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These are notes for my exercises classes in Functional Analysis I in fall semester 2023
at ETH Zürich. If you find mistakes in the notes, please let me know by sending me an
email at hjalti.isleifsson@math.ethz.ch.

Exercise class 1
Exercise 1. Let (X, ∥ · ∥) be a normed space. Show that X is a Banach space if and only
if every absolutely converging serie in X converges (a serie

∑∞
i=1 xi is said to be absolutely

convergent if
∑∞

i=1 ∥xi∥ converges).

Solution. Assume that X is a Banach space and let
∑∞

i=0 xi be an absolutely converging
serie. For every n ≥ 0, we let sn :=

∑n
i=1 xi denote the n-th partial sum. We will show

that (sn) converges by showing that it is a Cauchy sequence. So let ε > 0. As
∑∞

i=1 ∥xi∥
converges, there is N ≥ 0 such that if N ≤ n < m then

∑m
i=0 ∥xi∥ <

∑n
i=0 ∥xi∥+ ε so

∥sm − sn∥ =

∥∥∥∥∥
m∑

i=n+1

xi

∥∥∥∥∥ ≤
m∑

i=n+1

∥xi∥ < ε.

This shows that (sn) is Cauchy and hence it converges as X is complete.

Conversely, assume that every abolutely convergent serie converges. Let (xi)
∞
i=0 be a

Cauchy sequence. It suffices to show that there is a converging subseqeunce (it is a general
fact that any Cauchy sequence in a metric space which has a convergent subsequence is
convergent; if you have not seen this before you should convince yourself that this is
correct). As (xi) is Cauchy, there is a sequence i0 < i1 < · · · such that ∥xij+1

−xij∥ < 2−j

for every j. Now, xik = xi0+
∑k

j=1(xij −xij−1
) and the serie

∑∞
j=1(xij −xij−1

) is absolutely
convergent and hence convergent, so (xik) is convergent. This finishes the proof. ■

Example 2. (i) Let c00 denote the space of sequences (xi)
∞
i=0 such that xi = 0 for all but

finitely many i, endowed with the supremum norm ∥(xi)∥∞ = supi∈N |xi|. This space is
not complete as can be seen as follows: Let (xi) be any sequence of positive numbers
such that xi → 0 as i → ∞ and consider the sequence xj = (x0, x1, . . . , xj, 0, 0, . . .) ∈ c00.
Now, let ε > 0. As xi → ∞, there exists an N such that if i ≥ N , then xi < ε. Now,
if N ≤ j < k then ∥xj − xk∥∞ = maxji=k+1 |xi| < ε so (xj) is Cauchy. However, it does
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not have a limit in c00 which can be seen as follows: Suppose for a contradiction that
x̄ = limj→∞ xj. Then |x̄i − (xj)i| ≤ ∥x − xj∥∞ → 0 as j → ∞ so x̄i = limj→∞(xj)i = xi

i.e. x̄ = x and as we assumed that all the entries of x are positive, x /∈ c00.

(ii) Let c0 denote the space of sequences (xi)
∞
i=0 such that xi → 0 as i → ∞, endowed

with the supremum norm. We begin by showing that c0 is complete: So let (xj) be a
Cauchy sequence in c0. For each i it holds that |(xj)i − (xk)i| ≤ ∥xj − xk∥∞ so ((xj)i)i∈N
is also Cauchy and hence has a limit xi; let x := (xi). We now show that ∥x− xj∥∞ → 0
as j → ∞: Let ε > 0. As (xj) is Cauchy, there is an N such that if j, k ≥ N then
∥xj − xk∥∞ < ε and then |(xk)i − (xj)i| ≤ ∥xk − xj∥∞ < ε for every i ∈ N so

|xi − (xj)i| ≤ lim sup
k→∞

|(xk)i − (xj)i| ≤ ε

for every i ∈ N and hence ∥x− xj∥∞ ≤ ε. This shows that ∥x− xj∥∞ → 0 as j → ∞.

It remains to show that xi → ∞ as i → ∞. So let ε > 0 and let N be such that if
j ≥ N then ∥x − xj∥∞ < ε. As (xN)j → 0 as j → ∞, there is an M such that if i ≥ M
then |(xN)i| < ε. Now, for i ≥ M , it holds that

|xi| ≤ |xi − (xN)i|+ |(xN)i| < ∥x− xN∥∞ + ε < 2ε

which shows that xi → 0 as i → ∞.

(iii) Now it is easy to see that c0 is the completion of c00: Let x ∈ c0, ε > 0 and
N be such that if i ≥ N then |xi| < ε. Then (x′ = (x0, . . . , xN , 0, 0, . . .) ∈ c00 and
∥x− x′∥∞ < ε. This shows that c00 is dense in c0 and as c0 is complete, we conclude that
c0 is the completion of c00.

We will now cover the following classical theorem.

Theorem 3. Let (X, ∥ · ∥) be a normed space. Then X is finite dimensional if and only
if its closed unit ball B(0, 1) is compact.

A standard way to prove this is to use the following lemma due to F. Riesz.

Lemma 4. (Riesz’ lemma) Let (Y, ∥ · ∥) be a normed space and X ⊆ Y a subspace which
is not dense in Y . Then for every 0 < α < 1 there is y ∈ Y with ∥y∥ = 1 and d(y,X) > α.

Proof. Let y0 ∈ Y be a vector which is not in the closure of X. Then R := infx∈X ∥y−x∥ >
0. Let x0 ∈ X be such that ∥y0 − x0∥ < R/α and y := (y0 − x0)/∥y0 − x0∥. Then

d(y,X) = inf
x∈X

∥y − x∥ = inf
x∈X

∥∥∥∥ y0 − x0

∥y0 − x0∥
− x

∥∥∥∥
= inf

x∈X

∥∥∥∥ y0 − x0

∥y0 − x0∥
− x

∥y0 − x0∥

∥∥∥∥ = inf
x∈X

∥y0 − x∥
∥y0 − x0∥

> α

which finishes the proof. ■

Proof of Theorem 3. Assume that X is infinite dimensional. We now define inductively a
sequence of unit vectors x1, x2, . . . such that ∥xi − xj∥ > 1/2 for every i ̸= j: Let x1 ∈ X
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be any unit vector. Having defined x1, . . . , xn we let Vn := ⟨x1, . . . , xn⟩ and use Riesz’
lemma to find a unit vector xn+1 ∈ X ∖ Vn with d(xn+1, Vn) > 1/2. It is clear that the
sequence (xn) satisfies ∥xi−xj∥ > 1/2 and hence does not have a convergent subsequence
so B(0, 1) can not be compact.

Now we assume that X is finite dimensional and show that B(0, 1) is compact. The
trick here is to use that we know this property for Rn. So let n denote the dimension of
X. Fix a basis b1, . . . , bn of X, consisting of unit vectors. Now, define a map T : Rn → X,
Tx =

∑n
i=1 xibi. This is a linear bijection. It is continuous since

∥Tx∥ =

∥∥∥∥∥
n∑

i=1

xibi

∥∥∥∥∥ ≤
n∑

i=1

|xi| ≤ n · ∥x∥.

Further, ∥T (x)∥ > 0 for every x ∈ Rn with ∥x∥ = 1 and as the unit sphere in Rn is
compact, there is C > 0 such that ∥T (x)∥ ≥ 1/C for every x ∈ Rn with ∥x∥ = 1 and
hence ∥T (x)∥ ≥ 1

C
· ∥x∥ for every x ∈ Rn. Without loss of generality, we assume that

C ≥ n. We have shown that

1

C
· ∥x∥ ≤ ∥Tx∥ ≤ C · ∥x∥

for every x ∈ Rn. Thus, if x ∈ BX(0, 1), then ∥T−1x∥ ≤ C so BX(0, 1) ⊆ T (BRn(0, C)).
As T is continuous and BRn(0, C) is compact, T (BRn(0, C)) is compact and hence is
BX(0, 1) compact as it is a closed subset of a compact set. ■

Exercise class 2
On last exercise sheet, you were supposed to show that Hilbert spaces are uniformly convex
i.e. for any 0 < ε ≤ 2 there is δ > 0 such that if x, y are unit vectors with ∥x − y∥ ≥ ε
then ∥1

2
(x + y)∥ ≤ 1 − δ. The same holds true for the Lp spaces when 1 < p < ∞, as

follows from Clarkson’s inequalities.

Lemma 5 (Clarkson’s inequalites). Let (X,µ) be a measure space. For every f, g ∈ Lp(X)
it holds that ∥∥∥∥f + g

2

∥∥∥∥q
p

+

∥∥∥∥f − g

2

∥∥∥∥q
p

≤
(
1

2
∥f∥pp +

1

2
∥g∥pp

) q
p

when 1 < p < 2 and ∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g

2

∥∥∥∥p
p

≤ 1

2

(
∥f∥pp + ∥g∥pp

)
when 2 ≤ p < ∞. Here q is the unique number such that 1

p
+ 1

q
= 1.

For the proof, see e.g. Brezis.

Exercise 6. Use Clarkson’s inequalities to show that Lp, 1 < p < ∞, is uniformly convex.

Exercise 7. Let H be a Hilbert space an U : H → H a linear operator. Show that the
following is equivalent:

(i) U is bounded and U∗U = UU∗ = idH.
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(ii) U is surjective and ⟨Ux, Uy⟩ = ⟨x, u⟩ for all x, y ∈ H.

Such an operator is said to be unitary.

Solution. Assume that (i) holds. Given y ∈ H,

y = idH y = (UU∗)y = U(U∗y)

so U is surjective. Given x, y ∈ H,

⟨Ux, Uy⟩ = ⟨x, U∗Uy⟩ = ⟨x, y⟩.

This shows that (ii) holds. Assuming (ii), we let x, y ∈ H and write as before

⟨x, y⟩ = ⟨Ux, Uy⟩ = ⟨U∗Ux, y⟩.

As this holds for all y ∈ H we conclude that x = U∗Ux and hence that U∗U = idH. Let
y ∈ H. As U is surjective, there is an x ∈ H such that Ux = y. Now,

(UU∗)y = (UU∗)(Ux) = U(U∗U)x = U(idH)x = Ux = y

so UU∗ = idH as well. ■

Exercise 8. Let U : H → H be a unitary operator and assume that λ is an eigenvalue of
U . Show that |λ| = 1.

Solution. Let λ be an eigenvalue and x ∈ H a corresponding unit eigenvector. Then

1 = ∥x∥2 = ∥Ux∥2 = |λx|2 = |λ|2

which finishes the proof. ■

Exercise 9. Let Γ be a countable group, endowed with the counting measure. In last
lecture, the left action λ by Γ on ℓ2(Γ), which is given by (λ(γ)f)(η) = f(γ−1η), was
introduced. For each γ ∈ Γ, the operator λ(γ) : ℓ2(Γ) → ℓ2(Γ) is a unitary operator.
Show that λ(γ) has an eigenvector if and only if γ is of finite order.

Solution. For convenience, we sometimes write f ∈ ℓ2(Γ) as a formal sum f =
∑

γ∈Γ f(γ)γ.

Assume that γ ∈ Γ is of finite order n. Then 1 + γ + · · · + γn−1 is an eigenvector of
λ(γ), corresponding to the eigenvalue 1. For the other direction, assume that λ(γ) has
eigenvector f corresponding to the eigenvalue µ. As f ̸= 0, there exists η ∈ Γ such that
f(η) ̸= 0. Then

xnf(γnη) = (λ(γ)f)n(γnη) = (λ(γn)f)(γnη) = f(η)

so f(γnη) = x−nf(η) for every n and hence |f(γnη)| = |f(η)| as |x| = 1 since λ(γ) is
unitary. Now, let n denote the order of γ. Then

n · |f(η)|2 =
n−1∑
k=0

|f(γkη)|2 = ∥f∥22 < ∞

so the order is finite. ■
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Example 10 (Brezis Exercise 5.8). Let (X,µ) be a measure space, h : X → [0,∞) a
measurable function and

C := {g ∈ L2(X) | |g(x)| ≤ h(x) for almost every x}.

Then C is a closed and convex subset and the projection PC : L2(X) → C onto C is given
by

PCf(x) :=

{
0 if f(x) = 0
f(x)
|f(x)| ·min{|f(x)|, h(x)} else

.

Example 11 (Brezis Exercise 5.7). Let H be a Hilbert space and C ⊆ H. One says that C
is a cone with apex 0 if for every u, v ∈ C and every µ, ν ≥ 0 it holds that µu+ νv ∈ C.
Assume that K is a closed cone and let PC : H → C denote the projection. Let us show
that PCu is the unique vector v ∈ K such that

⟨u− v, v⟩ = 0 and ⟨u− v, w⟩ ≤ 0 for every w ∈ C. (1)

As C is a cone, we know that for every t ≥ 0 and every w ∈ C it holds that ∥u− (PCu+
tv)∥ ≥ ∥u − PCu∥ which gives that ⟨u − PCu, v⟩ ≤ t

2
∥v∥2. As this holds for every t ≥ 0,

we conclude that ⟨u − PCu,w⟩ ≤ 0 for every w ∈ K. The property ⟨u − PCu, PCu⟩ = 0
follows from the fact that t 7→ ∥u− tPCu∥2 attains a minima at t = 1.

Now assume that there are two vectors v, v′ ∈ K which satisfy (1). Consider the
function f(t) := 1

2
∥u− (1− t)v − tv′∥2. It holds that

f ′(t) = ⟨u− (1− t)v − tv′, v − v′⟩

so from (1), it follows that

f ′(0) = ⟨u− v, v − v′⟩ ≥ 0 and f ′(1) = ⟨u− v′, v − v′⟩ ≤ 0.

However, if v ̸= v′, then f is a strictly convex function which contradicts that f ′(0) ≥ 0
and f ′(1) ≤ 0. Hence, we conclude that v = v′.

Exercise class 3
Example 12 (Brezis Exercise 1.3). Consider the vector space

X = {f ∈ C([0, 1],R) | f(0) = 0}

endowed with the supremum norm. Let λ : X → R be given by λ(f) :=
∫ 1

0
f(x) dx. Then

|λ(f)| ≤
∫ 1

0
|f(x)| dx ≤ ∥f∥∞ so ∥λ∥X∗ ≤ 1. Let us show that ∥λ∥X∗ = 1: For ε > 0, let

fε(x) :=

{
x
ε

if 0 ≤ x ≤ ε

1 if ε < x ≤ 1
.

Then ∥f∥∞ = 1 and |λ(f)| = 1− ε/2 so ∥λ∥X∗ ≥ 1− ε/2. As this holds for every ε > 0,
∥λ∥X∗ = 1.

Note however, that there does not exist f ∈ X with ∥f∥∞ = 1 such that |λ(f)| =
∥λ∥X∗ = 1 because such an f would have to satisfy f(x) = 1 for almost every x and as f
is assumed to be continuous, f(x) = 1 for every x ∈ [0, 1] which is impossible as f(0) = 0.
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Recall that any vector space X has a Hamel basis i.e. there exists a family (ei)i∈I
of vectors in X which are linearly independent and such that any vector x ∈ X can be
written as

x =
∑
i∈J

xiei

where J ⊆ I is finite and (xi)i∈J are numbers in the underlying field.
Example 13. Let X be an infinite dimensional normed space and let (ei)i∈I be a Hamel
basis for X. Without loss of generality, we may assume that ∥ei∥ = 1 for every i ∈ I.
Now, let (xi)i∈I be an unbounded family of numbers and define a functional λ : X → R
such that λ(ei) = xi for every i ∈ I and extend by linearity. Then λ is unbounded and
hence not in X∗.
Exercise 14. Let X be an infinite dimensional Banach space. Show that the cardinality
of any Hamel basis of X is uncountable.

Solution. Let (en)n∈N be a countable family of vectors in X and let us show that they can
not span X. For n ∈ N let Xn denote the span of (ek)k≤n. Then each of the sets Xn is
closed (finite dimensional vector spaces are always closed as they are complete) and has
empty interior (else, there would exist an open ball U(x, ε) ⊆ Xn. As Xn is a subspace,
we could then deduce that U(0, 1) ⊆ X and hence that Xn = X). Thus, as X is complete,⋃

n∈NXn has empty interior by the Baire category theorem so
⋃

n∈NXn must be a proper
subspace of X and therefore do the vector (en)n∈N not span X. ■

Recall that a hyperplane in a normed space X is a subspace of the form

{x ∈ X | λ(x) = 0}

where X is a linear functional on X. Let H = {x ∈ X | λ(x) = 0} be a hyperplane. For
every x /∈ H and every y ∈ X it holds that

y =

(
y − λ(y)

λ(x)
· x
)
+

λ(y)

λ(x)
· x

and as λ(y − λ(y)
λ(x)

· x) = 0, this shows that x and H span X.

Example 15. Let X be a normed space, λ a linear functional on X and H = {x ∈ X |
λ(x) = 0}. Then H̄ is still a subspace of X. If H ̸= H̄ then there exists x ∈ H̄ ∖H and
by the remark above, x and H span X so H̄ = H. This shows that hyperplanes are either
closed or dense.
Exercise 16 (Brezis Proposition 1.5). Let X be a normed space, λ a linear functional on
X and H = {x ∈ X | λ(x) = 0}. Show that H is closed if and only if λ is continuous.

Solution. It is clear that H is closed if λ is continuous so assume that H is closed. Let
x0 /∈ H and take r > 0 such that B(x0, r) ∩ H = ∅. Then λ has fixed sign on B(x0, r),
say that λ(x) < 0 for every x ∈ B(x0, r). Now, let x ∈ X. Then

r

2∥x− x0∥
(x− x0) + x0 ∈ B(x0, r)

so
λ(x) <

(
1− 2

r
∥x− x0∥

)
λ(x0)

which implies that λ is bounded. ■
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Exercise class 4
Exercise 17. Let (λi)i∈N be a sequence and define a linear operator T : ℓ2(N) → ℓ2(N) by
T ((xi)i∈N) = (λixi)i∈N. Show that T is compact if and only if λi → 0 as i → ∞.

Solution. Assume first that λi → 0 as i → ∞. Let (xj)j∈N be a bounded sequence in
ℓ2(N). Fix ε > 0 and let N ∈ N be such that if j ≥ N then |λi| < ε. Let (xjk)k∈N be a
subsequence such that ((xjk)i)k∈N converges for each 0 ≤ i < N as k → ∞. Let M ∈ N
be such that if k, l ≥ M then

∑N−1
i=0 |λj(x

jk)i − λj(x
jl)i|2 < ε2. Then for k, l ≥ M it holds

that

∥Txik − Txil∥22 =
N−1∑
i=0

|λi(x
jk)i − λi(x

jl)i|2 +
∞∑

i=N

|λi(x
jk)i − λi(x

jl)i|2

< (1 + 4C2) · ε2.

This shows that (Txj)j∈N is Cauchy and hence convergent.

For the other direction, assume that (λi)i∈N does not converge to 0 as i → ∞. Then we
may find ε > 0 and subsequence (ij)j∈N such that |λij | ≥ ε for every j ∈ N. Now, consider
the sequence (xj)j∈N given by (xj)k = 0 for k ̸= ij and (xj)ij = 1. This is a bounded
sequence but ∥Txj − Txk∥ ≥

√
2 · ε for every j ̸= k so it does not have a convergenct

subsequence. This proves that T is not compact. ■

Example 18 (Brezis Exercise 6.2.3). Consider the operator T : C([0, 1]) → C([0, 1]) given
by (Tf)(t) :=

∫ t

0
f(τ) dτ . Note that for 0 ≤ s ≤ t ≤ 1,

|(Tf)(t)− (Tf)(s)| ≤
∫ t

s

|f(τ)| dτ ≤ (t− s) · ∥f∥∞. (2)

Now, let (fi)i∈N be a bounded sequence in C([0, 1]). Then by (2), (Tfi)i∈N is uniformly
Lipschitz and hence in particular equicontinuous. The sequence is also bounded, so by
Arzela-Ascoli, it has a convergent subsequence. Hence is the operator T compact.

Now, note that T (B(0, 1)) consists of all continuously differentiable functions g on
[0, 1] which satisfy g(0) = 0 and ∥g′∥∞ ≤ 1. This is not a closed set as for example
g0(t) =

1
2
(1− |t− 1

2
|) is in the closure of T (B(0, 1)) but not in T (B(0, 1)).

Exercise 19 (Stein-Shakarchi Exercise III.4.7.31). Let K be the function which is defined
on [−π, π) by K(x) := i(sgn(x)π − x) and then extended 2π-periodically to R. Given
f ∈ L1([0, 1]), let

Tf(x) :=
1

2π

∫ π

−π

K(x− ξ)f(ξ) dξ.

(a) Show that F (x) = Tf(x) is absolutely continuous and if
∫ π

−π
f(y) dy = 0 then

F ′(x) = if(x) for a.e. x.

(b) Show that the mapping f 7→ Tf is compact and symmetric on L2([−π, π]).

(c) Prove that the eigenfunctions of T are φn(x) = ceinx where c ̸= 0 is a constant and
n ∈ Z and that the eigenvalue corresponding to φn is 1/n if n ̸= 0 and 0 if n = 0.
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(d) Conclude that (einx)n∈N is an orthonormal basis of L2([−π, π]).

Solution. (a) Let −π ≤ x < y < π. Note that

K(y)−K(x) =

{
2π − (y − x) if x < 0 < y

x− y else

so

|Tf(y)− Tf(x)| ≤ 1

2π

∫ π

−π

|K(y − ξ)−K(x− ξ)| · |f(ξ)| dξ

≤
∫ y

x

|f(ξ)| dξ + |y − x| · ∥f∥1

from which it is clear that Tf is absolutely continuous.

Now, let f be a function with
∫ π

−π
f(y) dy = 0, let x be a Lebesgue point of f and

0 < h < π. After extending f to a 2π-periodic function on R we can compute as follows

Tf(x+ h)− Tf(x)

h
=

1

2π

∫ x+π

x−π

K(x− ξ + h)−K(x− ξ)

h
· f(ξ) dξ

=
1

2π

(∫ x+h

x

i · 2π − h

h
· f(ξ) dξ −

∫
[x−π,x+π]∖[x,x+h]

i · f(ξ) dξ
)

=
1

h

∫ x+h

x

f(ξ) dξ

→ i · f(ξ)

as h ↘ 0. The computations are similar for h < 0.

(b) Let f, g ∈ L2([−π, π]). Then

⟨Tf, g⟩ = 1

2π

∫ π

−π

(
1

2π

∫ π

−π

K(x− ξ)f(ξ) dξ

)
g(x) dx

=
1

2π

∫ π

−π

f(x)

(
1

2π

∫ π

−π

K(ξ − x)g(ξ) dξ

)
dx

=
1

2π

∫ π

−π

f(x)

(
1

2π

∫ π

−π

K(x− ξ)g(ξ) dξ

)
dx

= ⟨f, Tg⟩

where we used that K(−x) = K(x). As K is bounded,
∫ π

−π

∫ π

−π
|K(x− y)|2 dx dy < ∞ so

T is a Hilbert-Schmidt operator and hence compact.

(c) Let φ ∈ L2([−π, π]) be an eigenfunction corresponding to the eigenvalue λ. Assume
first that λ = 0. Let c := 1

2π

∫ π

−π
φ(y) dy. Note that T (φ − c) = 0 as T sends constants

functions to 0, so by (a), φ − c = 0 which gives that φ = c i.e. φ is constant. This
shows that the eigenfunctions corresponding to the eigenvalue 0 are exactly the constant
functions.
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Now assume that λ ̸= 0 and Tφ = λφ. Note that
∫ π

−π
Tφ(y) dy = 0 so

∫ π

−π
φ(y) dy = 0

so we may apply (a) to conclude that λφ′ = iφ which gives that φ(x) = c · ei 1λx where
c ̸= 0 is a constant. As

∫ π

−π
φ(y) dy = 0, λ = 1/n for some integer n. Conversely, one

checks that all functions of the form φn(x) = c · einx, where c ̸= 0 is a constant and n is
an integer, are eigenfunctions, so we are done.

(d) By the spectral theorem for compact self-adjoint operators, we know that (einx)n∈Z
form an orthogonal basis for L2([−π, π]). As ⟨einx, einx⟩ = 1, it is an orthonormal basis.

■

Exercise class 5
Exercise 20 (Stein-Shakarchi III.4.7.29). Let H be a Hilbert space, T : H → H a compact
symmetric operator and λ ̸= 0.

(a) Show that the range of λ− T is closed.

(b) Show that the conclusion of (a) may fail if λ = 0.

(c) Show that λ− T is surjective if and only if λ̄− T ∗ is injective.

Solution. (a) Let g ∈ H and assume that there is a sequence gj := (λ − T )fj, j ∈ N,
such that gj → g as j → ∞. As each f ∈ H can be written as f = f⊥ + f ∥ where f⊥ is
orthogonal to the eigenspace of λ and f ∥ is contained in it, and (λ − T )f ∥ = 0, we may
assume that each of the fj are orthogonal to the eigenspace of λ. Let 0 < λ1 ≤ λ2 ≤ · · · →
∞ be an enumeration of the eigenvalues of T with multiplicity, and (ei)

∞
i=1 an orthonormal

basis of eigenvectors such that Tei = λiei. Given f ∈ H, let f0 := f −
∑∞

i=1⟨f, ei⟩ei. Now

∥gj∥2 = ∥(λ− T )fj∥2 = ∥(fj)0∥2 +
∞∑
i=1

|⟨fj, ei⟩|2 · |λ− λi|2.

As the sequence (gj) is bounded, ⟨fj, ei⟩ = 0 for every i such that λi = λ and λi → ∞,
we can conclude that (fj) is a bounded sequence. But then, after possibly passing to a
subsequence, we may assume that Tfj converges and then fj =

1
λ
(gj + Tfj) converges to

say f and passing to the limit, f = 1
λ
(g + Tf) i.e. g = (λ− T )f .

(b) We saw this in last class.

(c) Let us show that R(λ − T )⊥ = N(λ̄ − T ∗). So let y be orthogonal to R(λ − T ).
Then

∥(λ̄− T ∗)y∥2 = ⟨(λ̄− T ∗)y, (λ̄− T ∗)y⟩ = ⟨y, (λ− T )(λ̄− T ∗)y⟩ = 0

so y ∈ N(λ̄− T ∗). If y ∈ N(λ− T ) then for every x ∈ H it holds that

0 = ⟨x, (λ̄− T ∗)y⟩ = ⟨(λ− T )x, y⟩

so y is orthogonal to R(λ− T ), as x ∈ H was arbitrary.

Now the claim follows trivally, using that R(λ− T ) is closed. ■
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Example 21. As R is complete, by Baire’s category theorem, it can not be written as a
countable union of closed sets with empty interior. Now, singletons are closed and have
empty interior so as a consequence, R is uncountable.

Exercise 22 (Stein-Shakarchi III.4.7.35). Let H be a Hilbert space.

(a) Let S and T be two linear symmetric and compact operators on H that commute.
Show that there exists an orthonormal basis (ei)i∈N of H such that for every i ∈ N,
ei is an eigenvector of S and T .

(b) A linear operator H is said to be normal if TT ∗ = T ∗T . Show that if T is normal
and compact then T can be diagonalized.

(c) Let U be a unitary operator of the form U = λ−T where T is compact. Show that
U can be diagonalized.

Solution. (a) Let x be an eigenvector of T corresponding to the eigenvalue λ. Then
S(Tx) = TSx = Tλx = λTx so Tx is also an eigenvector of S with eigenvalue λ. From
here, the claim is obvious.

(b) Note that T = T1+ iT2 where T1 =
1
2
(T +T ∗) and T2 =

1
2
(T −T ∗). As TT ∗ = T ∗T ,

it follows that T1 and T2 commute and as they are compact, they can be diagonalized
simultaneously by (a) and therefore can T be diagonalized.

(c) As U is unitary,

(λ− T )(λ̄− T ∗) = I = (λ̄− T ∗)(λ− T )

which gives that TT ∗ = T ∗T . By (b), T can thus be diagonalized so U = λ− T can also
be diagonalized. ■

Exercise class 6
In last week’s lectures the closed graph theorem was proven:

Theorem 23 (Closed graph theorem). Let X, Y be Banach spaces and T : X → Y a
linear map. Then T is continuous if and only if the graph of T is closed.

In general when one has a map f : X → Y between metric spaces, one has to show
that given any point x ∈ X and any convergent sequence (xn) in X with x = lim xn

it holds that f(x) = lim f(xn). Note that this includes two steps: i) Showing that the
sequence (f(xn)) is convergent i.e. that there exists y ∈ Y such that y = lim f(xn). ii)
Showing that y = f(x). The great thing about the closed graph theorem is that it allows
us to skip the first step, i.e. it suffices to show that for every sequence (xn, Txn) ∈ X ×Y
which converges to some (x, y) ∈ X × Y it holds that y = Tx.

Exercise 24 (Stein-Shakarchi Exercise IV.4.12). Let X, Y, Z be Banach spaces and T :
X × Y → Z a linear map such that

(i) for every x ∈ X, the map Y → Z, y 7→ T (x, y) is continuous.

(ii) for every y ∈ Y , the map X → Z, x 7→ T (x, y) is continuous.

10



Solution. By (i), we have a linear map X → B(Y, Z), x 7→ Tx where Tx : Y → Z,
Txy = T (x, y). Let (xn, Txn) → (x, T̄ ) where T̄ ∈ B(Y, Z). As Txn → T̄ in the strong
operator topology, it holds in particular for every y ∈ Y that

T̄ y = lim
n→∞

Txn(y) = lim
n→∞

T (xn, y) = T (x, y)

where we used (ii) in the last step. Hence is T̄ = Tx. Now, B(Y, Z) is a Banach space
as Z is a Banach space so the closed graph theorem implies that x 7→ Tx is a continuous
map. Hence, there exists a constant C ≥ 0 such that ∥Tx∥ ≤ C∥x∥ for every x ∈ X and
thus

∥T (x, y)∥ = ∥Txy∥ ≤ ∥Tx∥ · ∥y∥ ≤ C · ∥x∥ · ∥y∥.

This finishes the solution. ■

Exercise 25 (Stein-Shakarchi Exercise IV.4.14). Let X be a complete metric space and
T : X → X a continuous map. An element x ∈ X is said to be universal for T if the orbit
(T n(x))n∈N is dense in X. Show that the set of universal elements for T is either empty
or generic.

Solution. Assume that there exists a universal element x. For j, k,N ≥ 1, let

Fj,k,N := {y ∈ X | d(T n(y), T j(x) <
1

k
for some n ≥ N}.

As T is continuous, the sets Fj,k,N are open. Further, for each m ≥ 0, Tm(x) ∈ Fj,k,N

as (T n(x))n is dense in X. Therefore is Fj,k,N open and dense so F :=
⋂

j,k,N Fj,k,N is
generic. Now, if y ∈ F then for every j ∈ N, there exists a sequence ni → ∞ such that
T ni(y) → T j(x) as i → ∞. As (T j(x))j is dense in X, it follows that (T n(y))n is dense in
X and hence that y is universal. ■

In last week’s lectures, we also saw the uniform boundedness principle.

Theorem 26 (Uniform boundedness principle). Let X be a Banach space, Y a normed
space and (Tλ)λ∈Λ a family in B(X, Y ). If for every x ∈ X it holds that supλ∈Λ ∥Tλx∥ < ∞
then supλ∈Λ ∥T∥ < ∞.

Exercise 27 (Corollary IV.18). Let X be a Banach space and B∗ ⊆ X∗ a subset such that
{f(x) | f ∈ B∗} is bounded for every x ∈ X. Show that B∗ is bounded in X∗.

Solution. This follows directly from the uniform boundedness principle: For every x ∈ X,
supf∈B∗ |f(x)| < ∞ so by the uniform boundedness principle, supf∈B∗ ∥f∥ < ∞ i.e. B∗ is
bounded. ■

Example 28. Let X ⊆ ℓ2(N) be the set of those x =
∑∞

j=0 ajej ∈ ℓ2(X) such that aj = 0
for all but finitely many j. Then X is a normed space but it is not complete. For n ∈ N,
let Tn : X → X be given by Tnej = jej if j ≤ n but Tnej = 0 for j > n. Then
supn∈N ∥Tnx∥ < ∞ for every x ∈ X but supn∈N ∥Tn∥ = ∞ as ∥Tn∥ = n.
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Exercise class 7
Today, we will prove that for any point x0 ∈ [−π, π] there exists a continuous function
on [−π, π] whose Fourier serie diverges at x0. We follow Section IV.4.2.1 in Stein and
Shakarchi.

Recall that, given a complex valued function f ∈ L1([−π, π]), its Fourier coefficients
an(f), n ∈ Z, are defined by

an(f) :=
1

2π

∫ π

−π

f(x)e−inx dx

and its Fourier serie F(f) is given by

F(f)(x) =
∞∑

n=−∞

an(f)e
inx.

For N ∈ N, we let

SN(f)(x) :=
N∑

n=−N

an(f)e
inx

denote the N -th partial sum of f . Note that

SN(f)(x) =
N∑

n=−N

an(f)e
inx =

N∑
n=−N

1

2π

∫ π

−π

f(y)e−iny dy · einx

=
1

2π

∫ π

−π

(
N∑

n=−N

ein(x−y)

)
f(y) dy

= (DN ∗ f)(x)

where

DN(x) :=
N∑

n=−N

einx = e−iNx · e
i(2N+1)x − 1

eix − 1
=

ei(N+1/2)x − e−i(N+1/2)x

eix/2 − e−ix/2

=
sin((N + 1/2)x)

sin(x/2)

and
(f ∗ g)(x) := 1

2π

∫ π

−π

f(x− y)g(y) dy.

Now, we assume without loss of generality that x0 = 0. In order to show the existence
of a continuous function f on C([−π, π]) we use the uniform boundedness principle in the
following way: For every N ∈ N, let

ℓN : C([−π, π]) −→ C, f 7−→ SN(f)(0) =
1

2π

∫ π

−π

f(−y)DN(y) dy.

We will show that each of the linear functionals ℓN is bounded but that ∥ℓN∥ → ∞
as N → ∞. Hence, by the uniform boundedness principle, there has to be a function
f ∈ C([−π, π]) such that supN∈N |ℓN(f)| = ∞ which means that the Fourier serie of f
diverges at x.
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Lemma 29. For every N ∈ N it holds that ∥ℓN∥ = LN where LN := 1
2π

∫ π

−π
|DN(y)| dy.

Proof. First,

|ℓN(f)| ≤
1

2π

∫ π

−π

|f(−y)||Dn(y)| dy ≤ LN∥f∥∞

so ∥ℓN∥ ≤ LN . For the other inequality, let g(x) := sgn(DN(x)). Then

LN =
1

2π

∫ π

−π

g(−y)DN(y) dy.

Now, by standard approximation results, there exists a seqeunce (fk)k∈N of functions in
C([−π, π]) with ∥fk∥ ≤ 1 and such that ∥g− fk∥1 → 0 as k → ∞. Then ℓN(fk) → LN as
k → ∞ so ∥ℓN∥ ≥ LN . ■

Lemma 30. There exists a constant c > 0 such that LN ≥ c · lnN for every N ≥ 1.

Proof. Making use of the fact that | sin(x)/x| ≤ 1, we obtain

LN =
1

2π

∫ π

−π

|DN(x)| dx =
1

2π

∫ π

−π

∣∣∣∣sin((N + 1/2)x)

sin(x/2)

∣∣∣∣ dx
≥ 2

π

∫ π

0

∣∣∣∣sin((N + 1/2)x)

x

∣∣∣∣ dx =
2

π

∫ (N+1/2)π

0

∣∣∣∣sin(x)x

∣∣∣∣ dx
≥ 2

π

N−1∑
k=0

∫ (k+1)π

kπ

∣∣∣∣sin(x)x

∣∣∣∣ dx ≥ 2

π

N−1∑
k=1

1

(k + 1)π

∫ (k+1)π

kπ

| sin(x)| dx

≥ 2

π2

∫ π

0

| sin(x)| dx · lnN

which finishes the proof. ■

Exercise class 8
Exercise 31 (Brezis Exercise 3.1). Let X be Banach space and let A ⊆ X be a subset
which is compact in the weak topology. Show that A is bounded.

Solution. We use the Banach-Steinhaus theorem: As A is compact, it holds for every
f ∈ X∗ that f(A) is bounded and hence is A bounded by Banach-Steinhaus. ■

Exercise 32 (Brezis Exercise 3.3). Let X be a Banach space and A ⊆ X a convex set.
Show that the closure of A in the weak topology and in the strong topology agree.

Solution. We only have to show that the closure of A in the strong topology, Ā, is closed
in the weak topology. So let x /∈ Ā. Then by Hahn-Banach, there exists f ∈ X∗ such
that f(x) > 0 and f(y) ≤ 0 for every y ∈ Ā. Then V := f−1((0,∞) is a neighborhood
of x in the weak topology which does not intersect Ā. This shows that Ā is closed in the
weak topology. ■

Exercise 33 (Brezis Exercise 3.4). Let X be a Banach space and (xn) a sequence in X
such that xn ⇀ x in the weak topology as n → ∞.
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(i) Prove that there exists a sequence (yn) in X such that

yn ∈ conv ({xi | i = n, n+ 1, . . .})

for every n and yn → x in the strong topology.

(ii) Prove that there exists a seqeunce (zn) in X such that

zn ∈ conv ({xi | i = 1, . . . , n})

for every n and zn → x in the strong topology.

Solution. (i) For every n it holds that y is contained in the weak closure of the convex
set conv ({xi | i = n, n+ 1, . . .}) which is also its strong closure by the previous exercise.
Hence the result.

(ii) Note that

conv ({xi | i ∈ N}) =
⋃
n∈N

conv ({xi | i = 1, . . . , n})

and as y is in the closure of this set (by the previous exercise), the result follows. ■

Exercise 34 (Brezis Exercise 3.5). Let X be a Banach space K ⊆ X a set which is compact
in the strong topology and let xn, x ∈ K, n ∈ N, be such that xn ⇀ x in the weak topology
as n → ∞. Show that xn → x in the strong topology.

Solution. Assume for a contradiction that (xn) does not converge to x in the strong
topology as n → ∞. By using that K is strongly compact, we may then find x′ ∈ K such
that x′ ̸= x and such that after possibly passing to a subsequence, xn → x′ in the strong
topology. But then xn ⇀ x′ in the weak topology and as the weak topology is Hausdorff,
x = x′, which is a contradiction. ■

Exercise 35 (Brezis Exercise 3.8). Let X be an infinite dimensional Banach space. Show
that the weak topology on X is not metrizable.

Solution. Suppose for a contradiction that there exists a metric d on X which induced
the weak topology. For each intger k ≥ 1, there are fk,1, . . . , fk,nk

∈ X∗ and an εk > 0
such that

Vk := {x ∈ X | |fk,i(x)| < εk for every i = 1, . . . , nk} ⊆
{
x ∈ X | d(x, 0) < 1

k

}
.

Now, let g ∈ X∗. Recall that all elements of X∗ are continuous with respect to the weak
topology (the weak topology is defined as the coarsest topology with respect to which
all elements of X∗ are continuous). Hence there exists k ≥ 1 such that if d(x, 0) < 1

k

then |g(x)| < 1 and thus, that if x ∈ Vk, then |g(x)| < 1. Note that if fk,i(x) = 0 for
i = 1, . . . , nk then the same holds for rx, for every r ∈ R so rx ∈ Vk for every r ∈ R and
hence it follows that g(x) = 0 because else we can let r ∈ R be such that |g(rx)| ≥ 1 and
then get a contradiction. It follows that g is linear comination of fk,1, . . . , fk,nk

.

We have shown that the countable family fk,i, k ≥ 1, 1 ≤ i ≤ nk forms a Hamel basis
for X∗. But then X∗ is finite dimensional by the Baire category theorem and hence is X
finite dimensional. ■

14



Exercise class 9
Let us begin with a short recap of the weak topology and the weak∗ topology.

Let X be any set and ((fi, Yi))i∈I a family of pairs such that for each i ∈ I, Yi is a
topological space and fi : X → Yi is a map. There exists a unique coarsest topology τ on
X which makes all the maps fi, i ∈ I, continuous; the topology τ is called the topology
which the family ((fi, Yi))i∈I induces. A fundamental property of the topology τ is the
following: Let Y be a topological space and f : Y → X a map. Then f is continuous when
X is endowed with the topology τ if and only if for each i ∈ I, the map fi ◦ f : Y → Yi

is continuous.
Example 36. Let (Xi)i∈I be a family of topological spaces. The product topology on∏

i∈I Xi is the topology which the projection maps

πi :
∏
j∈I

Xj −→ Xi, (xj)j∈I 7−→ xi

induce. Hence, given a topological space X and a map f : X →
∏

j∈I Xj, the map f is
continuous if and only if πi ◦ f : X → Xi is continuous for each i ∈ I.

Let now X be a Banach space. Then the weak topology on X is defined as the topology
which the family ((f,R))f∈X∗ induces. Given x ∈ X, we let x̂ : X∗ → R, x̄(f) := f(x).
The topology on X∗ which the family ((x̂,R))x∈X induces, is called the weak∗ topology
on X∗.

In last week’s lectures, we learned about the Banach-Alaoglu theorem which says that
given a Banach space X, the closed unit ball BX∗(0, 1) in the dual space X∗ is compact in
the weak∗-topology. The proof actually goes by viewing BX∗(0, 1) as a suitable subset of∏

x∈X R which is compact by Tychonoff. Then one notices that on this subset, the weak∗

topology and the product topology agree and hence the result follows.
Example 37. Let X be a reflexive Banach space, that is the embedding ι : X → X∗∗,
x 7→ x̂, is surjective. Then ι is a homomorphism when X is endowed with the weak
topology and X∗∗ is endowed with the weak∗-topology: To show that, we let Y be a topo-
logical space, F : Y → X and show that F is continuous if and only if ι ◦F : Y → X∗∗ is
continous when X is endowed with the weak topology and X∗∗ with the weak∗ topology.
Now, F is continuous if and only if for each f ∈ X∗, y 7→ f(F (y)) is continuous and ι ◦F
is continuous if and only if for each f ∈ X∗, y 7→ f̂(ι ◦ F (y)) = (ι ◦ F (y))(f) = f(F (y))
is continuous. Hence it is equivalent that F and ι ◦ F are continuous.

From this one may conclude that BX(0, 1) endowed with the weak topology is compact
as it is homeomorphic to BX∗∗(0, 1) endowed with the weak∗-topology, and the latter is
compact by Banach-Alaoglu.
Example 38 (Brezis Exercise 3.10). Let X, Y be Banach spaces and T : X → Y a bounded
linear map. The dual map T ∗ : Y ∗ → X∗ is defined by T ∗g = g ◦ T . Let us show that T ∗

is continuous when X∗, Y ∗ are endowed with the weak∗-topologies. Recall that the weak
topology on X∗ is the coarsest topology such that for each x ∈ X, the map x̂ : X∗ → R,
x̂(f) = f(x), is continuous. Hence it suffices to show that for each x ∈ X, the map
Y ∗ → R, g 7→ x̂(T ∗g) = g(Tx) = T̂ x(f) is continuous when Y ∗ is endowed with the
weak∗-topology. But that simply holds since the weak∗ topology on Y ∗ is the coarses
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topology such that for each y ∈ Y , the map ŷ : Y ∗ → R, ŷ(g) = g(y), is continuous and
hence in particular, are all the maps T̂ x weak∗-continuous.
Exercise 39 (Brezis Exercise 3.20). Let X be a Banach space. Show that there exists a
compact topological space K and an isometric embedding ι : X → C(K).

Proof. Take K := BX∗(0, 1) endowed with the weak∗ topology and let ι : X → C(K) be
given by ι(x)(f) := f(x) for every f ∈ K. It is clear that ι is linear. Furthermore,

∥ι(x)∥∞ = sup
f∈K

|ι(x)(f)| = sup
f∈X∗

∥f∥≤1

|f(x)| = ∥x∥

so ι is an isometric embedding. ■

Exercise class 10
Today, we will prove the following theorem.

Theorem 40 (Brezis Theorem 3.28 and Theorem 3.29). Let X be a Banach space. Then

(i) BX∗(0, 1) is metrizable in the weak∗-topology if and only if X is separable.

(ii) BX(0, 1) is metrizable in the weak topology if and only if X∗ is separable.

Proof. (i) Assume that X is separable. Let (xn)n≥1 be a dense sequence in BX(0, 1) and
define a metric d on BX∗(0, 1) by

d(f, g) :=
∞∑
n=0

1

2n
|(f − g)(xn)|.

Let us show that d induces the weak∗-topology on BX∗(0, 1). So let f0 ∈ BX∗(0, 1), ε > 0,
y1, . . . , yk ∈ X with ∥yi∥ ≤ 1 for i = 1, . . . , k and

V := {f ∈ BX∗(0, 1) | |(f − f0)(yi)| < ε for all i = 1, . . . , k}.

As (xn)n≥1 is dense in BX(0, 1), for every i = 1, . . . , k, there is ni such that ∥yi−xni
∥ < ε/4.

Let r > 0 be small enough so that 2nir < ε/2 for every i = 1, . . . , k. Then if d(f, f0) < r
it holds for every i = 1, . . . , k that

1

2ni
|(f − f0)(xni

)| < r

so
|(f − f0)(yi)| ≤ |(f − f0)(yi − xni

)|+ |(f − f0, xni
)| < ε

2
+

ε

2
= ε

and hence is f ∈ V . This shows that the topology induced by d is finer than the weak∗-
topology.

Let now f0 ∈ BX∗(0, 1) and r > 0. For ε := r/2 and k ≥ 1 such that 1/2k−1 < r/2 it
holds that if |(f − f0)(xi)| < ε for i = 1, . . . , k, then

d(f, f0) =
k∑

n=1

1

2n
|(f − f0)(xn)|+

∞∑
n=k+1

1

2n
|(f − f0)(xn)| < ε+ 2

∞∑
n=k+1

1

2n

< r.
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This shows that the weak∗ topology is finer than the topology which d induces.

(ii) The proof is exactly the same as in (i). ■

As a corollary, one gets the following.

Corollary 41 (Brezis Corollary 3.30). Let X be a separable Banach space and (fn)n∈N a
bounded sequence in X∗. Then there exists a subsequence (fnk

)k∈N which converges in the
weak∗ topology.

The preceding corollary allows one to prove the following theorem.

Theorem 42 (Brezis Theorem 3.18). Let X be a reflexive Banach space and (xn)n∈N a
bounded seqeunce in X. Then there exists a subsequence (xnk

)k∈N that converges in the
weak topology.

Proof. Let M0 be the vector space generated by (xn)n∈N and M := M̄0. Then M is
separable and reflexive as a closed subspace of a reflexive space is reflexive (see Proposition
3.20 in Brezis). By (ii) in the previous theorem, BM(0, 1) is compact and metrizable in the
weak topology since M∗ is separable (here we must use that a Banach space is reflexive
and seperable if and only if the same holds for its dual space (see Corollary 3.27 in Brezis)).
Now the result follows. ■

Exercise class 11
In last lecture we saw the following theorem.

Theorem 43 (Mercer’s theorem). Let (X, d) be a compact metric space and µ a Borel
regular probability measure on X such that µ(U) > 0 for every open set U ⊆ X. Let K ∈
C(X ×X) be a continuous positive semi-definite kernel on X (that is, K(x, y) = K(y, x)
for every x, y ∈ X and for every x1, . . . , xn ∈ X, the matrix (K(xi, xj))

n
i,j=1 is positive

semi definite) and let TK : L2(X,µ) −→ L2(X,µ) be the operator given by

TKf(x) :=

∫
X

K(x, y)f(y) dµ(y).

Then there exists a sequence (φi)
∞
i=1 of continuous eigenfunctions of TK which form an or-

thonormal basis of ker(TK)
⊥ and for each i, the eigenvalue λi corresponding to φi satisfies

λi > 0. Furthermore,

K(x, y) =
∞∑

i,j=1

λiφi(x)φj(y)

for all x, y ∈ X and the sum is absolutely and uniformly convergent.

Let us now consider an application of Mercer’s theorem to stochastic processes, namely
the Karhunen-Loeve theorem. We follow the Wikipedia page on that theorem.

Theorem 44 (Karhunen-Loeve). Let (Ω,P) be a probability space and (Xt)t∈[0,1] a stochas-
tic process on Ω such that

(a) The function
[0, 1]× Ω → R, (t, ω) 7−→ Xt(ω)

is in L2([0, 1]× Ω).
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(b) For every t ∈ [0, 1], E[Xt] = 0 (i.e. Xt has zero-mean).

(c) For every t ∈ [0, 1], E[X2
t ] < ∞ (i.e. Xt has bounded variance).

(d) The covariance function KX(s, t) := E[XsXt], s, t ∈ [0, 1], is continuous.

Then there exists a sequence (ei)
∞
i=1 of continuous functions in which are eigenfunctions

of TKX
and form an orthonormal basis of L2([0, 1]) such that for the random variables

Zi : Ω → R, Zi(ω) :=

∫ 1

0

Xt(ω)ei(t) dt

it holds that

(i) As N → ∞,

sup
t∈[0,1]

∥∥∥∥∥Xt −
N∑
i=1

Ziei(t)

∥∥∥∥∥
L2(Ω,P)

→ 0.

(ii) For every i, E[Zi] = 0.

(iii) For every i, j, E[ZiZj] = 0 if i ̸= j and E[Z2
i ] = λi where λi is the eigenvalue of

TKX
corresponding to ei.

Proof. Note first that KX is positive semi-definite kernel: It is clear that KX is symmetric
and for every t1, . . . , tn ∈ [0, 1] and all real numbers c1, . . . , cn it holds that

n∑
i,j=1

cicjKX(ti, tj) =
n∑

i,j=1

cicjE[XtiXtj ] = E [c1Xt1 + · · ·+ cnXtn ] ≥ 0

so KX is positive semi-definite. Now, Mercer’s theorem gives the existence of an or-
thonormal basis (ei)∞i=1 of L2([0, 1]), consisting of eigenfunctions TKX

. As t 7→ Xt(ω) is in
L2([0, 1]) for almost every ω ∈ Ω by (a), we can for every i ≥ 1 define Zi ∈ L2(Ω,P) by

Zi(ω) :=

∫ 1

0

Xt(ω)ei(t) dt.

For every i it holds that

E[Zi] = E
[∫ 1

0

Xtei(t) dt

]
=

∫ 1

0

E[Xt]ei(t) dt = 0

and for every i, j it holds that

E[ZiZj] = E
[∫ 1

0

∫ 1

0

XsXtei(s)ej(t) ds dt

]
=

∫ 1

0

∫ 1

0

E[XsXt]ei(s)ej(t) ds dt

=

∫ 1

0

∫ 1

0

KX(s, t)ei(s)ej(t) ds dt =

∫ 1

0

(∫ 1

0

KX(s, t)ei(s)ds

)
ej(t) dt

= ⟨TKX
ei, ej⟩

= λi · δij
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so we have shown (ii) and (iii). For (i), we let SN :=
∫ N

i=1
Ziei(t). Then

E
[
|Xt − SN |2

]
= E[X2

t ] + E[S2
N ]− 2E[XtSN ]

= KX(t, t) + E

[
N∑

i,j=1

ZiZjei(t)ej(t)

]
− 2E

[
Xt

N∑
i=1

Ziei(t)

]

= KX(t, t) +
N∑
i=1

λiei(t)
2 − 2

N∑
i=1

∫ 1

0

E[XsXt]ei(s)ei(t) ds

= KX(t, t) +
N∑
i=1

λiei(t)
2 − 2

N∑
i=1

∫ 1

0

KX(s, t)ei(s)ei(t) ds

= KX(t, t) +
N∑
i=1

λiei(t)
2 − 2

N∑
i=1

λiei(t)
2

= KX(t, t)−
N∑
i=1

λiei(t)
2

and by Mercer, this goes uniformly to zero as N → ∞. ■

Example 45. A Brownian motion is a stochastic process (Bt)t∈R+ on probability space
(Ω,P) such that

(i) B0 = 0 almost surely.

(ii) For every t, h ≥ 0 it holds that Bt+h − Bt ∼ N (0, h) i.e. Bt+h − Bt is a normal
variable with zero mean and variance h.

(iii) For every 0 ≤ t1 < · · · < tn it holds that Btn −Btn−1 , . . . , Bt1 −B0 are independent
random variables.

(iv) For almost every ω ∈ Ω it holds that t 7→ Bt(ω) is continuous.

Let now (Bt)t∈[0,1]. For every t ∈ [0, 1] it holds that E[Bt] = 0 and E[Bt] = t and for every
0 ≤ s ≤ t ≤ 1 it holds that

K(s, t) := KB(s, t) = E[BsBt] = E[B2
s ] + E[Bs(Bt −Bs)] = s

since E[Bs(Bt − Bs)] = 0 as Bs and Bt − Bs are independent. Hence K(s, t) = min(s, t)
for every s, t ∈ [0, 1] so the criterias of the Karhunan Loeve theorem are satisfied. Let
us determine the eigenfunctions of TK . For that we must solve the eigenvalue problem
TKe = λe i.e.

λe(t) =

∫ 1

0

K(s, t)e(s) ds =

∫ 1

0

min(s, t) · e(s) ds =
∫ t

0

se(s) ds+ t

∫ 1

t

e(s) ds.

Now note that as e ∈ L2, the right hand side is differentiable in t by the Lebesgue
differentiation theorem. Assume first that λ = 0. Then we get by differentiating with
respect to t that

te(t)− te(t) +

∫ 1

t

e(s) ds = 0
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i.e.
∫ 1

t
e(s) = 0. As this holds for every t ∈ [0, 1] we conclude that e = 0. Now assume

that λ ̸= 0. Then e is differentiable as the right hand side is differentiable and by
differentiating, we get

λe′(t) =

∫ 1

t

e(s) ds.

The right hand side is differentiable so we can differentiate again to obtain

λe′′(t) + e(t) = 0.

We know by Karhunan-Loeve that λ > 0 so

e(t) = a · cos
(

1√
λ
t

)
+ b · sin

(
1√
λ
t

)
where a, b are constants. From λe(t) =

∫ 1

0
K(s, t)e(s) ds it follows that e(0) = 0 so a = 0.

From λe′(t) =
∫ 1

t
e(s) ds it follows then that cos(1/

√
λ) = 0 which gives that 1/

√
λ =

(k+1/2) · π for some k ∈ N i.e. λ = 1/((k+1/2)2π2), k ∈ N. Let λk := 1/((k+1/2)2π2),
ek(t) := bk · sin((k + 1/2) · t). From

∫ 1

0
ek(t) dt = 1 it follows that

1 =

∫ 1

0

b2k · sin2((k + 1/2) · π · t) dt = b2k
2

∫ 1

0

(1− cos((2k + 1) · π · t)) dt =
b2k
2

so bk =
√
2 for every k so ek(t) =

√
2 · sin((k + 1/2) · π · t).

20


