Functional Analysis I

Exercise classes

Hjalti Isleifsson

December 4, 2023

These are notes for my exercises classes in Functional Analysis I in fall semester 2023 at ETH Zürich. If you find mistakes in the notes, please let me know by sending me an email at hjalti.isleifsson@math.ethz.ch.

Exercise class 1

Exercise 1. Let $(X, \|\cdot\|)$ be a normed space. Show that X is a Banach space if and only if every absolutely converging serie in X converges (a serie $\sum_{i=1}^{\infty} x_i$ is said to be *absolutely convergent* if $\sum_{i=1}^{\infty} \|x_i\|$ converges).

Solution. Assume that X is a Banach space and let $\sum_{i=0}^{\infty} x_i$ be an absolutely converging serie. For every $n \ge 0$, we let $s_n \coloneqq \sum_{i=1}^n x_i$ denote the *n*-th partial sum. We will show that (s_n) converges by showing that it is a Cauchy sequence. So let $\varepsilon > 0$. As $\sum_{i=1}^{\infty} ||x_i||$ converges, there is $N \ge 0$ such that if $N \le n < m$ then $\sum_{i=0}^{m} ||x_i|| < \sum_{i=0}^{n} ||x_i|| + \varepsilon$ so

$$||s_m - s_n|| = \left\|\sum_{i=n+1}^m x_i\right\| \le \sum_{i=n+1}^m ||x_i|| < \varepsilon.$$

This shows that (s_n) is Cauchy and hence it converges as X is complete.

Conversely, assume that every abolutely convergent serie converges. Let $(x_i)_{i=0}^{\infty}$ be a Cauchy sequence. It suffices to show that there is a converging subsequence (it is a general fact that any Cauchy sequence in a metric space which has a convergent subsequence is convergent; if you have not seen this before you should convince yourself that this is correct). As (x_i) is Cauchy, there is a sequence $i_0 < i_1 < \cdots$ such that $||x_{i_{j+1}} - x_{i_j}|| < 2^{-j}$ for every j. Now, $x_{i_k} = x_{i_0} + \sum_{j=1}^k (x_{i_j} - x_{i_{j-1}})$ and the serie $\sum_{j=1}^\infty (x_{i_j} - x_{i_{j-1}})$ is absolutely convergent and hence convergent, so (x_{i_k}) is convergent. This finishes the proof.

Example 2. (i) Let c_{00} denote the space of sequences $(x_i)_{i=0}^{\infty}$ such that $x_i = 0$ for all but finitely many *i*, endowed with the supremum norm $||(x_i)||_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$. This space is not complete as can be seen as follows: Let (x_i) be any sequence of positive numbers such that $x_i \to 0$ as $i \to \infty$ and consider the sequence $x^j = (x_0, x_1, \ldots, x_j, 0, 0, \ldots) \in c_{00}$. Now, let $\varepsilon > 0$. As $x_i \to \infty$, there exists an N such that if $i \ge N$, then $x_i < \varepsilon$. Now, if $N \le j < k$ then $||x^j - x^k||_{\infty} = \max_{i=k+1}^j |x_i| < \varepsilon$ so (x^j) is Cauchy. However, it does not have a limit in c_{00} which can be seen as follows: Suppose for a contradiction that $\bar{x} = \lim_{j \to \infty} x^j$. Then $|\bar{x}_i - (x^j)_i| \le ||x - x^j||_{\infty} \to 0$ as $j \to \infty$ so $\bar{x}_i = \lim_{j \to \infty} (x^j)_i = x_i$ i.e. $\bar{x} = x$ and as we assumed that all the entries of x are positive, $x \notin c_{00}$.

(ii) Let c_0 denote the space of sequences $(x_i)_{i=0}^{\infty}$ such that $x_i \to 0$ as $i \to \infty$, endowed with the supremum norm. We begin by showing that c_0 is complete: So let (x^j) be a Cauchy sequence in c_0 . For each i it holds that $|(x^j)_i - (x^k)_i| \leq ||x^j - x^k||_{\infty}$ so $((x^j)_i)_{i \in \mathbb{N}}$ is also Cauchy and hence has a limit x_i ; let $x \coloneqq (x_i)$. We now show that $||x - x^j||_{\infty} \to 0$ as $j \to \infty$: Let $\varepsilon > 0$. As (x^j) is Cauchy, there is an N such that if $j, k \geq N$ then $||x^j - x^k||_{\infty} < \varepsilon$ and then $|(x^k)_i - (x^j)_i| \leq ||x^k - x^j||_{\infty} < \varepsilon$ for every $i \in \mathbb{N}$ so

$$|x_i - (x^j)_i| \le \limsup_{k \to \infty} |(x^k)_i - (x^j)_i| \le \varepsilon$$

for every $i \in \mathbb{N}$ and hence $||x - x^j||_{\infty} \leq \varepsilon$. This shows that $||x - x^j||_{\infty} \to 0$ as $j \to \infty$.

It remains to show that $x_i \to \infty$ as $i \to \infty$. So let $\varepsilon > 0$ and let N be such that if $j \ge N$ then $||x - x^j||_{\infty} < \varepsilon$. As $(x^N)_j \to 0$ as $j \to \infty$, there is an M such that if $i \ge M$ then $|(x^N)_i| < \varepsilon$. Now, for $i \ge M$, it holds that

$$|x_i| \le |x_i - (x^N)_i| + |(x^N)_i| < ||x - x^N||_{\infty} + \varepsilon < 2\varepsilon$$

which shows that $x_i \to 0$ as $i \to \infty$.

(iii) Now it is easy to see that c_0 is the completion of c_{00} : Let $x \in c_0$, $\varepsilon > 0$ and N be such that if $i \ge N$ then $|x_i| < \varepsilon$. Then $(x' = (x_0, \ldots, x_N, 0, 0, \ldots) \in c_{00}$ and $||x - x'||_{\infty} < \varepsilon$. This shows that c_{00} is dense in c_0 and as c_0 is complete, we conclude that c_0 is the completion of c_{00} .

We will now cover the following classical theorem.

Theorem 3. Let $(X, \|\cdot\|)$ be a normed space. Then X is finite dimensional if and only if its closed unit ball B(0, 1) is compact.

A standard way to prove this is to use the following lemma due to F. Riesz.

Lemma 4. (*Riesz' lemma*) Let $(Y, \|\cdot\|)$ be a normed space and $X \subseteq Y$ a subspace which is not dense in Y. Then for every $0 < \alpha < 1$ there is $y \in Y$ with $\|y\| = 1$ and $d(y, X) > \alpha$.

Proof. Let $y_0 \in Y$ be a vector which is not in the closure of X. Then $R \coloneqq \inf_{x \in X} ||y - x|| > 0$. Let $x_0 \in X$ be such that $||y_0 - x_0|| < R/\alpha$ and $y \coloneqq (y_0 - x_0)/||y_0 - x_0||$. Then

$$d(y, X) = \inf_{x \in X} \|y - x\| = \inf_{x \in X} \left\| \frac{y_0 - x_0}{\|y_0 - x_0\|} - x \right\|$$
$$= \inf_{x \in X} \left\| \frac{y_0 - x_0}{\|y_0 - x_0\|} - \frac{x}{\|y_0 - x_0\|} \right\| = \inf_{x \in X} \frac{\|y_0 - x\|}{\|y_0 - x_0\|}$$
$$> \alpha$$

which finishes the proof.

Proof of Theorem 3. Assume that X is infinite dimensional. We now define inductively a sequence of unit vectors x_1, x_2, \ldots such that $||x_i - x_j|| > 1/2$ for every $i \neq j$: Let $x_1 \in X$

be any unit vector. Having defined x_1, \ldots, x_n we let $V_n \coloneqq \langle x_1, \ldots, x_n \rangle$ and use Riesz' lemma to find a unit vector $x_{n+1} \in X \setminus V_n$ with $d(x_{n+1}, V_n) > 1/2$. It is clear that the sequence (x_n) satisfies $||x_i - x_j|| > 1/2$ and hence does not have a convergent subsequence so B(0, 1) can not be compact.

Now we assume that X is finite dimensional and show that B(0,1) is compact. The trick here is to use that we know this property for \mathbb{R}^n . So let n denote the dimension of X. Fix a basis b_1, \ldots, b_n of X, consisting of unit vectors. Now, define a map $T : \mathbb{R}^n \to X$, $Tx = \sum_{i=1}^n x_i b_i$. This is a linear bijection. It is continuous since

$$||Tx|| = \left\|\sum_{i=1}^{n} x_i b_i\right\| \le \sum_{i=1}^{n} |x_i| \le n \cdot ||x||.$$

Further, ||T(x)|| > 0 for every $x \in \mathbb{R}^n$ with ||x|| = 1 and as the unit sphere in \mathbb{R}^n is compact, there is C > 0 such that $||T(x)|| \ge 1/C$ for every $x \in \mathbb{R}^n$ with ||x|| = 1 and hence $||T(x)|| \ge \frac{1}{C} \cdot ||x||$ for every $x \in \mathbb{R}^n$. Without loss of generality, we assume that $C \ge n$. We have shown that

$$\frac{1}{C} \cdot \|x\| \le \|Tx\| \le C \cdot \|x\|$$

for every $x \in \mathbb{R}^n$. Thus, if $x \in B_X(0,1)$, then $||T^{-1}x|| \leq C$ so $B_X(0,1) \subseteq T(B_{\mathbb{R}^n}(0,C))$. As T is continuous and $B_{\mathbb{R}^n}(0,C)$ is compact, $T(B_{\mathbb{R}^n}(0,C))$ is compact and hence is $B_X(0,1)$ compact as it is a closed subset of a compact set.

Exercise class 2

On last exercise sheet, you were supposed to show that Hilbert spaces are uniformly convex i.e. for any $0 < \varepsilon \leq 2$ there is $\delta > 0$ such that if x, y are unit vectors with $||x - y|| \geq \varepsilon$ then $||\frac{1}{2}(x + y)|| \leq 1 - \delta$. The same holds true for the L^p spaces when 1 , as follows from*Clarkson's inequalities*.

Lemma 5 (Clarkson's inequalites). Let (X, μ) be a measure space. For every $f, g \in L^p(X)$ it holds that

$$\left\|\frac{f+g}{2}\right\|_{p}^{q} + \left\|\frac{f-g}{2}\right\|_{p}^{q} \le \left(\frac{1}{2}\|f\|_{p}^{p} + \frac{1}{2}\|g\|_{p}^{p}\right)^{\frac{q}{p}}$$

when 1 and

$$\left\|\frac{f+g}{2}\right\|_{p}^{p} + \left\|\frac{f-g}{2}\right\|_{p}^{p} \le \frac{1}{2}\left(\|f\|_{p}^{p} + \|g\|_{p}^{p}\right)$$

when $2 \le p < \infty$. Here q is the unique number such that $\frac{1}{p} + \frac{1}{q} = 1$.

For the proof, see e.g. Brezis.

Exercise 6. Use Clarkson's inequalities to show that L^p , 1 , is uniformly convex.*Exercise* $7. Let <math>\mathcal{H}$ be a Hilbert space an $U : \mathcal{H} \to \mathcal{H}$ a linear operator. Show that the following is equivalent:

(i) U is bounded and $U^*U = UU^* = id_{\mathcal{H}}$.

(ii) U is surjective and $\langle Ux, Uy \rangle = \langle x, u \rangle$ for all $x, y \in \mathcal{H}$.

Such an operator is said to be *unitary*.

Solution. Assume that (i) holds. Given $y \in \mathcal{H}$,

$$y = \mathrm{id}_{\mathcal{H}} y = (UU^*)y = U(U^*y)$$

so U is surjective. Given $x, y \in \mathcal{H}$,

$$\langle Ux, Uy \rangle = \langle x, U^*Uy \rangle = \langle x, y \rangle.$$

This shows that (ii) holds. Assuming (ii), we let $x, y \in \mathcal{H}$ and write as before

$$\langle x, y \rangle = \langle Ux, Uy \rangle = \langle U^*Ux, y \rangle.$$

As this holds for all $y \in \mathcal{H}$ we conclude that $x = U^*Ux$ and hence that $U^*U = \mathrm{id}_{\mathcal{H}}$. Let $y \in \mathcal{H}$. As U is surjective, there is an $x \in \mathcal{H}$ such that Ux = y. Now,

$$(UU^*)y = (UU^*)(Ux) = U(U^*U)x = U(\mathrm{id}_{\mathcal{H}})x = Ux = y$$

so $UU^* = \mathrm{id}_{\mathcal{H}}$ as well.

Exercise 8. Let $U : \mathcal{H} \to \mathcal{H}$ be a unitary operator and assume that λ is an eigenvalue of U. Show that $|\lambda| = 1$.

Solution. Let λ be an eigenvalue and $x \in \mathcal{H}$ a corresponding unit eigenvector. Then

$$1 = ||x||^2 = ||Ux||^2 = |\lambda x|^2 = |\lambda|^2$$

which finishes the proof.

Exercise 9. Let Γ be a countable group, endowed with the counting measure. In last lecture, the left action λ by Γ on $\ell^2(\Gamma)$, which is given by $(\lambda(\gamma)f)(\eta) = f(\gamma^{-1}\eta)$, was introduced. For each $\gamma \in \Gamma$, the operator $\lambda(\gamma) : \ell^2(\Gamma) \to \ell^2(\Gamma)$ is a unitary operator. Show that $\lambda(\gamma)$ has an eigenvector if and only if γ is of finite order.

Solution. For convenience, we sometimes write $f \in \ell^2(\Gamma)$ as a formal sum $f = \sum_{\gamma \in \Gamma} f(\gamma)\gamma$.

Assume that $\gamma \in \Gamma$ is of finite order n. Then $1 + \gamma + \cdots + \gamma^{n-1}$ is an eigenvector of $\lambda(\gamma)$, corresponding to the eigenvalue 1. For the other direction, assume that $\lambda(\gamma)$ has eigenvector f corresponding to the eigenvalue μ . As $f \neq 0$, there exists $\eta \in \Gamma$ such that $f(\eta) \neq 0$. Then

$$x^n f(\gamma^n \eta) = (\lambda(\gamma) f)^n (\gamma^n \eta) = (\lambda(\gamma^n) f)(\gamma^n \eta) = f(\eta)$$

so $f(\gamma^n \eta) = x^{-n} f(\eta)$ for every *n* and hence $|f(\gamma^n \eta)| = |f(\eta)|$ as |x| = 1 since $\lambda(\gamma)$ is unitary. Now, let *n* denote the order of γ . Then

$$n \cdot |f(\eta)|^2 = \sum_{k=0}^{n-1} |f(\gamma^k \eta)|^2 = ||f||_2^2 < \infty$$

so the order is finite.

Example 10 (Brezis Exercise 5.8). Let (X, μ) be a measure space, $h : X \to [0, \infty)$ a measurable function and

$$C := \{ g \in L^2(X) \mid |g(x)| \le h(x) \text{ for almost every } x \}.$$

Then C is a closed and convex subset and the projection $P_C: L^2(X) \to C$ onto C is given by

$$P_C f(x) \coloneqq \begin{cases} 0 & \text{if } f(x) = 0\\ \frac{f(x)}{|f(x)|} \cdot \min\{|f(x)|, h(x)\} & \text{else} \end{cases}$$

Example 11 (Brezis Exercise 5.7). Let \mathcal{H} be a Hilbert space and $C \subseteq \mathcal{H}$. One says that C is a cone with apex 0 if for every $u, v \in C$ and every $\mu, \nu \geq 0$ it holds that $\mu u + \nu v \in C$. Assume that K is a closed cone and let $P_C : \mathcal{H} \to C$ denote the projection. Let us show that $P_C u$ is the unique vector $v \in K$ such that

$$\langle u - v, v \rangle = 0$$
 and $\langle u - v, w \rangle \le 0$ for every $w \in C$. (1)

As C is a cone, we know that for every $t \ge 0$ and every $w \in C$ it holds that $||u - (P_C u + tv)|| \ge ||u - P_C u||$ which gives that $\langle u - P_C u, v \rangle \le \frac{t}{2} ||v||^2$. As this holds for every $t \ge 0$, we conclude that $\langle u - P_C u, w \rangle \le 0$ for every $w \in K$. The property $\langle u - P_C u, P_C u \rangle = 0$ follows from the fact that $t \mapsto ||u - tP_C u||^2$ attains a minima at t = 1.

Now assume that there are two vectors $v, v' \in K$ which satisfy (1). Consider the function $f(t) := \frac{1}{2} ||u - (1 - t)v - tv'||^2$. It holds that

$$f'(t) = \langle u - (1-t)v - tv', v - v' \rangle$$

so from (1), it follows that

$$f'(0) = \langle u - v, v - v' \rangle \ge 0$$
 and $f'(1) = \langle u - v', v - v' \rangle \le 0$.

However, if $v \neq v'$, then f is a strictly convex function which contradicts that $f'(0) \ge 0$ and $f'(1) \le 0$. Hence, we conclude that v = v'.

Exercise class 3

Example 12 (Brezis Exercise 1.3). Consider the vector space

$$X = \{ f \in C([0,1], \mathbb{R}) \mid f(0) = 0 \}$$

endowed with the supremum norm. Let $\lambda : X \to \mathbb{R}$ be given by $\lambda(f) \coloneqq \int_0^1 f(x) dx$. Then $|\lambda(f)| \leq \int_0^1 |f(x)| dx \leq ||f||_{\infty}$ so $||\lambda||_{X^*} \leq 1$. Let us show that $||\lambda||_{X^*} = 1$: For $\varepsilon > 0$, let

$$f_{\varepsilon}(x) \coloneqq \begin{cases} \frac{x}{\varepsilon} & \text{if } 0 \le x \le \varepsilon \\ 1 & \text{if } \varepsilon < x \le 1 \end{cases}$$

Then $||f||_{\infty} = 1$ and $|\lambda(f)| = 1 - \varepsilon/2$ so $||\lambda||_{X^*} \ge 1 - \varepsilon/2$. As this holds for every $\varepsilon > 0$, $||\lambda||_{X^*} = 1$.

Note however, that there does not exist $f \in X$ with $||f||_{\infty} = 1$ such that $|\lambda(f)| = ||\lambda||_{X^*} = 1$ because such an f would have to satisfy f(x) = 1 for almost every x and as f is assumed to be continuous, f(x) = 1 for every $x \in [0, 1]$ which is impossible as f(0) = 0.

Recall that any vector space X has a Hamel basis i.e. there exists a family $(e_i)_{i \in I}$ of vectors in X which are linearly independent and such that any vector $x \in X$ can be written as

$$x = \sum_{i \in J} x_i e_i$$

where $J \subseteq I$ is finite and $(x_i)_{i \in J}$ are numbers in the underlying field.

Example 13. Let X be an infinite dimensional normed space and let $(e_i)_{i\in I}$ be a Hamel basis for X. Without loss of generality, we may assume that $||e_i|| = 1$ for every $i \in I$. Now, let $(x_i)_{i\in I}$ be an unbounded family of numbers and define a functional $\lambda : X \to \mathbb{R}$ such that $\lambda(e_i) = x_i$ for every $i \in I$ and extend by linearity. Then λ is unbounded and hence not in X^* .

Exercise 14. Let X be an infinite dimensional Banach space. Show that the cardinality of any Hamel basis of X is uncountable.

Solution. Let $(e_n)_{n\in\mathbb{N}}$ be a countable family of vectors in X and let us show that they can not span X. For $n \in \mathbb{N}$ let X_n denote the span of $(e_k)_{k\leq n}$. Then each of the sets X_n is closed (finite dimensional vector spaces are always closed as they are complete) and has empty interior (else, there would exist an open ball $U(x, \varepsilon) \subseteq X_n$. As X_n is a subspace, we could then deduce that $U(0, 1) \subseteq X$ and hence that $X_n = X$). Thus, as X is complete, $\bigcup_{n\in\mathbb{N}} X_n$ has empty interior by the Baire category theorem so $\bigcup_{n\in\mathbb{N}} X_n$ must be a proper subspace of X and therefore do the vector $(e_n)_{n\in\mathbb{N}}$ not span X.

Recall that a *hyperplane* in a normed space X is a subspace of the form

$$\{x \in X \mid \lambda(x) = 0\}$$

where X is a linear functional on X. Let $H = \{x \in X \mid \lambda(x) = 0\}$ be a hyperplane. For every $x \notin H$ and every $y \in X$ it holds that

$$y = \left(y - \frac{\lambda(y)}{\lambda(x)} \cdot x\right) + \frac{\lambda(y)}{\lambda(x)} \cdot x$$

and as $\lambda(y - \frac{\lambda(y)}{\lambda(x)} \cdot x) = 0$, this shows that x and H span X.

Example 15. Let X be a normed space, λ a linear functional on X and $H = \{x \in X \mid \lambda(x) = 0\}$. Then \overline{H} is still a subspace of X. If $H \neq \overline{H}$ then there exists $x \in \overline{H} \setminus H$ and by the remark above, x and H span X so $\overline{H} = H$. This shows that hyperplanes are either closed or dense.

Exercise 16 (Brezis Proposition 1.5). Let X be a normed space, λ a linear functional on X and $H = \{x \in X \mid \lambda(x) = 0\}$. Show that H is closed if and only if λ is continuous.

Solution. It is clear that H is closed if λ is continuous so assume that H is closed. Let $x_0 \notin H$ and take r > 0 such that $B(x_0, r) \cap H = \emptyset$. Then λ has fixed sign on $B(x_0, r)$, say that $\lambda(x) < 0$ for every $x \in B(x_0, r)$. Now, let $x \in X$. Then

$$\frac{r}{2\|x-x_0\|}(x-x_0) + x_0 \in B(x_0,r)$$

 \mathbf{SO}

$$\lambda(x) < \left(1 - \frac{2}{r} \|x - x_0\|\right) \lambda(x_0)$$

which implies that λ is bounded.

Exercise class 4

Exercise 17. Let $(\lambda_i)_{i \in \mathbb{N}}$ be a sequence and define a linear operator $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ by $T((x_i)_{i \in \mathbb{N}}) = (\lambda_i x_i)_{i \in \mathbb{N}}$. Show that T is compact if and only if $\lambda_i \to 0$ as $i \to \infty$.

Solution. Assume first that $\lambda_i \to 0$ as $i \to \infty$. Let $(x^j)_{j \in \mathbb{N}}$ be a bounded sequence in $\ell^2(\mathbb{N})$. Fix $\varepsilon > 0$ and let $N \in \mathbb{N}$ be such that if $j \ge N$ then $|\lambda_i| < \varepsilon$. Let $(x^{j_k})_{k \in \mathbb{N}}$ be a subsequence such that $((x^{j_k})_i)_{k \in \mathbb{N}}$ converges for each $0 \le i < N$ as $k \to \infty$. Let $M \in \mathbb{N}$ be such that if $k, l \ge M$ then $\sum_{i=0}^{N-1} |\lambda_j(x^{j_k})_i - \lambda_j(x^{j_l})_i|^2 < \varepsilon^2$. Then for $k, l \ge M$ it holds that

$$||Tx^{i_k} - Tx^{i_l}||_2^2 = \sum_{i=0}^{N-1} |\lambda_i(x^{j_k})_i - \lambda_i(x^{j_l})_i|^2 + \sum_{i=N}^{\infty} |\lambda_i(x^{j_k})_i - \lambda_i(x^{j_l})_i|^2 < (1 + 4C^2) \cdot \varepsilon^2.$$

This shows that $(Tx^j)_{j\in\mathbb{N}}$ is Cauchy and hence convergent.

For the other direction, assume that $(\lambda_i)_{i\in\mathbb{N}}$ does not converge to 0 as $i \to \infty$. Then we may find $\varepsilon > 0$ and subsequence $(i_j)_{j\in\mathbb{N}}$ such that $|\lambda_{i_j}| \ge \varepsilon$ for every $j \in \mathbb{N}$. Now, consider the sequence $(x^j)_{j\in\mathbb{N}}$ given by $(x^j)_k = 0$ for $k \ne i_j$ and $(x^j)_{i_j} = 1$. This is a bounded sequence but $||Tx^j - Tx^k|| \ge \sqrt{2} \cdot \varepsilon$ for every $j \ne k$ so it does not have a convergenct subsequence. This proves that T is not compact.

Example 18 (Brezis Exercise 6.2.3). Consider the operator $T : C([0,1]) \to C([0,1])$ given by $(Tf)(t) := \int_0^t f(\tau) d\tau$. Note that for $0 \le s \le t \le 1$,

$$|(Tf)(t) - (Tf)(s)| \le \int_{s}^{t} |f(\tau)| \, d\tau \le (t-s) \cdot ||f||_{\infty}.$$
(2)

Now, let $(f_i)_{i \in \mathbb{N}}$ be a bounded sequence in C([0, 1]). Then by (2), $(Tf_i)_{i \in \mathbb{N}}$ is uniformly Lipschitz and hence in particular equicontinuous. The sequence is also bounded, so by Arzela-Ascoli, it has a convergent subsequence. Hence is the operator T compact.

Now, note that T(B(0,1)) consists of all continuously differentiable functions g on [0,1] which satisfy g(0) = 0 and $||g'||_{\infty} \leq 1$. This is not a closed set as for example $g_0(t) = \frac{1}{2}(1 - |t - \frac{1}{2}|)$ is in the closure of T(B(0,1)) but not in T(B(0,1)).

Exercise 19 (Stein-Shakarchi Exercise III.4.7.31). Let K be the function which is defined on $[-\pi, \pi)$ by $K(x) \coloneqq i(\operatorname{sgn}(x)\pi - x)$ and then extended 2π -periodically to \mathbb{R} . Given $f \in L^1([0, 1])$, let

$$Tf(x) \coloneqq \frac{1}{2\pi} \int_{-\pi}^{\pi} K(x-\xi) f(\xi) \, d\xi.$$

- (a) Show that F(x) = Tf(x) is absolutely continuous and if $\int_{-\pi}^{\pi} f(y) dy = 0$ then F'(x) = if(x) for a.e. x.
- (b) Show that the mapping $f \mapsto Tf$ is compact and symmetric on $L^2([-\pi,\pi])$.
- (c) Prove that the eigenfunctions of T are $\varphi_n(x) = ce^{inx}$ where $c \neq 0$ is a constant and $n \in \mathbb{Z}$ and that the eigenvalue corresponding to φ_n is 1/n if $n \neq 0$ and 0 if n = 0.

(d) Conclude that $(e^{inx})_{n\in\mathbb{N}}$ is an orthonormal basis of $L^2([-\pi,\pi])$.

Solution. (a) Let $-\pi \leq x < y < \pi$. Note that

$$K(y) - K(x) = \begin{cases} 2\pi - (y - x) & \text{if } x < 0 < y \\ x - y & \text{else} \end{cases}$$

 \mathbf{SO}

$$|Tf(y) - Tf(x)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |K(y - \xi) - K(x - \xi)| \cdot |f(\xi)| \, d\xi$$
$$\le \int_{x}^{y} |f(\xi)| \, d\xi + |y - x| \cdot ||f||_{1}$$

from which it is clear that Tf is absolutely continuous.

Now, let f be a function with $\int_{-\pi}^{\pi} f(y) \, dy = 0$, let x be a Lebesgue point of f and $0 < h < \pi$. After extending f to a 2π -periodic function on \mathbb{R} we can compute as follows

$$\begin{aligned} \frac{Tf(x+h) - Tf(x)}{h} &= \frac{1}{2\pi} \int_{x-\pi}^{x+\pi} \frac{K(x-\xi+h) - K(x-\xi)}{h} \cdot f(\xi) \, d\xi \\ &= \frac{1}{2\pi} \left(\int_{x}^{x+h} i \cdot \frac{2\pi - h}{h} \cdot f(\xi) \, d\xi - \int_{[x-\pi,x+\pi] \smallsetminus [x,x+h]} i \cdot f(\xi) \, d\xi \right) \\ &= \frac{1}{h} \int_{x}^{x+h} f(\xi) \, d\xi \\ &\to i \cdot f(\xi) \end{aligned}$$

as $h \searrow 0$. The computations are similar for h < 0.

(b) Let $f, g \in L^2([-\pi, \pi])$. Then

$$\begin{split} \langle Tf,g \rangle &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} K(x-\xi) f(\xi) \, d\xi \right) \overline{g(x)} \, dx \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} K(\xi-x) \overline{g(\xi)} \, d\xi \right) \, dx \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} K(x-\xi) g(\xi) \, d\xi \right)} \, dx \\ &= \langle f,Tg \rangle \end{split}$$

where we used that $\overline{K(-x)} = K(x)$. As K is bounded, $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |K(x-y)|^2 dx dy < \infty$ so T is a Hilbert-Schmidt operator and hence compact.

(c) Let $\varphi \in L^2([-\pi, \pi])$ be an eigenfunction corresponding to the eigenvalue λ . Assume first that $\lambda = 0$. Let $c \coloneqq \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(y) \, dy$. Note that $T(\varphi - c) = 0$ as T sends constants functions to 0, so by (a), $\varphi - c = 0$ which gives that $\varphi = c$ i.e. φ is constant. This shows that the eigenfunctions corresponding to the eigenvalue 0 are exactly the constant functions.

Now assume that $\lambda \neq 0$ and $T\varphi = \lambda\varphi$. Note that $\int_{-\pi}^{\pi} T\varphi(y) dy = 0$ so $\int_{-\pi}^{\pi} \varphi(y) dy = 0$ so we may apply (a) to conclude that $\lambda\varphi' = i\varphi$ which gives that $\varphi(x) = c \cdot e^{i\frac{1}{\lambda}x}$ where $c \neq 0$ is a constant. As $\int_{-\pi}^{\pi} \varphi(y) dy = 0$, $\lambda = 1/n$ for some integer n. Conversely, one checks that all functions of the form $\varphi_n(x) = c \cdot e^{inx}$, where $c \neq 0$ is a constant and n is an integer, are eigenfunctions, so we are done.

(d) By the spectral theorem for compact self-adjoint operators, we know that $(e^{inx})_{n \in \mathbb{Z}}$ form an orthogonal basis for $L^2([-\pi,\pi])$. As $\langle e^{inx}, e^{inx} \rangle = 1$, it is an orthonormal basis.

Exercise class 5

Exercise 20 (Stein-Shakarchi III.4.7.29). Let \mathcal{H} be a Hilbert space, $T : \mathcal{H} \to \mathcal{H}$ a compact symmetric operator and $\lambda \neq 0$.

- (a) Show that the range of λT is closed.
- (b) Show that the conclusion of (a) may fail if $\lambda = 0$.
- (c) Show that λT is surjective if and only if $\overline{\lambda} T^*$ is injective.

Solution. (a) Let $g \in \mathcal{H}$ and assume that there is a sequence $g_j \coloneqq (\lambda - T)f_j$, $j \in \mathbb{N}$, such that $g_j \to g$ as $j \to \infty$. As each $f \in \mathcal{H}$ can be written as $f = f^{\perp} + f^{\parallel}$ where f^{\perp} is orthogonal to the eigenspace of λ and f^{\parallel} is contained in it, and $(\lambda - T)f^{\parallel} = 0$, we may assume that each of the f_j are orthogonal to the eigenspace of λ . Let $0 < \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$ be an enumeration of the eigenvalues of T with multiplicity, and $(e_i)_{i=1}^{\infty}$ an orthonormal basis of eigenvectors such that $Te_i = \lambda_i e_i$. Given $f \in \mathcal{H}$, let $f_0 \coloneqq f - \sum_{i=1}^{\infty} \langle f, e_i \rangle e_i$. Now

$$||g_j||^2 = ||(\lambda - T)f_j||^2 = ||(f_j)_0||^2 + \sum_{i=1}^{\infty} |\langle f_j, e_i \rangle|^2 \cdot |\lambda - \lambda_i|^2.$$

As the sequence (g_j) is bounded, $\langle f_j, e_i \rangle = 0$ for every *i* such that $\lambda_i = \lambda$ and $\lambda_i \to \infty$, we can conclude that (f_j) is a bounded sequence. But then, after possibly passing to a subsequence, we may assume that Tf_j converges and then $f_j = \frac{1}{\lambda}(g_j + Tf_j)$ converges to say *f* and passing to the limit, $f = \frac{1}{\lambda}(g + Tf)$ i.e. $g = (\lambda - T)f$.

(b) We saw this in last class.

(c) Let us show that $R(\lambda - T)^{\perp} = N(\overline{\lambda} - T^*)$. So let y be orthogonal to $R(\lambda - T)$. Then

$$\|(\bar{\lambda} - T^*)y\|^2 = \langle (\bar{\lambda} - T^*)y, (\bar{\lambda} - T^*)y \rangle = \langle y, (\lambda - T)(\bar{\lambda} - T^*)y \rangle = 0$$

so $y \in N(\overline{\lambda} - T^*)$. If $y \in N(\lambda - T)$ then for every $x \in \mathcal{H}$ it holds that

$$0 = \langle x, (\lambda - T^*)y \rangle = \langle (\lambda - T)x, y \rangle$$

so y is orthogonal to $R(\lambda - T)$, as $x \in \mathcal{H}$ was arbitrary.

Now the claim follows trivally, using that $R(\lambda - T)$ is closed.

Example 21. As \mathbb{R} is complete, by Baire's category theorem, it can not be written as a countable union of closed sets with empty interior. Now, singletons are closed and have empty interior so as a consequence, \mathbb{R} is uncountable.

Exercise 22 (Stein-Shakarchi III.4.7.35). Let \mathcal{H} be a Hilbert space.

- (a) Let S and T be two linear symmetric and compact operators on \mathcal{H} that commute. Show that there exists an orthonormal basis $(e_i)_{i \in \mathbb{N}}$ of \mathcal{H} such that for every $i \in \mathbb{N}$, e_i is an eigenvector of S and T.
- (b) A linear operator \mathcal{H} is said to be normal if $TT^* = T^*T$. Show that if T is normal and compact then T can be diagonalized.
- (c) Let U be a unitary operator of the form $U = \lambda T$ where T is compact. Show that U can be diagonalized.

Solution. (a) Let x be an eigenvector of T corresponding to the eigenvalue λ . Then $S(Tx) = TSx = T\lambda x = \lambda Tx$ so Tx is also an eigenvector of S with eigenvalue λ . From here, the claim is obvious.

(b) Note that $T = T_1 + iT_2$ where $T_1 = \frac{1}{2}(T + T^*)$ and $T_2 = \frac{1}{2}(T - T^*)$. As $TT^* = T^*T$, it follows that T_1 and T_2 commute and as they are compact, they can be diagonalized simultaneously by (a) and therefore can T be diagonalized.

(c) As U is unitary,

$$(\lambda - T)(\bar{\lambda} - T^*) = I = (\bar{\lambda} - T^*)(\lambda - T)$$

which gives that $TT^* = T^*T$. By (b), T can thus be diagonalized so $U = \lambda - T$ can also be diagonalized.

Exercise class 6

In last week's lectures the closed graph theorem was proven:

Theorem 23 (Closed graph theorem). Let X, Y be Banach spaces and $T : X \to Y$ a linear map. Then T is continuous if and only if the graph of T is closed.

In general when one has a map $f: X \to Y$ between metric spaces, one has to show that given any point $x \in X$ and any convergent sequence (x_n) in X with $x = \lim x_n$ it holds that $f(x) = \lim f(x_n)$. Note that this includes two steps: i) Showing that the sequence $(f(x_n))$ is convergent i.e. that there exists $y \in Y$ such that $y = \lim f(x_n)$. ii) Showing that y = f(x). The great thing about the closed graph theorem is that it allows us to skip the first step, i.e. it suffices to show that for every sequence $(x_n, Tx_n) \in X \times Y$ which converges to some $(x, y) \in X \times Y$ it holds that y = Tx.

Exercise 24 (Stein-Shakarchi Exercise IV.4.12). Let X, Y, Z be Banach spaces and $T : X \times Y \to Z$ a linear map such that

- (i) for every $x \in X$, the map $Y \to Z$, $y \mapsto T(x, y)$ is continuous.
- (ii) for every $y \in Y$, the map $X \to Z$, $x \mapsto T(x, y)$ is continuous.

Solution. By (i), we have a linear map $X \to \mathcal{B}(Y,Z)$, $x \mapsto T_x$ where $T_x : Y \to Z$, $T_x y = T(x,y)$. Let $(x_n, T_{x_n}) \to (x, \overline{T})$ where $\overline{T} \in \mathcal{B}(Y,Z)$. As $T_{x_n} \to \overline{T}$ in the strong operator topology, it holds in particular for every $y \in Y$ that

$$\bar{T}y = \lim_{n \to \infty} T_{x_n}(y) = \lim_{n \to \infty} T(x_n, y) = T(x, y)$$

where we used (ii) in the last step. Hence is $\overline{T} = T_x$. Now, $\mathcal{B}(Y, Z)$ is a Banach space as Z is a Banach space so the closed graph theorem implies that $x \mapsto T_x$ is a continuous map. Hence, there exists a constant $C \ge 0$ such that $||T_x|| \le C||x||$ for every $x \in X$ and thus

$$||T(x,y)|| = ||T_xy|| \le ||T_x|| \cdot ||y|| \le C \cdot ||x|| \cdot ||y||.$$

This finishes the solution.

Exercise 25 (Stein-Shakarchi Exercise IV.4.14). Let X be a complete metric space and $T: X \to X$ a continuous map. An element $x \in X$ is said to be *universal* for T if the orbit $(T^n(x))_{n \in \mathbb{N}}$ is dense in X. Show that the set of universal elements for T is either empty or generic.

Solution. Assume that there exists a universal element x. For $j, k, N \ge 1$, let

$$F_{j,k,N} \coloneqq \{ y \in X \mid d(T^n(y), T^j(x) < \frac{1}{k} \text{ for some } n \ge N \}.$$

As T is continuous, the sets $F_{j,k,N}$ are open. Further, for each $m \ge 0$, $T^m(x) \in F_{j,k,N}$ as $(T^n(x))_n$ is dense in X. Therefore is $F_{j,k,N}$ open and dense so $F := \bigcap_{j,k,N} F_{j,k,N}$ is generic. Now, if $y \in F$ then for every $j \in \mathbb{N}$, there exists a sequence $n_i \to \infty$ such that $T^{n_i}(y) \to T^j(x)$ as $i \to \infty$. As $(T^j(x))_j$ is dense in X, it follows that $(T^n(y))_n$ is dense in X and hence that y is universal.

In last week's lectures, we also saw the uniform boundedness principle.

Theorem 26 (Uniform boundedness principle). Let X be a Banach space, Y a normed space and $(T_{\lambda})_{\lambda \in \Lambda}$ a family in $\mathcal{B}(X, Y)$. If for every $x \in X$ it holds that $\sup_{\lambda \in \Lambda} ||T_{\lambda}x|| < \infty$ then $\sup_{\lambda \in \Lambda} ||T|| < \infty$.

Exercise 27 (Corollary IV.18). Let X be a Banach space and $B^* \subseteq X^*$ a subset such that $\{f(x) \mid f \in B^*\}$ is bounded for every $x \in X$. Show that B^* is bounded in X^* .

Solution. This follows directly from the uniform boundedness principle: For every $x \in X$, $\sup_{f \in B^*} |f(x)| < \infty$ so by the uniform boundedness principle, $\sup_{f \in B^*} ||f|| < \infty$ i.e. B^* is bounded.

Example 28. Let $X \subseteq \ell^2(\mathbb{N})$ be the set of those $x = \sum_{j=0}^{\infty} a_j e_j \in \ell^2(X)$ such that $a_j = 0$ for all but finitely many j. Then X is a normed space but it is not complete. For $n \in \mathbb{N}$, let $T_n : X \to X$ be given by $T_n e_j = j e_j$ if $j \leq n$ but $T_n e_j = 0$ for j > n. Then $\sup_{n \in \mathbb{N}} ||T_n x|| < \infty$ for every $x \in X$ but $\sup_{n \in \mathbb{N}} ||T_n x|| = \infty$ as $||T_n|| = n$.

Exercise class 7

Today, we will prove that for any point $x_0 \in [-\pi, \pi]$ there exists a continuous function on $[-\pi, \pi]$ whose Fourier serie diverges at x_0 . We follow Section IV.4.2.1 in Stein and Shakarchi.

Recall that, given a complex valued function $f \in L^1([-\pi,\pi])$, its Fourier coefficients $a_n(f), n \in \mathbb{Z}$, are defined by

$$a_n(f) \coloneqq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

and its Fourier serie $\mathcal{F}(f)$ is given by

$$\mathcal{F}(f)(x) = \sum_{n=-\infty}^{\infty} a_n(f) e^{inx}.$$

For $N \in \mathbb{N}$, we let

$$S_N(f)(x) \coloneqq \sum_{n=-N}^N a_n(f)e^{inx}$$

denote the N-th partial sum of f. Note that

$$S_N(f)(x) = \sum_{n=-N}^N a_n(f)e^{inx} = \sum_{n=-N}^N \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)e^{-iny} \, dy \cdot e^{inx}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{n=-N}^N e^{in(x-y)}\right) f(y) \, dy$$
$$= (D_N * f)(x)$$

where

$$D_N(x) \coloneqq \sum_{n=-N}^N e^{inx} = e^{-iNx} \cdot \frac{e^{i(2N+1)x} - 1}{e^{ix} - 1} = \frac{e^{i(N+1/2)x} - e^{-i(N+1/2)x}}{e^{ix/2} - e^{-ix/2}}$$
$$= \frac{\sin((N+1/2)x)}{\sin(x/2)}$$

and

$$(f * g)(x) \coloneqq \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - y)g(y) \, dy.$$

Now, we assume without loss of generality that $x_0 = 0$. In order to show the existence of a continuous function f on $C([-\pi, \pi])$ we use the uniform boundedness principle in the following way: For every $N \in \mathbb{N}$, let

$$\ell_N : C([-\pi,\pi]) \longrightarrow \mathbb{C}, \qquad f \longmapsto S_N(f)(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(-y) D_N(y) \, dy.$$

We will show that each of the linear functionals ℓ_N is bounded but that $||\ell_N|| \to \infty$ as $N \to \infty$. Hence, by the uniform boundedness principle, there has to be a function $f \in C([-\pi,\pi])$ such that $\sup_{N \in \mathbb{N}} |\ell_N(f)| = \infty$ which means that the Fourier serie of fdiverges at x. **Lemma 29.** For every $N \in \mathbb{N}$ it holds that $\|\ell_N\| = L_N$ where $L_N := \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(y)| dy$.

Proof. First,

$$|\ell_N(f)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(-y)| |D_n(y)| \, dy \le L_N ||f||_{\infty}$$

so $\|\ell_N\| \leq L_N$. For the other inequality, let $g(x) \coloneqq \operatorname{sgn}(D_N(x))$. Then

$$L_N = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(-y) D_N(y) \, dy.$$

Now, by standard approximation results, there exists a sequence $(f_k)_{k\in\mathbb{N}}$ of functions in $C([-\pi,\pi])$ with $||f_k|| \leq 1$ and such that $||g - f_k||_1 \to 0$ as $k \to \infty$. Then $\ell_N(f_k) \to L_N$ as $k \to \infty$ so $||\ell_N|| \geq L_N$.

Lemma 30. There exists a constant c > 0 such that $L_N \ge c \cdot \ln N$ for every $N \ge 1$.

Proof. Making use of the fact that $|\sin(x)/x| \le 1$, we obtain

$$L_{N} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_{N}(x)| \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\sin((N+1/2)x)}{\sin(x/2)} \right| \, dx$$
$$\geq \frac{2}{\pi} \int_{0}^{\pi} \left| \frac{\sin((N+1/2)x)}{x} \right| \, dx = \frac{2}{\pi} \int_{0}^{(N+1/2)\pi} \left| \frac{\sin(x)}{x} \right| \, dx$$
$$\geq \frac{2}{\pi} \sum_{k=0}^{N-1} \int_{k\pi}^{(k+1)\pi} \left| \frac{\sin(x)}{x} \right| \, dx \geq \frac{2}{\pi} \sum_{k=1}^{N-1} \frac{1}{(k+1)\pi} \int_{k\pi}^{(k+1)\pi} |\sin(x)| \, dx$$
$$\geq \frac{2}{\pi^{2}} \int_{0}^{\pi} |\sin(x)| \, dx \cdot \ln N$$

which finishes the proof.

Exercise class 8

Exercise 31 (Brezis Exercise 3.1). Let X be Banach space and let $A \subseteq X$ be a subset which is compact in the weak topology. Show that A is bounded.

Solution. We use the Banach-Steinhaus theorem: As A is compact, it holds for every $f \in X^*$ that f(A) is bounded and hence is A bounded by Banach-Steinhaus.

Exercise 32 (Brezis Exercise 3.3). Let X be a Banach space and $A \subseteq X$ a convex set. Show that the closure of A in the weak topology and in the strong topology agree.

Solution. We only have to show that the closure of A in the strong topology, \overline{A} , is closed in the weak topology. So let $x \notin \overline{A}$. Then by Hahn-Banach, there exists $f \in X^*$ such that f(x) > 0 and $f(y) \leq 0$ for every $y \in \overline{A}$. Then $V := f^{-1}((0, \infty))$ is a neighborhood of x in the weak topology which does not intersect \overline{A} . This shows that \overline{A} is closed in the weak topology.

Exercise 33 (Brezis Exercise 3.4). Let X be a Banach space and (x_n) a sequence in X such that $x_n \rightarrow x$ in the weak topology as $n \rightarrow \infty$.

(i) Prove that there exists a sequence (y_n) in X such that

$$y_n \in \operatorname{conv}\left(\{x_i \mid i=n, n+1, \ldots\}\right)$$

for every n and $y_n \to x$ in the strong topology.

(ii) Prove that there exists a sequence (z_n) in X such that

 $z_n \in \operatorname{conv}\left(\{x_i \mid i = 1, \dots, n\}\right)$

for every n and $z_n \to x$ in the strong topology.

Solution. (i) For every n it holds that y is contained in the weak closure of the convex set conv $(\{x_i \mid i = n, n + 1, ...\})$ which is also its strong closure by the previous exercise. Hence the result.

(ii) Note that

$$\operatorname{conv}\left(\{x_i \mid i \in \mathbb{N}\}\right) = \bigcup_{n \in \mathbb{N}} \operatorname{conv}\left(\{x_i \mid i = 1, \dots, n\}\right)$$

and as y is in the closure of this set (by the previous exercise), the result follows.

Exercise 34 (Brezis Exercise 3.5). Let X be a Banach space $K \subseteq X$ a set which is compact in the strong topology and let $x_n, x \in K, n \in \mathbb{N}$, be such that $x_n \to x$ in the weak topology as $n \to \infty$. Show that $x_n \to x$ in the strong topology.

Solution. Assume for a contradiction that (x_n) does not converge to x in the strong topology as $n \to \infty$. By using that K is strongly compact, we may then find $x' \in K$ such that $x' \neq x$ and such that after possibly passing to a subsequence, $x_n \to x'$ in the strong topology. But then $x_n \rightharpoonup x'$ in the weak topology and as the weak topology is Hausdorff, x = x', which is a contradiction.

Exercise 35 (Brezis Exercise 3.8). Let X be an infinite dimensional Banach space. Show that the weak topology on X is not metrizable.

Solution. Suppose for a contradiction that there exists a metric d on X which induced the weak topology. For each intger $k \geq 1$, there are $f_{k,1}, \ldots, f_{k,n_k} \in X^*$ and an $\varepsilon_k > 0$ such that

$$V_k \coloneqq \{x \in X \mid |f_{k,i}(x)| < \varepsilon_k \text{ for every } i = 1, \dots, n_k\} \subseteq \left\{x \in X \mid d(x,0) < \frac{1}{k}\right\}.$$

Now, let $g \in X^*$. Recall that all elements of X^* are continuous with respect to the weak topology (the weak topology is defined as the coarsest topology with respect to which all elements of X^* are continuous). Hence there exists $k \ge 1$ such that if $d(x,0) < \frac{1}{k}$ then |g(x)| < 1 and thus, that if $x \in V_k$, then |g(x)| < 1. Note that if $f_{k,i}(x) = 0$ for $i = 1, \ldots, n_k$ then the same holds for rx, for every $r \in \mathbb{R}$ so $rx \in V_k$ for every $r \in \mathbb{R}$ and hence it follows that g(x) = 0 because else we can let $r \in \mathbb{R}$ be such that $|g(rx)| \ge 1$ and then get a contradiction. It follows that g is linear comination of $f_{k,1}, \ldots, f_{k,n_k}$.

We have shown that the countable family $f_{k,i}$, $k \ge 1$, $1 \le i \le n_k$ forms a Hamel basis for X^* . But then X^* is finite dimensional by the Baire category theorem and hence is X finite dimensional.

Exercise class 9

Let us begin with a short recap of the weak topology and the weak^{*} topology.

Let X be any set and $((f_i, Y_i))_{i \in I}$ a family of pairs such that for each $i \in I$, Y_i is a topological space and $f_i : X \to Y_i$ is a map. There exists a unique coarsest topology τ on X which makes all the maps f_i , $i \in I$, continuous; the topology τ is called the topology which the family $((f_i, Y_i))_{i \in I}$ induces. A fundamental property of the topology τ is the following: Let Y be a topological space and $f : Y \to X$ a map. Then f is continuous when X is endowed with the topology τ if and only if for each $i \in I$, the map $f_i \circ f : Y \to Y_i$ is continuous.

Example 36. Let $(X_i)_{i \in I}$ be a family of topological spaces. The product topology on $\prod_{i \in I} X_i$ is the topology which the projection maps

$$\pi_i: \prod_{j\in I} X_j \longrightarrow X_i, \quad (x_j)_{j\in I} \longmapsto x_i$$

induce. Hence, given a topological space X and a map $f: X \to \prod_{j \in I} X_j$, the map f is continuous if and only if $\pi_i \circ f: X \to X_i$ is continuous for each $i \in I$.

Let now X be a Banach space. Then the weak topology on X is defined as the topology which the family $((f, \mathbb{R}))_{f \in X^*}$ induces. Given $x \in X$, we let $\hat{x} : X^* \to \mathbb{R}$, $\bar{x}(f) \coloneqq f(x)$. The topology on X^* which the family $((\hat{x}, \mathbb{R}))_{x \in X}$ induces, is called the weak^{*} topology on X^* .

In last week's lectures, we learned about the Banach-Alaoglu theorem which says that given a Banach space X, the closed unit ball $B_{X^*}(0,1)$ in the dual space X^* is compact in the weak*-topology. The proof actually goes by viewing $B_{X^*}(0,1)$ as a suitable subset of $\prod_{x \in X} \mathbb{R}$ which is compact by Tychonoff. Then one notices that on this subset, the weak* topology and the product topology agree and hence the result follows.

Example 37. Let X be a reflexive Banach space, that is the embedding $\iota : X \to X^{**}$, $x \mapsto \hat{x}$, is surjective. Then ι is a homomorphism when X is endowed with the weak topology and X^{**} is endowed with the weak*-topology: To show that, we let Y be a topological space, $F : Y \to X$ and show that F is continuous if and only if $\iota \circ F : Y \to X^{**}$ is continuous when X is endowed with the weak topology and X^{**} with the weak* topology. Now, F is continuous if and only if for each $f \in X^*$, $y \mapsto f(F(y))$ is continuous and $\iota \circ F$ is continuous if and only if for each $f \in X^*$, $y \mapsto \hat{f}(\iota \circ F(y)) = (\iota \circ F(y))(f) = f(F(y))$ is continuous. Hence it is equivalent that F and $\iota \circ F$ are continuous.

From this one may conclude that $B_X(0,1)$ endowed with the weak topology is compact as it is homeomorphic to $B_{X^{**}}(0,1)$ endowed with the weak*-topology, and the latter is compact by Banach-Alaoglu.

Example 38 (Brezis Exercise 3.10). Let X, Y be Banach spaces and $T: X \to Y$ a bounded linear map. The dual map $T^*: Y^* \to X^*$ is defined by $T^*g = g \circ T$. Let us show that T^* is continuous when X^*, Y^* are endowed with the weak*-topologies. Recall that the weak topology on X^* is the coarsest topology such that for each $x \in X$, the map $\hat{x}: X^* \to \mathbb{R}$, $\hat{x}(f) = f(x)$, is continuous. Hence it suffices to show that for each $x \in X$, the map $Y^* \to \mathbb{R}, g \mapsto \hat{x}(T^*g) = g(Tx) = \widehat{Tx}(f)$ is continuous when Y^* is endowed with the weak*-topology. But that simply holds since the weak* topology on Y^* is the coarses topology such that for each $y \in Y$, the map $\hat{y} : Y^* \to \mathbb{R}$, $\hat{y}(g) = g(y)$, is continuous and hence in particular, are all the maps \widehat{Tx} weak^{*}-continuous.

Exercise 39 (Brezis Exercise 3.20). Let X be a Banach space. Show that there exists a compact topological space K and an isometric embedding $\iota : X \to C(K)$.

Proof. Take $K := B_{X^*}(0, 1)$ endowed with the weak^{*} topology and let $\iota : X \to C(K)$ be given by $\iota(x)(f) := f(x)$ for every $f \in K$. It is clear that ι is linear. Furthermore,

$$\|\iota(x)\|_{\infty} = \sup_{f \in K} |\iota(x)(f)| = \sup_{\substack{f \in X^* \\ \|f\| \le 1}} |f(x)| = \|x\|$$

so ι is an isometric embedding.

Exercise class 10

Today, we will prove the following theorem.

Theorem 40 (Brezis Theorem 3.28 and Theorem 3.29). Let X be a Banach space. Then

- (i) $B_{X^*}(0,1)$ is metrizable in the weak^{*}-topology if and only if X is separable.
- (ii) $B_X(0,1)$ is metrizable in the weak topology if and only if X^* is separable.

Proof. (i) Assume that X is separable. Let $(x_n)_{n\geq 1}$ be a dense sequence in $B_X(0,1)$ and define a metric d on $B_{X^*}(0,1)$ by

$$d(f,g) \coloneqq \sum_{n=0}^{\infty} \frac{1}{2^n} |(f-g)(x_n)|.$$

Let us show that d induces the weak*-topology on $B_{X^*}(0,1)$. So let $f_0 \in B_{X^*}(0,1)$, $\varepsilon > 0$, $y_1, \ldots, y_k \in X$ with $||y_i|| \le 1$ for $i = 1, \ldots, k$ and

$$V \coloneqq \{ f \in B_{X^*}(0,1) \mid |(f - f_0)(y_i)| < \varepsilon \text{ for all } i = 1, \dots, k \}.$$

As $(x_n)_{n\geq 1}$ is dense in $B_X(0,1)$, for every i = 1, ..., k, there is n_i such that $||y_i - x_{n_i}|| < \varepsilon/4$. Let r > 0 be small enough so that $2^{n_i}r < \varepsilon/2$ for every i = 1, ..., k. Then if $d(f, f_0) < r$ it holds for every i = 1, ..., k that

$$\frac{1}{2^{n_i}} |(f - f_0)(x_{n_i})| < r$$

 \mathbf{SO}

$$|(f - f_0)(y_i)| \le |(f - f_0)(y_i - x_{n_i})| + |(f - f_0, x_{n_i})| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

and hence is $f \in V$. This shows that the topology induced by d is finer than the weak^{*}-topology.

Let now $f_0 \in B_{X^*}(0,1)$ and r > 0. For $\varepsilon := r/2$ and $k \ge 1$ such that $1/2^{k-1} < r/2$ it holds that if $|(f - f_0)(x_i)| < \varepsilon$ for $i = 1, \ldots, k$, then

$$d(f, f_0) = \sum_{n=1}^k \frac{1}{2^n} |(f - f_0)(x_n)| + \sum_{n=k+1}^\infty \frac{1}{2^n} |(f - f_0)(x_n)| < \varepsilon + 2\sum_{n=k+1}^\infty \frac{1}{2^n} < r.$$

This shows that the weak^{*} topology is finer than the topology which d induces.

(ii) The proof is exactly the same as in (i).

As a corollary, one gets the following.

Corollary 41 (Brezis Corollary 3.30). Let X be a separable Banach space and $(f_n)_{n \in \mathbb{N}}$ a bounded sequence in X^* . Then there exists a subsequence $(f_{n_k})_{k \in \mathbb{N}}$ which converges in the weak^{*} topology.

The preceding corollary allows one to prove the following theorem.

Theorem 42 (Brezis Theorem 3.18). Let X be a reflexive Banach space and $(x_n)_{n \in \mathbb{N}}$ a bounded sequence in X. Then there exists a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ that converges in the weak topology.

Proof. Let M_0 be the vector space generated by $(x_n)_{n \in \mathbb{N}}$ and $M \coloneqq M_0$. Then M is separable and reflexive as a closed subspace of a reflexive space is reflexive (see Proposition 3.20 in Brezis). By (ii) in the previous theorem, $B_M(0, 1)$ is compact and metrizable in the weak topology since M^* is separable (here we must use that a Banach space is reflexive and seperable if and only if the same holds for its dual space (see Corollary 3.27 in Brezis)). Now the result follows.

Exercise class 11

In last lecture we saw the following theorem.

Theorem 43 (Mercer's theorem). Let (X, d) be a compact metric space and μ a Borel regular probability measure on X such that $\mu(U) > 0$ for every open set $U \subseteq X$. Let $K \in C(X \times X)$ be a continuous positive semi-definite kernel on X (that is, K(x, y) = K(y, x)for every $x, y \in X$ and for every $x_1, \ldots, x_n \in X$, the matrix $(K(x_i, x_j))_{i,j=1}^n$ is positive semi definite) and let $T_K : L^2(X, \mu) \longrightarrow L^2(X, \mu)$ be the operator given by

$$T_K f(x) \coloneqq \int_X K(x, y) f(y) \, d\mu(y).$$

Then there exists a sequence $(\varphi_i)_{i=1}^{\infty}$ of continuous eigenfunctions of T_K which form an orthonormal basis of ker $(T_K)^{\perp}$ and for each *i*, the eigenvalue λ_i corresponding to φ_i satisfies $\lambda_i > 0$. Furthermore,

$$K(x,y) = \sum_{i,j=1}^{\infty} \lambda_i \varphi_i(x) \varphi_j(y)$$

for all $x, y \in X$ and the sum is absolutely and uniformly convergent.

Let us now consider an application of Mercer's theorem to stochastic processes, namely the Karhunen-Loeve theorem. We follow the Wikipedia page on that theorem.

Theorem 44 (Karhunen-Loeve). Let (Ω, \mathbb{P}) be a probability space and $(X_t)_{t \in [0,1]}$ a stochastic process on Ω such that

- (a) The function
- $[0,1] \times \Omega \to \mathbb{R}, \qquad (t,\omega) \longmapsto X_t(\omega)$
- is in $L^2([0,1] \times \Omega)$.

- (b) For every $t \in [0, 1]$, $\mathbb{E}[X_t] = 0$ (i.e. X_t has zero-mean).
- (c) For every $t \in [0,1]$, $\mathbb{E}[X_t^2] < \infty$ (i.e. X_t has bounded variance).
- (d) The covariance function $K_X(s,t) \coloneqq \mathbb{E}[X_s X_t], s,t \in [0,1]$, is continuous.

Then there exists a sequence $(e_i)_{i=1}^{\infty}$ of continuous functions in which are eigenfunctions of T_{K_X} and form an orthonormal basis of $L^2([0,1])$ such that for the random variables

$$Z_i: \Omega \to \mathbb{R}, \qquad Z_i(\omega) \coloneqq \int_0^1 X_t(\omega) e_i(t) dt$$

it holds that

(i) As $N \to \infty$,

$$\sup_{t\in[0,1]} \left\| X_t - \sum_{i=1}^N Z_i e_i(t) \right\|_{L^2(\Omega,\mathbb{P})} \to 0.$$

- (ii) For every i, $\mathbb{E}[Z_i] = 0$.
- (iii) For every i, j, $\mathbb{E}[Z_i Z_j] = 0$ if $i \neq j$ and $\mathbb{E}[Z_i^2] = \lambda_i$ where λ_i is the eigenvalue of T_{K_X} corresponding to e_i .

Proof. Note first that K_X is positive semi-definite kernel: It is clear that K_X is symmetric and for every $t_1, \ldots, t_n \in [0, 1]$ and all real numbers c_1, \ldots, c_n it holds that

$$\sum_{i,j=1}^{n} c_i c_j K_X(t_i, t_j) = \sum_{i,j=1}^{n} c_i c_j \mathbb{E}[X_{t_i} X_{t_j}] = \mathbb{E}[c_1 X_{t_1} + \dots + c_n X_{t_n}] \ge 0$$

so K_X is positive semi-definite. Now, Mercer's theorem gives the existence of an ortheorem basis $(e_i)_{i=1}^{\infty}$ of $L^2([0,1])$, consisting of eigenfunctions T_{K_X} . As $t \mapsto X_t(\omega)$ is in $L^2([0,1])$ for almost every $\omega \in \Omega$ by (a), we can for every $i \geq 1$ define $Z_i \in L^2(\Omega, \mathbb{P})$ by

$$Z_i(\omega) \coloneqq \int_0^1 X_t(\omega) e_i(t) dt$$

For every i it holds that

$$\mathbb{E}[Z_i] = \mathbb{E}\left[\int_0^1 X_t e_i(t) \, dt\right] = \int_0^1 \mathbb{E}[X_t] e_i(t) \, dt = 0$$

and for every i, j it holds that

$$\begin{split} \mathbb{E}[Z_i Z_j] &= \mathbb{E}\left[\int_0^1 \int_0^1 X_s X_t e_i(s) e_j(t) \, ds \, dt\right] = \int_0^1 \int_0^1 \mathbb{E}[X_s X_t] e_i(s) e_j(t) \, ds \, dt \\ &= \int_0^1 \int_0^1 K_X(s,t) e_i(s) e_j(t) \, ds \, dt = \int_0^1 \left(\int_0^1 K_X(s,t) e_i(s) ds\right) \, e_j(t) \, dt \\ &= \langle T_{K_X} e_i, e_j \rangle \\ &= \lambda_i \cdot \delta_{ij} \end{split}$$

so we have shown (ii) and (iii). For (i), we let $S_N := \int_{i=1}^N Z_i e_i(t)$. Then

$$\mathbb{E}\left[|X_{t} - S_{N}|^{2}\right] = \mathbb{E}[X_{t}^{2}] + \mathbb{E}[S_{N}^{2}] - 2\mathbb{E}[X_{t}S_{N}]$$

$$= K_{X}(t,t) + \mathbb{E}\left[\sum_{i,j=1}^{N} Z_{i}Z_{j}e_{i}(t)e_{j}(t)\right] - 2\mathbb{E}\left[X_{t}\sum_{i=1}^{N} Z_{i}e_{i}(t)\right]$$

$$= K_{X}(t,t) + \sum_{i=1}^{N} \lambda_{i}e_{i}(t)^{2} - 2\sum_{i=1}^{N} \int_{0}^{1} \mathbb{E}[X_{s}X_{t}]e_{i}(s)e_{i}(t) ds$$

$$= K_{X}(t,t) + \sum_{i=1}^{N} \lambda_{i}e_{i}(t)^{2} - 2\sum_{i=1}^{N} \int_{0}^{1} K_{X}(s,t)e_{i}(s)e_{i}(t) ds$$

$$= K_{X}(t,t) + \sum_{i=1}^{N} \lambda_{i}e_{i}(t)^{2} - 2\sum_{i=1}^{N} \lambda_{i}e_{i}(t)^{2}$$

$$= K_{X}(t,t) - \sum_{i=1}^{N} \lambda_{i}e_{i}(t)^{2}$$

and by Mercer, this goes uniformly to zero as $N \to \infty$.

Example 45. A Brownian motion is a stochastic process $(B_t)_{t \in \mathbb{R}_+}$ on probability space (Ω, \mathbb{P}) such that

- (i) $B_0 = 0$ almost surely.
- (ii) For every $t, h \ge 0$ it holds that $B_{t+h} B_t \sim \mathcal{N}(0, h)$ i.e. $B_{t+h} B_t$ is a normal variable with zero mean and variance h.
- (iii) For every $0 \le t_1 < \cdots < t_n$ it holds that $B_{t_n} B_{t_{n-1}}, \ldots, B_{t_1} B_0$ are independent random variables.
- (iv) For almost every $\omega \in \Omega$ it holds that $t \mapsto B_t(\omega)$ is continuous.

Let now $(B_t)_{t\in[0,1]}$. For every $t\in[0,1]$ it holds that $\mathbb{E}[B_t]=0$ and $\mathbb{E}[B_t]=t$ and for every $0\leq s\leq t\leq 1$ it holds that

$$K(s,t) \coloneqq K_B(s,t) = \mathbb{E}[B_s B_t] = E[B_s^2] + E[B_s(B_t - B_s)] = s$$

since $\mathbb{E}[B_s(B_t - B_s)] = 0$ as B_s and $B_t - B_s$ are independent. Hence $K(s, t) = \min(s, t)$ for every $s, t \in [0, 1]$ so the criterias of the Karhunan Loeve theorem are satisfied. Let us determine the eigenfunctions of T_K . For that we must solve the eigenvalue problem $T_K e = \lambda e$ i.e.

$$\lambda e(t) = \int_0^1 K(s,t)e(s) \, ds = \int_0^1 \min(s,t) \cdot e(s) \, ds = \int_0^t se(s) \, ds + t \int_t^1 e(s) \, ds.$$

Now note that as $e \in L^2$, the right hand side is differentiable in t by the Lebesgue differentiation theorem. Assume first that $\lambda = 0$. Then we get by differentiating with respect to t that

$$te(t) - te(t) + \int_{t}^{1} e(s) \, ds = 0$$

i.e. $\int_t^1 e(s) = 0$. As this holds for every $t \in [0, 1]$ we conclude that e = 0. Now assume that $\lambda \neq 0$. Then e is differentiable as the right hand side is differentiable and by differentiating, we get

$$\lambda e'(t) = \int_t^1 e(s) \, ds$$

The right hand side is differentiable so we can differentiate again to obtain

$$\lambda e''(t) + e(t) = 0.$$

We know by Karhunan-Loeve that $\lambda > 0$ so

$$e(t) = a \cdot \cos\left(\frac{1}{\sqrt{\lambda}}t\right) + b \cdot \sin\left(\frac{1}{\sqrt{\lambda}}t\right)$$

where a, b are constants. From $\lambda e(t) = \int_0^1 K(s, t)e(s) \, ds$ it follows that e(0) = 0 so a = 0. From $\lambda e'(t) = \int_t^1 e(s) \, ds$ it follows then that $\cos(1/\sqrt{\lambda}) = 0$ which gives that $1/\sqrt{\lambda} = (k+1/2) \cdot \pi$ for some $k \in \mathbb{N}$ i.e. $\lambda = 1/((k+1/2)^2\pi^2), k \in \mathbb{N}$. Let $\lambda_k := 1/((k+1/2)^2\pi^2), e_k(t) := b_k \cdot \sin((k+1/2) \cdot t)$. From $\int_0^1 e_k(t) \, dt = 1$ it follows that

$$1 = \int_0^1 b_k^2 \cdot \sin^2((k+1/2) \cdot \pi \cdot t) \, dt = \frac{b_k^2}{2} \int_0^1 (1 - \cos((2k+1) \cdot \pi \cdot t)) \, dt = \frac{b_k^2}{2}$$

so $b_k = \sqrt{2}$ for every k so $e_k(t) = \sqrt{2} \cdot \sin((k+1/2) \cdot \pi \cdot t)$.