for Burgers equation, see Sect. 8.1.3.

Viscous Burgers equation:
∂u

∂t
+

∂

∂x

(
1
2u2
)
=

dissipative (viscous) term

ǫ
∂2u

∂x2
. (8.2.33)

Travelling wave solution of Riemann problem for (8.2.33) via Cole-Hopf transform → [23, Sect. 4.4.1]

uǫ(x, t) = w(x− ṡt) , w(ξ) = ur +
1
2(ul − ur)

(
1− tanh

(
ξ(ul − ur)

4ǫ

))
, ṡ = 1

2(ul + ur) .
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uǫ(x, t) = classical solution of (8.2.33) for all t > 0,

x ∈ R (only for ul > ur !).

✁ ul > ur, t = 0.5

emerging shock for ǫ→ 0

uǫ → u from Lemma 8.2.29 in L∞(R).

Highly accurate numerical solution of

Riemann problem for (8.2.33)

ul < ur uǫ(x, 0.5) ✄

no shock as ǫ→ 0 !

uǫ → a piecewise linear function!
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(8.2.34) Similarity solution

Let us try to derive a (weak) solution of the homogeneous scalar conservation law (8.2.17) with the struc-

ture observed in Ex. 8.2.31 and Ex. 8.2.32.

Idea: conservation law (8.2.17) homogeneous in spatial/temporal derivatives:

∂u

∂t
+

∂

∂x
f (u) = 0 in R×R

+ ⇒ ∂uλ

∂t
+

∂

∂x
f (uλ) = 0 in R×R

+ ,

where uλ(x, t) := u(λx, λt), λ > 0.

In addition, for the Riemann problem (→ Def. 8.2.5) the initial condition also satisfies u0(λx) = u0(x).

This suggests that we look for solutions of the Riemann problem that are constant on all straight lines in

the x− t-plane that cross (0, 0)T.

try similarity solution: u(x, t) = ψ(x/t)

← insert in ∂u
∂t +

∂
∂x f (u) = 0

f ′(ψ(x/t))ψ′(x/t) = (x/t)ψ′(x/t) ∀x ∈ R, 0 < t < T .

ψ′ ≡ 0 ∨ f ′(ψ(w)) = w

f ′ strictly monotone !

⇔ ψ(w) = ( f ′)−1(w) .
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We can apply the formula for a similarity solution to the situation of a Riemann problem, because the initial

data a compatible with it. Assuming monotonicity of the derivative of the (smooth) flux function f , we

obtain he following similarity solutions:

Fig. 371 x

t

ṡ = f ′(ul) ṡ = f ′(ur)

f (u) strictly convex, ul < ur

Fig. 372 x

t

ṡ = f ′(ul) ṡ = f ′(ur)

f (u) strictly concave, ur < ul

Lemma 8.2.35. Rarefaction solution of Riemann problem

If f ∈ C2(R) is strictly

{
convex and ul < ur,

concave and ur < ul ,
then

u(x, t) :=





ul for x < min{ f ′(ul), f ′(ur)} · t ,

g( x
t ) for min{ f ′(ul), f ′(ur)} < x

t < max{ f ′(ul), f ′(ur)} ,

ur for x > max{ f ′(ul), f ′(ur)} · t ,

g := ( f ′)−1, is a weak solution of the Riemann problem (→ Def. 8.2.5).

Proof. We show that the rarefaction solution is a weak solution according to Def. 8.2.20 ➣ for Φ ∈
C∞

0 (R× ]0, T[)

T∫

0





f ′(ul)t∫

−∞

ul
∂Φ

∂t
+ f (ul)

∂Φ

∂x
dx +

f ′(urt)∫

f ′(ul)t

g( x
t )

∂Φ

∂t
+ f (g( x

t ))
∂Φ

∂x
dx +

∞∫

f (ur)t

ur
∂Φ

∂t
+ F(ur)

∂Φ

∂x
dx





dt

=

T∫

0

f ′(ur)t∫

f ′(ul)t

g′( x
t )

x
t2 Φ− f ′(g( x

t ))
1
t g′( x

t )Φ dx dt = 0 ,

because ( f ′ ◦ g)(x/t) = x/t and by fundamental theorem of calculus. ✷

Terminology: solution of Lemma 8.2.35 = rarefaction wave: continuous solution !
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Burger flux function f (u) = 1
2 u2, ul < ur: rarefaction wave solutions
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Traffic flow flux function f (u) = 1
2u(1− u), ul > ur: rarefaction wave solutions

8.2.6 Entropy condition

In Section 8.2.5 we discovered that weak solutions of a scalar conservation law need not be unique. If

f ′ is decreasing as in the traffic flow equation (8.1.41) and ul > ur both a shock and a rarefaction wave

provide valid weak solutions.

Fig. 377
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Riemann solution: rarefaction wave

How to select “physically meaningful” = admissible solution ?

➊ Comparison with results from microscopic models, see Ex. 8.2.31 for the case of traffic flow.
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➋ Vanishing viscosity technique (→ Ex. 8.2.32 for Burgers’ equation): add an “ǫ-amount” of diffusion

(“friction”) and study solution for ǫ→ 0.

However, desirable: simple selection criteria (entropy conditions)

Definition 8.2.36. Lax entropy condition

u =̂ weak solution of (8.2.7), piecewise classical solution in a neigborhood of C2-curve Γ :=
(γ(τ), τ), 0 ≤ τ ≤ T, discontinuous across Γ.

u satisfies the Lax entropy
condition in (x0, t0) ∈ Γ

:⇔ f ′(ul) > ṡ :=
f (ul)− f (ur)

ul − ur
> f ′(ur) .

m✞
✝

☎
✆Characteristic curves must not emanate from shock ↔ no “generation of information”

The expansion shocks from Fig. 360–??, Fig. 366-368 are not allowed.

Parlance: shock satisfying Lax entropy condition = physical shock

Note: f ′
increasing

decreasing
➤ by Def 8.2.36 necessary for physical shock

ul > ur

ul < ur

Physically meaningful weak solution of conservation law = entropy solution

For scalar conservation laws with locally Lipschitz-continuous flux function f [23, Sect. 11.4.3]:

Existence & uniqueness of entropy solutions

Remark 8.2.37 (General entropy solution for 1D scalar Riemann problem → [41])

In fact there is a general formula for the entropy solution of the Riemann problem (→ Section 8.2.5) for

(8.2.7) with arbitrary f ∈ C1(R):

u(x, t) = ψ(x/t) , ψ(ξ) :=





argmin
ul≤u≤ur

( f (u) − ξu) , if ul < ur ,

argmax
ur≤u≤ul

( f (u) − ξu) , if ul ≥ ur .
(8.2.38)

Example 8.2.39 (Entropy solution of Burgers equation)

An analytic solution is available for Burgers eqution (8.1.46) with intial data, see [23, Sect. 3.4, Ex. 3]

u0(x) =

{
0 , if x < 0 or x > 1 ,

1 , if 0 ≤ x ≤ 1 .
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[
f (u(x, t))
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]

for entropy solution u = u(x, t) ✄

Observe the normal continuity across the shock: the

vector field is tangential to the shock curve.
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Example 8.2.40 (Entropy solution of Traffic Flow equation)

An analytic solution is also available for the traffic flow eqution (8.1.41) with intial data, see [23, Sect. 3.4,

Ex. 3]

u0(x) =

{
0.5 , if x < 0 or x > 1 ,

1 , if 0 ≤ x ≤ 1 .
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for entropy solution u = u(x, t) ✄.

Observe the normal continuity across the shock!
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8.2.7 Properties of entropy solutions

Existence and uniqueness of entropy solutions for 1D scalar conservation laws is guaranteed by theory.

Setting: u ∈ L∞(R×]0, T[) weak (→ Def. 8.2.20) entropy solution of Cauchy problem

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R . (8.2.7)

with flux function f ∈ C1(R) (not necessarily convex/concave).

Notation: ū ∈ L∞(R×]0, T[) =̂ entropy solution w.r.t. initial data ū0 ∈ L∞(R).

Theorem 8.2.41. Comparison principle for scalar conservation laws

If u0 ≤ ū0 a.e. on R ⇒ u ≤ ū a.e. on R×]0, T[

With obvious consequences, because we get constant solutions for constant initial values:

u0(x) ∈ [α, β] on R ⇒ u(x, t) ∈ [α, β] on R×]0, T[

Note: this guarantees the normalization condition 0 ≤ u(x, t) ≤ 1 for the traffic flow model, if it is satisfied

for the initial data u0.
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L∞-stability (➣ no blow-up can occur!)

∀0 ≤ t ≤ T: ‖u(·, t)‖L∞(R) ≤ ‖u0‖L∞(R) . (8.2.42)

Theorem 8.2.43. L1-contractivity of evolution for scalar conservation law

∀t ∈]0, T[, R > 0:
∫

|x|<R

|u(x, t)|dx ≤
∫

|x|<R+ṡt

|u0(x)|dx ,

with maximal speed of propagation

ṡ := max{| f ′(ξ)|: inf
x∈R

u0(x) ≤ ξ ≤ sup
x∈R

u0(x)} . (8.2.44)

Thm. 8.2.43 ➤ finite speed of propagation in conservation law, bounded by ṡ from (8.2.44):

As in the case of the wave equation→ Sect. 6.2.2:

Fig. 385 x

ṡ

1

t

(x̄, t̄)

D−(x̄, t̄)

✁ maximal domain of dependence of (x̄, t̄) ∈ Ω̃

D−(x̄, t̄) :=
{
(x, t) ∈ R×R

+ : x̄− ṡt ≤ x ≤ x̄ + ṡt
}

.

(Characteristics through a point outside D−(x̄, t̄) can

never hit (x̄, t̄) ∈ Ω̃.)

maximal domain of influence of I0 ⊂ R ✄

For I0 = [a, b]

D+([a, b]) :=
{
(x, t) ∈ R×R

+ : a− ṡt ≤ x ≤ b + ṡt
}

.

(Characteristics starting in I0 will always remain in

D+(I0).)

Fig. 386

1

x

t

I0

D+(I0)

ṡ

Analoguous to Thm. 6.2.25:
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Corollary 8.2.45. Domain of dependence for scalar conservation law → [19, Cor. 6.2.2]

The value of the entropy solution at (x̄, t̄) ∈ Ω̃ depends only on the restriction of the initial data to

{x ∈ R: |x− x̄| < ṡt̄}, where ṡ is defined in (8.2.44).

Another strand of theoretical results asserts that the solution of a 1D scalar conservation law cannot

develop oscillations:☛
✡

✟
✠u solves (8.2.7) ➤ No. of local extrema (in space) of u(·, t) decreasing with time

?! Review question(s) 8.2.46. (Scalar conservation laws in 1D)

1. Write down the general form of a Cauchy problem for a 1D scalar conservation law (without source

terms).

2. For a scalar 1D conservation law with flux functions

(a) f (u) = u2,

(b) f (u) = sin(πu),

(c) f (u) = cos(πu)

and initial data u0(x) = 1 for −1 ≤ x ≤ 1, u0(x) = 0 elsewhere, sketch the family of characteristic

curves (→ Def. 8.2.9) in a x− t diagram.

3. Show that u(x, t) = u0(x− vt), u0 ∈ L∞(R), is a weak solution of the linear advection equation
∂u
∂t + v ∂u

∂x = 0.

4. What is the Lax entropy condition and why is it important?

5. For u0(x) = 0 for x < 0, u0(x) = 1 for x ≥ 0 give the formulas for the entropy solutions of the

Riemann problems for the scalar 1D conservation laws with flux functions

(a) f (u) = u4,

(b) f (u) = log(1 + u),

(c) f (u) = 1− eu,

(d) f (u) = 1
1+u .

6. Explain the notions of “domain of dependence” and “domain of influence” in connection with Cauchy

problems for 1D scalar conservation laws.

7. Which formula yields the maximal speed of propagation for a Cauchy problem for a 1D scalar con-

servation law?

8.3 Conservative finite volume discretization

Example 8.3.1 (Naive finite difference scheme)
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A popular way to discretize PDEs in a single space dimension is the finite difference approach, discussed

for second-order two-point boundary value problems in Section 1.5.4. The simple idea is to replace deriva-

tives by difference quotients anchored on a spatial grid, see § 1.5.142 and § 1.5.143.

Noe we present a warning example that pursuing this policy for conservation laws may yield a spurious

scheme. We consider the Cauchy problem for Burgers equation (8.1.46) rewritten using product rule:

∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) = 0 in R×]0, T[ .

↔ related to linear advection with velocity v(x, t) = u(x, t):

∂u

∂t
(x, t) + u(x, t) ∂u

∂x (x, t) = 0 in R×]0, T[ .

l l
∂u

∂t
(x, t) + v(x, t) ∂u

∂x (x, t) = 0 in R×]0, T[ .

If u0(x) ≥ 0, then, by Thm. 8.2.41, u(x, t) ≥ 0 for all 0 < t < T, that is, positive direction of transport

throughout.

Heeding the guideline from Section 7.3.1 we use an upwind discretization (backward differences) in space,

which amounts to approximating ∂u
∂x by means of a one-sided difference quotient.

On an (infinite) equidistant spatial grid with meshwidth h > 0, that is, xj := hj, j ∈ Z, we obtain a

semi-discrete problem for nodal values µj = µj(t) ≈ u(xj, t)

∂u

∂t
(x, t) + u(x, t) ∂u

∂x (x, t) = 0 in R×]0, T[ .

l l

µ̇j(t) + µj

µj − µj−1

h
= 0 , j ∈ Z , 0 < t < T .

(8.3.2)

Our numerical experiment tackles the Cauchy problem from Ex. 8.2.39, “box shaped” initial data u0,

h = 0.08, integration of (8.3.2) with adaptive explicit Runge-Kutta method ode45.
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Observation from numerical experiment: OK for rarefaction wave, but scheme cannot capture speed of

shock correctly !

To understand the behavior of the scheme, we consider the Riemann problem with u0(x) = 1 for x <
0− ǫ, and u0(x) = 0 for x > 0− ǫ, ǫ ≪ 1. Accordingly, we choose as initial value for the semidiscrete

evolution

µj(0) =

{
1 , if j < 0 ,

0 , if j ≥ 0 ,
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Then, it is easy to see that µ̇j = 0 for all j ∈ Z.

Entropy solution (for this u0) = travelling

shock (→ Lemma 8.2.29), speed ṡ = 1
2 > 0

✁✄

Numerical solution:

~µ(t) = ~µ0 for all t > 0 !

➤ 3-point FDM (8.3.2) “converges” to wrong solution !

In the next section we will learn an approach to the discretization of 1D conservation laws that has some

built-in safeguards against failures as confronted in the above example.

8.3.1 Semi-discrete conservation form

Objective: spatial semi-discretization of a Cauchy problem for a general scalar conservation law in one

spatial dimension:

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R . (8.2.7)

on an (infinite) equidistant spatial mesh with mesh width h > 0.

Remember: We have already seen spatial semi-discretization in the context of the method of lines, see

Section 6.1.4. In a sense, our treatment of conservation laws follows a method of lines approach.

M := {]xj−1, xj[: xj := jh, j ∈ Z} . (8.3.3)

mesh cells and dual cells ✄
Fig. 388 xjxj−1 xj+1 xj+2

The time-dependent unknowns of the semi-discrete scheme will be denoted by µj = µj(t), j ∈ Z. They

play a similar role as the time-dependent basis expansion coefficients occurring as components of the

vector~µ = ~µ(t) in the method of lines ODE Eq. (6.1.30).

We adopt a finite volume interpretation of the coefficients/unknowns µj(t), j ∈ Z):

µj ↔ conserved quantities in dual cells ]xj−1/2, xj+1/2[, midpoints xj−1/2 := 1
2(xj + xj−1):

µj(t) ≈
1

h

xj+1/2∫

xj−1/2

u(x, t)dx . (8.3.4)

Relate ~µ(t) :=
(
µj(t)

)
j∈Z
∈ R

Z ←→

a function !

uN(x, t) = ∑
j∈Z

µj(t) χ]xj−1/2,xj+1/2[
(x) . (8.3.5)

✎ notation: characteristic function χ]xj−1/2,xj+1/2[
(x) =

{
1 , if xj−1/2 < x ≤ xj+1/2 ,

0 elsewhere.

➥
(
µj(t)

)
j∈Z

←→ piecewise constant approximation uN(t) ≈ u(·, t)
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Note:

uN(t) is discontinuous at dual cell

boundaries xj+1/2!

Fig. 389

u

xj
xj−1/2 xj+1/2 xj+3/2

µj−1

µj+1

µj

µj+2

xj−1 xj+1 xj+2

By spatial integration over dual cells, which now play the role of the control volumes in (8.2.1), and applying

the fundamental theorem of calculus, we obtain

d

dt

xj+1/2∫

xj−1/2

u(x, t)dx + f (u(xj+1/2, t))− f (u(xj−1/2, t)) = 0 , j ∈ Z , (8.3.6)

(8.3.4) dµj

dt
(t) +

1

h

(
f (uN(xj+1/2, t))
︸ ︷︷ ︸

?

− f (uN(xj−1/2, t))
︸ ︷︷ ︸

?

)
= 0 , j ∈ Z . (8.3.7)

Problem: owing to the jumps of uN(t) we face the ambiguity of the values uN(xj+1/2, t), uN(xj−1/2, t).
(We encountered a similar situation it in the context of upwind quadrature in Section 7.2.2.1.)

Abstract “solution”:

Approximation f (uN(xj+1/2, t)) ≈ f j+1/2(t) := F(µj−ml+1(t), . . . , µj+mr
(t)) , j ∈ Z ,

with numerical flux function F : R
ml+mr 7→ R, ml, mr ∈ N0.

Note: If f = f (u), then the same numerical flux function is usually used for all dual cells!

When we plug this approximation into (8.3.7) we end up with the following (formally infinite) system of

ODEs:

Finite volume semi-discrete evolution for (8.2.7) in conservation form

dµj

dt
(t) = −1

h

(
F(µj−ml+1(t), . . . , µj+mr

(t))− F(µj−ml
(t), . . . , µj+mr−1(t))

)
, j ∈ Z . (8.3.9)

numerical flux (function) F : R
ml+mr 7→ R

Special case: 2-point numerical flux (ml = mr = 1): F = F(v, w)
(v =̂ left state, w =̂ right state)

(8.3.9)
dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t))− F(µj−1(t), µj(t))

)
, j ∈ Z . (8.3.10)

Assumption on numerical flux functions: F Lipschitz-continuous in each argument.
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MATLAB Code 8.3.11: Wrapper code for finite volume evolution with 2-point flux

1 f u n c t io n ufinal = consformevl(a,b,N,u0,T,F)

2 % finite volume discrete evolution in conservation form with 2-point
flux,

3 % see (8.3.10)

4 % Cauchy problem over time [0, T] restricted to finite interval [a, b],

5 % equidistant mesh with meshwidth N cells, meshwidth h := b−a/N.

6 % 2-point numerical flux function F = F(v, w) passed in handle F

7 h = (b-a)/N; x = a+0.5*h:h:b-0.5*h; % centers of dual cells

8 % vector ~µ0 of initial cell averages (column vector)

9 % approximated by means of composite midpoint rule (1.5.86).

10 mu0 = u0(x)’;

11 % right hand side function for MATLAB ode solvers

12 odefun = @(t,mu) (-1/h*fluxdiff(mu,F));

13 % Method of lines approach, c.f. Sect. 6.1.4: timestepping by

14 % MATLAB standard integrator (explicit Runge-Kutta method of order 5,
Def. 6.1.40)

15 options = odeset(’abstol’,1E-8,’reltol’,1E-6,’stats’,’on’);

16 [t,MU] = ode45(odefun,[0 T],mu0,options);

17 % 3D graphical output of u(x, t) over space-time plane

18 [X,T] = meshgrid(x,t);

19 f i g u r e; s u r f(X,T,MU/h); colormap(copper);

20 x l a b e l(’{\bf x}’,’fontsize’,14);

21 y l a b e l(’{\bf t}’,’fontsize’,14);

22 z l a b e l(’{\bf u}’,’fontsize’,14);

23 ufinal = MU(:,end);

24 end

25

26 % difference of numerical fluxes on right hand side of (8.3.10)

27 f u n c t io n fd = fluxdiff(mu,F)

28 n = l ength(mu); fd = zeros(n,1);

29 % constant continuation of data outside [a, b]

30 fd(1) = F(mu(1),mu(2)) - F(mu(1),mu(1));

31 f o r j=2:n-1

32 fd(j) = F(mu(j),mu(j+1)) - F(mu(j-1),mu(j)); % see (8.3.10)

33 end

34 fd(n) = F(mu(n),mu(n)) - F(mu(n-1),mu(n));

35 end

C++11 EIGEN code 8.3.12: Right hand side function for MOL-ODE (8.3.10) ➺ GITLAB

2 // arguments:

3 // (Finite) state vector µ of cell averages, see (8.3.4)

4 // Functor F : R×R 7→ R, 2-point numerical flux

5 //

6 // return value:

7 // Vector with differences of numerical fluxes, which provides the

8 // right hand side of (8.3.10)

9 template <typename FunctionF >

10 VectorXd f l u x d i f f ( const VectorXd& mu, FunctionF F ) {
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11 unsigned n = mu. s ize ( ) ; // length of state vector

12 VectorXd fd = VectorXd : : Zero ( n ) ; // return vector

13

14 // constant continuation of data for x ≤ a!

15 fd [ 0 ] = F (mu[ 0 ] ,mu [ 1 ] ) − F (mu[ 0 ] ,mu [ 0 ] ) ;

16 for ( unsigned j =1; j < n−1; ++ j ) {

17 fd [ j ] = F (mu[ j ] ,mu[ j +1 ] ) − F (mu[ j −1] ,mu[ j ] ) ; // see (8.3.10)

18 }

19 // constant continuation of data for x ≥ b!

20 fd [ n−1] = F (mu[ n−1] ,mu[ n−1]) − F (mu[ n−2] ,mu[ n−1]) ;

21 // Efficient thanks to return value optimization (RVO)

22 return fd ;

23 }

C++11 EIGEN code 8.3.13: Wrapper code for finite volume evolution with 2-point flux

➺ GITLAB

2 // arguments:

3 // Real numbers a, b, the boundaries of the interval,

4 // unsigned int N, the number of cells,

5 // Functor u0 : R 7→ R, initial value,

6 // Final time T > 0,

7 // Functor F = F(v, w) for 2-point numerical flux function.

8 //

9 // return value:

10 // Vector with cell values at final time T

11 //

12 // Finite volume discrete evolution in conservation form with 2-point

13 // flux, see (8.3.10); Cauchy problem over time [0, T]

14 template <typename FunctionU0 , typename FunctionF >

15 VectorXd consformevl ( double a , double b , unsigned N,

16 FunctionU0 u0 , double T , FunctionF F) {

17 double h = ( b−a ) /N; // meshwidth

18 // centers of dual cells

19 VectorXd x = VectorXd : : LinSpaced (N, a+0.5∗h , b−0.5∗h ) ;

20

21 // vector ~µ0 of initial cell averages

22 // obtained by point sampling of u0 in grid points

23 VectorXd mu0 = x . unaryExpr ( u0 ) ;

24

25 // right hand side function for ode solver

26 auto odefun = [& ] ( const VectorXd& mu, VectorXd& dmdt , double t ) {

27 dmdt = −1./h∗ f lu x d i f f <FunctionF >(mu, F ) ; } ;

28

29 // Method of lines approach, c.f. Sect. 6.1.4: timestepping by

30 // Boost integrator (adaptive explicit Runge-Kutta method

31 // of order 5, see also Def. 6.1.40)

32 double abs to l = 1E−8, r e l t o l = 1E−6; // integration control
parameters

33 VectorXd t ; // Returns temporal grid
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34 Matr ixXd MU; // Returns state matrix

35 s td : : t i e ( t , MU) = NPDE : : ode45 ( odefun , 0 , T , mu0, abs to l , r e l t o l ) ; //

36 // Final state vector is the rightmost column of MU.

37 return MU. co l ( t . s ize ( )−1) ;

38 }

Note that in Code 8.3.13 we rely on high-order explicit Runge-Kutta timestepping in order to solve (8.3.9)

approximately.

8.3.2 Discrete conservation property

We consider a Cauchy problem for a scalar conservation law

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R . (8.2.7)

and its conservative finite volume discretization on an (infinite) equidistant spatial mesh with mesh width

h > 0:

dµj

dt
(t) = −1

h

(
F(µj−ml+1(t), . . . , µj+mr(t))− F(µj−ml

(t), . . . , µj+mr−1(t))
)

, j ∈ Z . (8.3.9)

We abbreviate f j+1/2(t) := F(µj−ml+1(t), . . . , µj+mr
(t)).

(8.3.14) Preservation of constant data

An evident first property of finite volume methods in conservation form:

µj(0) = µ0 ∈ R ∀j ∈ Z ⇒ µj(t) = µ0 ∀j ∈ Z , ∀t > 0 . (8.3.15)

that is, constant solutions are preserved by the method. Such methods are called well-balanced discretiza-

tions.

(8.3.16) Discrete flux balance

For conservation laws we found the fundamental local balance relation, see (6.1.3):

d

dt

∫ b

a
u(x, t)dx = −( f (u(b, t)) − f (u(a, t))) . (8.3.17)

A “telescopic sum argument” combined with the interpretation (8.3.5) shows that the conservation form

(8.3.9) of the semi-discrete conservation law implies

d

dt

xm+1/2∫

xk−1/2

uN(x, t)dx = h
m

∑
l=k

dµj

dt
(t) = −

(
fm+1/2(t)− fk−1/2(t)

)
∀k, m ∈ Z .

m
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d

dt

xm+1/2∫

xk−1/2

u(x, t)dx = −( f (u(xm+1/2, t))− f (u(xk−1/2, t))
)

,

With respect to unions of dual cells and numerical fluxes, the semidiscrete solution uN(t) satisfies

a balance law of the same structure as a (weak) solution of (8.2.7).

Of course, the numerical flux function F has to fit the flux function f of the conservation law; the following

is a minimal requirement for a viable numerical flux function.

Definition 8.3.18. Consistent numerical flux function

A numerical flux function F : Rml+mr 7→ R is consistent with the flux function f : R 7→ R, if

F(u, . . . , u) = f (u) ∀u ∈ R .

(8.3.19) Discrete shock speed

Focus: solution of Riemann problem (→ Def. 8.2.5) by finite volume method in conservation form (8.3.9):

Initial data “constant at ±∞”: µ−j(0) = ul , µj(0) = ur for large j.

Consistency of the numerical flux function implies for large m≫ 1

d

dt

xm+1/2∫

−x−m−1/2

uN(x, t)dx = −(F(ur , . . . , ur)− F(ul , . . . , ul)
)
= −( f (ur)− f (ul)) . (8.3.20)

Exactly the same balance law holds for any weak solutions of the Riemann problem!

Situation : ur > ul ➣ shock in traffic flow, discrete solution uN(t) increasing & supposed to approx-

imate a shock; we cannot expect that uN will also feature a sharp discontinuity, rather we

may see a “smeared” transition from ul to ur.

Write x∗(t) ∈ R for the approximate location of the

shock at time t, defined as

x∗(t)∫

−∞

uN(x, t)− ul dx =

∞∫

x∗(t)

ur − uN(x, t)dx

equality of yellow areas ✄

Fig. 390

ur

ul
x

u

x∗
∫ xm+1/2

x−m−1/2

uN(x, t)dx = (x∗(t) + x−m−1/2)ul + (xm+1/2 − x∗(t))ur .
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(8.3.20)
=⇒ dx∗

dt
(t) =

1

ul − ur
∑
j∈Z

dµj

dt
(t) =

f (ul)− f (ur)

ul − ur

(8.2.23)
= ṡ .

Conservation form with consistent numerical flux yields correct “discrete shock speed”

(immune to spurious shock speeds as observed in Ex. 8.3.1)

8.3.3 Numerical flux functions

In this section concrete choices of consistent (→ Def. 8.3.18) numerical flux functions will be presented

and discussed. We restrict ourselves to 2-point numerical fluxes F = F(v, w), v =̂ “left state”, w =̂ “right

state”, see page 595.

It will turn out that finding appropriate numerical flux functions is by no means straightforward, because

both instability and numerical solutions that violate the entropy condition (to Sect. 8.2.6) have to be

avoided.

8.3.3.1 Central flux

A very simple choice for numerical flux functions relies on arithmetic averaging and yields the two central

numerical fluxes

F1(v, w) := 1
2

(
f (v) + f (w)) , F2(v, w) := f

(
1
2(v + w)

)
. (8.3.21)

Obviously the 2-point numerical fluxes F1 and F2 are consistent according to Def. 8.3.18. The resulting

spatially semi-discrete schemes are given by, see (8.3.10),

F1:
dµj

dt
(t) = − 1

2h
( f (µj+1(t)) − f (µj−1(t))) ,

F2:
dµj

dt
(t) = −1

h
( f (1

2 (µj(t) + µj+1(t))) − f (1
2 (µj(t) + µj−1(t)))) .

Experiment 8.3.22 (Central flux for Burgers equation)

✦ Cauchy problem for Burgers equation (8.1.46) (flux function f (u) = 1
2u2) from Ex. 8.2.39 (“box”

intial data)

✦ Spatial finite volume discretization in conservation form (8.3.9) with central numerical fluxes accord-

ing tp (8.3.21).

✦ timestepping based on adaptive explicit Runge-Kutta method ode45.

(in MATLAB: opts = odeset(’abstol’,1E-7,’reltol’,1E-6);).
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Fully discrete evolution for central numerical flux F1: h = 0.03
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Fully discrete evolution for central numerical flux F2: h = 0.017
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Observation: massive spurious oscillations utterly pollute numerical solution
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Experiment 8.3.23 (Central flux for Traffic Flow equation)

✦ Cauchy problem for Traffic Flow equation (8.1.41) (flux function f (u) = u(1− u)) from Ex. 8.2.40

(“box” intial data, u0 = χ[0,1])

✦ Spatial finite volume discretization in conservation form (8.3.9) with central numerical fluxes accord-

ing tp (8.3.21).

✦ timestepping based on adaptive explicit Runge-Kutta method ode45.

(in MATLAB: opts = odeset(’abstol’,1E-7,’reltol’,1E-6);).

Fully discrete evolution for central numerical flux F1: h = 0.03
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Fully discrete evolution for central numerical flux F2: h = 0.017
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Observation: massive spurious oscillations utterly pollute numerical solution

Experiment 8.3.24 (Central flux for linear advection)

In order to see whether the emergence of spurious oscillations is an inherent weakness of central fluxes we

apply them to the simplest scalar conservation law, linear advection Section 8.1.1 with constant velocity.

We consider the Cauchy problem (8.1.10): constant velocity scalar linear advection, c = 1, flux function

f (u) = cu

∂u

∂t
+ c

∂u

∂x
= 0 in Ω̃ = R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (8.1.10)

Finite volume spatial discretization in conservation form (8.3.9) with central numerical fluxes from (8.3.21):

F1(v, w) := 1
2

(
f (v) + f (w))

F2(v, w) := f
(

1
2(v + w)

) ⇒ dµj

dt
(t) = − c

2h
(µj+1(t)− µj−1(t)) , j ∈ Z . (8.3.25)

For the numerical experiment we use “box shaped” initial data u0 = χ[0,1], an equidistant spatial mesh

with meshwidth h = 0.083, ode45 adaptive explicit Runge-Kutta timestepping.

Fig. 395
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Again, we observe tremendous spurious oscillations that render the computed solution completely use-

less.

Remark 8.3.26 (Connection with convection-diffusion IBVPs→ Chapter 7)

Note that the Cauchy problem (8.1.10) is an initial value problem for the 1D transport equation (7.3.7)!
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From Section 7.2.2, (7.2.18) we see that the semi-discrete evolution

dµj

dt
(t) = − c

2h
(µj+1(t)− µj−1(t)) , j ∈ Z , (8.3.25)

agrees with what we obtain from straightforward spatial linear finite element Galerkin semi-discretization.

In Section 7.3.1 we learned that this method is prone to spurious oscillations, see Ex. 7.3.4. This offers

an explanation also for its failure for Burgers equation/traffic flow equation, see Exp. 8.3.22.

8.3.3.2 Lax-Friedrichs/Rusanov flux

(8.3.27) Fighting oscillations with diffusion

According to § 8.1.1 the simple linear advection Cauchy problem

∂u

∂t
+ c

∂u

∂x
= 0 in Ω̃ = R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (8.1.10)

models heat transport in a fluid moving with constant velocity c.

If u0 is oscillatory (many local extrema), then these will just be carried along. However, if there is a non-zero

heat conductivity κ > 0, then local extrema of the temperature can be expected to decay exponentially,

while they are moving with the flow. For instance, for c = κ = 1 (dimensionless equations), we get

∂u
∂t +

∂u
∂x− ∂2u

∂x2 = 0 ,

u0(x) = sin(x)
u(x, t) = e−t sin(x− t) , x ∈ R, t ≥ 0 . (8.3.28)

diffusive term
Hence, let us consider the advection equation with extra added diffusion, whose strength can be controlled

by the diffusion coefficient κ > 0,

∂u

∂t
+ c

∂u

∂x
−κ

∂2u

∂x2
= 0 , (8.3.29)

which amounts to a 1D scalar conservation law with the flux function (→ Rem. 8.2.2)

f (u) = cu−κ
∂u

∂x
. (8.3.30)

A related numerical flux on an equidistant mesh with meshwidth h > 0 can rely on a central flux (8.3.21)

for the advective part, and on a simple difference quotient approximation for the derivative

f (u) = cu − κ ∂u
∂x ,

↓ ↓ ↓
F(v, w) = c

2(v + w) − κ w−v
h .

central numerical flux diffusive numerical flux

With this choice of numerical flux the semi-discrete evolution (8.3.10) becomes:

µ̇j(t) + c
µj+1(t)− µj−1(t)

2h
+ κ
−µj+1(t) + 2µj(t)− µj−1(t)

h2
= 0 . (8.3.31)
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(7.2.18), Section 1.5.4 ➣ (8.3.31) agrees with the method-of-lines ODE obtained from the linear finite

element Galerkin discretization of (8.3.29) on an equidistant mesh!

Caution: the extra diffusion amounts to a perturbation of the Cauchy problem that must be kept as small

as possible and, in any case, vanish for h→ 0, which entails κ = κ(h).

Guideline: prevent diffusive flux from dominating central flux ➣ κ =
ch

2
(8.3.32)

Remark 8.3.33 (Connection with artificial viscosity→ Section 7.2.2.2)

As already pointed out in Rem. 8.3.26, the developments in this section are closely connected with similar

considerations in Section 7.2.2, Section 7.3.1 in the context of stable spatial discretization of convection-

diffusion problems (8.3.29).

In Section 7.2.2.2 we saw that artificial diffusion cures instability of central difference quotients. In (7.2.22)

we found a new interpretation of the upwind discretization based on one-sided difference quotients:

∂u

∂t
+ c ∂u

∂x = 0 in R×]0, T[ ,

l l
∂u

∂t
+ (ch/2)

−µj−1 + 2µj − µj+1

h2︸ ︷︷ ︸
=̂ difference quotient for d2u

dx2

+ c
µj+1 − µj−1

2h︸ ︷︷ ︸
=̂ difference quotient for c du

dx

= 0 , j ∈ Z .

Can this be rewritten in conservation form (8.3.9)? YES!

(ch/2)
−µj−1 + 2µj − µj+1

h2
+ c

µj+1− µj−1

2h
=

1

h

(
F(µj, µj+1)− F(µj−1, µj)) ,

with F(v, w) := c
2(v + w)− c

2(w− v) . (8.3.34)

central numerical flux h-weighted diffusive/viscous numerical flux

Recall from Rem. 8.2.2: the flux function f (u) = − ∂u
∂x models diffusion. Hence, the diffusive numerical

flux amounts to a central finite difference discretization of the partial derivative in space:

−∂u

∂x
(x, t)

|x=xj+1/2

≈ −1

h

(
u(xj+1, t)− u(xj, t)

)
.

Thus, starting from upwind discretization, we also arrive at the scheme heuristically derived in § 8.3.27.
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How to adapt the idea of extra diffusion to general scalar conservation laws? A simple manipulation

connects these with linear advection:

∂u

∂t
+

∂

∂x
f (u) =

∂u

∂t
+ f ′(u)

∂u

∂x
= 0 (8.3.35)

local speed of transport↔ c

However, the speed f ′(u) of transport will depend on x, which suggests that the strength of artificial

diffusion should vary. We choose it according to (8.3.32), but large enough to fit the maximal local velocity:

we set k = h
2 max{| f ′(u)| : min{v, w} ≤ u ≤ max{v, w}} in the diffusive part of the numerical flux.

(local) Lax-Friedrichs/Rusanov flux

FLF(v, w) = 1
2( f (v) + f (w))− 1

2(w− v) · max
min{v,w}≤u≤max{v,w}

| f ′(u)| . (8.3.36)

The next two experiments investigate the performance of the (local) Lax-Friedrichs/Rusanov numerical

flux for our model non-linear scalar conservation laws.

Example 8.3.37 (Lax-Friedrichs flux for Burgers equation)

☞ same setting and conservative discretization as in Ex. 8.3.22

☞ Numerical flux function: Lax-Friedrichs flux (8.3.36)
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Observation: spurious oscillations are suppressed completely, qualitatively good resolution of both shock

and rarefaction.

Effect of artificial diffusion: smearing of shock, cf. discussion in Ex. 7.2.31.
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Example 8.3.38 (Lax-Friedrichs flux for traffic flow equation)

☞ same setting and conservative discretization as in Ex. 8.3.22

☞ Numerical flux function: Lax-Friedrichs flux (8.3.36)
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Same observations as in Ex. 8.3.37: no spurious oscillations, qualitatively correct solution, but strong

smearing of shock.

8.3.3.3 Upwind flux

Another idea for stable spatial discretization of stationary transport in Sect. 7.2.2.1 (“upwind quadrature”):

“upwinding” = obtain information from where transport brings it

☞ remedy for ambiguity of evaluation of discontinuous gradient in upwind quadrature

Owing to the discontinuity of uN at xk+1/2, ambiguity is also faced in the evaluation of the fluxes f (uN(xj+1/2), t), f (u
see (8.3.7), which forced us to introduce numerical flux functions in (8.3.9). We may also seek to select

the value of uN from that side of xk+1/2 where information comes from. In light of Rem. 8.2.15 we should

examine the direction of the characteristic running through (xk+1/2,t).

Def. 8.2.9, (8.3.35) ➣ The local slope of the characteristic curve (velocity of transport) at (x, t) ∈ Ω̃ is

given by f ′(u(x, t)).

local velocity of transport f ′(uN(xk+1/2, t)) is ambiguous too!
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Idea: There is a “velocity of propagation” even at discontinuities of u!

Deduce it from Rankine-Hugoniot jump condition (8.2.23).

local velocity of transport =

{
f ′(u) for unique state, u = ul = ur
f (ur)− f (ul)

ur−ul
at discontinuity.

(ul, ur =̂ states to left and right of discontinuity)

upwind numerical flux for scalar conservation law with flux function f :

Fuw(v, w) =

{
f (v) , if ṡ ≥ 0 ,

f (w) , if ṡ < 0 ,
ṡ :=

{
f (w)− f (v)

w−v for v 6= w ,

f ′(v) for v = w .
(8.3.39)

Now we investigate empirically the performance of the upwind numerical flux for our model non-linear

scalar conservation laws.

Example 8.3.40 (Upwind flux for Burgers equation)

☞ same setting and conservative discretization as in Exp. 8.3.22

☞ Numerical flux function: upwind flux (8.3.39)
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Example 8.3.41 (Upwind flux for traffic flow simulation)

☞ Conservative finite volume discretization of Cauchy problem for traffic flow equation (8.1.41), flux

function f (u) = u(1− u)
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☞ Equidistant spatial mesh with meshwidth h = 0.03, adaptive explicit Runge-Kutta timestepping

(MATLAB ode45)

☞ Numerical flux function: upwind flux (8.3.39)

☞ “Box shaped” initial data u0(x) =

{
1 for 0 ≤ x ≤ 1 ,

0.5 elsewhere.

The solution will comprise a stationary shock and a rarefaction fan, which will merge eventually.
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We observe a satisfactory resolution of the shock and the rarefaction fan.

Example 8.3.42 (Upwind flux and transsonic rarefaction)

In this example we will witness a situation in which the use of the upwind numerical flux function produces

a non-physical shock.

We consider the Cauchy problem (8.2.7) for Burgers equation (8.1.46), i.e., f (u) = 1
2u2 and initial data

u0(x) =

{
−1 for x < 0 or x > 1 ,

1 for 0 < x < 1 .
(8.3.43)

The analytic solution for this Cauchy problem is given in Ex. 8.2.39.
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Fig. 400
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u = −1

u = −1

u = 1

u(x, t) = x/t

There is a related Cauchy problem (8.2.7) for the traffic flow equation (8.1.41), i.e., f (u) = u(1− u) and

initial data

u0(x) =

{
0 for x < 0 or x > 1 ,

1 for 0 < x < 1 .
(8.3.44)

Its analytic solution is plotted in Fig. 402 and given in Fig. 403.
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u(x, t) = 1
2(1−

(x−1)
t )

u = 0.0

u = 0.0

u = 1.0

The entropy solution (→ Section 8.2.6) of these Cauchy problems features a transsonic rarefaction fan at

x = 1: this is a rarefaction solution (→ Lemma 8.2.35) whose “edges” move in opposite directions.

Burgers’ equation, initial density (8.3.43): numerical solution with finite volume method with upwind flux

(8.3.39).
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Traffic flow equation, initial data (8.3.44): numerical solution with finite volume method with upwind flux

(8.3.39).
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Conservative finite volume discretization with upwind flux produces (stationary) expansion shock instead

of transonic rarefaction!

Sect. 8.2.6: this is a weak solution, but it violates the entropy condition, “non-physical shock”.

Example 8.3.45 (Upwind flux: Convergence to expansion shock)

In Ex. 8.3.42 we have seen that the use of the upwind flux can make a conservative finite volume dis-

cretization converge to non-physical expansion shocks. In this example simple computations will show
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how this can happen. The setting is the following:

✦ Cauchy problem (8.2.7) for Burgers equation (8.1.46), i.e., f (u) = 1
2u2

✦ u0(x) = 1 for x > 0, u0(x) = −1 for x < 0
➤ entropy solution = rarefaction wave (→ Lemma 8.2.35)

✦ FV in conservation form, upwind flux (8.3.39), on equidistant grid, xj = (j + 1
2)h, meshwidth h > 0

➤ initial nodal values µj(0) =

{
−1 for j < 0 ,

1 for j ≥ 0 .

➤ Semi-discrete evolution equation:

dµj

dt
(t) = − 1

2h
·
{

µ2
j+1(t)− µ2

j (t) for j ≥ 0 ,

µ2
j (t)− µ2

j−1(t) for j < 0 .

µj(t) = µj(0) for all t ➤ for h→ 0, convergence to entropy violating expansion shock !

conservative finite volume method may converge to non-physical weak solutions !

8.3.3.4 Godunov flux

Ex. 8.3.42 strikingly illustrated the failure of the a conservative finite volume discretization based on upwind

flux to deal with transsonic rarefactions. In this section a different perspective on upwind fluxes will suggest

a remedy.

(The following discussion is for convex flux functions only, that occur, for instance in Burgers equation

(8.1.46). The reader is encouraged to figure out the modifications necessary if the flux function is concave,

as in the traffic flow equation (8.1.41).)

The upwind flux (8.3.39) is a numerical flux of the form

F(v, w) = f (u↓(v, w)) with an intermediate state u↓(v, w) ∈ R .

For the upwind flux the intermediate state is not really “intermediate”, but coincides with one of the states

v, w depending on the sign of the “local shock speed” ṡ :=
f (w)− f (v)

w−v .

(8.3.46) Local Riemann problems

We note that the intermediate state for the upwind numerical flux at the dual cell boundary xj+1/2 agrees

with the state produced for short times at xj+1/2 by an all-shock solution of the conservation law with initial

data uN(·, t), with uN the M-piecewise constant function defined by the dual cell averages according

to (8.3.5). This solution may feature non-physical (expansion) shocks, while rarefaction waves are miss-

ing. For this reason the simple upwind flux fails to capture rarefaction waves as we have witnessed in

Ex. 8.3.42.
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Idea: obtain suitable intermediate state as

u↓(v, w) = ψ(0) , (8.3.47)

where u(x, t) = ψ(x/t) solves the Riemann problem (→ Def. 8.2.5)

∂u

∂t
+

∂

∂x
f (u) = 0 , u(x, 0) =

{
v , for x < 0 ,

w , for x ≥ 0 .
(8.3.48)

Remember Lemma 8.2.29, Lemma 8.2.35, and the reasons why we can count on the entropy solution of

the Riemann problem to be a similarity solution of the form u(x, t) = ψ(x/t), see page 585.

We focus on f : R 7→ R strictly convex & smooth (e.g. Burgers equations (8.1.46))

➤ Riemann problem (8.3.48) (→ Def. 8.2.5) has the entropy solution (→ Sect. 8.2.6):

➊ If v > w ➤ discontinuous solution, shock (→ Lemma 8.2.29)

u(t, x) =

{
v if x < ṡt ,

w if x > ṡt ,
ṡ =

f (v)− f (w)

v− w
. (8.3.49)

➋ If v ≤ w ➤ continuous solution, rarefaction wave (→ Lemma 8.2.35)

u(t, x) =





v if x < f ′(v)t ,

g(x/t) if f ′(v) ≤ x/t ≤ f ′(w) ,

w if x > f ′(w)t ,

g := ( f ′)−1 . (8.3.50)

➣ Also from these formulas we see that all weak solutions of a Riemann problem are of the form

u(x, t) = ψ(x/t) (similarity solution) with a suitable function ψ, which is

✦ piecewise constant with a jump at ṡ :=
f (w)− f (v)

w−v for a shock solution (8.3.49),

✦ the continuous function (in the case of strictly convex flux function f )

ψ(ξ) :=





v , if ξ < f ′(v) ,

( f ′)−1(ξ) , if f ′(v) < ξ < f ′(w) ,

w , if ξ > f ′(v) ,

provided that w > v = situation of a rarefaction solution (8.3.50), see Lemma 8.2.35.

A graphical illustration of the various local Riemann solutions that can be found at dual cell boundaries is

given next:
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Fig. 406 xj−2 xj−1 xj xj+1 xj+2 xj+3

t

0

u(x, t)/t

✁ local Riemann problems at dual cell

boundaries (for Burgers flux f (u) = 1
2u2,

qualitative drawing)

−− =̂ piecewise constant function u(0, t)
−− =̂ shock in (t, x)-plane

−− =̂ rarefaction wave in (t, x)-plane

for convex flux function f

u↓(v, w) =





w , if
v > w ∧ ṡ < 0 (shock ➊) ,
v < w ∧ f ′(w) < 0 (rarefaction ➋) ,

v , if
v > w ∧ ṡ > 0 (shock ➌),
v < w ∧ f ′(v) > 0 (rarefaction ➍) ,

( f ′)−1(0) , if v < w ∧ f ′(v) ≤ 0 ≤ f ′(w) (rarefaction ➎).

(8.3.51)

Fig. 407
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(8.3.52) Formulas for Godunov numerical flux function

A detailed analysis of (8.3.51) yields fairly explicit formulas:

v > w (shock case): f (u↓(v, w)) =

{
f (v) , if

f (w)− f (v)
w−v > 0 ⇔ f (w) < f (v) ,

f (w) , if
f (w)− f (v)

w−v ≤ 0 ⇔ f (w) ≥ f (v) .

f (u↓(v, w)) = max{ f (v), f (w)} .

For a convex flux function f :

v < w ⇒ f ′(v) ≤ f (w)− f (v)

w− v
≤ f ′(w) .

For v < w (rarefaction case)

f (u↓(v, w)) =





f (v) , if f ′(v) > 0 ,

f (z) , if f ′(v) < 0 < f ′(w) ,

f (w) , if f ′(w) < 0 ,

where f ′(z) = 0⇔ f has a global minimum in z.
Fig. 412

v w

f

z
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2-point numerical flux function according to (8.3.47) and (8.3.48): Godunov numerical flux

Using general Riemann solution (8.2.38) we get for any flux function:

Godunov numerical flux function

FGD(v, w) =





min
v≤u≤w

f (u) , if v < w ,

max
w≤u≤v

f (u) , if w ≤ v .
(8.3.53)

Obviously the Godunov numerical flux is consistent according to Def. 8.3.18.

Fig. 413
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for Burgers’ equation (8.1.46)
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for traffic flow equation (8.1.41)

Remark 8.3.54 (Upwind flux and expansion shocks)

For traffic flow equation (8.1.41) ( f (u) = u(1− u))

Fig. 415
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Godunov flux FDG(v, w)

Fig. 416
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upwind flux FUW(v, w)

Fuw(v, w) = FGD(v, w), except for the case of transsonic rarefaction!

(transsonic rarefaction = rarefaction fan with edges moving in opposite direction, see Ex. 8.3.42)

What does the upwind flux Fuw(v, w) from (8.3.39) yield in the case of transsonic rarefaction?
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If f convex, v < w, f ′(v) < 0 < f ′(w),

Fuw(v, w) = f (ψ(0)) ,

where u(x, t) = ψ(x/t) is a non-physical entropy-condition violating (→ Def. 8.2.36) expansion shock

weak solution of (8.3.48).

Upwind flux treats transsonic rarefaction as expansion shock!

➣ Explanation for observation made in Ex. 8.3.42.

Example 8.3.55 (Godunov flux for Burgers equation)

☞ same setting and conservative discretization as in Ex. 8.3.42

☞ Numerical flux function: Godunov numerical flux (8.3.53)
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Observation: Transonic rarefaction captured by discretization, but small remnants of an expansion shock

still observed.

Example 8.3.56 (Godunov flux for traffic flow equation)

☞ same setting and conservative discretization as in Ex. 8.3.42

☞ Numerical flux function: Godunov numerical flux (8.3.53)
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Observation: Transonic rarefaction captured by discretization, but small remnants of an expansion shock

still observed.

8.3.4 Monotone schemes

Observations made for some piecewise constant solutions uN(t) of semi-discrete evolutions arising from

spatial finite volume discretization in conservation form (8.3.10):

Ex. 8.3.37 (Lax-Friedrichs numerical flux (8.3.36))

Ex. 8.3.55 (Godunov numerical flux (8.3.53))
:

✦min
x∈R

u0(x) ≤ uN(x, t) ≤ max
x∈R

u0(x)

✦no new local extrema in numerical solution

In these respects the conservative finite volume discretizations based on either the Lax-Friedrichs numer-

ical flux (→ Section 8.3.3.2) or the Godunov numerical flux (→ Section 8.3.3.4) inherit crucial structural

properties of the exact solution, see Sect. 8.2.7, in particular, Thm. 8.2.41 and the final remark: they

display structure preservation, cf. (5.7).

Is this coincidence for the special settings examined in Ex. 8.3.37 and Ex. 8.3.55?

(8.3.57) Discrete comparison principle

Focus: semi-discrete evolution (8.3.10) resulting from finite volume discretization in conservation form with

2-point numerical flux on an equidistant infinite mesh

(8.3.9)
dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t))− F(µj−1(t), µj(t))

)
, j ∈ Z , (8.3.10)
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for Cauchy problem

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R , (8.2.7)

induced by Lax-Friedrichs numerical flux (8.3.36)

FLF(v, w) = 1
2( f (v) + f (w)) − 1

2 max
min{v,w}≤u≤max{v,w}

| f ′(u)|(w − v) . (8.3.36)

dµj

dt
= − 1

2h

(
f (µj+1)− f (µj−1)−

max
u∈[µj,µj+1]

| f ′(u)|(µj+1 − µj) + max
u∈[µj−1,µj]

| f ′(u)|(µj − µj−1)
)

.

(8.3.58)

Goal: show that uN(t) linked to ~µ(t) from (8.3.58) through piecewise constant reconstruction (8.3.5)

satisfies

min
x∈R

uN(x, 0) ≤ uN(x, t) ≤ max
x∈R

uN(x, 0) ∀x ∈ R , ∀t ∈ [0, T] . (8.3.59)

Recall from Sect. 8.2.7: estimate (8.3.59) for the exact solution u(x, t) of (8.2.7) is a consequence of

the comparison principle of Thm. 8.2.41 and the fact that constant initial data are preserved during the

evolution. The latter property is straightforward for conservative finite volume spatial semi-discretization,

see (8.3.15).

➣ Goal: Establish comparison principle for finite volume semi-discrete solutions based on Lax-

Friedrichs numerical flux:

{
~µ(t),~η(t) solve (8.3.58) ,

ηj(0) ≤ µj(0) ∀j ∈ Z

}
⇒ ηj(t) ≤ µj(t) ∀j ∈ Z , ∀0 ≤ t ≤ T .

Assumption: ~µ = ~µ(t) and~η =~η(t) solve (8.3.58) and satisfy for some t ∈ [0, T]

ηk(t) ≤ µk(t) ∀k ∈ Z , ξ := ηj(t) = µj(t) for some j ∈ Z .

Can ηj raise above µj?

d

dt

(
µj − ηj) = −

1

h

(
FLF(ξ, µj+1)− FLF(ξ, ηj+1) + FLF(ηj−1, ξ)− FLF(µj−1, ξ)

)
.

To show:
d

dt

(
µj − ηj) ≥ 0 ➣ µj(t) will stay above ηj(t).

This can be concluded, if

FLF(ξ, µj+1)− FLF(ξ, ηj+1) ≤ 0 and FLF(ηj−1, ξ)− FLF(µj−1, ξ) ≤ 0 . (8.3.60)

The only piece of information we are allowed to use is

µj+1 ≥ ηj+1 and µj−1 ≥ ηj−1 .

This would imply (8.3.60), if FLF was increasing in the first argument and decreasing in the second argu-

ment. Such a trait of a two-point numerical flux is considered in the next definition.
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Definition 8.3.61. Monotone numerical flux function

A 2-point numerical flux function F = F(v, w) is called monotone, if

F is an increasing function of its first argument v (∀w)

and

F is a decreasing function of its second argument w (∀v).

Corollary 8.3.62. Simple criterion for monotone flux function

A continuously differentiable 2-point numerical flux function F = F(v, w) is montone, if and only if

∂F

∂v
(v, w) ≥ 0 and

∂F

∂w
(v, w) ≤ 0 ∀(v, w) . (8.3.63)

The important 2-point numerical fluxes that we have studied in Section 8.3.3.2 and Section 8.3.3.4 enjoy

the monotonicity property.

Lemma 8.3.64. Monotonicity of Lax-Friedrichs/Rusanov numerical flux and Godunov flux

For any continuously differentiable flux function f the associated Lax-Friedrichs/Rusanov flux

(8.3.36) and Godunov flux (8.3.53) are monotone.

Proof.

➊ (Local) Lax-Friedrichs/Rusanov numerical flux:

FLF(v, w) = 1
2( f (v) + f (w))− 1

2(w− v) · max
min{v,w}≤u≤max{v,w}

| f ′(u)| .

Application of the criterion (8.3.63) is straightforward:

∂FLF

∂v
(v, w) = 1

2 f ′(v) + 1
2 max

min{v,w}≤u≤max{v,w}
| f ′(u)| ≥ 0 ,

∂FLF

∂w
(v, w) = 1

2 f ′(w)− 1
2 max

min{v,w}≤u≤max{v,w}
| f ′(u)| ≤ 0 .

For the genuine Lax-Friedrichs numerical flux (8.3.36) the proof of monotonicity entails treating numerous

cases separately, because the factor in front of the diffusive flux will also depend on v and w.

➋ Godunov numerical flux

FGD(v, w) =





min
v≤u≤w

f (u) , if v < w ,

max
w≤u≤v

f (u) , if w ≤ v .
(8.3.53)

v < w: If v increases, then the range of values over which the minimum is taken will shrink, which makes

FGD(v, w) increase.

If w is raised, then the minimum is taken over a larger interval, which causes FGD(v, w) to

become smaller.

v ≥ w: If v increases, then the range of values over which the maximum is taken will grow, which makes

FGD(v, w) increase.

If w is raised, then the maximum is taken over a smaller interval, which causes FGD(v, w) to

decrease. ✷
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Lemma 8.3.65. Comparison principle for monotone semi-discrete conservative evolutions

Let the 2-point numerical flux function F = F(v, w) be monotone (→ Def. 8.3.61) and ~µ = ~µ(t),
~η =~η(t) solve (8.3.10). Then

ηk(0) ≤ µk(0) ∀k ∈ Z ⇒ ηk(t) ≤ µk(t) ∀k ∈ Z , ∀ 0 ≤ t ≤ T .

The assertion of Lemma 8.3.65 means that for monotone numerical flux, the semi-discrete evolution sat-

isfies the comparison principle of Thm. 8.2.41.

Proof (of Lemma 8.3.65, following the above considerations for the Lax-Friedrichs flux).

The two sequences of nodal values satisfy (8.3.10)

dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t)) − F(µj−1(t), µj(t))

)
, j ∈ Z , (8.3.66)

dηj

dt
(t) = −1

h

(
F(ηj(t), ηj+1(t))− F(ηj−1(t), ηj(t))

)
, j ∈ Z . (8.3.67)

Let t0 be the earliest time, at which~η “catches up” with ~µ in at least one node xj, j ∈ Z, of the mesh,

that is

ηk(t0) ≤ µk(t0) ∀k ∈ Z , ξ := ηj(t0) = µj(t0) .

By subtracting (8.3.66) and (8.3.67) we get

d

dt
(µj − ηj)(t0) = −

1

h

(
F(ξ, µj+1(t0))− F(ξ, ηj+1(t0)) + F(ηj−1(t0), ξ)− F(µj−1(t0), ξ)

)
≥ 0 ,

because for a monotone numerical flux function (→ Def. 8.3.61)

ηj−1(t0) ≤ µj−1(t0)
increasing in first argument⇒ F(ηj−1(t0), ξ)− F(µj−1(t0), ξ) ≤ 0 ,

ηj+1(t0) ≤ µj+1(t0)
decreasing in second argument⇒ F(ξ, µj+1(t0))− F(ξ, ηj+1(t0)) ≤ 0 .

This means that “ηj cannot overtake µj”: no value ηj can ever raise above µj. ✷

(8.3.68) No creation of discrete local extrema

Now we want to study the “decrease of the number of local extrema” during a semi-discrete evolution,

another structural property of exact solutions of conservations laws, see Sect. 8.2.7.

Intuitive terminology: ~µ has a local maximum um ∈ R, if

∃j ∈ Z: µj = um and ∃kl < j < kr ∈ N: max
kl<l<kr

µl = um and µkl
< um , µkr

< um .

In analogous fashion, we define a local minimum. If~µ is constant for large indices, these values are also

regarded as local extrema.
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Counting local extrema of~µ and

the associated piecewise con-

stant reconstruction.

Fig. 419

x

local maximum

local maximum

local minimumlocal minimumlocal minimum

µj/uN

Lemma 8.3.69. Non-oscillatory monotone semi-discrete evolutions

If ~µ = ~µ(t) solves (8.3.10) with a monotone numerical flux function F = F(v, w) and ~µ(0) has

finitely many local extrema, then the number of local extrema of ~µ(t) cannot be larger than that of

~µ(0).

Proof. i =̂ index of local maximum of~µ(t), t fixed

µi−1(t) ≤ µi(t) ,

µi+1(t) ≤ µi(t)
monotone flux

=⇒ F(µi , µi+1) ≥ F(µi , µi) ≥ F(µi−1, µi) ,

⇒ d

dt
µi(t) = −

1

h

(
F(µi , µi+1)− F(µi−1, µi)

)
≤ 0 .

➣ maxima of~µ subside, (minima of~µ rise !)

Idea of proof:

No new (local) extrema can arise !

Adjacent values cannot “overtake”:

local maximum: cannot move up

local minmum: cannot move down

Fig. 420

u

µj−2

µj−1 µj

µj+1

xj−3/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2
x

8.4 Timestepping

In the spirit of the method of lines approach, we next we pursue the temporal discretization of the ordinary

differential equation (ODE)

dµj

dt
(t) = −1

h

(
F(µj−ml+1(t), . . . , µj+mr

(t))− F(µj−ml
(t), . . . , µj+mr−1(t))

)
, j ∈ Z , (8.3.9)
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which arises from the conservative finite volume spatial semi-discretization of the Cauchy problem for a

generic 1D scalar conservation law (without sources)

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x)in R . (8.2.7)

Note that (8.3.9) is an ODE on the infinite-dimensional state space RZ, but formally we can treat it like a

regular ODE in RN. In particular, single step timestepping methods can be applied to (8.3.9).

(8.4.1) Runge-Kutta single step timestepping

Our focus: Explicit Runge-Kutta timestepping methods (→ Def. 6.1.40)

Recall [33, Def. 11.4.9]: for explicit s-stage Runge-Kutta single step methods the coefficients aij vanish

for j ≥ i, 1 ≤ i, j ≤ s ➣ The increments ki can be computed in turns (without solving a non-linear

system of equations): For the abstract autonomous ODE ẏ = f(y) an explicit s-stage Runge-Kutta single

step method reads (for uniform timestep size τ > 0)

k1 = f(y(k)) ,

k2 = f(y(k) + τa21k1) ,

...

ks = f(y(k) + τas1k1 + · · ·+ τas,s−1ks−1) ,

, y(k+1) := y(k) + τ
s

∑
l=1

blkl . (8.4.2)

Here, aij ∈ R and bl ∈ R are the coefficients from the Butcher scheme (6.1.42) describing the Runge-

Kutta method. The vectors ki, i = 1, . . . , s, are called the increments. For explicit RK-methods the

coefficient matrix A is strictly lower triangular.

We consider an initial value problem for an abstract semi-discrete evolution in RZ:

d~µ

dt
(t) = Lh(~µ(t)) , 0 ≤ t ≤ T , ~µ(0) = ~µ0 ∈ R

Z . (8.4.3)

Here: Lh : RZ 7→ RZ =̂ (non-linear) finite difference operator, e.g. for finite volume semi-discretization

in conservation form with 2-point numerical flux:

(8.3.10) ➣ (Lh~µ)j := −1

h

(
F(µj , µj+1)− F(µj−1, µj)

)
. (8.4.4)

Note that for conservative finite volume discretization Lh is local : (Lh(~µ)) j depends only on “neighboring

values” µj−nl
, . . . , µj+nr

:

(Lh~µ)j = Lj(µj−nl
, . . . , µj+nr

) , (8.4.5)

with suitable functions Lj : R1+nl+nr → R.

From (8.4.2) we get the formulas for an explicit s-stage Runge-Kutta single step method for (8.4.3),

timestep τ > 0:

~κ1 = Lh(~µ
(k)) ,

~κ2 = Lh(~µ
(k) + τa21~κ1) ,

~κ3 = Lh(~µ
(k) + τa31~κ1 + τa32~κ2) ,

...

~κs = Lh(~µ
(k) + τ

s−1

∑
j=1

asj~κ j) ,

~µ(k+1) = ~µ(k) + τ
s

∑
l=1

bl~κj . (8.4.6)
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All increments~κi, i = 1, . . . , s, belong to RZ.

The formulas (8.4.6) are “explicit” in the sense that timestepping just relies on more evaluations of the

operator Lh. This greatly facilitates implementation, because Lh will, in general, a non-linear and even

non-smooth mapping. Thus it might be very difficult and expensive to solve a system of non-linear equa-

tions involving Lh.

(8.4.7) Fully discrete evolution

Timestepping converts (8.4.3) into a family of equations for functions on an infinite space-time grid.

Fig. 421

t1

t2

t3

t4

t5

x1 x2 x3 x4 x5 x6 x7
0 x

t
Setting: equidistant spatial mesh M, meshwidth

h > 0, nodes xj := hj, j ∈ Z,

uniform timestep τ > 0, tk := τk, k ∈ N0.

Single step timestepping for (8.4.3) produces a se-

quence

(
~µ(k)

)
k∈N0

µ
(k)
j ≈ u(xj, tk) , j ∈ Z, k ∈ N0 .

Fully discrete evolution

~µ(k+1) = Hh(~µ
(k−1)) , k ∈ N0 .

Hh : RZ 7→ RZ: fully discrete evolution operator, arising from applying single step timestepping

(8.4.6) to (8.4.3).

Example 8.4.8 (Fully discrete evolutions arising from conservative discretizations)

Fully discrete evolution arising from finite volume semi-discretization in conservation form with 2-point

numerical flux F = F(v, w)

(8.3.10) ➣ (Lh~µ)j := −1

h

(
F(µj , µj+1)− F(µj−1, µj)

)
. (8.4.4)

in combination with explicit Euler timestepping (=̂ 1-stage explicit RK-method)

~µ(k+1) = ~µ(k) + τLh(~µ
(k)) .

(Hh(~µ))j = µ
(k)
j −

τ

h

(
F(µ

(k)
j , µ

(k)
j+1)− F(µ

(k)
j−1, µ

(k)
j )
)

. (8.4.9)

In the case of explicit trapezoidal rule timestepping [33, Eq. (11.4.6)] (2-stage RK-SSM, method of

Heun)

~κ = µ(k) + τLh(~µ
(k)) , ~µ(k+1) = µ(k) +

τ

2

(
Lh(µ

(k)) +Lh(~κ)
)

.

κj := (~κ)j = µ
(k)
j −

τ

h

(
F(µ

(k)
j , µ

(k)
j+1)− F(µ

(k)
j−1, µ

(k)
j )
)

,

(Hh(~µ)) j = µ
(k)
j −

τ

2h

(
F(κj , κj+1)− F(κj−1, κj) + F(µ

(k)
j , µ

(k)
j+1)− F(µ

(k)
j−1, µ

(k)
j )
)

.
(8.4.10)
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For the explicit midpoint rule, another 2-stage RK-SSM, we get the recursion

~κ = µ(k) +
τ

2
Lh(~µ

(k)) , ~µ(k+1) = µ(k) + τLh(~κ) .

κj := (~κ)j = µ
(k)
j −

τ

2h

(
F(µ

(k)
j , µ

(k)
j+1)− F(µ

(k)
j−1, µ

(k)
j )
)

,

(Hh(~µ)) j = µ
(k)
j −

τ

h

(
F(κj , κj+1)− F(κj−1, κj)

)
.

(8.4.11)

8.4.1 CFL-condition

As we have seen in Section 6.1.3 and Section 6.2.5, the use of explicit timestepping in the context of a

method-of-lines approach to an initial boundary value problem for a PDE often faces a mesh-dependent

timestep constraint in order to avoid catastrophic blow-up. This will also be the case for the conservative

finite volume discretization of conservation laws.

(8.4.12) Difference stencils

We have already observed in (8.4.5) that the operators Lh process cell averages µj locally. This allows a

catchy representation of the structure of fully discrete evolutions.

Stencil notation: Visualization of flow of information in fully discrete explicit evolution (action of Hh), cf.

Fig. 290.

Fig. 422 xj−2 xj−1 xj xj+1 xj+2 x

t

tk−1

tk

2-point numerical flux &

explicit Euler timestepping

Fig. 423 xj−2 xj−1 xj xj+1 xj+2 x

t

tk−1

tk

upwinding &

explicit trapezoidal rule

Fig. 424 xj−2 xj−1 xj xj+1 xj+2 x

t

tk−1

tk

2-point numerical flux &

explicit trapezoidal rule

(8.4.13) Common properties of conservative fully discrete evolutions

A consequence of the locality of Lh combined with explicit timestepping: locality of fully discrete evolu-

tion operator:

∃ml, mr ∈ N0: (H(~µ)) j = Hj(µj−ml
, . . . , µj+mr

) . (8.4.14)

If flux function f does not depend on x, f = f (u) as in (8.2.7), we can expect

Hh is translation-invariant: Hj = H ∀j ∈ Z .

This is the case for (8.4.9) and (8.4.10).
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By inspection of (8.4.6): if Lh is translation-invariant

(Lh(~µ))j = L(µj−nl
, . . . µj+nr

) , j ∈ Z ,

and timestepping relies on an s-stage explicit Runge-Kutta method, then we conclude for ml, mr in (8.4.14)

ml ≤ s · nl , mr ≤ s · nr .

(8.4.15) Domains of dependence

Now we revisit a concept from Sect. 6.2.5, see, in particular, Rem. 6.2.56:

Definition 8.4.16. Numerical domain of dependence

Consider explicit translation-invariant fully discrete evolution~µ(k+1) := H(~µ(k)) on uniform spatio-

temporal mesh (xj = hj, j ∈ Z, tk = kτ, k ∈ N0) with

∃m ∈ N0: (H(~µ))j = H(µj−m, . . . , µj+m) , j ∈ Z . (8.4.17)

Then the numerical domain of dependence is given by

D−h (xj, tk) := {(xm, tl) ∈ R× [0, tk]: j−m(k− l) ≤ m ≤ j + m(k− l)} .

From Thm. 8.2.43 recall the maximal analytical domain of dependence for a solution of (8.2.7)

D−(x, t) := {(x, t) ∈ R× [0, t]: ṡmin(t− t) ≤ x− x ≤ ṡmax(t− t)} .

with maximals speeds of propagation

ṡmin := min{ f ′(ξ) : inf
x∈R

u0(x) ≤ ξ ≤ sup
x∈R

u0(x)} , (8.4.18)

ṡmax := max{ f ′(ξ) : inf
x∈R

u0(x) ≤ ξ ≤ sup
x∈R

u0(x)} . (8.4.19)

Fig. 425 x

ṡ

1

t

(x̄, t̄)

D−(x̄, t̄)

D−(x̄, t̄) ⊂ R× [0, T]

Fig. 426

t

x

(x̄, t̄)

D−h (x̄, t̄) for 3-point stencil
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(8.4.20) CFL-condition

Definition 8.4.21. Courant-Friedrichs-Lewy (CFL-)condition → Rem. 6.2.56

An explicit translation-invariant local fully discrete evolution ~µ(k+1) := H(~µ(k)) on uniform spatio-

temporal mesh (xj = hj, j ∈ Z, tk = kτ, k ∈ N0) as in Def. 8.4.16 satisfies the Courant-

Friedrichs-Lewy (CFL-)condition, if the convex hull of its numerical domain of dependence contains

the maximal analytical domain of dependence:

D−(xj, tk) ⊂ convex(D−h (xj, tk))

By definition of D−(x, t) and D−h (xj, tk) sufficient for the CFL-condition is

τ

h
≤ m

ṡ
←→ timestep constraint! . (8.4.22)

This is a timestep constraint similar to the one encountered in Sect. 6.2.5 in the context of leapfrog

timestepping for the semi-discrete wave equation.

Remember Rem. 6.1.101, page 481: stability induced timestep constraint can lead to an inefficient dis-

cretization. Also in the case of the “ODE” (8.3.9) implicit timestepping can circumvent the CFL-condition.

Yet, at the price of having to solve non-linear systems of equations, which may be prohibitive and makes

people put up with the moderate timestep constraint (8.4.22) gladly.

As discussed in Rem. 6.2.56,

We cannot expect convergence for fixed ratio τ : h, for h→ 0 in case the CFL-condition is violated.

Refer to Fig. 427 for a “graphical argument”:

Fig. 427

t

x

(xj, tk)

h

τ

u0

(• =̂ coarse grid, ■ =̂ fine grid, =̂ d.o.d)

✁ Sequence of equidistant space-time grids of R×
[0, T] with τ = γh (τ/h = meshwidth in time/space)

If γ > CFL-constraint (8.4.22) then

analytical domain

of dependence
6⊂ numerical domain

of dependence

Heuristic reasoning: Initial data u0 supported outside the numerical domain of dependence can influence

the exact solution in the point (xj, tk), which is contained in all spatio-temporal grids of the sequence.

However, µ
(k)
j will never be influenced by initial data inside the support of u0. Hence, there can be cases,

when µ
(k)
j 6→ u(xj, tk) though h, τ → 0.
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8.4.2 Linear stability

In Section 6.1.5.2 (parabolic evolutions) and Section 6.2.5 (linear wave equations) we found that for the

method of lines combined with explicit timestepping

timestep constraints τ ≤ O(hr) , r ∈ {1, 2}, necessary to avoid exponential blow-up (instability )

Is the timestep constraint (8.4.22) suggested by the CFL-condition also stipulated by stability require-

ments?

(8.4.23) Focus on linear advection

We are going to investigate the question only for the Cauchy problem for scalar linear advection in 1D with

constant velocity v > 0:

∂u

∂t
+ v

∂u

∂x
= 0 in R×]0, T[ , u(x, 0) = u0(x) ∀x ∈ R . (8.1.10)

Method of lines approach: Semi-discretization in space on equidistant mesh with meshwidth h > 0 leads

to a

➣ linear, local, and translation-invariant semi-discrete evolution

d~µ

dt
(t) = Lh(~µ(t)) , with (Lh(~µ)) j =

m

∑
l=−m

clµj+l , j ∈ Z , (8.4.24)

for suitable weights cl ∈ R. This is also called a stencil formula, cf. § 8.4.12, m is the width of the stencil.

Explanation of terminology:

• linear : The finite difference operator Lh : RZ 7→ RZ is linear.

• local : (Lh(~µ))j depends only on a few coefficients µj+l for small |l|, cf. page 624.

• translation-invariant: if ηj := µj+1, then (Lh(~η)) j = (Lh(~µ)) j+1 (the finite difference operator

commutes with shifts of the coefficient vector, cf. page 624).

Example 8.4.25 (Upwind difference operator for linear advection)

Finite volume semi-discretization of (8.1.10) in conservation form with Godunov numerical flux (8.3.53) (,

which agrees with the upwind flux (8.3.39) in this case)

(Lh(~µ))j = −
v

h
(µj − µj−1) . (8.4.26)

Coefficients in (8.4.24): c0 = − v
h , c−1 = v

h .

Note: In this case the (loca) Lax-Friedrichs/Rusanov numerical flux (8.3.36) yields the same Lh.
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As in Section 6.1.5.2 and Section 6.2.5 we employ a diagonalization technique (with a new twist). The

policy was to expand the vector of unknowns of the semi-discrete evolution into eigenvectors of the “right-

hand-side operator” of the method-of-lines ODE.

Now the new twist is that Lh acts on the sequence space RZ!

Idea: trial expression for “eigenvectors” (in CZ)

“complex waves”

(
~ψξ

)
j

:= exp(ıξ j) , j ∈ Z , −π < ξ ≤ π . (8.4.27)

An infinite set of eigenvectors, matching dim CZ = ∞!

Remark 8.4.28 (Diagonalization in C)

Why do we have to consider complex-valued eigenvectors? Well, remember from linear algebra that purely

real matrices may have complex eigenvalues. Here, purely real finite difference operators have a complex

spectrum!

By straightforward computations, using exp(x + y) = exp(x) exp(y), we verify the eigenvector property

and compute the corresponding eigenvalues:

(Lh(~µ)) j =
m

∑
l=−m

clµj+l ⇒ Lhψξ =
( m

∑
l=−m

cl exp(iξl)

︸ ︷︷ ︸
“eigenvalue” ĉh(ξ)

)
ψξ .

spectrum of Lh: σ(Lh) = {ĉh(ξ) :=
m

∑
l=−m

cl exp(ıξl): − π < ξ ≤ π} . (8.4.29)

Terminology: The function ĉh(ξ) is known as the symbol of the difference operator Lh, cf. the concept

of symbol of a differential operator.

Remark 8.4.30 (Eigenvectors of translation invariant linear operators)

In [33, Chapter 9] periodic linear time-invariant filters are introduced as linear operators on the space

of n-periodic sequences that commute with translation, see [33, Def. 9.1.13]. They are described by

circulant matrices, see [33, Def. 9.1.17]. The linear difference operator Lh from (8.4.24) generalizes this

concept, because it still features translation invariance, but acts on infinite sequencies. In fact, Lh can be

represented by means of an infinite banded circulant matrix with respect to the “unit vector basis” of the

space of sequences RZ

Lh ∼




. . .
. . .

. . .
. . . 0

. . . c0 . . . cm 0
0 c−m . . . c0 . . . cm 0

0 c−m . . . c0 . . . cm 0
. . .

. . .
. . .
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.

According to [33, Lemma 9.2.11] the columns of the Fourier matrix [33, Eq. (9.2.8)], the vectors (exp(2π jk
n ))n−1

j=0 ∈
Cn, k = 0, . . . , n− 1, provide the eigenvectors of any circulant matrix ∈ Cn. The generalization of these

“Fourier harmonics” to RZ are the complex waves defined in (8.4.27). Therefore we can expect them to

furnish eigenvectors for Lh.

Example 8.4.31 (Spectrum of upwind difference operator)

Apply formula (8.4.29) with c0 = − v
h , c−1 = v

h (from (8.4.26)):

For Lh from (8.4.26): σ(Lh) =
{v

h
(exp(−ıξ) − 1): − π < ξ ≤ π

}

Spectrum of upwind finite difference operator for lin-

ear advection with velocity v > 0 (meshwidth h > 0)

as a subset of C ✄

Fig. 428

C

v
h

− v
h

σ(Lh)

(8.4.32) Diagonalization of semi-discrete evolution

The eigenvalue ĉh(ξ) will govern the evolution when we choose ~ψξ as initial value:

L~ψξ = ĉ(ξ)~ψξ ,

d~µ

dt
(t) = Lh(~µ(t)) bcom

~µ(0) = ~ψξ

⇒ ~µ(t) = exp(x̂ξ)~ξξ , (8.4.33)

as can be seen by simply differentiation.

In § 6.1.58 the principal idea was an expansion of the time-dependent vector of unknown coefficients as a

finite linear combination of eigenvector of the spatially discrete evolution operator. However, now we have

to deal with uncountably many “eigenvectors” ~ψξ , −π < ξ ≤ π, so that linear combination becomes

integration over [−π, π]:

~µ(t) =

π∫

−π

µ̂(t, ξ)~ψξ dξ ⇔ µj(t) =

π∫

−π

µ̂(t, ξ) exp(ıξ j)dξ . (8.4.34)

d~µ

dt
(t) = Lh(~µ(t)) ⇒

∂µ̂

∂t
(t, ξ) = ĉh(ξ)µ̂(t, ξ) . (8.4.35)
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This is a family of decoupled scalar, linear ODEs parameterized by ξ ∈]− π, π].

Remark 8.4.36 (Fourier series → [33, Section 9.2.5])

Up to normalization the relationship

~µ(0) ∈ RZ ↔ µ̂(0) :]− π, π] 7→ C

from (8.4.34) is the Fourier series transform, which maps a sequence to a 2π-periodic function. It has the

important isometry property

∞

∑
j=−∞

|µj|2 = 2π

π∫

−π

|µ̂(ξ)|2 dξ .

➣ The symbol ĉh can be viewed as the representation of a difference operator in Fourier domain.

The decoupling manifest in (8.4.35) carries over to Runge-Kutta timestepping in the sense of the com-

muting diagram (6.1.85). If Ψ
τ is the discrete evolution operator (→ § 6.1.34) induced by an s-stage

Runge-Kutta single step method according to Def. 6.1.40 with timestep τ > 0 for the ODE ~̇µ = Lh(~µ),
Lh from (8.4.24), then straightforward computations yield

Ψ
τ~ψξ = Ψτ

ξ ĉ(ξ)~ξξ , (8.4.37)

where Ψτ
ξ ∈ C is the (multiplication) discrete evolution operator describing the application of the same

RK-SSM to the scalar ODE µ̇ = ĉ(ξ)µ.

To put these considerations into the diagonalization framework, we introduce the Fourier transforms of the

members of the sequence

(
~µ(k)

)
k

created by Runge-Kutta timestepping

~µ(k) =

π∫

−π

µ̂(k)(ξ)~ψξ dξ ⇔ µ
(k)
j =

π∫

−π

µ̂(k)(ξ) exp(ıξ j)dξ . (8.4.38)

Then from (8.4.37), formally appealing to the linearity of Lh, we conclude that

~µ(k+1) = Ψ
τ~µ(k) =

π∫

−π

µ̂(k)(ξ)Ψτ~ψξ dξ =

π∫

−π

µ̂(k)Ψτ
ξ
~ψξ dξ . (8.4.39)

Hence, ξ 7→ µ̂(k)(ξ)Ψτ
ξ has been identified as the Fourier transform of~µ(k+1)

and we find

µ̂(k) =
(

Ψτ
ξ

)k
µ̂(0) , k ∈ N . (8.4.40)

Example 8.4.41 (Explicit Euler in Fourier domain)

Let us apply the above formulas to explicit Euler timestepping [33, Eq. (11.2.7)] for semi-discrete evolution

(8.4.24), see also (8.4.9),

~µ(k+1) = ~µ(k) + τLh~µ
(k) .
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π∫

−π

µ̂(k+1)(ξ) ~ψξ dξ = (Id+ τLh)

π∫

−π

µ̂(k)(ξ)~ψξ dξ =

π∫

−π

µ̂(k)(ξ)(1 + τĉh(ξ)) dξ .

µ̂(k+1)(ξ) = µ̂(k)(ξ)(1 + τĉh(ξ)) .

In Fourier domain a single explicit Euler timestep corresponds to a multiplication of µ̂ :]− π, π] 7→ C with

the function (1 + τĉh) :]− π, π] 7→ C.

We get the same result when applying an explicit Euler step to the ODE
∂µ̂
∂t (t, ξ) = ĉh(ξ)µ̂(t, ξ) from

(8.4.35) with paramter ξ:

µ̂(k+1)(ξ) = (1 + τĉh(ξ))µ̂
(k)(ξ) .

We summarize the observation made in the previous example: For the sequence

(
~µ(k)

)
k∈N0

generated

by an RK-SSM for the linear MOL-ODE (8.4.24) holds

~µ(k) =

π∫

−π

µ̂(k)(ξ)~ψξ dξ ,

where

(
µ̂(k)(ξ)

)
k∈N0

is the sequence of approximations created by the Runge-Kutta method when ap-

plied to the scalar linear initial value problem

ẏ = ĉ(ξ) y , y(0) = µ̂(0)(ξ) .

Clearly, timestepping can only be stable, if blowup |µ̂(k)(ξ)| → ∞ for k → ∞ can be avoided for

all −π < ξ ≤ π.

From [33, Thm. 12.1.15] we know a rather explicit formula for the (complex) numbers Ψτ
ξ :

Theorem 8.4.42. Stability function of explicit Runge-Kutta methods

The execution of one step of size τ > 0 of an explicit s-stage Runge-Kutta single step method (→
Def. 6.1.40) with Butcher scheme

c A

bT (see (6.1.42)) for the scalar linear ODE ẏ = λy, λ ∈ C,

amounts to a multiplication with the number

Ψτ
λ = 1 + zbT(I− zA)−11︸ ︷︷ ︸

stability function S(z)

= det(I− zA+ z1bT) , z := λτ , 1 = (1, . . . , 1)T ∈ R
s .

Example 8.4.43 (Stability functions of explicit RK-methods)
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• Explicit Euler method (8.4.9) :
0 0

1
➣ S(z) = 1 + z .

• Explicit trapezoidal rule (8.4.10) :

0 0 0
1 1 0

1
2

1
2

➣ S(z) = 1 + z + 1
2 z2 .

• Classical RK4-method [33,

Ex. 11.4.13]
:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

2
6

2
6

1
6

➣ S(z) = 1 + z + 1
2z2 + 1

6z3 + 1
24z4 .

Thm 8.4.2 together with the combinatorial formula for the determinant means that Ψτ
λ(z) is a polynomial

of degree ≤ s in z ∈ C.

So we conclude for the evolution of the “Fourier transforms” µ̂(k)(ξ):

µ̂(k+1)(ξ) = S(τĉ(ξ)) · µ̂(k)(ξ) , k ∈ N0 , − π < ξ ≤ π ,

where z 7→ S(z) is the stability function of the Runge-Kutta timestepping method, see Thm. 8.4.2. For

the explicit Euler method we recover the formula of Ex. 8.4.41.

Stability of RK-timestepping of linear semi-discrete evolution ⇐⇒ max
−π<ξ≤π

|S(τĉ(ξ))| ≤ 1

The linear stability analysis based on Fourier symbols of difference operators for Cauchy problems is often

referred to as von Neumann stability analysis.

Remark 8.4.44 (Stability domains)

Terminology in the theory of Runge-Kutta single step methods [33, Def. 12.1.49]:

Stability domain: {z ∈ C: |S(z)| ≤ 1} .

Stability domains:
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Classical RK4-method

For explicit RK-SSM the stability function S(z) is a polynomial, see [33, § 12.1.47]. Therefore, their stability

domains will invariably be bounded sets in C.

Necessary stability condition for RK-SSM for linear evolutions in RZ:☛
✡

✟
✠{τĉ(ξ) , − π < ξ ≤ π} ⊂ stability domain of RK-SSM

Example 8.4.45 (Stability and CFL condition)

Consider: upwind spatial discretization (8.4.26) & explicit Euler timestepping

➣ symbol of difference operator (→ Ex. 8.4.31): ĉh(ξ) =
v
h(exp(−ıξ) − 1),

stability function: S(z) = 1 + z.

Locus of

Σ := S(τĉ(ξ)) , − π < ξ ≤ π ,

in the complex plane ✄

(Unit circle in green)

Fig. 432

C

v
h

1− τv
h

Σ

1

|S(τĉ(ξ))| ≤ 1 ∀ − π < ξ ≤ π ⇐⇒ v
τ

h
≤ 1 .

= CFL-condition of Def. 8.4.21! Note that the maximal analytic region of dependence for constant velocity

v linear advection is merely a line with slope v in the x− t-plane, see Ex. 8.2.11.

Consider: upwind spatial discretization (8.4.26) & explicit trapezoidal rule: stability function S(z) = 1 +
z + 1

2z2
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Plots for v = 1, τ = 1

Fig. 433
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Stability for Heun method & upwind finite differencing

|S(τĉ(ξ))| ≤ 1 ∀ − π < ξ ≤ π ⇐⇒ v
τ

h
≤ 1 .

= tighter timestep constraint than stipulated by mere CFL-condition (8.4.22). To see this note that the

explicit trapezoidal rule is a 2-stage Runge-Kutta method. Hence, the spatial stencil has width 2 in upwind

direction, see Fig. 423.

Stability induced timestep constraint

For an explicit Runge-Kutta single-step method applied to a linear semi-discrete evolution (8.4.24)

the necessary stability condition max
−π≤ξ≤π

|S(τĉ(ξ))| ≤ 1 implies a timestep constraint.

8.4.3 Convergence

Experiment 8.4.47 (Convergence of fully discrete finite volume methods for Burgers equa-

tion)

This example presents a comprehensive empirical investigation of the convergence of simple finite volume

methods.

✦ Cauchy problem for Burgers equation (8.1.46)

∂u

∂t
+

∂

∂x
(1

2 u2) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R .

✦ smooth, non-smooth and discontinuous initial data, supported in [0, 1]:

u0(x) = 1− cos2(πx) , 0 ≤ x ≤ 1 , 0 elsewhere , (BUMP)

u0(x) = 1− 2 ∗ |x− 1
2 | , 0 ≤ x ≤ 1 , 0 elsewhere , (WEDGE)

u0(x) = 1 , 0 ≤ x ≤ 1 , 0 elsewhere . (BOX)
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➣ maximum speed of propagation ṡ = 1.

Fig. 435
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✦ Spatial discretization on equidistant mesh with meshwidth h > 0 based on finite volume method in

conservation form with

➊ (local) Lax-Friedrichs numerical flux (8.3.36),

➋ Godunov numerical flux (8.3.53).

✦ Initial values~µ(0)
obtained from dual cell averages.

✦ Explicit Runge-Kutta (order 4) timestepping with uniform timestep τ > 0.

✦ Fixed ratio: τ : h = 1 (➣ CFL-condition satisfied)

✦ Monitored: error norms (log-log plots)

err1(h) := max
k>0

h ∑
j

|µ(k)
j − u(xj, tk)| ≈ max

k>0

∥∥∥u
(k)
N − u(·, tk)

∥∥∥
L1(R)

, (8.4.48)

err∞(h) := max
k>0

max
j∈Z

|µ(k)
j − u(xj, tk)| ≈ max

k>0

∥∥∥u
(k)
N − u(·, tk)

∥∥∥
L∞(R)

. (8.4.49)

for different final times T = 0.3, 4, h ∈ { 1
20 , 1

40 , 1
80 , 1

160 , 1
320 , 1

640 , 1
1280}.
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“Exact solution”: Initial data (BUMP)

These “exact solutions’ were computed with a MUSCL scheme (→ Sect. 8.5.3) on an equidistant mesh

with h = 10−4

Note: for bump initial data (BUMP) we can still expect u(·, 0.3) to be smoot, because characteristics will

not intersect before that time, cf. (8.2.13) and Ex. 8.2.14.
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Why do we study the particular error norms (8.4.48) and (8.4.49)?

From Thm. 8.2.41 and Thm. 8.2.43 we know that the evolution for a scalar conservation law in 1D enjoys

stability on the norms ‖·‖L1(R) and ‖·‖L∞(R). Hence, these norms are the natural norms for measuring

discretization errors, cf. the use of the energy norm for measuring the finite element discretization error

for 2nd order elliptic BVP.

T = 0.3, error err1

Fig. 440
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T = 0.3: error err∞

Fig. 443
10

2
10

3

10
−1

 3.5h−1

 e
rr

∞

Burgers 1D: smooth initial data, t=0.3

 

 

Lax−Friedrichs

Godunov flux

O(h)

Fig. 444
10

2
10

3

10
−2

10
−1

 3.5h−1

 e
rr

∞

Burgers 1D: C
0
 initial data, t=0.3

 

 

Lax−Friedrichs

Godunov flux

O(h)

Fig. 445
10

2
10

3

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

 3.5h−1

 e
rr

∞

Burgers 1D: box initial data, t=0.3

 

 

Lax−Friedrichs

Godunov flux

O(h)

T = 4: error err∞

Fig. 446
10

2
10

3

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

 3.5h−1

 e
rr

∞

Burgers 1D: smooth initial data, t=4

 

 

Lax−Friedrichs

Godunov flux

O(h)

Fig. 447
10

2
10

3

10
−1

 3.5h−1

 e
rr

∞

Burgers 1D: C
0
 initial data, t=4

 

 

Lax−Friedrichs

Godunov flux

O(h)

Fig. 448
10

2

10
−0.5

10
−0.4

10
−0.3

10
−0.2

 3.5h−1

 e
rr

∞
Burgers 1D: box initial data, t=4

 

Error obtained by comparison with numerical “reference solution” obtained on a very fine spatio-temporal

grid.

Oberservations: for either numerical flux function

✦ (near) first order algebraic convergence (→ Def. 1.6.24) w.r.t. mesh width h in err1,

✦ algebraic convergence w.r.t. mesh width h in err∞ before the solution develops discontinuities

(shocks),

✦ no covergence in norm err∞ after shock formation.
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Best we get: merely first order algebraic convergence O(h)

Heuristic explanation for limited order:

u = u(x, t) =̂ smooth entropy solution of Cauchy problem

∂u

∂t
+

∂

∂x
f (u) = 0 in R×]0, T[ , u(x, 0) = u0(x) , x ∈ R . (8.2.7)

We study the so-called consistency error of the numerical flux F = F(v, w)

(~τF(t)) j = F(u(xj , t), u(xj+1, t))− f (u(xj+1/2, t)) ,j ∈ Z ,

which measures the deviation of the approximate flux and the true flux, when the approximate solution

agreed with the exact solution at the nodes of the mesh.

What we are interested in

behavior of (~τF(t)) j as mesh width h→ 0,

where an equidistant spatial mesh is assumed. Terminology:

max
j∈Z

(~τF(t)) j = O(hq) for h→ 0 ↔ numerical flux consistent of order q ∈ N . (8.4.50)

Rule of thumb: Order of consistency of numerical flux function limits (algebraic) order of convergence

of (semi-discrete and fully discrete) finite volume schemes.

Example 8.4.51 (Consistency error of upwind numerical flux)

Assumption: f continuously differentiable u0 ≥ 0 and f ′(u) ≥ 0 for u ≥ 0 ➣ no transsonic rarefac-

tions!

In this case the upwind numerical flux (8.3.39) agrees with the Godunov flux (8.3.53), see Rem. 8.3.54

and

Fuw(u(xj, t), u(xj+1, t)) = f (u(xj), t) , j ∈ Z .

(~τFuw(t)) j = f (u(xj , t))− f (u(xj+1/2, t))

= f ′(u(xj+1/2, t))(u(xj , t)− u(xj+1/2, t)) + O(|u(xj, t)− u(xj+1/2, t)|2)

= − f ′(u(xj+1/2, t))
∂u

∂x
(xj+1/2, t)1

2 h + O(h2) for h → 0 ,

by Taylor expansion of f and u.

This means that the upwind/Godunov numerical flux is (only) first order consistent.
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Example 8.4.52 (Consistency error of Lax-Friedrichs/Rusanov numerical flux)

Assumption: smooth flux function

Recall: The (local) Lax-Friedrichs numerical flux

FLF(v, w) = 1
2( f (v) + f (w)) − 1

2 max
min{v,w}≤u≤max{v,w}

| f ′(u)|(w − v) , (8.3.36)

is composed of the central flux and a diffusive flux.

We examine the consistency error for both parts separately, using Taylor expansion:

➊ central flux:

1
2( f (u(xj , t)) + f (u(xj+1, t)))− f (u(xj+1/2, t))

= 1
2 f ′(u(xj+1/2, t))(u(xj , t)− u(xj+1/2, t) + u(xj+1, t)− u(xj+1/2, t)) + O(h2)

= 1
2 f ′(u(xj+1/2, t))

(∂u

∂x
(xj+1/2, t)(− 1

2 h + 1
2h) + O(h2)

)
+ O(h2)

= O(h2) for h→ 0 .

(8.4.53)

➣ The central flux is second order consistent.

However, due to instability the central flux on its own is useless, see Section 8.3.3.1.

➋ diffusive flux part:

u(xj+1, t)− u(xj, t) =
∂u

∂x
(xj+1/2, t)h + O(h2) for h→ 0 .

FLF(u(xj, t), u(xj+1, t))− f (u(xj+1/2, t)) = O(h) for h → 0 ,

that is the Lax-Friedrichs/Rusanov numerical flux is only first order consistent, because the consistency

error is dominated by the diffusive flux, which is necessary for the sake of stability.

The observations made in the above examples are linked to a general fact:

Order barrier for monotone numerical fluxes

Monotone numerical fluxes (→ Def. 8.3.61) are at most first order consistent.

?! Review question(s) 8.4.55. (Timestepping for semi-discrete conservation laws)

1. Conduct a vonNeumann stability analysis for the linear evolution

µ̇j =
µj+1− 2µj + µj−1

h2
, h > 0 , (8.4.56)

when explicit Euler timestepping/the explicit trapezoidal rule is used for discretization in time.

8. Numerical Methods for Conservation Laws, 8.4. Timestepping 638



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

8.5 Higher-order conservative schemes

Formally, high-order conservative finite volume methods are distinguished by numerical flux functions that

are consistent of order ≥ 2, see (8.4.50).

However, solutions of (systems of) conservation laws will usually not even be continuous (because of

shocks emerging even in the case of smooth u0, see (8.2.14)), let alone smooth, so that the formal order

of consistency may not have any bearing for the (rate of) convergence observed for the method for a

concrete Cauchy problem.

Therefore in the field of numerics of conservation laws “high-order” is desired not so much for the promise

of higher rates of convergence, but for the following advantages:

✦ for the same spatial resolution. high-order methods frequently provide more accurate solutions in

the sense of global error norms as first-order methods,

✦ high-order methods often provide better resolution of local features of the solution (shocks, etc.).

In standard semi-discrete finite volume schemes in conservation form for 2-point numerical flux function,

dµj

dt
(t) = −1

h

(
F(µj(t), µj+1(t)) − F(µj−1(t), µj(t))

)
, j ∈ Z , (8.3.10)

the numerical flux function is evaluated for the cell averages µj, which can be read as approximate values

of a projection of the exact solution onto piecewise constant functions (on dual cells)

µj(t) ≈
1

h

xj+1/2∫

xj−1/2

u(x, t)dx . (8.3.4)

By Taylor expansion we find for u ∈ C1

u(xj+1/2, t)− 1

h

xj+1/2∫

xj−1/2

u(x, t)dx = O(h) for h → 0 ,

and, unless some lucky cancellation occurs as in the

case of the central flux, see Ex. 8.4.52, this does not

allow more than first order consistency.

Fig. 449 xj− 1
2

xj+ 1
2

x

u

µj

h

O(h)

O(h)

8.5.1 Piecewise linear reconstruction
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Idea: Plug “better” approximations of u(xj±1/2, t) into numerical flux function in

(8.3.10)

dµj

dt
(t) = −1

h

(
F(ν+j (t), ν−j+1(t)) − F(ν+j−1(t), ν−j (t))

)
, j ∈ Z , (8.5.1)

where ν±j are obtained by piecewise linear reconstruction from the (dual) cell

values µj.

ν−j (t) := µj(t)− 1
2hσj(t) ,

ν+j (t) := µj(t) +
1
2hσj(t) ,

j ∈ Z , (8.5.2)

with suitable slopes σj(t) = σ(~µ(t)).

Fig. 450

xjxj−1
xj+1

µj−1

µj
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ν+j
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Analogy: piecewise cubic Hermite interpolation with reconstructed slopes, discussed in the context of

shape preserving interpolation in [33, Section 3.4.2]. However, we do not aim for smooth functions now.

Definition 8.5.3. Linear reconstruction

Given an (infinite) meshM := {]xj−1, xj[}j∈Z (xj−1 < xj), a linear reconstruction operator RM is

a mapping

RM : R
Z 7→ {v ∈ L∞(R): v linear on ]xj−1/2, xj+1/2[ ∀j ∈ Z} ,

taking a sequence ~µ ∈ RZ of cell averages to a possibly discontinuous function RM~µ that is

piecewise linear on dual cells.

Linear reconstruction & (8.5.1) ➣ semi-discrete evolution in conservation form, cf. (8.3.9)

For 2-point numerical flux F = F(u, w)

dµj

dt
(t) = −1

h

(
F(ν+j (t), ν−j+1(t)) − F(ν+j−1(t), ν−j (t))

)
, j ∈ Z . (8.5.4)

MATLAB Code 8.5.5: Conservative FV with linear reconstruction: ode45 timestepping

1 f u n c t io n ufinal = highresevl(a,b,N,u0,T,F,slopes)

2 % finite volume discrete evolution in conservation form with linear

3 % reconstruction, see (8.5.4)

4 % Cauchy problem over time [0, T] restricted to finite interval [a, b],

5 % equidistant mesh with meshwidth N cells, meshwidth h := b−a/N.

6 % 2-point numerical flux function F = F(v, w) passed in handle F

7 % 3-point slope recostruction rule passed as handle slopes = @(v,u,w)
...

8 % (Note: no division by h must be done in slope computation)

9 % returns cell averages for approximate solution at final time in a row
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vector
10 h = (b-a)/N; x = a+0.5*h:h:b-0.5*h; % cell centers

11 mu0 = h*u0(x)’; % vector of initial cell averages (column vector)

12 % right hand side function for MATLAB ode solvers

13 odefun = @(t,mu) (-1/h*fluxdiff(h,mu,F,slopes));

14 % timestepping by explicity Runge-Kutta method of order 5

15 options = odeset(’abstol’,1E-8,’reltol’,1E-6,’stats’,’on’);

16 [t,MU] = ode45(odefun,[0 T],mu0,options);

17 % Graphical output

18 [X,T] = meshgrid(x,t);

19 f i g u r e; s u r f(X,T,MU/h); colormap(copper);

20 x l a b e l(’{\bf x}’,’fontsize’,14);

21 y l a b e l(’{\bf t}’,’fontsize’,14);

22 z l a b e l(’{\bf u}’,’fontsize’,14);

23 ufinal = MU(end,:)’;

24 end

C++11 EIGEN code 8.5.6: Conservative FV with linear reconstruction: ode45 timestepping

➺ GITLAB

2 // Arguments:

3 // real numbers a, b. a < b, the boundaries of the domain

4 // unsigned int N the number of grid cells

5 // Functor u0 : R 7→ R: initial data

6 // real number T > 0: final time

7 // Functor F = F(v, w): 2-point numerical flux function

8 // Functor slopes = σ(v, u, w): 3-point slope recostruction rule

9 // (Note: no division by h needs to be done in slopt computation

10 //

11 // returns:

12 // Vector of cell averages at final time

13 //

14 // finite volume discrete evolution in conservation form with linear

15 // reconstruction, see (8.5.4).

16 // Cauchy problem over time [0, T], equidistant mesh

17 template <typename FunctionU0 , typename FunctionF ,

18 typename FnSlopes >

19 Eigen : : VectorXd h igh resev l ( double a , double b , unsigned N,

20 FunctionU0 u0 , double T , FunctionF F ,

21 FnSlopes slopes ) {

22 double h = ( b−a ) /N; // mesh width

23 // positions of grid points

24 Eigen : : VectorXd x = Eigen : : VectorXd : : LinSpaced (N, a+0.5∗h , b−0.5∗h ) ;

25 // vector of initial cell averages (column vector) from sampling u0

26 Eigen : : VectorXd mu0 = h∗x . unaryExpr ( u0 ) ;

27

28 // right hand side lambda function for ODE solver

29 auto odefun = [& ] ( const Eigen : : VectorXd& mu,

30 Eigen : : VectorXd& dmdt , double t ) {

31 dmdt = −1./h∗ f lu x d i f f <FunctionF , FnSlopes >(h , mu, F , slopes ) ; } ;
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32

33 // timestepping by explicit adaptive Runge-Kutta single-step

34 // method of order 5. Adaptivity control according to [33,
Section 11.5]

35 double abs to l = 1E−8, r e l t o l = 1E−6;

36 Eigen : : VectorXd t ; // Temporal adaptive integration mesh

37 Eigen : : Matr ixXd MU; // State vectors ~µ(k)

38 s td : : t i e ( t , MU) = NPDE : : ode45 ( odefun , 0 , T , mu0, abs to l , r e l t o l ) ;

39 // Extract state vector for final time

40 return MU. co l ( t . s ize ( )−1) ;

41 }

MATLAB Code 8.5.7: Operator Lh for spatial semidiscretization with conservative FV with

linear reconstruction and 2-point numerical flux

1 f u n c t io n fd = fluxdiff(h,mu,F,slopes)

2 % MATLAB function that realizes the right hand side operator Lh for the
ODE

3 % (8.4.3) arising from conservative finite volume semidiscretization of
the

4 % Cauchy problem for a 1D scalar conservation law (8.2.7).

5 % h: meshwidth of equidistant spatial grid

6 % mu: (finite) vector ~µ of cell averages

7 % F: handle to 2-point numerical flux function F = F(v, w)

8 % slope: handle to slope function σj = slopes(µj−1, µj, µj+1)

9 n = l ength(mu); sigma = zeros(n,1); fd = zeros(n,1);

10 % Computation of slopes σj, uses µ0 = µ1,

11 % mN+1 = µN, which amounts to constant extension of state beyond domain
of

12 % influence [a, b] of non-constant intial data.

13 sigma(1) = slopes(mu(1),mu(1),mu(2));

14 f o r j=2:n-1, sigma(j) = slopes(mu(j-1),mu(j),mu(j+1)); end

15 sigma(n) = slopes(mu(n-1),mu(n),mu(n));

16 % Compute linear reconstruction at endpoints of dual cells (8.5.2)

17 nup = mu+0.5*sigma; % ν+j at right endpoint

18 num = mu-0.5*sigma; % ν−j at left endpoint

19 % As in Code 8.3.11: constant continuation of data outside [a, b] !

20 fd(1) = F(nup(1),num(2)) - F(mu(1),num(1));

21 f o r j=2:n-1

22 fd(j) = F(nup(j),num(j+1)) - F(nup(j-1),num(j)); % see (8.5.4)

23 end

24 fd(n) = F(nup(n),mu(n)) - F(nup(n-1),num(n));

25 end

C++11 EIGEN 8.5.8: Operator Lh for spatial semidiscretization with conservative FV with lin-

ear reconstruction and 2-point numerical flux ➺ GITLAB

2 // arguments:

3 // double texttth: meshwidth of equidistant spatial grid

4 // Vector textttmu: (finite) vector ~µ of cell averages

8. Numerical Methods for Conservation Laws, 8.5. Higher-order conservative schemes 642

https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/ConservationLaws/fluxdiff.hpp


NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

5 // Functor textttF: handle to 2-point numerical flux function F = F(v, w)

6 // Functor textttslope: handle to slope function σj = slopes(µj−1, µj, µj+1)

7 //

8 // returns:

9 // Vector with differences of numerical fluxes

10 //

11 // Function that realizes the right hand side operator Lh for the ODE

12 // (8.4.3) arising from conservative finite volume semidiscretization of

13 // the Cauchy problem for a 1D scalar conservation law (8.2.7).

14 template <typename FunctionF , typename FunctionSlopes >

15 Eigen : : VectorXd f l u x d i f f ( double h , const Eigen : : VectorXd& mu,

16 FunctionF F , Funct ionSlopes slopes ) {

17 unsigned n = mu. s ize ( ) ; // Number of grid cells

18 Eigen : : VectorXd sigma = Eigen : : VectorXd : : Zero ( n ) ; // Vector of
slopes

19 Eigen : : VectorXd fd = Eigen : : VectorXd : : Zero ( n ) ;

20

21 // Computation of slopes σj, uses µ0 = µ1, mN+1 = µN,

22 // which amounts to constant extension of states beyond

23 // domain of influence [a, b] of non-constant intial data.

24 // Same technique has been applied in Code 8.3.12

25 sigma [ 0 ] = slopes (mu[ 0 ] , mu[ 0 ] , mu [ 1 ] ) ;

26 for ( unsigned j =1; j < n−1; ++ j )

27 sigma [ j ] = slopes (mu[ j −1] , mu[ j ] , mu[ j +1 ] ) ;

28 sigma [ n−1] = slopes (mu[ n−2] , mu[ n−1] , mu[ n−1]) ;

29

30 // Compute linear reconstruction at endpoints of dual cells (8.5.2)

31 Eigen : : VectorXd nup = mu + 0.5∗sigma ;

32 Eigen : : VectorXd num = mu − 0.5∗sigma ;

33

34 // As in Code 8.3.11: constant continuation of data outside [a, b] !

35 fd [ 0 ] = F ( nup [ 0 ] , num [ 1 ] ) − F (mu[ 0 ] , num[ 0 ] ) ;

36 for ( unsigned j =1; j < n−1; ++ j )

37 fd [ j ] = F ( nup [ j ] , num[ j +1 ] ) − F ( nup [ j −1] , num[ j ] ) ; // see (8.3.10)

38 fd [ n−1] = F ( nup [ n−1] , mu[ n−1]) − F ( nup [ n−2] , num[ n−1]) ;

39

40 return fd ;

41 }

“Natural” choice: central slope (averaged slope)

σj(t) =
1

2

(
µj+1(t)− µj(t)

h
+

µj(t)− µj−1(t)

h

)
=

1

2

µj+1(t)− µj−1(t)

h
. (8.5.9)

By Taylor expansion: for u ∈ C2 (that is, u sufficiently smooth), central slope (8.5.9), ν±j according to

(8.5.2)

|ν−j (t)− u(xj−1/2, t)|, |ν+j (t)− u(xj+1/2, t)| = O(h2) .
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Example 8.5.10 (Convergence of FV with linear reconstruction)

✦ Cauchy problem for Burgers equation (8.1.46) (flux function f (u) = 1
2 u2) from Ex. 8.2.39 with C1

bump initial data (BUMP)

✦ Equidistant spatial mesh with meshwidth h =

✦ Linear reconstruction with central slope (8.5.9)

✦ Godunov numerical flux (8.3.53): F = FGD

✦ 2n-order Runge-Kutta timestepping (method of Heun), timestep τ = 0.5h (“CFL = 0.5”)

Monitored: Approximate L1- and L∞-norms of error at final time T = 0.3 (exact solution still smooth at

this time, see Ex. 8.4.47)

Fig. 451
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✁ “exact solution”

computed by means of a high-order finite volume

method (WENO) on a equidistant mesh with 214

points., U. Fjordholm (SAM)

Observation: 2nd-order convergence in both norms

Example 8.5.11 (Linear reconstruction with central slope (Burgers’ equation))

Cauchy problem of Ex. 8.3.22:

✦ Cauchy problem for Burgers equation (8.1.46) (flux function f (u) = 1
2u2) from Ex. 8.2.39 (“box”

intial data)

✦ Equidistant spatial mesh with meshwidth h =

✦ Linear reconstruction with central slope (8.5.9)

✦ Godunov numerical flux (8.3.53): F = FGD

✦ timestepping based on adaptive Runge-Kutta method ode45 of MATLAB

(opts = odeset(’abstol’,1E-7,’reltol’,1E-6);).

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

h = 0.066667, t=1.002437

 

 

finite volume solution

exact solution

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

h = 0.066667, t=2.002624

 

 

finite volume solution

exact solution

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

h = 0.066667, t=3.001343

 

 

finite volume solution

exact solution

Fig. 452
−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

h = 0.066667, t=4.000000

 

 

finite volume solution

exact solution

8. Numerical Methods for Conservation Laws, 8.5. Higher-order conservative schemes 644



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

−0.5
0

0.5
1

1.5
2

2.5
3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

 x

 t

 u
(t

,x
)

 x

 t

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Emergence of spurious oscillations in the vicinity of shock (in violation of structural properties of the exact

solution, see (8.2.42).)

Compare: Oscillations occurring in FV schemes relying on central flux, see Ex. 8.3.22.

Example 8.5.12 (Linear reconstruction with central slope (traffic flow))

Cauchy problem of Ex. 8.3.23:

✦ Cauchy problem for Traffic Flow equation (8.1.41) (flux function f (u) = u(1− u)) from Ex. 8.2.40

(“box” intial data)

✦ Equidistant spatial mesh with meshwidth h =

✦ Linear reconstruction with central slope (8.5.9)

✦ Godunov numerical flux (8.3.53): F = FGD

✦ timestepping based on adaptive Runge-Kutta method ode45 of MATLAB

(opts = odeset(’abstol’,1E-7,’reltol’,1E-6);).
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Emergence of spurious oscillations in the vicinity of shock (in violation of structural properties of the exact

solution, see (8.2.42).)

Compare: Oscillations occurring in FV schemes relying on central flux, see Ex. 8.3.23.

In Ex. 8.3.22, 7.2.20, the spurious oscillations can be blamed on the unstable central flux/central finite

differences. Maybe, this time the central slope formula is the culprit. Thus, we investigate slope recon-

struction connected with backward and forward difference quotients.

Example 8.5.13 (Linear reconstruction with one-sided slopes (Burgers’ equation))

One-sided slopes for use in (8.5.2)

Right slope: σj(t) =
µj+1(t)− µj(t)

h
, (8.5.14)

Left slope: σj(t) =
µj(t)− µj−1(t)

h
. (8.5.15)

Same setting as in Ex. 8.5.11, with central slope replaced with one-sided slopes.

Left slope:
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Observation: spurious oscillations/overshoots, massive and global for (8.5.14), moderate close to shock

for (8.5.15).

Example 8.5.16 (Linear reconstruction with one-sided slopes (traffic flow))

Left slope:
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Right slope:
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Fig. 457
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Observation: spurious oscillations/overshoots, massive and global for (8.5.14), moderate close to shock

for (8.5.15).

It seems to be the very process of linear reconstruction that triggers oscillations near shocks. These

oscillations can be traced back to “overshooting” of linear reconstruction at jumps.

Example 8.5.17 (Over-/Undershoots in linear reconstruction)

In this example we apply the slope formulas proposed above to particular “synthetic cell averages” derived

from a function (blue graph in plots) featuring a jump, a kink, and a local maximum.
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Slope from central differencing:

σj =
1

2h
(µj+1 − µj−1) . (8.5.9)

(— =̂ cell averages, — =̂ piecewise

linear reconstruction)

Fig. 458
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Slope from forward differencing:

σj =
1

h
(µj+1 − µj) . (8.5.14)

Fig. 459
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Slope from backward differencing:

σj =
1

h
(µj − µj−1) . (8.5.15)

Fig. 460
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We observe that the piecewise linear reconstruction develops over- and undershoots regardless of the

slope formula used.

8.5.2 Slope limiting

We want to find a piecewise linear reconstruction method with a guarantee for the bsuppression of “over-

/undershoots” (→ Fig. 458, Fig. 459, Fig. 460).

Use local monotonicity preservation of linear reconstruction

Definition 8.5.18. Monotonicity preserving linear interpolation

An linear reconstruction operator RM (→ Def. 8.5.3) is monotonicity preserving, if

(RM~µ)(xj) = µj ∧
µj ≤ µj+1 ⇒ RM~µ non-decreasing in ]xj, xj+1[ ,
µj ≥ µj+1 ⇒ RM~µ non-increasing in ]xj, xj+1[ .

Fig. 461 xj−1 xj xj+1 xj+2

Monotonicity preserving linear

reconstruction:

✦ constant at plateaus

✦ constant at (local) extrema

(Magenta arrows =̂ admissible

slope of p.w. linear reconstruction)

Related: shape preserving Hermite interpolation, see [33, Section 3.4.2], achieved by using

✦ zero slope, in case of local slopes with opposite sign, see [33, Eq. (3.4.12)],

✦ harmonic averaging of local slopes, see [33, Eq. (3.4.14)].

Remark 8.5.19 (Consequence of monotonicity preservation)

A monotonicity preserving linear reconstruction operator RM (→ Def. 8.5.18)

• respects the range of cell averages

min{µkµk+1, . . . , µm} ≤ (R~µ)(x) ≤ max{µk, µk+1, . . . , µm} , xk < x < xm . (8.5.20)

↔ “range preservation” by entropy solutions, see Thm. 8.2.41.

• does not allow the creation of new extrema

♯{extrema of RM~µ} ≤ ♯{extrema of ~µ} . (8.5.21)

↔ preservation of number of extrema in entropy solution, Sect. 8.2.7.
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Remark 8.5.22 (Linearity and monotonicity preservation)

The linear reconstruction operators (→ Def. 8.5.3) based on the slope formulas (8.5.9) (central slope),

(8.5.14) (forward slope), (8.5.15) (backward slope) are linear in the sense that

RM(α~µ + β~ν) = αRM(~µ) + βRM~ν) ∀~µ,~ν ∈ R
Z, α, β ∈ R . (8.5.23)

Lemma 8.5.24. Linear monotonicity preserving reconstruction trivial

Every linear, monotonicity preserving (→ Def. 8.5.18) linear reconstruction yields piecewise con-

stant functions.

Proof. Define~ǫk ∈ R
Z, k ∈ Z, by

ǫk
j =

{
1 for k = j ,

0 else.

The~ǫk
form a basis of RZ. Thus, due to linearity, RM is fixed by its action on the basis vectors~ǫk

and its

image is spanned by

{
RM~ǫk

}
k∈Z

.

However, monotonicity preservation entails that RM~ǫk
is piecewise constant, see Fig. 461. ✷

Necessary (for monotonicity preservation): Non-linear

!?

linear reconstruction

A simple consideration, see Fig. 461

µj−1 ≤ µj and µj ≥ µj+1 ⇒ RM~µ ≡ const on ]xj−1/2, xj+1/2[ , (8.5.25)

for any monotonicity preserving (→ Def. 8.5.18) linear reconstruction operator RM (→ Def. 8.5.3).

➣ monotonicity preserving linear reconstruction RM~µ must be constant at local extrema of~µ!

Definition 8.5.26. Minmod reconstruction

The minmod reconstruction Rmm is a piece-

wise linear reconstruction (→ Def. 8.5.3) de-

fined by

(Rmm~µ)(x) = µj + σj(x− xj)

for xj−1/2 < x < xj+1/2 ,j ∈ Z ,

σj := minmod

(
µj+1− µj

xj+1− xj
,

µj − µj−1

xj − xj−1

)
,

minmod(v, w) :=





v , vw > 0, |v| < |w| ,

w , vw > 0, |w| < |v| ,

0 , vw ≤ 0 .
Fig. 462
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Lemma 8.5.27. Monotonicity preservation of minmod reconstruction

Minmod reconstruction (→ Def. 8.5.26) is monotonicity preserving (→ Def. 8.5.18)

Proof. w.l.o.g. assume µj+1 ≥ µj ⇒ σj ≥ 0 ∧σj+1 ≥ 0

⇒ µj +
1
2hσj ≤ 1

2(µj + µj+1) ≤ µj+1− 1
2hσj+1 ✷

Terminology: effect of minmod-function in Rmm: slope limiting: minmod = slope limiter

Example 8.5.28 (Linear reconstruction with minmod limiter (Burgers’ equation))

Same setting as in Ex. 8.5.11, Cauchy problem as in Ex. 8.3.22:

✦ Cauchy problem for Burgers equation (8.1.46) (flux function f (u) = 1
2u2) from Ex. 8.2.39 (“box”

intial data)

✦ Equidistant spatial mesh with meshwidth h = 1
15

✦ Linear reconstruction with minmod limited slope (→ Def. 8.5.26)

σj := minmod

(
µj − µj−1

h
,

µj+1− µj

h

)
.

✦ Godunov numerical flux (8.3.53): F = FGD

✦ timestepping based on adaptive Runge-Kutta method ode45 of MATLAB

(opts = odeset(’abstol’,1E-7,’reltol’,1E-6);).
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Observation: spurious oscillations successfully suppressed!

Example 8.5.29 (Linear reconstruction with minmod limiter)

Same setting as in Ex. 8.5.11, Cauchy problem as in Ex. 8.3.23:

✦ Cauchy problem for Traffic Flow equation (8.1.41) (flux function f (u) = u(1− u)) from Ex. 8.2.40

(“box” intial data)

✦ Equidistant spatial mesh with meshwidth h = 1
15

✦ Linear reconstruction with minmod limited slope (→ Def. 8.5.26)

σj := minmod

(
µj − µj−1

h
,

µj+1− µj

h

)
.

✦ Godunov numerical flux (8.3.53): F = FGD

✦ timestepping based on adaptive Runge-Kutta method ode45 of MATLAB

(opts = odeset(’abstol’,1E-7,’reltol’,1E-6);).
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Observation: spurious oscillations successfully suppressed!

Example 8.5.30 (Improved resolution by limited linear reconstruction)

✦ Same setting as in Ex. 8.3.42: Cauchy problem for Burgers equation (8.1.46) (flux function f (u) =
1
2u2) from Ex. 8.2.39 (shifted “box” intial data, u0(x) = −1 for x 6∈ [0, 1], u0(x) = 1 for x ∈ [0, 1])

✦ Equidistant spatial mesh with meshwidth h = 1
15
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✦ “High-order” method based on linear reconstruction with minmod limited slope (→ Def. 8.5.26)

σj := minmod

(
µj − µj−1

h
,

µj+1− µj

h

)
.

✦ Godunov numerical flux (8.3.53): F = FGD

✦ timestepping based on adaptive Runge-Kutta method ode45 of MATLAB

(opts = odeset(’abstol’,1E-10,’reltol’,1E-8);).

Fig. 465
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Observation: Better resolution of rarefaction fan compared with the conservative finite volume method

based on of Godunov numerical flux without linear reconstruction. Good resolution of shock.

This improved resolution is the main rationale for the use of piecewise linear reconstruction.

8.5.3 MUSCL scheme

= Monotone Upwind Scheme for Conservation Laws

Case of equidistant spatial mesh with meshwidth h > 0:

✦ Conservative finite volume spatial discretization (8.5.1) with monotone consistent 2-point flux, e.g.,

Godunov numerical flux (8.3.53)

✦ Piecewise linear reconstruction (→ Def. 8.5.3) with minmod slope limiting (→ Def. 8.5.26):

ν±j := µj ± 1
2 minmod

(
µj+1− µj, µj − µj−1

)
. (8.5.31)

✦ 2nd-order Runge-Kutta timestepping for (8.5.1): method of Heun, cf. (8.4.10):

If the right hand side of (8.5.1) is abbreviated by

Lh(~µ) := −1

h

(
F(ν+j (t), ν−j+1(t))− F(ν+j−1(t), ν−j (t))

)
,
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then the fully discrete scheme (uniform timestep τ > 0) reads (8.5.1)

~κ := ~µ(k) + 1
2τLh(~µ

(k)) ,

~µ(k+1) := ~µ(k) + τhLh(~κ) .
(8.5.32)

Example 8.5.33 (Adequacy of 2nd-order timestepping)

✦ Same setting as in Ex. 8.3.42: Cauchy problem for Burgers equation (8.1.46) (flux function f (u) =
1
2u2) from Ex. 8.2.39 (shifted “box” intial data, u0(x) = −1 for x 6∈ [0, 1], u0(x) = 1 for x ∈ [0, 1])

✦ Equidistant spatial mesh with meshwidth h = 1
15

✦ Linear reconstruction with minmod limited slope (→ Def. 8.5.26)

σj := minmod

(
µj − µj−1

h
,

µj+1− µj

h

)
.

✦ Godunov numerical flux (8.3.53): F = FGD

✦ Two options for timestepping

1. timestepping based on adaptive Runge-Kutta method ode45 of MATLAB

(opts = odeset(’abstol’,1E-10,’reltol’,1E-8);).

2. Heun timestepping (8.5.32) with uniform timestep τ = h

Fig. 467
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Fig. 468
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Observation: 2nd-order Runge-Kutta method (8.5.32) provides same accuracy as “overkill integration” by

means of ode45 with tigth tolerances.

➣ For the sake of efficiency balance order of spatial and temporal discretizations and use Heun timestep-

ping.

Example 8.5.34 (Convergence of MUSCL scheme)

Numerical experiments of Ex. 8.4.47 repeated for
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✦ conservative finite volume discretization with Godunov numerical flux and minmod-limited linear

reconstruction, see Ex. 8.5.28 (ode45 timestepping),

✦ MUSCL scheme as introduced above with fixed timestep τ = 0.5h.

Monitored: “discrete” error norms (8.4.48), (8.4.49)

Fig. 469
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Observation: 2nd-order Heun method produces so-

lutions whose convergence and accuracy matches those of solutions obtained by highly accurate high-

order Runge-Kutta timestepping.

➣
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?! Review question(s) 8.5.35. (Higher order conservative finite volume methods)

1. Argue why a linear monotonicity preserving piecewise linear reconstruction must impose vanishing

slopes throughout.

2. Explain the meanings of “linear” in the phrase “non-linear linear reconstruction” (in the context of

high-order finite volume methods for 1D conservation laws).

3. What will be the width of the stencil for the fully discrete evolution operator, when using two-point

numerical fluxes, piecewise linear reconstruction based on min-mod limiting, and an s-stable explicit

RK-SSM for timestepping for the discretization of a scalar conservation law in 1D.

8.6 Outlook: systems of conservation laws

Learning outcomes

In this chapter about the numerical treatment of conservation laws you should have learned

• the general form of a scalar conservation law in one spatial dimension, and the balance law ex-

pressed by it.

• the notions of weak solutions, shock solutions, entropy conditions and entropy solutions.

• the general policy of constructing a conservative finite volume spatial semi-discretization.

• important consistent numerical flux functions, in particular the Godunov flux.

• the structure preservation inherent in conservative finite volume methods based on monotone nu-

merical fluxes.

• the concept and significance of the CFL-condition for fully discrete conservative finite volume schemes.

• the construction of “high-order” spatial discretizations based on slope limited piecewise linear recon-

struction.
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Chapter 9

Finite Elements for the Stokes Equations
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9.1 Viscous fluid flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

9.2 The Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

9.2.1 Constrained variational formulation . . . . . . . . . . . . . . . . . . . . . . . 660
9.2.2 Saddle point problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
9.2.3 Stokes system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

9.3 Saddle point problems: Galerkin discretization . . . . . . . . . . . . . . . . . . . . 668

9.3.1 Pressure instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
9.3.2 Stable Galerkin discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
9.3.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682

9.4 The Taylor-Hood element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

9.1 Viscous fluid flow

Task: simulation of stationary fluid flow

computation of the velocity v = v(x) of a fluid moving in a container Ω ⊂ R
d, d = 2, 3, under the

influence of an external force field f : Ω 7→ Rd.

(d = 2? ↔ translational symmetry ➥ dimensionally reduced model)

✎ notation: as before, bold typeface for vector valued functions

Recall: description of fluid motion through a velocity field → Sect. 7.1.1

We restrict ourselves to incompressible fluids → Def. 7.1.7

Thm. 7.1.12 Constraint div v = 0 . (9.1.1)

configuration space for incompressible fluid

V :=
{

v : Ω 7→ R
d continuous , div v = 0

}
. (9.1.2)

657



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

Flow regimes of an incompressible Newtonian fluid (a fluid, for which stress is linearly proportional to

strain) are distinguished by the size of a fundamental non-dimensional quantity, the

Reynolds number Re :=
ρVL

µ
,

where (for d = 3)
✦ ρ =̂ density ([ρ] = kg m−3)

✦ V =̂ mean velocity ([V] = m s−1)

✦ L =̂ characteristic length of region of interest ([L] = m)

✦ µ =̂ dynamic viscosity ([µ] = kg m−1s−1)

Reynolds number = ratio of inertia forces : viscous (friction) forces

The Reynolds number becomes small, if

• the speed of the flow is very small (slowly flowing fluids), or

• the flow is studied at tiny length scales (micro flows), or

• the fluid is highly viscous (“sticky”).

In this case acceptably accurate modelling can neglect inertia forces ➣ creeping flow

Viscous fluids “stick to the walls of the container”

no-slip boundary conditions: v = 0 on ∂Ω . (9.1.3)

configuration space for viscous incompressible fluid

V :=

{
v : Ω 7→ Rd continuous,

div v = 0 , v |∂Ω = 0

}
. (9.1.4)

We appeal to an extremal principle to derive governing equations for incompressible creeping flow: the

state of the system renders a physical quantity minimal.

For the elastic string (→ Sect. 1.2), taut membrane (→ Sect. 2.2.1), electrostatic field (→ Sect. 2.2.2) this

quantity was the total potential energy. For stationary viscous fluid flow, this role is played by the energy

dissipation:

energy dissipation = conversion of kinetic energy into internal energy (heat)

(↔ entropy production)

AXIOM: energy dissipation functional for viscous fluid ([Pdiss] = W)

Pdiss(v) =
∫

Ω
µ‖curl v(x)‖2 dx (9.1.5)

rotation/curl =̂ first-order differential operator

curl v :=




∂v2

∂x3
− ∂v3

∂x2
∂v3

∂x1
− ∂v1

∂x3
∂v1

∂x2
− ∂v2

∂x1




for d = 3 , curl v :=
∂v1

∂x2
− ∂v2

∂x1
for d = 2 . (9.1.6)
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Fig. 473

“eddy field”, div v = 0

Fig. 474  x
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Plot of ‖curl v‖ for eddy field

curl v = “density of eddies/vortices in flow field”

Thus, in viscous fluid flow the conversion of kinetic energy into heat due to friction presumably happens in

vortical flow patterns (eddies).

Second law of thermodynamics for creeping flow:

Maximization of energy dissipation in flow (9.1.7)

entropy production

First law of thermodynamics: conservation of energy/power balance

∫

Ω
µ‖curl v(x)‖2 dx =

∫

Ω
f · v dx . (9.1.8)

dissipated energy energy injected through forces

First equilibrium condition for viscous stationary flow:

v∗ = argmax

{∫

Ω
µ‖curl v(x)‖2 dx: v ∈ V , v satisfies (9.1.8)

}
(9.1.9)

=̂ constrained optimization problem with constraint (9.1.8).

Goal: Convert (9.1.9) into a “more standard” optimization problem.

To that end we study a related problem in finite dimensional context Rn:

x∗ = argmax
xTAx=bTx

xTAx , (9.1.10)

with s.p.d. A ∈ Rn,n, b ∈ Rn. With the transformation y = A−1/2x (→ [8, Rem. 8.3.2]) we arrive at the

equivalent maximization problem

y∗ = argmax
‖y‖2=(A−1/2b)Ty

‖y‖2 .
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Fig. 475

A−1b

The set {y : ‖y‖2 = (A−1/2b)Ty} is a sphere through 0
around 1

2A−1/2b and we are looking for its point farthest away

from 0. By “geometric considerations” this will be the point

y∗ = A−1/2b ➣ x∗ = A−1b.

Recall: relationship between linear systems of equations and quadratic minimization problems, see [8,

Section 8.1.1] and Sect. 2.2.3.

x∗ = A−1b can be obtained as solution of

x∗ = argmin
x∈Rn

1
2xTAx− bTx . (9.1.11)

To have faith that this reasoning applies to (9.1.9) as well, the bilinear form (u, v) 7→
∫

Ω
curl u · curl v dx

should be positive definite (→ Def. 2.2.40) ➤ see Lemma 9.2.1 below.

Another issue, of course, is, whether the above arguments remain true for (infinite dimensional) function

spaces ➤ theory of variational calculus [11, Ch. 49], not elaborated here.

Second equilibrium condition for viscous stationary flow, cf. (2.2.12), (2.2.24):

v∗ = argmin
v∈V

1
2

∫

Ω
µ‖curl v(x)‖2 dx−

∫

Ω
f · v dx . (9.1.12)

9.2 The Stokes equations

9.2.1 Constrained variational formulation

Lemma 9.2.1. −∆ = curl curl− grad div

For v ∈ C2(Ω), v|∂Ω = 0, holds

∫

Ω
‖curl v‖2 dx +

∫

Ω
|div v|2 dx =

∫

Ω
‖Dv‖2

F dx .

✎ notations: Dv :=

(
∂vi

∂xj

)d

i,j=1

: Ω 7→ R
d,d Jacobian,

‖M‖F =̂ Frobenius matrix norm (→ [8, Def. 7.5.37])

Proof (of Lemma 9.2.1)
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Use the variant of Green’s first formula Thm. 2.5.9
∫

Ω

∂u

∂xj
v dx = −

∫

Ω

∂v

∂xj
u dx ∀u, v ∈ C1(Ω) , u, v = 0 on ∂Ω , (9.2.2)

and the fact that different partial derivatives can be interchanged, which implies
∫

Ω

∂u

∂xj

∂v

∂xk
dx =

∫

Ω

∂u

∂xk

∂v

∂xj
dx , k, j = 1, . . . , d .

Then use the definitions of curl and div. ✷

In light of the properties div v = 0, v = 0 on ∂Ω, for eligible fluid velocity fields, see (9.1.4), we have the

equivalence:

(9.1.12)
Lemma 9.2.1⇐⇒ v∗ = argmin

v∈V

1
2

∫

Ω
µ‖Dv‖2

F dx
︸ ︷︷ ︸

=:a(v,v)

−
∫

Ω
f · v dx

︸ ︷︷ ︸
=:ℓ(v)

. (9.2.3)

=̂ quadratic minimization problem (→ Def. 2.2.32) on function space V.

Rewrite quadratic form (µ ≡ const)

v = (v1, . . . , vd)
T :

∫

Ω
µ‖Dv‖2

F dx = µ
d

∑
i=1

‖grad vi‖2 dx .

By the first Poincaré-Friedrichs inequality of Thm. 2.3.31

‖v‖2
L2(Ω) ≤ diam(Ω)2

∫

Ω
‖Dv‖2

F dx ∀v ∈ V ⊂ (H1
0(Ω))3 .

Bilinear form a from (9.2.3) is positive definite (→ Def. 2.2.40).

Remark 9.2.4 (Decoupling of velocity components ?)

Rewrite (9.2.3) in terms of components vi of velocity (with force field f = ( f1, f2, f3)
T):

(9.2.3) ⇔ argmin
v∈V

3

∑
i=1

(
1
2

∫

Ω
µ‖grad vi‖2 dx−

∫

Ω
fivi dx

)
. (9.2.5)

Well, three copies of (2.2.24) ?!

NO! div v = 0 constraint (9.1.1) links components of velocity field v.

This constraint in the space V represents the crucial difference compared to minimization problems

(2.2.12), (2.2.24) underlying scalar 2nd-order elliptic variational equations.

As in Sect. 2.3: put (9.2.3) into Hilbert space (more precisely, Sobolev space) framework, where we have

existence and uniqueness of solutions.

(9.2.5) offers hint on how to choose suitable Sobolev spaces.

Remember: function spaces for a (linear) variational problem are chosen as the largest (Hilbert) spaces

on which the involved bilinear forms and linear forms are still continuous, cf. (2.2.55),

(3.2.4).
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(9.2.5), (9.1.3)

appropriate Sobolev space for (9.2.3):

H1
0(div 0, Ω) :=

{
v ∈ (H1

0(Ω))3 : div v = 0
}

((H1
0(Ω))3 =̂ space of vector fields with components in H1

0(Ω), alternative notation H1
0(Ω)).

As in Sect. 2.4.1 derive the linear variational problem

v ∈ H1
0(div 0, Ω): a(v, w) = ℓ(w) ∀w ∈ H1

0(div 0, Ω) ,

from (9.2.5), which reads in concrete terms:

Seek v ∈ H1
0(div 0, Ω) :=

{
v ∈ (H1

0(Ω))3 : div v = 0
}

such that
∫

Ω

grad vi · grad wi dx =
∫

Ω

fiwi dx ∀w ∈ H1
0(div 0, Ω) , i = 1, 2, 3 ,

m
∫

Ω

Dv : Dw dx =
∫

Ω

f ·w dx ∀w ∈ H1
0(div 0, Ω) .

(9.2.6)

✎ notation: A : B := ∑
i,j

aijbij for matrices A, B ∈ Rm,n (“componentwise dot product”).

For this linear variational problem we verify

• Assumption 5.1.2 from Poincaré-Friedrichs inequality, see above,

• Assumption 5.1.3 for f ∈ (L2(Ω))d by Cauchy-Schwarz inequality, see (2.3.30), (??),

• Assumption 5.1.4, since H1
0(div 0, Ω) is a closed subspace of H1(Ω).

Thm. 5.1.5 ➡ existence & uniqueness of solutions of (9.2.6)

Remark 9.2.7 (H1
0(div 0, Ω)-conforming finite elements)

In principle, the linear variational problem could be tackled by means of a finite element Galerkin dis-

cretization.

However, finding finite element spaces ⊂H1
0(div 0, Ω) is complicated [9]: Continuous, piecewise polyno-

mial, locally supported, and divergence free basis fields exist only for polynomial degree ≥ 4!

This remark motivates an approach that removes the constraint from trial and test space (and incorporates

it into the variational formulation).

9.2.2 Saddle point problem

Idea: weak enforcement of divergence constraint (9.1.1)

through Lagrange multiplier
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Remark 9.2.8 (Heuristics behind Lagrangian multipliers)

Setting:

✦ U, Q =̂ real Hilbert spaces with inner products (·, ·)U, (·, ·)Q,

✦ J : U 7→ R convex and differentiable functional,

✦ B : U 7→ Q linear operator (defining constraint)

Linearly constrained minimization problem

v∗ = argmin
v∈U,Bv=0

J(v) . (9.2.9)

Introduce Lagrangian functional:

L(v, p) := J(v) + (p,Bv)Q v∗ = argmin
v∈U

sup
p∈Q

L(v, p) , (9.2.10)

because, if Bv 6= 0, the value of the inner supremum will be +∞, and, thus, such a v can never be a

candidate for a minimizer.

Terminology: p is called a Lagrange multiplier, Q the multiplier space.

Terminology: a min-max problem like (9.2.10) = saddle point problem

Lemma 9.2.11. Necessary conditions for existence of solution of saddle point problem →
[11, Ch. 50]

Any solution v∗ of (9.2.10) will be the first component of a zero (v∗, p∗) of the derivative (“gradient”)

of the Lagrangian functional L.

(v∗, p∗) will satisfy

lim
t→0

L(v∗ + tw, p∗)− L(v∗, p∗)
t

= 0 ∀w ∈ U ,

lim
t→0

L(v∗, p∗ + tq)− L(v∗, p∗)
t

= 0 ∀q ∈ Q .
(9.2.12)

because by the very structure of the saddle point problem, see Fig. 476 for illustration,

L(v∗, p) ≤ L(v∗, p∗) ≤ L(v, p∗) ∀v ∈ U, p ∈ Q . (9.2.13)

Computing these “directional derivatives” as in Sect. 1.3.1 (for the elastic string energy functional there),

we obtain

〈DJ(v∗), w〉 + (p∗,Bw)Q = 0 ∀w ∈ U ,

(q,Bv∗)Q = 0 ∀q ∈ Q .
(9.2.14)

This is a variational saddle point problem .

Special case: quadratic functional J : U 7→ R → Def. 2.2.27

J(v) := 1
2a(v, v)− ℓ(v) ,
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with a positive definite, symmetric bilinear form a : U × U 7→ R (→ Defs. 1.3.22, 2.2.40), continuous

linear form ℓ : U 7→ R.

(2.4.9)

〈DJ(v∗), w〉 = a(v∗, w)− ℓ(w) , w ∈ U .

In this special case (9.2.14) becomes a linear variational saddle point problem:

Seek v∗ ∈ U, p∗ ∈ Q

a(v∗, w) + (p∗,Bw)Q = ℓ(w) ∀w ∈ U ,

(q,Bv∗)Q = 0 ∀q ∈ Q .
(9.2.15)

For rigorous mathematical treatment of constrained optimization in Banach spaces refer to [11, Ch. 49 &

Ch. 50]. A discussion in finite-dimensional setting is given in [8, Section 6.4.1].

Solution of min-max problem:

saddle point

(non-extremal critical point)

The saddle point is a minimum when approached

from the “U-direction”, and a maximum, when ap-

proached from the “Q-direction”.

Fig. 476
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Adapt abstract approach outline in Rem. 9.2.8 to (9.2.6):

✦ Hilbert spaces: U = H1
0(Ω), Q = L2(Ω),

✦ Constraint div v = 0 ➣ B := div : U 7→ Q continuous,

✦ J ↔ v 7→ 1
2

∫
Ω

µ‖Dv‖2 dx−
∫
Ω

f · v dx, a strictly convex quadratic functional (→ Def. 2.2.27)

Lagrangian functional for (9.2.6)

L(v, p) = 1
2

∫

Ω

µ‖Dv‖2
F dx−

∫

Ω

f · v dx +
∫

Ω

div v p dx , v ∈ H1
0(Ω), p ∈ L2(Ω) . (9.2.16)

Next use formula for derivative of quadratic functionals, see Sect. 2.4.1, (2.4.9), which yields a concrete

specimen of (9.2.15).

Stokes problem: Linear variational saddle point problem for viscous flow (preliminary version)

seek velocity v ∈ H1
0(Ω), Lagrange multiplier p ∈ L2(Ω)

∫
Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ H1
0(Ω) ,

∫
Ω

div v q dx = 0 ∀q ∈ L2(Ω) .
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Lagrange multiplier p = pressure ([p] = N m−2)

No differential constraints in test/trial spaces for (9.2.19)!

Remark 9.2.17 (Ensuring uniqueness of pressure)

Notice:

∫

Ω

div v dx =
∫

∂Ω

v · n dS = 0, since v|∂Ω = 0.

Pressure solution p in (9.2.19) can be unique only up to an constant!

Compare: Non-uniqueness of solution of 2nd-order elliptic Neumann problem, Rem. 2.9.14.

Remedy, cf. (2.9.15)

Choose p ∈ L2
∗(Ω) := {q ∈ L2(Ω):

∫

Ω
q dx = 0} . (9.2.18)

←→ constraint on trial/test space L2(Ω)

Stokes problem: Variational saddle point problem for viscous flow

seek velocity v ∈ H1
0(Ω), Lagrange multiplier p ∈ L2

∗(Ω)

∫
Ω

µDv : Dw dx +
∫
Ω

div w p dx =
∫
Ω

f ·w dx ∀w ∈ H1
0(Ω) ,

∫
Ω

div v q dx = 0 ∀q ∈ L2
∗(Ω) .

(9.2.19)

Theorem 9.2.20. Existence and uniqueness of weak solutions of Stokes problem

The linear variational saddle point problem (9.2.19) (“Stokes problem”) has a unique solution.

Proof. (crude outline; this sketch of the proof is included, because its ideas carry over to the discrete

setting.)

Preparatory considerations: a(v, w) :=
∫

Ω
µDv : Dw dx is an inner product on H1

0(Ω).

a-orthogonal decomposition H1
0(Ω) = H1

0(div 0, Ω)⊕V⊥

➊ Unique solution v ∈ H1
0(div 0, Ω) of (9.2.6) ➣ unique v-solution for (9.2.19)

(first test with w ∈ H1
0(div 0, Ω), then with w ∈ V⊥.)

➋ Use the following profound result from functional analysis [2, Thm. 5.3]:

Theorem 9.2.21. Existence of stable velocity potentials

∃C = C(Ω) > 0: ∀q ∈ L2
∗(Ω): ∃v ∈ H1

0(Ω): q = div v ∧ ‖v‖H1(Ω) ≤ C‖q‖L2(Ω) .
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Idea: Assume f = 0, test first equation with w ∈ V⊥ satisfying div w = p ➤ ‖p‖L2(Ω) = 0 ⇔
p = 0, for any pressure solution p ∈ L2

∗(Ω).

uniqueness of pressure solution

➌ Existence of pressure solution from Riesz representation theorem (→ functional analysis) and Thm. 9.2.21,

not elaborated here. ✷

Remaining issue: (9.2.18) introduces another constraint into (9.2.19)!

Relax, Lagrangian multipliers can deal with this, too. Now we study their use to enforce a zero mean

constraint in the simpler setting of 2nd-order elliptic Neumann BVPs.

Remark 9.2.22 (Enforcing zero mean)

→ [1] As in Sect. 2.5, Rem. 2.9.14, we consider a 2nd-order linear Neumann BVP (with zero Neumann boundary conditions

h = 0), cf. (2.9.16),

u ∈ H1
∗(Ω):

∫

Ω
κ(x) grad u · grad v dx =

∫

Ω
f v dx ∀v ∈ H1

∗(Ω) .

with the constrained trial/test space

H1
∗(Ω) := {v ∈ H1(Ω):

∫

Ω
v(x)dx = 0} . (2.9.15)

The related quadratic minimization problem reads (→ Sect. 2.2.3)

u = argmin
v∈H1∗(Ω)

J(v) , J(v) := 1
2

∫

Ω

κ(x)‖grad v‖2 dx−
∫

Ω
f v dx .

Idea: enforce linear constraint
∫

Ω
v(x)dx = 0 by means of Lagrangian

multiplier, see Rem. 9.2.8

Here: scalar constraint (Q = R) ➤ scalar multiplier p ∈ R

Lagrangian functional:

L(v, p) = J(v) + p
∫

Ω
v(x)dx , v ∈ H1(Ω) , p ∈ R .

related (augmented) linear variational saddle point problem, specialization of (9.2.15):

seek u ∈ H1(Ω), p ∈ R

∫

Ω
κ(x) grad u · grad v dx + p

∫

Ω
v dx =

∫

Ω
f v dx ∀v ∈ H1(Ω) ,

∫

Ω
v dx = 0 .

(9.2.23)

The same technique can be applied to (9.2.19).
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Stokes variational saddle point problem with pressure normalization:

seek velocity v ∈ H1
0(Ω), pressure p ∈ L2(Ω), multiplier λ ∈ R

∫

Ω

µ∇v : ∇w dx +
∫

Ω

div w p dx =
∫

Ω

f ·w dx ∀w ∈ H1
0(Ω) ,

∫

Ω

div v q dx + λ
∫

Ω

q dx = 0 ∀q ∈ L2(Ω) ,

∫

Ω

p dx = 0 .

(9.2.24)

9.2.3 Stokes system

As in Sect. 2.5: derivation of the BVP in PDE form corresponding to (9.2.24).

Approach: Remove spatial derivatives from test functions by integration by parts (1.3.40)

Assuming sufficient smoothness of solution (v, p), constant µ and (9.2.24) and taking into account bound-

ary conditions, apply Green’s formula of Thm 2.5.9:

∫

Ω

µ∇v : ∇w dx = µ
d

∑
i=1

∫

Ω

grad vi · grad wi dx = −µ
d

∑
i=1

∫

Ω

∆vi wi dx ,

∫

Ω

div w p dx = −
∫

Ω

grad p ·w dx .

(9.2.24) ⇒

−µ∆v− grad p = f
div v = 0 in Ω ,∫

Ω
p dx = 0

v = 0 on ∂Ω .

(9.2.25)

✎ notation: ∆ =̂ componentwise Laplacian, see (2.5.15) (“vector Laplacian”)

Remark 9.2.26 (Pressure Poisson equation)

Manipulating the PDEs in (9.2.25):

div · (9.2.25) −µ div ∆v + div grad p = div f in Ω ,

−µ∆(div v) + ∆p = div f in Ω ,
div v=0

∆p = div f .
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Appearance: (9.2.25) can be solved by solving d + 1 Poisson equations,

✦ first solve pressure Poisson equation ∆p = div f
✦ then solve Dirichlet boundary value problems for velocity components

−∆vi = fi +
∂p

∂xi
in Ω , vi = 0 on ∂Ω .

Problems

☛ above manipulations only valid for sufficiently smooth u (not guaranteed).

☛ we cannot solve a “Poisson equation”, we also need boundary conditions for p: not

available!

9.3 Saddle point problems: Galerkin discretization

Example 9.3.1 (Naive finite difference discretization of Stokes system)

✦ BVP (9.2.25) on Ω =]0, 1[2, µ ≡ 1, f = cos(πx1)(
0
1),

✦ Finite difference discretization on (→ Sect. 4.1) equidistant tensor product grid ✄

Unknowns: v1,ij, v2,ij, pij =̂ approximations of v1(ih, jh), v2(ih, jh), p(ih, jh), 0 < i, j < N.

✦ Zero boundary values for v1, v2, and p

✦ 5-point stencil discretization of −∆, see (4.1.3)

✦ Central finite difference approximation of grad p, e.g.,

∂p

∂x1 |(ih,jh)
≈ 1

2h

(
pi+1,j − pi−1,j

)
, 1 ≤ i, j < N .

Fig. 477

finite difference grid
Fig. 478
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MATLAB Code 9.3.2: Central finite difference discretization of Stokes system

1 f u n c t io n [u1,u2,p] = StokesFD(N,f)

2 % Naive finite difference discretization of the Stokes system (9.2.25)
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3 % N: number of grid cells in each direction.

4 % f: handle to a (vector valued!) function implementing the force

field f
5 % Return values u1, u2 give the velocity components v = (v1, v2)T

6 % in a matrix whose entries correspond to the vertices of the mesh,

7 % p returns the preassure.

8 h = 1/N; % mesh width

9 x = h:h:1-h; % coordinates of interior grid points

10 unk = N-1; % number of interior points in each direction

11 n = 3 * unk^2; % total number of unknowns for v and p

12 % A line-by-line numbering (lexikographic numbering) of the grid points
is assumed,

13 % see Sect. 4.1, Fig. 481.

14 A = g a l l e r y(’poisson’, unk); % Matrix for 5-point stencil

discretization of −∆
15

16 % Build matrix representation of grad p. Note the efficient assembly
based on the

17 % special structure of the matrices.

18 % Auxiliary 1D central finite difference matrix

19 e = ones(unk, 1); CD = spdiags([-h/2*e h/2*e], [-1 1], unk,unk);

20 % Central difference matrix for ∂
∂x1
: This matrix is a block

21 % diagonal matrix with N − 1 diagonal blocks corresponding to the grid
rows. Its diagonal

22 % blocks are skew-symmetric and bidiagonal with non-zero first
off-diagonals only.

23 P1 = kron(speye(unk),CD);

24 % Central difference matrix for ∂
∂x2
: This matrix is

25 % a block matrix with non-zero first off-diagonal blocks only. Each
non-zero block is

26 % a multiple of the identity.

27 P2 = kron(CD,speye(unk));

28 % Build the complete n× n system matrix and make sure that it is a
sparse matrix.

29 Z = sparse(unk^2, unk^2); % Major mistake would be z =
zeros(unk^2,unk^2);

30 H = [A Z P1; Z A P2; P1’ P2’ Z];

31

32 % Assemble the right hand side (sampling of f at interior grid points)

33 F = zeros(n,1);

34 pidx1 = 1; pidx2 = n/3+1;

35 f o r j = 1:s iz e(x), f o r i = 1:s iz e(x)

36 frc = h^2*f(x(i),x(j));

37 F(pidx1) = frc(1); F(pidx2) = frc(2);

38 pidx1 = pidx1+1; pidx2 = pidx2 + 1;

39 end, end

40 % Direct solution of sparse indefinite symmetric system

41 X = H\F;

42

43 % Convert vectors of nodal values into matrix representations of grid
functions

44 u1 = ro t90(reshape(X(1:unk^2),unk,unk));

45 u2 = ro t90(reshape(X(unk^2+1:2*unk^2),unk,unk));

46 p = ro t90(reshape(X(2*unk^2+1:end),unk,unk));
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47

48 end

Fig. 479
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Physically meaningless solution marred by massive spurious oscillations of the pressure.

9.3.1 Pressure instability

Lesson learned: discretizing saddle point problems can be tricky!

Now, we examine the Galerkin discretization (→ Sect. 3.2) of the linear variational problem (9.2.19)

(Practical schemes will rely on (9.2.24), but here, for the sake of simplicity, we skirt the treatment of zero

mean constraint.)

Shorthand notation for (9.2.19) (↔ abstract linear variational saddle point problem, see (9.2.15))

v ∈ U := H1
0(Ω) ,

p ∈ Q := L2
∗(Ω)

:
a(v, w) + b(w, p) = ℓ(w) ∀w ∈ U ,
b(v, q) = 0 ∀q ∈ Q .

(9.3.3)

with concrete bilinear forms

a(v, w) :=
∫

Ω
µ Dv : Dw dx , b(v, q) :=

∫

Ω
div v q dx . (9.3.4)

First step of Galerkin discretization:

Replace
H1

0(Ω)

L2
∗(Ω)

with finite dimensional subspaces
UN ⊂ H1

0(Ω)

QN ⊂ L2
∗(Ω)

Discrete linear variational saddle point problem:

vN ∈ UN

pN ∈ QN
:

a(vN , wN) + b(wN , pN) = ℓ(wN) ∀wN ∈ UN ,
b(vN , qN) = 0 ∀qN ∈ QN .

(9.3.5)

Second step of Galerkin discretization:
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Introduce ordered bases
BU := {b1

N, . . . , bN
N},

BQ := {β1
N , . . . , βM

N }
of

UN, N := dim UN,

QN, M := dim QN.

(N + M)× (N + M) linear system of equations symmetric indefinite matrix!

(
A BT

B 0

)(
~ν
~π

)
=

(
~ϕ
0

)
, (9.3.6)

(9.3.7)

with Galerkin matrices, right hand side vectors

A :=
(
a(b

j
N , bi

N)
)N

i,j=1
=

(∫

Ω
µ Db

j
N(x) : Dbi

N(x)dx

)N

i,j=1

∈ R
N,N , (9.3.8)

B :=
(
b(b

j
N , βi

N)
)

1≤i≤M
1≤j≤N

=

(∫

Ω
div b

j
N(x) βi

N(x)dx

)

1≤i≤M
1≤j≤N

∈ R
M,N , (9.3.9)

~ϕ :=
(
ℓ(b

j
N)
)N

j=1
=

(∫

Ω
f(x) · bj

N(x)dx

)N

j=1

∈ R
N , (9.3.10)

and basis expansions

vN =
N

∑
j=1

νjb
j
N , pN =

M

∑
j=1

πjβ
j
N . (9.3.11)

Issue: existence, uniqueness and stability of solutions of (9.3.5)

!

Existence, uniqueness and stability of solutions of discrete variational saddle point

problems cannot be inferred from these properties for the continuous saddle point prob-

lem (→ Thm. 9.2.20).

(Unlike in the case of linear variational problems with s.p.d. bilinear forms, cf.

Thm. 3.2.9)

A simple consideration:

M > N ⇒ Kern B 6= {0} ⇒ non-uniquenesss of pN .

➣ dim UN ≥ dim QN is a necessary condition for uniqueness of solution pN of (9.3.5)

Some “natural” finite element Galerkin schemes for (9.2.19)↔ (9.3.3) fail to meet this condition:

Example 9.3.12 (Unstable P1-P0 finite element pair on triangular mesh)

Notation: (cf. S0
p(M)): S−1

p (M)
discontinuous functions

locally polynomials of degree p , cf. Pp(R
d)

The spaces S−1
p (M) are the natural finite element spaces for test/trial functions ∈ L2(Ω), because this

function space does not enforce any continuity conditions on piecewise smooth functions. Conversely,

H1(Ω) does, see Thm. 2.3.35.
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Regular triangular mesh of ]0, 1[2

Finite element spaces for (9.2.19)

UN := (S0
1,0(M))2 ,

QN := S−1
0 (M) ∩ L2

∗(Ω) (M-piecewise constants) .

K ∈ N =̂ no. of mesh cells in one coordinate direc-

tion,

dim UN = 2(K− 1)2 , dim QN = 2K2 − 1 .

dim QN > dim UN
Fig. 481

In this case we end up with a singular linear system (9.3.6), which will make the linear solver bail out or

produce a pressure solution, which is polluted by “noise” from Kern B.

But dim UN ≥ dim QN is not enough: even if this condition is satisfied, the pressure may not be unique:

Example 9.3.13 (Checkerboard instability for quadrilateral P1-P0 FE pair → [2, § 6])

✦ M = uniform tensor product mesh of ]0, 1[2 ✄

✦ velocity space UN = (S0
1,0(M))2

✦ pressure space QN = S−1
0 (M) ∩ L2

∗(Ω)

If K ∈ N mesh cells in one coordinate direction,

dim UN = 2(K− 1)2 , dim QN = K2 − 1 .

dim QN < dim UN for K ≥ 4 .
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Fig. 482
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C3C4

p

e1

e2

e3

e4

Consider interior grid point p = (ih, jh), 1 ≤ i, j ≤ K, with

adjacent quadratic cells C1, C2, C3, C4, see figure.

Denote by pi the piecewise constant values of pN on Ci, i =
1, 2, 3, 4.

b
p
N,1 =̂ nodal basis function for x1 velocity component at vertex p: b

p
N,1 = b

p
N ·
(

1

0

)
, where b

p
N is the

2D “tent function” (→ Fig. 92) associated with p.

supp(b
p
N,1) = C1 ∪ C2 ∪ C3 ∪ C4

Apply Gauss’ theorem Thm. 2.5.7 on Ci taking into account that b
p
N ⊥ normals at e2, e4, and b

p
N ‖

normals at e1, e3,

∫

Ω

div b
p
N,1 pN dx = p1

∫

e1

b
p
N dx− p2

∫

e1

b
p
N dx + p3

∫

e3

b
p
N dx− p4

∫

e3

b
p
N dx

= 1
2(p1 − p2 + p3 − p4) .

Similarly, if b
p
N,2 is the nodal basis function at p for the x2-component of the velocity vN , then

∫

Ω

div b
p
N,2 pN dx = 1

2(p1 + p2 − p3 − p4) .

p1 = 1, p2 = −1, p3 = 1, p4 = −1 ⇒
∫

Ω

div b
p
N,1 pN dx =

∫

Ω

div b
p
N,2 pN dx = 0 . (9.3.14)

Now, realize that the setting is translation invariant!

Fig. 483
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By (9.3.14) the discrete pressure with alternating

values ±1 in checkerboard fashion will belong to

Kern B for this finite element Galerkin method (for

odd K). Observation:

{pN ∈ QN : b(vN , pN) = 0 ∀vN ∈ UN} 6= ∅ .

= 1-dimensional space of checkerboard modes

✁ p.w. constant checkerboard mode
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Example 9.3.15 (P1-P0 quadrilateral finite elements for Stokes problem)

✦ BVP (9.2.25) on Ω =]0, 1[2, µ ≡ 1, f = cos(πx1)(
0
1), see Ex. 9.3.1

✦ P1-P0 finite element Galerkin discretization on equidistant tensor product quadrilateral mesh, as in

Ex. 9.3.13

MATLAB Code 9.3.16: P1-P0 finite difference discretization of augmented Stokes problem

1 f u n c t io n [v1,v2,p] = stokesP1P0FD(N,frc)

2 % P1-P0 finite element discretization of Stokes problem (9.2.24) on a

3 % quadrilateral tensor product mesh, see Ex. 9.3.13.

4 % N: number of mesh cells in one coordinate direction.

5 % f: function handle of type symbol64(x1,x2) to right hand side

6 % force field f

7 h = 1/N; nv = (N-1)^2; nc = N^2; % meshwidth, ♯V(M), ♯M
8 % Assemble system matrix from Kronecker products of 1D Galerkin

matrices
9 % Tridiagonal 1D mass matrix for linear finite elements

10 M = h*spdiags(ones(N-1,3)*diag([1/6 2/3 1/6]),[-1 0 1],N-1,N-1);

11 % Tridiagonal 1D Galerkin matrix for d2

dx2, see (??)

12 D = spdiags(ones(N-1,3)*diag([-1 2 -1]),[-1 0 1],N-1,N-1)/h;

13 % 1D Galerkin matrix for p.w. linear/p.w. constant finite elements
and the bilinear

14 % form
1∫

0

du
dx q dx

15 G = spdiags(ones(N,2)*diag([-1 1]),[-1 0],N,N-1);

16 % 1D mass matrix for p.w. linear and p.w. constant finite elements

17 C = 0.5*h*spdiags(ones(N,2),[-1 0],N,N-1);

18 % constraint on pressure, see Rem. 9.2.22

19 Delta = kron(M,D)+kron(D,M); % 9-point stencil matrix for discrete
Laplacian

20 divx = kron(C,G); divy = kron(G,C); % discrete divergence

21 % Complete saddle point system matrix including Lagrangian multiplier
for enforcing mean zero

22 A = [ Delta , sparse(nv,nv) , divx’ ,

sparse(nv,1) ;...

23 sparse(nv,nv) , Delta , divy’ ,

sparse(nv,1) ;...

24 divx , divy , sparse(nc,nc) ,

ones(nc,1); ...

25 sparse(1,nv) , sparse(1,nv) , ones(1,nc) , 0

];

26 % Assembly of right hand side

27 phi = zeros(2*nv+nc+1,1); x = h:h:1-h; idx = 1;

28 f o r j=1:N-1, f o r i=1:N-1,

29 phi([idx idx+nv]) = h*h*frc(x(i),x(j)); idx = idx+1;

30 end, end;

31 % Direct solve of (singular for even N) linear saddle point system

32 u = A\phi;

9. Finite Elements for the Stokes Equations, 9.3. Saddle point problems: Galerkin discretization 674



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

33 % Recover velocity and pressure values on the grid

34 v1 = ro t90(reshape(u(1:nv),N-1,N-1));

35 v2 = ro t90(reshape(u(nv+1:2*nv),N-1,N-1));

36 p = ro t90(reshape(u(2*nv+1:end-1),N,N));

Fig. 484
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Observation: ☞ pressure solution marred by checkerboard mode

☞ computed velocity field ok!

9.3.2 Stable Galerkin discretization

In the previous examples we found a subspace of QN, which dodges div vN in the bilinear form b.

We arrive at the important heuristic insight:☛
✡

✟
✠div vN must be “large enough to fix the pressure” pN ∈ QN

Idea: Use larger velocity trial/test spaces vN

➣ larger space div vN

➣ more control of pN

How to get a larger trial space for the velocity? Raise polynomial degree!

Example 9.3.17 (P2-P0 finite element scheme for the Stokes problem)

✦ Ω =]0, 1[2, u(x) = (cos(π/2(x1 + x2)),− cos(π/2(x1 + x2)))
T , p(x) = sin(π/2(x1 − x2)), f and

inhomogeneous Dirichlet boundary values for u accordingly

✦ Sequence of (a) uniform triangular meshes, created by regular refinement,

(b) randomly perturbed meshes from (a) (still uniformly shape-regular & quasi-uniform).
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✦ “P2-P0-scheme” velocity finite element space UN = (S0
2,0(M))2 (continuous, piecewise quadratic

→ Sect. 3.5.1, Ex. 3.5.3),

pressure finite element space QN = S−1
0 (M) ∩ L2∗(Ω) (piecewise constant)

Monitored: Error norms ‖u− uN‖1, ‖u− uN‖0, ‖p− pN‖0

MATLAB Code 9.3.18: LehrFEM driver script P2-P0 finite element method for Stokes problem

1 % LehrFEm driver script for computing solutions of the steady Stokes
problem on the unit square

2 % using piecewise quadratic finite elements for the velocity and
piecewise constants for the

3 % pressure.

4 NREFS = 4; % Number of red refinements

5 NU = 1; % Viscosity

6 % Dirichlet boundary data

7 GD_HANDLE = @(x,varargin)[cos(p i/2*(x(:,1)+x(:,2)))

-cos(p i/2*(x(:,1)+x(:,2)))];

8 % Right hand side source (force field)

9 F_HANDLE = @(x,varargin)[ s in(p i*x(:,1)) zeros(s iz e(x(:,1))) ];

10

11 % Initialize mesh

12 Mesh = load_Mesh(’Coord_Sqr.dat’,’Elem_Sqr.dat’);

13 Mesh.ElemFlag = ones(s iz e(Mesh.Elements,1),1);

14 Mesh = add_Edges(Mesh);

15 Loc = get_BdEdges(Mesh);

16 Mesh.BdFlags = zeros(s iz e(Mesh.Edges,1),1);

17 Mesh.BdFlags(Loc) = -1;

18 f o r i = 1:NREFS, Mesh = refine_REG(Mesh); end

19

20 % Assemble Galerkin matrix and load vector

21 A = assemMat_Stokes_P2P0(Mesh,@STIMA_Stokes_P2P0,NU,P7O6());

22 L = assemLoad_Stokes_P2P0(Mesh,P7O6(),F_HANDLE);

23

24 % Incorporate Dirichlet boundary data

25 [U,FreeDofs] = assemDir_Stokes_P2P0(Mesh,-1,GD_HANDLE); L = L

- A*U;

26

27 % Solve the linear system (direct solver)

28 U(FreeDofs) = A(FreeDofs,FreeDofs)\L(FreeDofs);

29

30 % Plot and print solution

31 plot_Stokes(U,Mesh,’P2P0’);

32 t i t l e (’{\bf Steady Stokes equation (P2 elements)}’);

33 x l a b e l([’{\bf # Dofs : ’ i n t 2 s t r(s iz e(U,1)) ’}’]);

34 co lorbar;

35 p r i n t(’-depsc’,’func_P2P0.eps’)

MATLAB Code 9.3.19: Assembly of global Galerkin matrix for P2-P0 finite element method for

Stokes problem
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1 f u n c t io n varargout = assemMat_Stokes_P2P0(Mesh,EHandle,varargin)

2 % Assemble Galerking matrix for P2-P0 finite element discretization of
Stokes problem

3 % (9.2.24): piecewise quadratic continuous velocity components and
piecewise

4 % constant pressure approximation.

5 %mesh LehrFEM mesh data structure, complete with edge information,

6 %Sect. 3.6.2 The struct MESH must at least contain the following
fields:

7 % COORDINATES M-by-2 matrix specifying the vertices of the mesh.

8 % ELEMENTS N-by-3 or matrix specifying the elements of the mesh.

9 % EDGES P-by-2 matrix specifying the edges of the mesh.

10 % ELEMFLAG N-by-1 matrix specifying additional elementinformation.

11 % EHandle passes function for computation of element matrix.

12 % See Sect. 3.6.4 for a discussion of the generic assembly algorithm

13 nCoordinates = s iz e(Mesh.Coordinates,1);

14 nElements = s iz e(Mesh.Elements,1);

15 nEdges = s iz e(Mesh.Edges,1);

16 % Preallocate memory for the efficient initialization of sparse matrix,
Ex. 3.3.37

17 I = zeros(196*nElements,1); J = zeros(196*nElements,1); A =

zeros(196*nElements,1);

18 % Local assembly: loop over all cells of the mesh

19 loc = 1:196;

20 f o r i = 1:nElements

21 % Extract vertex coordinates

22 vidx = Mesh.Elements(i,:);

23 Vertices = Mesh.Coordinates(vidx,:);

24 % Compute 14× 14 element matrix: there are 6 local shape functions
for the finite

25 % element space S0
2 (M), and 1 (constant) local shape function for

26 % S−1
0 (M): 6 + 6 + 1 = 13 local shape functions for the P2-P0 scheme

27 Aloc = EHandle(Vertices,Mesh.ElemFlag(i),varargin{:});

28 % Add contributions to global Galerkin matrix: the numbering
convention is a follows:

29 % d.o.f. for x1-components of the velocity are numbered first, then

30 % x2-components of the velocity, then the pressure d.o.f.

31 eidx = [Mesh.Vert2Edge(vidx(1),vidx(2)) ...

32 Mesh.Vert2Edge(vidx(2),vidx(3)) ...

33 Mesh.Vert2Edge(vidx(3),vidx(1))];

34 % Note: entries of an extra last row/column of the Galerkin matrix
corresponding to

35 % pressure d.o.f. are filled with one to enfore zero mean pressure,
see

36 % Ex. 9.2.22

37 idx = [vidx,eidx+nCoordinates,...
vidx+nCoordinates+nEdges,eidx+2*nCoordinates+nEdges,...
i+2*(nEdges+nCoordinates),...
2*(nEdges+nCoordinates)+nElements+1];

38 I(loc) = set_Rows(idx,14); J(loc) = set_Cols(idx,14); A(loc) =

Aloc(:);

39 loc = loc+196;

40 end

41

42 % Assign output arguments for creation of sparse matrix
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43 i f (nargout > 1), varargout{1} = I; varargout{2} = J;

varargout{3} = A;

44 else , varargout{1} = sparse(I,J,A); end

45 r e t u r n

MATLAB Code 9.3.20: Computation of element matrix for P2-P0 finite element method for

Stokes problem

1 f u n c t io n Aloc =

STIMA_Stokes_P2P0(Vertices,ElemInfo,nu,QuadRule,varargin)

2 % Computation of element matrix for P2-P0 finite element discretization
of 2D Stokes problem

3 % Vertices passes the location of the vertices of the triangle

4 % nu is the viscosity parameter

5 % QuadRule specifies local quadrature rule, see Rem. ??

6 % The function returns a 14× 14 dense matrix

7 Aloc = zeros(14,14); % Preallocate memory

8 % Compute element mapping

9 bK = Vertices(1,:); BK = [Vertices(2,:)-bK; Vertices(3,:)-bK];

10 inv_BK_t = transpose( inv(BK)); det_BK = abs(det(BK));

11 % Compute gradients element shape functions and their values at
quadrature points

12 grad_N = grad_shap_QFE(QuadRule.x);

13 grad_N(:,1:2) = grad_N(:,1:2)*inv_BK_t;

14 grad_N(:,3:4) = grad_N(:,3:4)*inv_BK_t;

15 grad_N(:,5:6) = grad_N(:,5:6)*inv_BK_t;

16 grad_N(:,7:8) = grad_N(:,7:8)*inv_BK_t;

17 grad_N(:,9:10) = grad_N(:,9:10)*inv_BK_t;

18 grad_N(:,11:12) = grad_N(:,11:12)*inv_BK_t;

19 % The first 6 rows/columns of the element matrix correspond to the
x1-component of the

20 % velocity. the corresponding block of the element matrix agrees with

that for −∆
21 % discretized by means of quadratic Lagrangian finite elements. The

local shape functions are

22 % described in Ex. 3.5.3.

23 Aloc(1,1) =

nu*sum(QuadRule.w.*sum(grad_N(:,1:2).*grad_N(:,1:2),2))*det_BK;

24 Aloc(1,2) =

nu*sum(QuadRule.w.*sum(grad_N(:,1:2).*grad_N(:,3:4),2))*det_BK;

25 Aloc(1,3) =

nu*sum(QuadRule.w.*sum(grad_N(:,1:2).*grad_N(:,5:6),2))*det_BK;

26 Aloc(1,4) =

nu*sum(QuadRule.w.*sum(grad_N(:,1:2).*grad_N(:,7:8),2))*det_BK;

27 Aloc(1,5) =

nu*sum(QuadRule.w.*sum(grad_N(:,1:2).*grad_N(:,9:10),2))*det_BK;

28 Aloc(1,6) =

nu*sum(QuadRule.w.*sum(grad_N(:,1:2).*grad_N(:,11:12),2))*det_BK;

29 Aloc(2,2) =

nu*sum(QuadRule.w.*sum(grad_N(:,3:4).*grad_N(:,3:4),2))*det_BK;

30 Aloc(2,3) =
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nu*sum(QuadRule.w.*sum(grad_N(:,3:4).*grad_N(:,5:6),2))*det_BK;

31 Aloc(2,4) =

nu*sum(QuadRule.w.*sum(grad_N(:,3:4).*grad_N(:,7:8),2))*det_BK;

32 Aloc(2,5) =

nu*sum(QuadRule.w.*sum(grad_N(:,3:4).*grad_N(:,9:10),2))*det_BK;

33 Aloc(2,6) =

nu*sum(QuadRule.w.*sum(grad_N(:,3:4).*grad_N(:,11:12),2))*det_BK;

34 Aloc(3,3) =

nu*sum(QuadRule.w.*sum(grad_N(:,5:6).*grad_N(:,5:6),2))*det_BK;

35 Aloc(3,4) =

nu*sum(QuadRule.w.*sum(grad_N(:,5:6).*grad_N(:,7:8),2))*det_BK;

36 Aloc(3,5) =

nu*sum(QuadRule.w.*sum(grad_N(:,5:6).*grad_N(:,9:10),2))*det_BK;

37 Aloc(3,6) =

nu*sum(QuadRule.w.*sum(grad_N(:,5:6).*grad_N(:,11:12),2))*det_BK;

38 Aloc(4,4) =

nu*sum(QuadRule.w.*sum(grad_N(:,7:8).*grad_N(:,7:8),2))*det_BK;

39 Aloc(4,5) =

nu*sum(QuadRule.w.*sum(grad_N(:,7:8).*grad_N(:,9:10),2))*det_BK;

40 Aloc(4,6) =

nu*sum(QuadRule.w.*sum(grad_N(:,7:8).*grad_N(:,11:12),2))*det_BK;

41 Aloc(5,5) =

nu*sum(QuadRule.w.*sum(grad_N(:,9:10).*grad_N(:,9:10),2))*det_BK;

42 Aloc(5,6) =

nu*sum(QuadRule.w.*sum(grad_N(:,9:10).*grad_N(:,11:12),2))*det_BK;

43 Aloc(6,6) =

nu*sum(QuadRule.w.*sum(grad_N(:,11:12).*grad_N(:,11:12),2))*det_BK;

44 % the same for the x2-component of the velocity

45 Aloc(7,7) = Aloc(1,1); Aloc(7,8) = Aloc(1,2); Aloc(7,9) =

Aloc(1,3);

46 Aloc(7,10) = Aloc(1,4); Aloc(7,11) = Aloc(1,5); Aloc(7,12) =

Aloc(1,6);

47 Aloc(8,8) = Aloc(2,2); Aloc(8,9) = Aloc(2,3); Aloc(8,10) =

Aloc(2,4);

48 Aloc(8,11) = Aloc(2,5); Aloc(8,12) = Aloc(2,6); Aloc(9,9) =

Aloc(3,3);

49 Aloc(9,10) = Aloc(3,4); Aloc(9,11) = Aloc(3,5); Aloc(9,12) =

Aloc(3,6);

50 Aloc(10,10) = Aloc(4,4); Aloc(10,11) = Aloc(4,5); Aloc(10,12)

= Aloc(4,6);

51 Aloc(11,11) = Aloc(5,5); Aloc(11,12) = Aloc(5,6); Aloc(12,12)

= Aloc(6,6);

52 % Interaction of pressure shape functon (constant ≡ 1) with velocity:
evaluation of

53 % local bilinear form bK.

54 % First for x1-components, then for

55 Aloc(1,13) = sum(QuadRule.w.*grad_N(:,1))*det_BK;

56 Aloc(2,13) = sum(QuadRule.w.*grad_N(:,3))*det_BK;

57 Aloc(3,13) = sum(QuadRule.w.*grad_N(:,5))*det_BK;

58 Aloc(4,13) = sum(QuadRule.w.*grad_N(:,7))*det_BK;
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59 Aloc(5,13) = sum(QuadRule.w.*grad_N(:,9))*det_BK;

60 Aloc(6,13) = sum(QuadRule.w.*grad_N(:,11))*det_BK;

61 % Next for x2-components of velocity

62 Aloc(7,13) = sum(QuadRule.w.*grad_N(:,2))*det_BK;

63 Aloc(8,13) = sum(QuadRule.w.*grad_N(:,4))*det_BK;

64 Aloc(9,13) = sum(QuadRule.w.*grad_N(:,6))*det_BK;

65 Aloc(10,13) = sum(QuadRule.w.*grad_N(:,8))*det_BK;

66 Aloc(11,13) = sum(QuadRule.w.*grad_N(:,10))*det_BK;

67 Aloc(12,13) = sum(QuadRule.w.*grad_N(:,12))*det_BK;

68 % Entry corresponding to zero mean multiplier

69 Aloc(13,14) = det_BK;

70 % Fill in lower triangular part

71 tri = t r i u (Aloc); Aloc = tri+ t r i l (tri’,-1);

72 r e t u r n

Fig. 486
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Raising the polynomial degree has cured the instability!

Oberservation: algebraic convergence ‖u− uN‖1 = O(hM),
‖u− uN‖0 = O(h2

M),
‖p− pN‖0 = O(hM).

The pair UN = S0
2,0(M), QN = S−1

0 (M) is the first combination of finite element spaces that we find to

provide a stable Galerkin discretization of the variational Stokes problem (9.2.19)↔ (9.2.14).

Recall the concept of stability/well-posedness for linear problems, see Sect. 2.4.2, “stability estimate” of

Thm. 3.2.9,
∥∥solution

∥∥ ≤ C
∥∥right hand side

∥∥ for all data,

where relevant norms have to be considered.

For the Stokes problem: relevant norms = norms of Sobolev spaces fitting (9.2.19)

For velocity v : use “energy norm” ‖·‖
a

:= a(·, ·)1/2 ∼ ‖·‖H1(Ω), cf. Def. 2.2.43

For pressure p : use ‖·‖L2(Ω).
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Definition 9.3.21. Stable finite element pair

A pair of finite element spaces UN ⊂ H1
0(Ω), QN ⊂ L2∗(Ω) is a stable finite element pair, if the

solution (vN , pN) of the discrete saddle point problem (9.3.5) satisfies

|ℓ(wN)| ≤ Cℓ‖wN‖a ∀wN =⇒ ∃C > 0: ‖vN‖a + ‖pN‖L2(Ω) ≤ CCℓ ,

where C > 0 may depend only on Ω, the coefficient µ, and the shape regularity measure (→
Def. 5.3.37) ofM.

We have already encountered an estimate like

|ℓ(wN)| ≤ Cℓ‖wN‖a ∀wN ∈ UN , (9.3.22)

when finding that the existence of solutions of quadratic minimization problems (→ Def. 2.2.32) hinges on

the continuity of the involved linear form, see (2.2.55).

Let us embark on a mathematical analysis of the stability issue, which turns out to be much simpler than

expected.

Remark 9.3.23 (Stable velocity solution)

Consider (9.2.19)↔ (9.2.14), and Galerkin discretization (9.3.5), define the subspace

N (bN) := {wN ∈ UN : b(wN , qN) = 0 ∀qN ∈ QN} ⊂ UN . (9.3.24)

From 2nd equaton ➣ for any solution (vN , pN) of (9.3.5): vN ∈ N (bN)

Test the first equation of (9.3.5) with wN ∈ N (bN)

a(vN , wN) = ℓ(wN)
wN :=vN=⇒ ‖vN‖2

a
≤ ℓ(vN)

(9.3.22)

≤ Cℓ‖vN‖a .

perfect stability of any velocity Galerkin solution

This explains the observation made in Ex. 9.3.15: reasonable approximation for velocity v despite pressure

instability.

Remark 9.3.25 (Stability of pressure solution: inf-sup condition)

Goal: stability of pressure solution pN ∈ QN of (9.3.5)

‖pN‖L2(Ω) ≤ C sup
wN∈UN

ℓ(wN)

‖wN‖a
(9.3.26)

best constant in (9.3.22)
From the first equation of (9.3.5)

a(vN , wN) + b(wN , pN) = ℓ(wN) ∀wN ∈ UN ,

9. Finite Elements for the Stokes Equations, 9.3. Saddle point problems: Galerkin discretization 681



NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

and the stability of the velocity solution (→ Rem. 9.3.23) we conclude (9.3.26), once we know

b(wN , pN) = g(wN) ∀wN ∈ UN ⇒ ‖pN‖L2(Ω) ≤ C sup
wN∈UN

|g(wN)|
‖wN‖a

. (9.3.27)

Theorem 9.3.28. inf-sup condition

The finite element spaces UN ⊂ H1
0(Ω), QN ⊂ L2

∗(Ω) provide a stable finite element pair (→
Def. 9.3.21) for the Stokes problem (9.2.19)/ (9.2.14) if there is a constant β > 0 depending only on

Ω and the shape regularity measure (→ Def. 5.3.37) ofM such that

sup
wN∈UN

|b(wN , qN)|
‖wN‖a

≥ β‖qN‖L2(Ω) ∀qN ∈ QN . (9.3.29)

The estimate (9.3.29) is kown as
inf-sup condition

LBB (Ladyzhenskaya-Babuska-Brezzi) condition

It is the linchpin of the numerical analysis of finite element methods for the Stokes problem, see [6].

9.3.3 Convergence

Abstract considerations (easier this way!):

✦ H =̂ normed vector space, norm ‖·‖ (think of a function space),

✦ c : H × H 7→ R bilinear form on H, not necessarily s.p.d. (→ Def. 2.2.40),

✦ ℓ : H 7→ R linear form on H,

✦ Assumption: c is continuous, cf. Rem. 7.2.3, (3.2.4)

∃Cc > 0: |c(u, v)| ≤ Cc‖u‖‖v‖ ∀u, v ∈ H . (9.3.30)

We consider the linear variational problem (→ Rem. ??)

u ∈ H: c(u, v) = ℓ(v) ∀v ∈ H , (9.3.31)

and its Galerkin discretization, based on finite-dimensional subspace HN ⊂ H, cf. (3.2.8),

uN ∈ HN : c(uN , vN) = ℓ(vN) ∀vN ∈ HN . (9.3.32)

Assumption: stability

uN solves (9.3.32) =⇒ ∃Cs > 0: ‖uN‖ ≤ sup
wN∈HN

|ℓ(wN)|
‖wN‖

. (9.3.33)

Trick! For any vN ∈ HN the difference uN − vN (uN solution of (9.3.32)) solves

c(uN − vN , wN) = ℓ(wN)− c(vN , wN) ∀wN ∈ HN .
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(9.3.33)
=⇒ ‖uN − vN‖ ≤ Cs sup

wN∈HN

|ℓ(wN)− c(vN , wN)|
‖wN‖

(9.3.31)
= Cs sup

wN∈HN

|c(u− vN, wN)|
‖wN‖

(9.3.30)

≤ CcCs‖u− vN‖ .

(9.3.34)

”Trick” Triangle inequality

‖u− uN‖ ≤ ‖u− vN‖+ ‖uN − vN‖
(9.3.34)

≤ (1 + CcCs)‖u− vN‖ ∀vN ∈ HN .

‖u− uN‖ ≤ (1 + CcCs) inf
vN∈HN

‖u− vN‖ . (9.3.35)

(9.3.35) is a fundamental insight into the properties of Galerkin discretizations, cf. Thm. 5.1.15 that was

confined to s.p.d. bilinear forms:

For the Galerkin discretization of linear variational problems:

Stability ⇒ Quasi-optimality (∗)

Terminology:
Quasi-optimality of Galerkin solutions: with C > 0 independent of data and discretization

parameters

‖u− uN‖

︸ ︷︷ ︸
↑

≤ C inf
vN∈HN

‖u− vN‖
︸ ︷︷ ︸

↑

, (9.3.36)

(norm of) discretization error best approximation error

Application of abstract theory to finite element discretization of Stokes problem (9.2.19):

✦ H := H1
0(Ω)× L2(Ω) (combination of two function spaces!)

✦ Role of c played by

c

((
v

p

)
,

(
w

q

))
:= a(v, w) + b(w, p) + b(v, q) . (9.3.37)

✦ Right hand side functional ”ℓ
(
(w

q )
)
= ℓ(w)”

✦ Galerkin trial/test space HN := UN ×QN .

Then, along the lines of the above abstract considerations, one can show the following a priori error

estimate:
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Theorem 9.3.38. Convergence of stable FE for Stokes problem

If UN, QN is a stable finite element pair (→ Def. 9.3.21) for the Stokes problem (9.2.19), then the

corresponding finite element Galerkin solution (vN , pN) satisfies

‖v− vN‖H1(Ω) + ‖p− pN‖L2(Ω) ≤ C

(
inf

wN∈UN

‖v−wN‖H1(Ω) + inf
qN∈QN

‖p− qN‖L2(Ω)

)
,

with a constant C > 0 that depends only on Ω, µ, and the shape regularity of the finite element

mesh.

Note: the a priori error bound of Thm. 9.3.38 involves the sum of the best approximation errors for both

the velocity and pressure trial/test spaces.

Example 9.3.39 (Convergence of P2-P0 scheme for Stokes equation)

Interpretation of error curves observed in Ex. 9.3.17:

Smooth solutions for both v and p:

Sect. 5.3.5 ➣

inf
wN∈S0

2,0(M)
‖v−wN‖H1(Ω) ≤ Ch2

M‖v‖H3(Ω) (Thm. 5.3.56),

inf
qN∈S−1

0 (M)
‖p− qN‖L2(Ω) ≤ ChM‖p‖H1(Ω),

with constants depending only on the shape regularity measure (→ Def. 5.3.37) of triangulationM.

The observed O(h) algebraic convergence in the H1(Ω)-norm (for vN) and L2(Ω)-norm (for pN) results,

because

the larger best aproximation error of S−1
0 (M) dominates.

9.4 The Taylor-Hood element

A: The ultimate cure for instability

chose trial/test space for velocity large enough→ very large (to play safe).

B: Well, but a large finite element space leads to a large system of linear equations, that is, high compu-

tational cost.

A: Never mind, a large space buys good accuracy, which is what we also want!

Remark 9.4.1 (Efficient finite element discretization of Stokes problem)

Thm. 9.3.38, cf. discussion in Ex. 9.3.39: the finite element discretization error for a stable finite element

pair (UN , QN) (→ Def. 9.3.21) for the Stokes problem (9.2.19) is the sum of approximation errors for the

velocity v in UN and the pressure p in QN.

➣ Excellent approximation of either v or p alone may not lead to an accurate solution.
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Recall similar situation for method of lines, where errors of spatial discretization and timestepping add up,

see “Meta-Thms.” 6.1.96, 6.2.57.

For the sake of efficiency

balance inf
wN∈UN

‖v−wN‖H1(Ω) and + inf
qN∈QN

‖p− qN‖L2(Ω)

Too ambitious: we have no chance of guessing the best approximation errors a priori.

Thus we settle for a more modest asymptotic balance condition, cf. the considerations in Sect. 6.1.6.

Guideline for viable and efficient choice of Galerkin finite element spaces for Stokes problem:

➊ The pair (UN, QN) of finite element spaces must be stable (→ Def. 9.3.21)

➋ The velocity finite element space UN should provide the same rate of algebraic convergence

of the H1(Ω)-best approximation error w.r.t. hM → 0 as the pressure space in L2(Ω).

➌ The velocity finite element space UN should guarantee ➊ and ➋ with as few degrees of

freedom as possible.

Note that the stable finite element pair (S0
2,0(M),S−1

0 (M)) does not meet the efficiency criterion, be-

cause the velocity space offers a better asymptoic rate of convergence than the pressure space, see

Ex. 9.3.39.

There is a stable, perfectly balanced pair of spaces:

Taylor-Hood finite element method for Stokes problem:

✦ M: triangular/tetrahedral or rectangular/hexahedral mesh of Ω, may be hybrid, see Sect. 3.4.1

✦ Velocity space: UN := S0
2,0(M) ⊂ H1

0(Ω)

✦ Pressure space: QN := S0
1 (M) (continuous pressure)

Fig. 488

sites of velocity local shape functions

Fig. 489

sites of pressure local shape functions

Balanced approximation properties of finite element spaces (for sufficiently smooth velocity and pressure

solution):

velocity: inf
wN∈UN

‖v−wN‖H1(Ω) ≤ Ch2
M‖v‖H3(Ω) by Thm. 5.3.56,

pressure: inf
qN∈S−1

0 (M)
‖p− qN‖L2(Ω) ≤ Ch2

M‖p‖H2(Ω) by Thm. 5.3.38.
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Theorem 9.4.2. Stability and convergence of Taylor-Hood finite element → [10]

The Taylor-Hood element provides a stable finite element pair for the Stokes problem (→
Def. 9.3.21) and for sufficiently smooth velocity and pressure solution

‖v− vN‖H1(Ω) + ‖p− pN‖L2(Ω) ≤ Ch2
M
(
‖v‖H3(Ω) + ‖p‖H2(Ω)

)
,

with a constant C > 0 that depends only on Ω, µ, and the shape regularity of the finite element

mesh.

Example 9.4.3 (Convergence of Taylor-Hood method for Stokes problem)

✦ Stokes problem (9.2.24) as in Ex. 9.3.17

✦ perturbed triangular meshes as in Ex. 9.3.17

✦ Taylor-Hood finite element Galerkin discretization

Monitored: Error norms ‖u− uN‖H1(Ω),

‖u− uN‖L2(Ω), ‖p− pN‖L2(Ω)
Observation: algebraic convergence

‖u− uN‖H1(Ω) = O(h2
M) ,

‖u− uN‖L2(Ω) = O(h3
M) ,

‖p− pN‖L2(Ω) = O(h2
M) .

Fig. 490
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MATLAB Code: Accessing geometric entities of a

mesh in DUNE, 258

MATLAB Code: Accessing refined meshes in BETL,

Code 5.1.22 cnt’d ➺ GITLAB, 384

MATLAB Code: Accessing sub-entities and their

index numbers in BETL ➺ GITLAB, 259,

260

MATLAB Code: Assembling SUPG stabilization

part of element matrix in LehrFEM, 530

MATLAB Code: Assembly of finite element Galerkin

matrix for linear finite elements, 206

MATLAB Code: Assembly of global Galerkin ma-

trix for P2-P0 finite element method for

Stokes problem, 676

MATLAB Code: Assmebly of “local→global map-

ping matrix” ➺ GITLAB, 286

MATLAB Code: BETL class representing a cell of

a 2D hybrid mesh, 255

MATLAB Code: BETL class representing a vertex

in a 2D hybrid mesh, 253

MATLAB Code: BETL class representing an edge

of a 2D hybrid mesh , 254

MATLAB Code: BETL code reading 2D hybrid

mesh from a .msh-file ➺ GITLAB, 240

MATLAB Code: Building global matrix and global

load vector using assembler classes in

BETL ➺ GITLAB, 301

MATLAB Code: Cell-oriented assembly of Galerkin

matrix for linear finite elements on a trian-

gular mesh ➺ GITLAB, 207

MATLAB Code: Cell-oriented assembly of right

hand side vector for linear finite elements,

see (3.3.45) ➺ GITLAB, 211

MATLAB Code: Central finite difference discretiza-

tion of Stokes system, 668

MATLAB Code: Class computing element ma-

trix for −∆ analytically, compatible with

GalerkinMatrixAssembler ➺ GITLAB, 306

MATLAB Code: Class for computation of element

(load) vector, compatible with LoadVec-

torAssembler ➺ GITLAB, 307

MATLAB Code: Class handling planar triangular

mesh ➺ GITLAB, 189

MATLAB Code: Class implementing the linear fi-

nite element discretization of the elastic

string model, 89

MATLAB Code: Class performing local compu-

tation of element load vector ➺ GITLAB,

321

MATLAB Code: Class telling placement of local

shape functions defined by an FEBasis

➺ GITLAB, 279

MATLAB Code: Composite quadrature of a func-

tion on an element ➺ GITLAB, 319

MATLAB Code: Computation of (integrated) Leg-

endre polynomials using (1.5.38) and (1.5.42),

68

MATLAB Code: Computation of Legendre poly-

nomials based on 3-term recursion (1.5.38),

67

MATLAB Code: Computation of L2(Ω)- and H1(Ω)-
norm of the finite element discretization

error ➺ GITLAB, 388

MATLAB Code: Computation of derivatives of Leg-

endre polynomials using (1.5.41), 97

MATLAB Code: Computation of element matrix

for −∆ on a triangle and for linear La-

grangian finite elements ➺ GITLAB, 202

MATLAB Code: Computation of element matrix

for P2-P0 finite element method for Stokes

problem, 678

MATLAB Code: Computation of extremal gener-

alized eigenvalues, 472

MATLAB Code: Computation of general element

688

http://en.wikipedia.org/wiki/Sparse_matrix
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/localLoad.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/MeshRefinement/main.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/topology/NPDE_topology_functions.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_FEM_assembler.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/topology/main.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/main.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/assemblyStiffness.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/assemblyLoad.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_local_assembly_triangles.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_local_assembly_triangles.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/SimpleLinearFEM2D.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemLocal/NPDE_FEM_introLocal.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FEBasis/febasis_demo.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/integration/NPDE_integration.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/CVGwithBETL/ErrorComputation/main.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/localStiffness.cpp
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matrix according to (3.7.29) in BETL ➺ GITLAB,

347

MATLAB Code: Computation of gradients of barycen-

tric coordinate functions on a triangle ➺ GITLAB,

201

MATLAB Code: Computing behavior of energies

for Störmer timestepping, 495

MATLAB Code: Computing behavior of energies

for Störmer timestepping ➺ GITLAB, 496

MATLAB Code: Computing potential and kinetic

energiy for Störmer timestepping, 496

MATLAB Code: Computing potential and kinetic

energiy for Störmer timestepping ➺ GITLAB,

497

MATLAB Code: Computing values of local shape

functions for quadratic Lagrangian FE in

BETL ➺ GITLAB, 314

MATLAB Code: Confined velocity field, 540

MATLAB Code: Conservative FV with linear re-

construction: ode45 timestepping, 640

MATLAB Code: Conservative FV with linear re-

construction: ode45 timestepping ➺ GITLAB,

641

MATLAB Code: Constructor of TriaMesh2D read-

ing mesh from file ➺ GITLAB, 189

MATLAB Code: DUNE code: reading a .msh-file

and building a mesh from it, 239

MATLAB Code: Definition of FEBasis compatible

type ➺ GITLAB, 277

MATLAB Code: Demonstration of Delaunay-remeshing,

544

MATLAB Code: Efficient assembly of Galerkin ma-

trix for linear finite elements on a triangu-

lar mesh ➺ GITLAB, 208

MATLAB Code: Estimating the rate of algebraic

convergence, 113

MATLAB Code: Euler timestepping for (6.1.48),

464

MATLAB Code: Euler timestepping for (6.1.48)

➺ GITLAB, 465

MATLAB Code: Evaluator class for MySimpleLo-

calVectorAssembler ➺ GITLAB, 321

MATLAB Code: Evaluator struct for StiffnessLo-

calMatrixAssembler ➺ GITLAB, 348

MATLAB Code: FESpace implementation in BETL

(partial listing) ➺ BETL, 283

MATLAB Code: Function call for output of physi-

cal tags ➺ GITLAB, 244

MATLAB Code: Fundamental BETL types related

to Lagrangian finite elements ➺ GITLAB,

338

MATLAB Code: Generic assembly algorithm for

finite element right hand side vectors, 291

MATLAB Code: Global assembly of boundary con-

tribution to right hand side ➺ GITLAB, 299

MATLAB Code: Implementation of LoadVectorAssem-

bler ➺ GITLAB, 296

MATLAB Code: Implementation of assembleRhs

of IntersectionLoadVectAsse from cn Code 3.6.108

➺ GITLAB, 300

MATLAB Code: Implementation of eval() for

AnalyticStiffnessLocalAssembler ➺ GITLAB,

306

MATLAB Code: Implementation of multiplicity()

methods for MyFEBasis ➺ GITLAB, 277

MATLAB Code: Implementation of numDofs()

methods for MyFEBasis ➺ GITLAB, 278

MATLAB Code: Implementation of the class fe::ConstrainedFESpace

in BETL (partial listing of Library/fe/constrained_fespace

327

MATLAB Code: Instantiation of a d.o.f. handler

for S0
2 (M) in BETL ➺ GITLAB, 281

MATLAB Code: Integration of a function on a 2D

mesh using quadrature in BETL ➺ GITLAB,

318

MATLAB Code: Lagrangian method for (7.3.5),

545

MATLAB Code: LehrFEM driver script P2-P0 fi-

nite element method for Stokes problem,

676

MATLAB Code: Linear finite element discretiza-

tion of elastic string variational problem,

88

MATLAB Code: Linear finite element discretiza-

tion of non-linear elastic string variational

problem, 90

MATLAB Code: Linear regression of data, 115

MATLAB Code: Listing of local shape functions

described by MyFEBasis defined in Ex. 3.6.76.,

281

MATLAB Code: Looping over entities of a DUNE

grid of a particular co-dimension, 245

MATLAB Code: Looping over entities of a particu-

lar co-dimension in BETL grid ➺ GITLAB

, 246

MATLAB Code: Looping over entities of a partic-

ular co-dimension in BETL grid, version

with automatic type deduction ➺ GITLAB,

247

MATLAB Code: Modification of Galerkin system

according to § 3.6.177 ➺ GITLAB, 329

MATLAB Code: NPDE assembler in BETL: Im-
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https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/parametricFem/NPDE_local_assemblers.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/localStiffness.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/WaveEquation/lfen.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/WaveEquation/lfen.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemLocal/NPDE_FEM_introLocal.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/ConservationLaws/highresevl.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/Mesh.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FEBasis/febasis_demo.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/SimpleLinearFEM2D/assemblyStiffness.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/TwoPointBVPSchemes/1DParabolic/sinevl.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemLocal/NPDE_FEM_introLocal.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/parametricFem/NPDE_local_assemblers.hpp
https://gitlab.math.ethz.ch/NumPDE/Betl2/tree/NPDE_lectures/Library/
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/physicalEntities/main.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FEBasis/main.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_global_assembly.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_global_assembly.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_global_assembly.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/NPDE_local_assembly_triangles.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FEBasis/febasis_demo.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FEBasis/febasis_demo.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/FemAssembly/main.cpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/integration/NPDE_integration.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/topology/NPDE_topology_functions.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/topology/NPDE_topology_functions.hpp
https://gitlab.math.ethz.ch/NumPDE/NumPDE/tree/master/lecture_codes/FEMwithBETL/DirichletBC/main.cpp


NPDE, ST’16, Prof. R. Hiptmair c©SAM, ETH Zurich, 2016

plementation of global assembly of Galerkin

matrix over boundary ➺ GITLAB, 297

MATLAB Code: NPDE assembler in BETL: code

for global assembly of right hand side vec-

tor ➺ GITLAB, 295

MATLAB Code: NPDE assembler in BETL: imple-

mentation of global assembly of Galerkin

matrix ➺ GITLAB, 292

MATLAB Code: NPDE assembler in BETL: imple-

mentation of method assembleTripletMatrix

in Code 3.6.95 ➺ GITLAB, 293

MATLAB Code: NPDE assembly in BETL: imple-

mentation of method assembleTripletMatrix

in Code 3.6.105 ➺ GITLAB, 298

MATLAB Code: Operator Lh for spatial semidis-

cretization with conservative FV with lin-

ear reconstruction and 2-point numerical

flux, 642

MATLAB Code: Operator Lh for spatial semidis-

cretization with conservative FV with lin-

ear reconstruction and 2-point numerical

flux ➺ GITLAB, 642

MATLAB Code: Output of information on the ge-

ometry of an entity ➺ GITLAB, 266, 267

MATLAB Code: P1-P0 finite difference discretiza-

tion of augmented Stokes problem, 674

MATLAB Code: Part of the definition of the refer-

ence triangle in BETL, 251

MATLAB Code: Particle mesh method in 2D, 547

MATLAB Code: Particle simulation of cars based

on optimal velocity model, 561

MATLAB Code: Particle simulation of cars based

on optimal velocity model ➺ GITLAB, 562

MATLAB Code: Pass-through velocity field, 541

MATLAB Code: Point particle method for pure ad-

vection, 541

MATLAB Code: Polynomial spectral Galerkin dis-

cretization of elastic string variational prob-

lem, 75, 76

MATLAB Code: Polynomial spectral Galerkin so-

lution of (1.5.49), 71, 72

MATLAB Code: Printing the locations of vertices

associated with geometric entities, 265

MATLAB Code: Prints entity types and index num-

bers for global shape functions handled

by an FESpace ➺ GITLAB., 289

MATLAB Code: Probing for algebraic convergence,

112

MATLAB Code: Reading Gmsh’s physical groups

with BETL ➺ GITLAB, 242

MATLAB Code: Reading and refining a mesh with

BETL ➺ GITLAB, 383

MATLAB Code: Retrieve coordinates of vertices

of a triangles as rows of a 3x2-matrix ➺ GITLAB,

190

MATLAB Code: Right hand side assembly on in-

terior nodes using BETL ➺ GITLAB, 330

MATLAB Code: Right hand side function for MOL-

ODE (8.3.10) ➺ GITLAB, 596

MATLAB Code: Spectral collocation for linear 2nd-

order two-point BVP, 98

MATLAB Code: Upwind finite difference solution

of 2D convection-diffusion problem, 526

MATLAB Code: Use of intersection objects in BETL

(with auto typing) ➺ GITLAB, 271

MATLAB Code: Use of intersection objects in BETL

➺ GITLAB, 269

MATLAB Code: Use of intersection objects in DUNE,

268

MATLAB Code: Using coordinate transformation

from reference element in BETL ➺ GITLAB,

311

MATLAB Code: Vertex-centered assembly of Galerkin

matrix for linear finite elements, 204

MATLAB Code: Wrapper code for finite volume

evolution with 2-point flux, 596

MATLAB Code: Wrapper code for finite volume

evolution with 2-point flux ➺ GITLAB, 597

MATLAB Code: GRID_TRAITS for a 2D hybrid

mesh, 252

MATLAB Code: ode45 applied semi-discrete (6.1.48),

467

MATLAB Code: ode45 applied semi-discrete (6.1.48)

➺ GITLAB, 468

MATLAB Code: partitioning of degrees of free-

dom ➺ GITLAB, 328

MATLAB Code: partitioning of degrees of free-

dom ➺ GITLAB, 331

2-regularity

of Dirichlet problem, 436

convergence

exponential, 110

Landau-Livshits equations, 19

a priori estimates, 394

a-orthogonal, 380

acceleration field, 33

acoustic waves, 23

advection equation, 557

Affine (linear) transformation, 310

affine equivalent, 336

affine linear function
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in 2D, 192

affine mapping, 310

affine space, 61

algebraic convergence, 110

algorithm

numerical, 58

analytic solution, 57

angle condition

for Delaunay mesh, 370

anisotropic diffusion, 528

artificial diffusion, 525

artificial viscosity, 525

Ass: 2-regularity of homogeneous Dirichlet prob-

lem, 436

Ass: Continuity of output functional → Def. 2.2.56,

427

Ass: Equal springs, 37

Ass: Gravitational potential, 33

Ass: Hooke’s law, 34

Ass: Linearity of output functional, 427

Ass: Monotonicity of f ′, 573

Ass: Requirements for graph description, 55

Ass: Smoothness requirement for stiffness coef-

ficient, 84

assembly, 199

cell oriented, 290

in FEM, 273

linear finite elements, 204

balance law, 567

balanced finite volume discretization, 598

Banach space, 137

barycenter, 370

Barycenter of a triangle, 370

barycentric coordinate representation

of local shape functions, 303

barycentric coordinates, 199

basis

change of, 185

Basis of a finite dimensional vector space, 61

best approximation error, 381

beta function, 305

BETL, 230

geometry, 264

gmsh reader, 240

grid view, 244

numerical quadrature, 317

QuadRule, 317

reference element, 310

ReferenceElement, 252

bilinear form, 45, 53

continuous, 514

positive definite, 129

positive semi-definite, 129

symmetric, 127

bilinear transformation, 341

Black-Scholes equation, 21

boundary conditions, 55, 158

Dirichlet, 158, 164

essential, 173

for elastic string model, 30

homogeneous, 164

natural, 173

Neumann, 160, 164

no slip, 658

radiation, 164

boundary fitting, 350

parabolic, 350

boundary flux

compuation of, 429

boundary layer, 515

boundary value, 120

boundary value problem

elliptic, 165

boundary value problem (BVP), 120

Burgers equation, 569, 584

Cahn-Hillard equation, 20

calculus of variations, 41, 42

Cauchy problem, 557, 571, 579

for one-dimensional conservation law, 573

for wave equation, 487

Cauchy sequence, 137

cell, 188, 215

cell contributions, 273

central flux, 600, 602

central slope, 643

CFL-condition, 501, 626

characteristic curve, 574

Characteristic curve for one-dimensional scalar

conservation law, 574

characteristic method, 540

Chebychev nodes, 96

checkerboard mode, 673

circumcenter, 369

classical solution, 51, 158, 169

coefficient vector, 184

collocation, 93, 94

spline, 99

compatibility condition, 170

compatibility conditions

for H1(Ω), 144

Complete normed vector spaces and Hilbert spaces,

137
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complete space, 137, 378

composite midpoint rule, 84

composite trapezoidal rule, 84

Compressed Column Storage (CCS), 273

Compressed Row Storage (CRS), 273

computational domain, 161

computational effort, 413

condition number, 73

conditionally stable, 481, 482

configuration space, 30

for incompressible fluid, 657

for taut membrane, 123

Congruent matrices, 185

congruent matrices, 185

conservation

of energy, 491

conservation form, 595

conservation law, 571

differential form, 572

integral form, 572

one-dimensional, 572

scalar, 572

conservation of energy, 161

consistency

of a variational problem, 529

consistency error, 637

Consistent modifications of variational problems,

529

Consistent numerical flux function, 599

continuity

of a bilinear form, 181

of a linear form, 143, 181

of a linear functional, 133

of linear functional, 427

Continuity of a linear and bilinear form, 133

Continuous linear operator, 407

control volume, 367, 571

convection-diffusion equation, 509

convective cooling, 164

convective term, 509, 514

convective terms, 509

convergence, 103, 385

algebraic , 110

asymptotic, 107

convex function, 131

Convexity of a real-valued function, 131

coordinate system, 30

corner singular function, 419

Corollary: H1-norm of piecewise smooth func-

tions, 145

Corollary: Admissible right hand side functionals

for linear 2nd-order elliptic problems, 143

Corollary: Domain of dependence for scalar con-

servation law, 592

Corollary: Error estimate for piecewise linear in-

terpolation in 2D, 406

Corollary: Necessary condition for existence of

minimizer, 129

Corollary: Point evaluation on H1(Ω), 152

Corollary: Riesz representation theorem, 151

Corollary: Simple criterion for monotone flux func-

tion, 619

Courant-Friedrichs-Levy condition (CFL), 501

Courant-Friedrichs-Lewy (CFL-)condition, 626

Crank-Nicolson method, 462

creeping flow, 658

Cubic spline, 99

curl, 17

curve, 30

length, 31

parameterization, 30

cut-off function, 432

d’Alembert solution, 488

d.o.f. handler, 275

debugging

of FE codes, 445

decay conditions at ∞, 126

degrees of freedom, 34, 58

Delaunay mesh

angle condition, 370

Delaunay triangulation, 370

delta distribution, 151

Dense subset, 139

dense subspace, 139

dielectric tensor, 125

difference quotient, 101

differential operator, 93, 95, 120

diffusion tensor, 528

diffusive flux, 572

diffusive term, 509, 514

diffusive terms, 509

Dirac delta function, 151

Dirichlet boundary conditions, 158, 164

for linear FE, 324, 332

Dirichlet data, 148

admissible, 173

Dirichlet problem, 158

variational formulation, 148

discrete maximum principle, 440

Discrete model, 58

discrete model, 34, 58

discrete variational problem, 182, 184
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discretization, 58, 181

discretization error, 103, 381

discretization parameter, 385

displacement, 55

displacement function, 55

dissipation, 459

in fluid, 659

DistMesh, 239

divergence, 17

of a vectorfield, 156

dof mapper, 204

domain, 28, 120

computational, 161

spatial, 56, 122

domain of dependence, 489

domain of influence, 489

dual mesh, 369

dual problem, 428

dual variational problem, 428

duality estimate, 428

DUNE, 229

geometry, 264

grid implementations, 239

grid view, 244

intersections, 267

dynamic viscosity, 658

eddy

in a fluid, 659

eddy current model, 18

eddy currents, 18

edge, 214

Eigen, 272

sparse matrices, 273

elastic energy, 35

mass-spring model, 35

elastic string, 29

electric field, 125

electric scalar potential, 125

electromagnetic field energy, 125

electrostatic field energy, 125

electrostatics, 124

element, 215

Element (stiffness) matrix and element (load) vec-

tor, 274

element load vector, 274

element stiffness matrix, 274

elliptic

linear scalar second order PDE, 163

elliptic boundary value problem, 165

energy

conservation, 161

of electrostatic field, 125

energy conservation

for wave equation, 490

Energy norm, 130

energy norm, 130

entity, 214

co-dimension, 214

entropy, 658

equidistant mesh, 80, 101, 218

equilibrium length

of spring, 34

equilibrium principle, 36

equivalence

of norms, 405

essential boundary conditions, 173

Euler equations, 569

Euler method, 462

Euler-Lagrange equation, 50

evolution operator

fully discrete, 623

semi-discrete, 622

evolution problem, 452

semi-discrete, 460

spatial variational formulation, 456

evolution problems, 28

expansion shock, 582, 583

explicit Euler method, 462

exponential convergence, 110

face, 214

field energy

electromagnetic, 125

finite difference methods, 360

finite differences

1D, 100

in 2D, 360

Finite element mesh/triangulation, 214

finite element space

H1-conforming, 220

Lagrangian, 221

finite elements

parametric, 343

finite volume methods, 367

fixed point iteration, 75

flow field, 507

flow map, 508, 558

flux function, 571, 573

force density, 123

Fourier’s law, 162, 453

if fluid, 509

frame indifference, 30

Frobenius norm, 402
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fully discrete evolutions, 623

function space, 28

functional, 426

linear, 427

fundamental lemma of calculus of variations, 157

fundamental theorem of calculus, 155

Galerkin discretization, 182

Galerkin matrix, 273

Galerkin orthogonality, 380

Galerkin solution, 60

quasi-optimality, 381

Galerkin test space, 60

Galerkin trial space, 60

Gamma function, 305

Gauss quadrature, 70

Gauss’ theorem, 163, 509, 578

Gauss-Legendre quadrature, 317

Gauss-Lobatto quadrature, 317

General Runge-Kutta method, 463

generic constants, 413

Gibbs free energy, 19

global shape functions, 218

Gmsh, 233

.geo-file, 234

.msh-file, 235

geometric modeling, 233

geometry file, 234

mesh file, 235

physical groups, 237, 241

gmsh

mesh generation, 235

Godunov numerical flux, 614

gradient, 17, 123, 146

of a function, 123

transformation, 345

gravitational force, 33

gravitational potential, 33

Green’s first formula, 156

grid

1D, 80, 101

grid function, 104

grid view, 244

h-refinement, 416

hanging node, 188, 216

hat function, 145, 195

heat capacity, 453

heat conductivity, 162

heat equation, 453

heat flux, 161, 162

computation of, 429

convective, 509

diffusive, 509

heat source, 161

heat transport, 557

Helmholtz equation, 23

Hessian, 16, 400

Heun method, 623

Higher order Sobolev semi-norms, 406

Higher order Sobolev spaces/norms, 405

Hilbert space, 137, 378

homogeneous boundary conditions, 164

homogeneous Dirichlet problem

linear finite element space, 195

Hooke’s law, 34

hyperbolic evolution problem, 486

discrete case, 490

implicit Euler method, 462

implicit midpoint rule, 462

incidence relations, 247

Incompressible flow field, 510

increments

Runge-Kutta, 463

index mapping matrix, 302

inf-sup condition, 682

inflow, 571

inflow boundary, 516

initial conditions, 451

initial value problem

stiff, 469

initial-boundary value problems (IBVP), 452

parabolic, 454

initializer list, 252

integrated Legendre polynomials, 65

integration by parts

1D, 155

in 1D, 49

multidimensional, 156

intermediate state, 612

interpolant

piecewise linear, 372

interpolation error, 400

interpolation error estimates

anisotropic, 407

in 1D, 395

interpolation nodes, 221

inviscid, 568

Jacobian, 16

kinetic energy, 490

Kronecker product, 463
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L(π)-stability, 478

L-shaped domain, 391

L-stability, 477

Lagrange functional

for zero mean constraint, 666

Lagrange multiplier, 662

Lagrangian finite elements, 221

on quadrilaterals, 340

Lagrangian functional, 663

Lagrangian method, 540

for advecti0n, 537

Laplace equation, 158

Laplace operator, 158

Laplacian, 17

Lax entropy condition, 588

Lax-Friedrichs flux, 606

layer

boundary, 515

layers

internal, 527

LBB condition, 682

leapfrog, 494

Legendre polynomials, 66

integrated, 65

LehrFEM, 229

Lemma: −∆ = curl curl− grad div, 660

Lemma: fundamental lemma of the calculus of variations,

50

Lemma: Affine transformation of triangles, 310

Lemma: Auxiliary estimate on sector, 402

Lemma: Behavior of of generalized eigenvalues,

475

Lemma: Boundedness condition on linear form,

132

Lemma: Classical solutions and characteristic curves,

574

Lemma: Classical solutions are weak solutions,

51

Lemma: Comparison principle for monotone semi-

discrete conservative evolutions, 620

Lemma: Congruent Galerkin matrices, 185

Lemma: Decay of solutions of parabolic evolu-

tions, 458

Lemma: Dimension of spaces of polynomials, 217

Lemma: Dimension of spaces of tensor product

polynomials, 217

Lemma: Effect of change of basis on Galerkin

matrix, 185

Lemma: Fundamental lemma of calculus of vari-

ations in higher dimensions, 157

Lemma: General product rule, 156

Lemma: Integration of powers of barycentric co-

ordinate functions, 304

Lemma: Linear monotonicity preserving recon-

struction trivial, 650

Lemma: Local interpolation error estimates for

2D linear interpolation, 403

Lemma: Monotonicity of Lax-Friedrichs/Rusanov

numerical flux and Godunov flux, 619

Lemma: Monotonicity preservation of minmod re-

construction, 651

Lemma: Necessary conditions for existence of

solution of saddle point problem, 663

Lemma: Non-oscillatory monotone semi-discrete

evolutions, 621

Lemma: Preservation of polynomials under affine

pullback, 334

Lemma: Properties of Legendre polynomials, 67

Lemma: Rarefaction solution of Riemann prob-

lem, 586

Lemma: Shock solution of Riemann problem, 582

Lemma: Sparsity of Galerkin matrix, 197

Lemma: Testing with basis vectors, 63

Lemma: Transformation formula for gradients, 345

length

of curve, 31

lexikographic ordering, 360, 361

linear boundary fitting, 424

linear evolution, 457

linear form, 45

continuity, 143

linear function

in 2D, 192

linear functional, 45

linear interpolation

in 1D, 395

in 2D, 399

Linear interpolation in 2D, 399

Linear reconstruction, 640

linear regression, 114

Linear variational problem, 53

linear variational problem, 53

Linearity, 165

linearization

of variational problems, 351

load vector, 184, 273

local linearization, 353, 354

local operations, 290

local quadrature rule

transformation, 314

local quasi-uniformity, 414

local shape function, 219
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barycentric representation, 336

Local shape functions, 219

local shape functions

quadratic, 222

local→global index mapping, 275

locally injective, 31

macroscopic quantities, 564

magnetization, 19

manufactured solutions, 446

mass lumping, 494

mass-spring model, 33

elastic energy, 35

material coordinate, 32

Material derivative, 550

material derivative, 550

material tensor, 148

mathematical modelling, 27

maximum principle, 438, 512

discrete, 440

Maxwell’s equations

static case, 125

Mean square norm/L2-norm, 105

mean value formula, 400

membrane, 121

membrane problem

variational formulation, 148

mesh, 214

1D, 80, 101

cell, 188

data structures, 244

equidistant, 80, 101

node, 188

non-conforming, 216

quadrilateral, 215

simplicial, 216

topolgy, 247

triangular, 215

mesh data structure, 244

mesh file format, 232

mesh generator, 232

Mesh width, 386

mesh width, 386

method of characteristics, 516

method of lines, 460

micromagneticcs, 19

micromagnetics, 19

midpoint rule

composite, 84

minmod, 650

Minmod reconstruction, 650

mixed boundary conditions, 164

Mixed Neumann–Dirichlet problem, 160

model

continuous, 58

discrete, 34, 58

monomial basis, 65

Monotone numerical flux function, 619

Monotonicity preserving linear interpolation, 649

monotonicity preserving linear interpolation, 649

multi-index notation, 217

multiplicative trace inequality, 174

Multivariate polynomials, 217

MUSCL scheme, 653

natural boundary conditions, 173

Navier-Stokes equations, 19

nested meshes, 382

NETGEN, 239

Neumann boundary conditions, 160, 164

Neumann data

admissibility conditions, 174

Neumann problem, 169

compatibility condition, 170

variational form, 169

Newton update, 355

Newton’s method, 353

in function space, 353

termination, 356

Newton’s second law of motion, 485

Newton-Cotes formula, 317

Newton-Galerkin iteration, 355

nodal basis, 194

nodal interpolation operators, 411

nodal value, 195

node, 188

1D, 80, 101

hanging, 188

quadrature, 70

Non-linear variational equation, 45

Norm, 104

norm, 104

mesh-dependent, 107

on function space, 104

Numerical domain of dependence, 625

numerical domain of dependence, 625

numerical flux, 368, 595

numerical flux function, 368

numerical quadrature, 69

nodes, 309

weights, 309

ODE, 15

offset function, 45, 323
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for linear FE, 324

for linear finite elements in 1D, 85

offset function trick, 182

option pricing, 21

Order of a local quadrature rule, 315

order of quadrature rule, 315

ordinary differential equation (ODE), 28

orientation

of edges, 264

outflow, 571

outflow boundary, 516

output functional, 426

p-refinement, 417

parameterization

by arclength, 32

non-uniqueness, 32

of curve, 30

Parametric finite elements, 343

parametric finite elements, 343

partial differential equation, 15

particle method, 540

particle model

of traffic flow, 560

PDE, 15

lLinear scalar second order elliptic, 163

perpendicular bisector, 369

Petrov-Galerkin discretization, 294

phase space, 571

piecewise linear interpolant, 372

piecewise linear reconstruction, 640

piecewise quadratic interpolation, 412

point force, 48

Poisson equation, 158, 385

Poisson matrix, 361

polar coordinates, 152

polynomials

degree, 217

multivariate, 217

univariate, 64

positive definite

bilinear form, 129

uniformly, 126

Positive definite bilinear form, 129

positive semi-definite

bilinear form, 129

Positive semi-definite bilinear form, 129

postprocessing, 104

potential energy, 33, 35, 490

pressure, 665

pressure Poisson equation, 667

pressure Poissson equation, 667

primal mesh, 369

problem parameters

for elastic string, 33

problem size, 413

procedural form

of functions, 181

product rule, 458

in higher dimensions, 156

production term, 571

Pullback, 334

pullback, 334

Pythagoras’ theorem, 380

Quadratic functional, 127

quadratic functional, 127

quadratic local shape functions, 222

Quadratic minimization problem, 53

quadratic minimization problem, 137

Quadratic minimization problem (II), 128

quadratic minimization problems, 127

quadrature formula

1D, 70

general, 309

transformation, 70

quadrature nodes, 70, 309

quadrature rule, 309

on triangle, 316

order, 315

quadrature rules

Gauss-Legendre, 317

Gauss-Lobatto, 317

quadrature weights, 70, 309

quadrilateral mesh, 215

quasi-optimality, 381, 683

quasi-uniformity, 445

Radau timestepping, 478

radiation boundary conditions, 164

rarefaction

subsonic, 614

supersonic, 614

transonic, 614

rarefaction wave/fan, 586

Rate of convergence, 110

reaction term

in 2nd-order BVP, 187

recirculating flow, 516

reference element, 310

reference elements, 343

reference triangle, 310

regular rfinement, 382

reversibility, 491
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Reynolds number, 658

Riemann problem, 581

local, 612

Riemann sum, 38

Riesz representation theorem, 378

right hand side vector, 273

Ritz-Galerkin discretization, 59

Robin boundary conditions, 164

rubber band, 29

Runge-Kutta

increments, 463

Runge-Kutta method, 463

Runge-Kutta methods

stability function, 631

saddle point problem, 663

linear, 664, 670

variational, 663

scaling, 32, 512

Schrödinger equation

electronic, 21

SDIRK timestepping, 478

semi-discrete evolution problem, 460

semi-norm, 106

sensitivity

of a problem, 153

shape functions

global, 218

shape regularity

uniform, 445

Shape regularity measure, 404

shape regularity measure, 404

Shock, 582

shock, 582

physical, 588

subsonic, 614

supersonic, 614

shock speed, 582

similarity solution, 585

Simplicial Lagrangian finite element spaces, 221

simplicial mesh, 216

single step method, 461

singular perturbation, 517

Singularly perturbed boundary value problem, 517

slope limiter, 651

slope limiting, 649

Sobolev norms, 405

Sobolev semi-norms, 406

Sobolev space H1
0(Ω), 140

Sobolev space H1(Ω), 141

Sobolev space H1
0(Ω), 140

Sobolev spaces, 135, 405

solution

analytic, 57

approximate, 58

solution operator, 154

source term, 120

Space L2(Ω), 136

space-time-cylinder, 451

sparse matrix

initialization, 207

sparsity pattern, 198

spatial domain, 122

spectrum, 628

spline

cubic, 99

spline collocation, 99

spring constant, 34

Störmer scheme, 493

stability, 680

of linear variational problem, 149

unconditional, 476

stability domain, 632

stability function

of explicit Runge-Kutta methods, 631

of RK-SSM, 477

Stable finite element pair, 681

state space, 571

stencil, 362

Stiff IVP, 469

stiff IVP, 469

stiffness

of spring, 34

stiffness matrix, 184, 273

sparsity, 219

Stokes problem

variational form, 665

Strang splitting, 537

streamline, 507, 516

streamline diffusion, 525

strong form, 51

subsonic rarefaction, 614

subsonic shock, 614

supersonic rarefaction, 614

supersonic shock, 614

Support of a function, 82

Supremum norm, 104

supremum norm, 104

symbol

of a difference operator, 628

symmetric bilinear form, 127

T-matrix, 302
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Taylor expansion, 38, 43

Taylor-Hood finite element, 685

Tensor product Lagrangian finite element spaces,

226

Tensor product polynomials, 217

tensor product polynomials, 217

tensor-product grid, 360

tent function, 80, 193, 195

test function, 45

test space, 45

TETGEN, 239

Theorem: L2(Ω) by completion, 139

Theorem: L1-contractivity of evolution for scalar

conservation law, 591

Theorem: 2-point boundary value problem for taut

string model with linear potential, 54

Theorem: Maximum principle for 2nd-order ellip-

tic BVP, 438

Theorem: Angle condition for Voronoi dual meshes,

370

Theorem: Assembly through index mapping ma-

trices, 302

Theorem: Best approximation error estimates for

Lagrangian finite elements, 412

Theorem: Cea’s lemma, 381

Theorem: Classical solutions are weak solutions,

169

Theorem: Comparison principle for scalar con-

servation laws, 590

Theorem: Compatibility conditions for piecewise

smooth functions in H1(Ω), 144

Theorem: Completion of a normed vector space,

139

Theorem: Convergence of solutions of fully dis-

crete parabolic evolution problems, 480

Theorem: Convergence of stable FE for Stokes

problem, 684

Theorem: Convergene of fully discrete solutions

of the wave equation, 503

Theorem: Corner singular function decomposi-

tion, 421

Theorem: Differential equation for elastic string

model, 50

Theorem: Differentiation formula for determinants,

511

Theorem: Divergence-free velocity fields for in-

compressible flows, 511

Theorem: Domain of dependence for isotropic

wave equation, 489

Theorem: Duality estimate for linear functional

output, 428

Theorem: Elliptic lifting theorem on convex do-

mains [?, Thm. 3.2.1.2], 421

Theorem: Energy conservation in wave propaga-

tion, 490

Theorem: Error estimate for piecewise linear in-

terpolation, 404

Theorem: Existence and uniqueness of solution

of linear variational problem, 378

Theorem: Existence and uniqueness of solutions

of discrete variational problems, 182

Theorem: Existence and uniqueness of solutions

of s.p.d. linear variational problems, 151

Theorem: Existence and uniqueness of weak so-

lutions of Stokes problem, 665

Theorem: Existence of minimizers in Hilbert spaces,

138

Theorem: Existence of stable velocity potentials,

665

Theorem: Existence of unique minimizer in finite

dimensions, 132

Theorem: Gauss’ theorem, 156

Theorem: Green’s first formula, 156

Theorem: Independence of Galerkin solution of

choice of basis, 63

Theorem: inf-sup condition, 682

Theorem: Maximum principle for linear FE solu-

tion of Poisson equation, 443

Theorem: Maximum principle for scalar 2nd-order

convection diffusion equations, 512

Theorem: Minimizer solves variational equation,

44

Theorem: Multi-dimensional truncated Tayler ex-

pansion, 44

Theorem: Multiplicative trace inequality, 174

Theorem: Order of Strang splitting single step

method, 537

Theorem: Partial derivatives commute, 16

Theorem: Poincaré-Friedrichs inequality, 142, 171

Theorem: Smooth elliptic lifting theorem, 418

Theorem: Sobolev embedding theorem, 407

Theorem: Sobolev spaces by completion, 141

Theorem: Solution of linear advection problem,

558

Theorem: Stability and convergence of Taylor-

Hood finite element, 686

Theorem: Stability function of explicit Runge-Kutta methods

631

Theorem: Uniqueness of solutions of quadratic

minimization problems, 130

Theorem: Variational equation for taut string model

with linear potential, 53
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thermodynamics

2nd law, 659

timestep constraint

explicit Euler, 476

timestepping, 461

topology

of a mesh, 247

trace theorem, 174

traffic flow

velocity model, 560

trajectory, 507

transformation

of quadrature formulas, 70

transformation of functions, 334

transformation techniques, 343

translation-invariant, 624

transonic rarefaction, 614

transport equation, 535, 557

transsonic rarefaction fan, 610

trapezoidal rule

composite, 83, 84

global, 522

trial space, 45, 94

triangle inequality, 104

Triangle mesh generator, 239

triangular mesh, 215

triangulation, 214

two-point boundary value problem, 51

two-step method, 493

Types of convergence, 110

unconditional stability, 476

uniform shape regularity, 445

uniform shape-regularity, 414

uniformly positive, 162

Uniformly positive (definite) tensor field, 126

unit triangle, 219, 310

univariate PDE, 28

upwind quadrature, 521–523

upwinding, 520

validation

of FE codes, 445

variational crime, 422

variational equation

linear, 53

non-linear, 44

variational formulation

spatial, 456

variational problem

discrete, 182, 184

linear, 53

non-linear, 352

perturbed, 153, 422

vector Laplacian, 667

vertex, 214

von Neumann stability analysis, 472, 632

Voronoi cell, 369

Voronoi dual mesh, 369

vortex, 659

wave equation, 486

weak form, 51

weak solution, 579

Weak solution of Cauchy problem for scalar con-

servation law, 579

weight

quadrature, 70

Well-posed mathematical problem, 149

well-posedness, 680

width

of a mesh, 386
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List of Symbols

C0(Ω) =̂ space of functions on domain Ω, con-

tinuous up to the boundary ∂Ω, 123

C2
0([0, 1]) := {v ∈ C2([0, 1]): v(0) = v(1) =

0}, 42

C∞
0 (Ω) =̂ smooth functions with support inside

Ω, 142

Ck([a, b]) =̂ k-times continuously differentiable

functions on [a, b] ⊂ R, 30

Ck(Ω) =̂ k-times continuously differentiable fun-

tions up to the boundary of Ω, 123

Ck
pw([a, b]), 48

D−(x, t) =̂ maximal analytical domain of depen-

dence of (x, t), 625

Dαu =̂ multiple partial derivatives, 405

L2
∗(Ω) := {q ∈ L2(Ω):

∫
Ω

q dx = 0}, 665

Mi =̂ i-th integrated Legendre polynomial, 65

O( f (N)) =̂ Landau-O for N → ∞, 110

S(z) =̂ stability function of Runge-Kutta method,

631

n, 164

n =̂ exterior unit normal vectorfield, 156

Hh =̂ fully discrete evolution operator, 623

Lh =̂ semi-discrete evolution operator doe 1D

conservation law, 622

Pp(R) =̂ space of univariate polynomials of de-

gree ≤ p, 64

Pp(Rd), 217

Pp(Rd) =̂ space of d-variate polynomials, 217

Qp(R
d), 217

V(M) =̂ set of vertices of a mesh, 188

∆ =̂ Laplace operator, 158

∆ =̂ vector Laplacian, 667

D f =̂ Jacobian of a differentiable function, 16

div j =̂ divergence of a vector field, 156

I1, 399

Γin =̂ inflow boundary for advection BVP, 516

H f =̂ Hessian of a scalar valued function, 16

Hm(Ω) =̂ m-th order Sobolev space, 405

H1
0(div 0, Ω) =̂ componentwise H1

0(Ω)-vectorfields

with vanishing divergence., 662

S0
1 (M), 192

I1 =̂ piecewise linear interpolation on finite ele-

ment mesh, 372

Pn =̂ n-th Legendre polynomial, 66

S0
p(M) =̂ H1(Ω)-conforming Lagrangian FE space,

221

L∞(Ω) =̂ space of (essentially) bounded func-

tions on Ω, 104

L2(Ω) =̂ space of square-integrable functions on

Ω, 136

‖·‖0 =̂ norm on L2(Ω), 136

‖·‖∞ =̂ supremum norm of a function/maximum

norm of a vector, 104

‖u‖Hm(Ω) =̂ m-th order Sobolev norm, 405

‖u‖L∞(Ω) =̂ supremum norm of u : Ω 7→ Rn,

104

‖·‖L2(Ω) =̂ L2-norm of a function, 105

‖·‖L2(Ω) =̂ norm on L2(Ω), 136

‖·‖0 =̂ L2-norm of a function, 105

V(M), 215

Ω, 120

Ω =̂ spatial domain or parameter domain, 30

Φ∗, 334

|u|Hm(Ω) m-th order Sobolev semi-norm, 406

|·|H1(Ω) =̂ H1-semi-norm of a function, 106

A, B, C, . . . (matrices), 184

A : B =̂ componentwise dot product of matrices,

662

S−T hat= inverse transposed of matrix S, 345

≈ =̂ two-sided uniform estimate, 414

H1
ΓD
(Ω) =̂ functions in H1(Ω) with zero trace

on ΓD, 444

S2 =̂ unit sphere, 23

aK =̂ restriction of bilinear form a to cell K, 199

· =̂ Euclidean inner product of vectors in Rn, 33

χI =̂ characteristic function of an interval I ⊂ R,

594

curl =̂ rotation/curl of a vector field, 659

ü := ∂u
∂t2 , 485

u̇(t) =̂ (partial) derivative w.r.t. time, 456

ℓK restriction of linear form ℓ to cell K, 209
D f
Dv(t) =̂ material derivative w.r.t. velocity field v,

550

grad =̂ gradient of a scalar valued function, 123
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ĉ(ξ) =̂ symbol of a finite difference operator, 628

1 = (1, . . . , 1)T, 631

dS =̂ integration over a surface, 156

M, 215

∇F(x) := grad F(x) =̂ nabla notation for gra-

dient, 123

diam(Ω) =̂ diameter of Ω ⊂ Rd, 122

nnz, 197

∂Ω =̂ boundary of domain Ω, 122

ρK =̂ shape regularity measure of cell K, 404

ρM =̂ shape regularity measure of a mesh M,

404

~µ,~ϕ,~ξ, . . . (coefficient vectors), 184

S0
p,0(M) =̂ Degree p Lagrangian finite element

space with zero Dirichlet boundary con-

ditions., 227

S0
1,0(M) =̂ space of p.w. linear C0-finite ele-

ments, 80

H1
0(Ω) Sobolev space, 140

H1
0(Ω) =̂ componentwise H1

0(Ω)-vectorfields, 662

hM =̂ mesh width of meshM, 386

hM =̂ meshwidth of a grid, 80

xj− 1
2

:= 1
2(xj + xj−1) =̂ midpoint of cell in 1D,

594

‖·‖ =̂ Euclidean norm of a vector ∈ R
n, 31
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Examples and Remarks

L2-convergence of FE solutions, 434

L2-estimates on non-convex domain, 437

H1(Ω) through completion, 141

H1
0(div 0, Ω)-conforming finite elements, 662

h-convergence of Lagrangian FEM on L-shaped

domain, 391

(Bi)-linear Lagrangian finite elements on hybrid

meshes, 227

|·|H1(Ω)-seminorm, 141

Offset function technique, 46

Material coordinate, 32

Non-linear variational problem, 46

BETL support for transformation of gradients, 345

Gmsh – meshing more complex geometries, 238

Gmsh file format for storing meshes, 235

Gmsh geometry description file, 234

“Convergence” in other settings, 104

“Generic constants”, 412

“Location” of global shape functions in BETL, 288

“PDEs” for univariate functions, 28

“Physics based” discretization, 58

“Wrapped rock on a stove”, 165

1D convection-diffusion boundary value problem,

515

Gmsh – marking parts of a mesh by tags, 237

Acceleration based traffic modeling, 561

Accessing locations in DUNE, 265

Actual shock patterns in traffic flow, 583

Adequacy of 2nd-order timestepping, 654

Alternative computation of element matrix for−∆,

201

An assembler class in BETL: Global assembly of

Galerkin Matrices, 291

Analytic solutions, 57

Approximate computation of norms, 107

Approximate computation of norms (II), 386

Approximate computation of norms of the discretiza-

tion errors in BETL, 387

Approximate Dirichlet boundary conditions, 324

Approximate sub-steps for Strang splitting time,

538

Approximation of mean temperature, 427, 428

Assembly of right hand side vector for linear finite

elements, 211

Asymptotic nature of convergence, 115

Barycentric representation of local shape func-

tions, 336

Bases for polynomial spectral collocation, 96

Behavior of generalized eigenvalues of A~µ = λM~µ,

472

Benefit of variational formulation of BVPs, 81

BETL - building a mesh from Gmsh mesh file, 240

BETL – a DUNE based finite element and bound-

ary element code, 230

BETL style representation of local shape func-

tions for Lagrangian finite elements, 338

Bilinear Lagrangian finite elements, 224

Blow-up for leapfrog timestepping, 499

Boundary conditions and L2(Ω), 136

Boundary conditions and density, 139

Boundary conditions for linear advection, 559

Boundary conditions for wave equation, 486

Boundary conditions in H1
0(Ω), 140

Boundary values for conservation laws, 572

Central flux for Burgers equation, 600

Central flux for linear advection, 603

Central flux for Traffic Flow equation, 602

Characteristics for advection, 574

Checkerboard instability for quadrilateral P1-P0

FE pair, 672

Choice of basis for polynomial spectral Galerkin

methods, 65

Choice of timestepping for m.o.l. for transient convection-

diffusion, 535

Class for the computation of element vectors for

linear Lagrangian FE, 307

Class providing analytically computed element ma-

trix for −∆ and linear Lagrangian FE in

BETL, 306

Coefficients/data in procedural form, 59

Collocation approach on “complicated” domains,

359
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Collocation nodes for polynomial spectral collo-

cation, 96

Collocation: smoothness requirements for coeffi-

cients, 95

Compatible boundary and initial data, 454

Computation of heat flux, 430, 433

Computed minimal potential energy configurations

of mass-spring systems, 36

Conditioning of spectral Galerkin system matri-

ces, 73

Connection with artificial viscosity, 605

Connection with convection-diffusion IBVPs→ Chap-

ter 7, 603

Consequence of monotonicity preservation, 649

Consistency error of Lax-Friedrichs/Rusanov nu-

merical flux, 638

Consistency error of upwind numerical flux, 637

Constant advection in 1D, 558

Continuity of interpolation operators, 406

Convective cooling, 164

Convergence and smoothness of solutions, 116

Convergence for conditionally stable Runge-Kutta

timestepping, 482

Convergence for linear and quadratic Lagrangian

finite elements in energy norm, 389

Convergence of Euler timestepping for M.O.L. ODE,

464

Convergence of fully discrete finite volume meth-

ods for Burgers equation, 634

Convergence of fully discrete timestepping in one

spatial dimension, 479

Convergence of FV with linear reconstruction, 644

Convergence of Lagrangian FEM for p-refinement,

393

Convergence of linear and quadratic Lagrangian

finite elements in L2-norm, 390

Convergence of MUSCL scheme, 654

Convergence of P2-P0 scheme for Stokes equa-

tion, 684

Convergence of SUPG and upwind quadrature

FEM, 532

Convergence of Taylor-Hood method for Stokes

problem, 686

Conversion into non-dimensional form by scaling,

512

Coordinate system, 30

Corner singular functions, 419

Crank-Nicolson timestepping, 462

Cubic spline collocation discretization of 2-point

BVP, 100

Data in procedural form, 180

Decoupling of velocity components ?, 661

Degenerate elliptic boundary value problem, 18

Delaunay-remeshing in 2D, 543

Derivative of non-linear u 7→ a(u; ·), 354

Diagonalization in C, 628

Different incarnations of elastic string model, 51

Differentiating a functional on a function space,

44

Differentiating bilinear forms with time-dependent

arguments, 458

Diffusive flux, 572

Discontinuous solutions of advection equations,

559

Discrete models, 34

Domain of dependence/influence for 1D wave equa-

tion, constant coefficient case, 488

Driver code for global assembly in BETL, 300

DUNE - building a mesh from Gmsh mesh file,

239

DUNE – Distributed and Unified Numerics Envi-

ronment, 229

Effect of added diffusion, 525

Efficient assembly of sparse Galerkin matrices (in

MATLAB), 207

Efficient finite element discretization of Stokes prob-

lem, 684

Eigenvectors of translation invariant linear opera-

tors, 628

Elastic string model as non-linear variational prob-

lem, 46

Elastic string shape by finite element discretiza-

tion, 91

Electromagnetic field problems on R
3, 126

Electromagnetic field problems on R3, 126

Element matrix for quadratic Lagrangian finite el-

ements, 305

Elliptic lifting result in 1D, 418

Energy conservation for leapfrog, 495

Energy norm and H1(Ω)-norm, 405

Enforcing zero mean, 666

Ensuring uniqueness of pressure, 665

Entropy solution of Burgers equation, 588

Entropy solution of Traffic Flow equation, 589

Euler equations, 569

Euler timestepping, 462

Euler timestepping for 1st-order form of semi-discrete

wave equation, 491

Evaluation of local shape functions at quadrature

points, 336

Evaluation of local shape functions for triangu-

lar quadratic Lagrangian finite elements
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in BETL, 313

Evolution partial differential equations, 28

Explicit Euler in Fourier domain, 630

Extra regularity requirements → Ex. 1.3.37,

51

Extra smoothness of source function in finite dif-

ference approach, 362

Extra smoothness requirement for PDE formula-

tion, 158

Fan patterns in traffic flow, 583

Finding continuous replacement functionals, 433

Finite differences for convection-diffusion equa-

tion in 1D, 517

Finite element meshes with hanging nodes, 216

First-order semidiscrete hyperbolic evolution prob-

lem, 491

Fixed point iteration for solving non-linear system

of equations, 91

Fourier series, 630

Fully discrete evolutions arising from conserva-

tive discretizations, 623

Function space valued functions, 456

FV: Incorporation of homogeneous Dirichlet bound-

ary conditions, 371

Gap between interpolation error and best approx-

imation error, 410

General asymptotic estimates, 416

General entropy solution for 1D scalar Riemann

problem, 588

Geometric interpretation of CFL condition in 1D,

501

Geometric modeling with Gmsh, 233

Geometric obstruction to Voronoi dual meshes,

369

Geometry related queries in BETL, 266

Global assembly of boundary contributions to Galerkin

matrices in BETL, 296

Global indices of entities of a hybrid mesh in BETL,

261

Global regular refinement in BETL, 383

Gmsh – geometric modeling and mesh genera-

tion tool, 233

Godunov flux for Burgers equation, 616

Godunov flux for traffic flow equation, 616

Good accuracy on “bad” meshes, 409

Grid functions, 104

Guessing timestep constraint, 482

Heat conduction with radiation boundary condi-

tons, 352

Heuristics behind Lagrangian multipliers, 663

Higher order timestepping for 1D heat equation,

479

Impact of efficient initialization of sparse Galerkin

matrix, 208

Impact of linear boundary approximation on FE

convergence, 424

Impact of numerical quadrature on finite element

discretization error, 423

Implementation of an FEBasis compatible type,

276

Implicit Euler method of lines for transient convection-

diffusion, 534

Importance of discrete maximum principle, 441

Important Banach spaces and Hilbert spaces, 138

Imposing boundary condition in finite difference

method, 102

Improved resolution by limited linear reconstruc-

tion, 652

Index mapping by d.o.f. mapper, 205

Index mapping for quadratic Lagrangian FE in BETL,

285

Index mapping matrix for linear Lagrangian finite

elements on triangular mesh, 302

Initial time, 452

Inspecting mesh topology in BETL, 259

Installation of BETL, 230

Internal array representation of 2D triangular mesh,

191

Internal layers, 527

Internal mesh data structures of BETL, 252

Justification for teaching Sobolev spaces, 143

L(π)-stable Runge-Kutta single step methods, 478

Lagrangian finite elements on hybrid meshes, 228

Lagrangian method for convection-diffusion in 1D,

545

Lagrangian method for convection-diffusion in 2D,

547

Laplace operator, 158

Lax-Friedrichs flux for Burgers equation, 606

Lax-Friedrichs flux for traffic flow equation, 607

Learning BETL, 231

LehrFEM – a MATLAB finite element code, 232

Length of a curve, 31

Linear BVP, 165

Linear FE discretization of 1D convection-diffusion

problem, 518

Linear reconstruction with central slope (Burgers

equation), 644
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Linear reconstruction with central slope (traffic flow),

645

Linear reconstruction with minmod limiter, 652

Linear reconstruction with minmod limiter (Burg-

ers’ equation), 651

Linear reconstruction with one-sided slopes (Burg-

ers equation), 646

Linear reconstruction with one-sided slopes (traf-

fic flow), 647

Linearity and monotonicity preservation, 650

Local computations in BETL based on transfor-

mation techniques, 346

Local interpolation nodes for cubic (p = 3) and

quartic (p = 4) Lagrangian FE in 2D, 224

Local numbering of sub-entities of a triangle in

DUNE and BETL, 263

Local quadrature rules on quadrilaterals, 317

Local quadrature rules on triangles, 316

Local shape functions for S0
1 (M) in 2D, 219

Local→global index mapping and index array, 275

Local→global mapping for linear Lagrangian fi-

nite elements on triangular mesh, 275

Mass lumping, 494

Mass-spring equilibrium configurations with increas-

ing number of masses, 37

Mathematical modelling, 27

Mathematical notion of L2(Ω), 136

MATLAB ode45 for discrete parabolic evolution,

467

Maximum principle for higher order Lagrangian

FEM, 443

Maximum principle for linear FE for 2nd-order el-

liptic BVPs, 443

Meaning of characteristics, 576

Minimal regularity of membrane displacement, 124

Mixed boundary conditions, 164

Models based on ordinary differential equations

(ODEs), 28

Naive finite difference discretization of Stokes sys-

tem, 668

Naive finite difference scheme, 592

Necessary conditions for minimizers in finite-dimensional

setting, 42

Necessary continuity of linear form, 133

Needle loading, 151

Non-differentiable function in H1
0(]0, 1[), 145

Non-dimensional equations, 32

Non-existence of solutions of positive definite quadratic

minimization problem, 133

Non-homogeneous Dirichlet boundary conditions

in BETL, 325

Non-homogeneous Dirichlet boundary conditions

on parts of the boundary in BETL, 330

Non-linear materials, 353

Non-polynomial “bilinear” local shape functions,

342

Non-smooth external forcing, 48

Non-unique solutions, 36

Norms on grid function spaces, 107

Numerical studies of convergence, 108

Offset function for finite element Galerkin discretiza-

tion, 85

offset functions for linear Lagrangian FE, 324

One-sided difference approximation of convective

terms, 519

Ordered basis of test space, 62

Other tools for mesh generation, 239

Output functionals, 426

Over-/Undershoots in linear reconstruction, 647

P1-P0 quadrilateral finite elements for Stokes prob-

lem, 674

P2-P0 finite element scheme for the Stokes prob-

lem, 675

Particle simulation of traffic flow, 561, 564

Piecewise gradient, 192

Piecewise linear functions (not) in H1
0(]0, 1[), 144

Piecewise quadratic interpolation, 412

Point particle method for pure advection, 540

Polynomial spectral collocation for 2-point BVP,

99

Positive definite matrices, 129

Potential inefficiency of conditionally stable single

step methods, 481

Pressure Poisson equation, 667

Processing extra information in Gmsh mesh file

with BETL, 241

Properties of weak solutions, 579

Pythagoras’ theorem, 380

Quadratic functionals on RN, 127

Quadratic functionals with positive definite bilin-

ear form in 2D, 130

Quadratic minimization problem in L2(Ω), 139

Quadratic tensor product Lagrangian finite ele-

ments, 226

Quasi-locality of solution of scalar elliptic bound-

ary value problem, 167

Radiative cooling, 164

Recalled: impact of choice of basis, 184
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Regular/uniform refinement of triangular mesh in

2D, 382

Related: Convergence of approximations of func-

tions, 103

Scalar elliptic boundary value problem in one space

dimension, 166

Scaling of convection-diffusion equation, 513

Scaling of entries of element matrix for −∆, 202

Scanning mesh topology in standard DUNE inter-

face, 258

Second-order geometry approximation in Gmsh,

350

Semi-Lagrangian method for convection-diffusion

in 1D, 552

Semi-Lagrangian method for convection-diffusion

in 2D, 553

Single mass system, 36

Smoothness of solution of scalar elliptic boundary

value problem, 166

Smoothness requirements for collocation trial space,

94

Solution formula for sourceless transport, 536

Sparse sitffness matrices, 197

Spatial discretization options, 461

Special case: Linear system of equations for lin-

ear finite element discretization of equidis-

tant mesh, 83

Spectral Galerkin computation of elastic string shape,

78

Spectral Galerkin discretization of linear variational

problem, 64

Spectrum of elliptic operators, 474

Spectrum of upwind difference operator, 629

Spurious Galerkin solution for 2D convection-diffusion

BVP, 520

Stability and CFL condition, 633

Stability domains, 632

Stability functions of explicit RK-methods, 631

Stability of pressure solution: inf-sup condition,

681

Stable velocity solution, 681

Stencil notation, 362

Storing topology of triangular mesh in 2D, 248

Streamline-diffusion discretization, 530

Streamlines, 516

Suitability of macroscopic models for traffic flow,

566

Supports of global shape functions in 1D, 218

Supports of global shape functions on triangular

mesh, 218

Symbolic computation, 307

Taut membrane with free boundary values, 158

Temporally varying spatial domains, 451

Tense string without external forcing, 40

Timestepping for ODEs, 58

Traffic flow: Evolution of smooth initial density,

577

Transformation techniques for bilinear transforma-

tions, 346

Treatment of Neumann boundary conditions in fi-

nite volume schemes, 371

Triangular quadratic (p = 2) Lagrangian finite el-

ements, 221

Truncation of unbounded domain, 18

Types of difference quotients, 101

Uniqueness of solutions of Neumann problem, 170

Unstable P1-P0 finite element pair on triangular

mesh, 671

Upwind difference operator for linear advection,

627

Upwind flux and expansion shocks, 615

Upwind flux and transsonic rarefaction, 609

Upwind flux for Burgers equation, 608

Upwind flux for traffic flow simulation, 608

Upwind flux: Convergence to expansion shock,

611

Upwind quadrature discretization, 524

Usefulness of L2-estimates, 437

Using BETL intersections to query local topology

of mesh, 269

Using DUNE intersections to query local topology

of mesh, 268

Using entity iterators in BETL, 245

Using entity iterators of a DUNE GridView, 245

Vanishing viscosity for Burgers equation, 584

Variational formulation for convection-diffusion BVP,

514

Variational formulation for heat conduction with

Dirichlet boundary conditions, 168

Variational formulation for Neumann problem, 169

Variational formulation: heat conduction with gen-

eral radiation boundary conditions, 169

Variational problems with different trial and test

spaces, 294

Vertical force, 54

Virtual work principle, 44

von Neumann stability analysis, 472

Well-posed 2nd-order linear elliptic variational prob-

lems, 379

Well-posedness of variational Neumann problem,

171
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