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Abstract

The classical model of collective risk theory is extended in that an «-stable
Lévy Motion is added to the compound Poisson process. The convolution for-
mula for the probability of ruin is derived. We then investigate the asymptotic

behaviour of the ruin probability as the initial capital becomes large.
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1 Introduction

Suppose that an insurance company has initial capital z, and receives premium in-
come at constant rate c¢. Claims occur at epochs of a Poisson process of rate A,
the claims being independent (of each other and the Poisson process) with law F
on [0,00). Write p for the mean of F'. It is easy to see that eventual ruin of the
company is certain unless ¢ > Au. Dufresne and Gerber (1991) extended the above
classical Poisson model of collective risk theory by adding a diffusion component to
the compound Poisson process. The diffusion term expresses either an additional
uncertainty of the aggregate claims or of the premium income. They established an
explicit convolution formula for the infinite-time ruin probability. In that formula
the perturbation is represented by the distribution function of the exponential law.

Gaussian distributions and processes have long since been studied and their utility in
stochastic modelling is well-accepted. However, they do not allow for large fluctua-
tions and may sometimes be not adequate for modelling high variability. We therefore
add instead of a Brownian component an «-stable Lévy motion to the classical risk
process. An «a-stable Lévy motion is a random element whose finite-dimensional dis-
tributions are «-stable. The tails of non—Gaussian stable laws decrease like a power

function. The rate of decay mainly depends on a parameter a which takes values



between 0 and 2. The smaller «, the slower the decay and the heavier the tails. We
allow the a-stable Lévy motion only to have downward jumps. This can be achieved
by choosing the so—called skewness parameter 3 accordingly.

In section 2 we derive an analoguous convolution formula for the infinite-time ruin
probability when the classical risk process is perturbed by «-stable Lévy motion.
The convolution formula now contains the Mittag—Leffler function, a generalization
of the exponential function to which it reduces in the Gaussian case (o = 2). Section
3 finally is devoted to the asymptotic behaviour of the ruin probability as the initial

capital becomes large.

2 Description of the Model and Main Result

The main objects we have to deal with are stable distributions and stable processes.
A first definition of a univariate stable distribution concerns the “stability” property:
the family of stable distributions is preserved under convolution. More precisely, a
random variable X is said to have a stable distribution if for any positive numbers

a and b, there is a positive number ¢ and a real number d such that
aX'+bX" L X +d,

where X’ and X" are independent copies of X and “<£” means equality in law. Ex-
plicit formulas for the densities of stable distributions exist only for o = 2 (Gaussian
distribution), for the symmetric stable distribution with o = 1 (Cauchy distribu-
tion), and for the one-sided stable distribution with « = 1/2. Their characteristic
functions however can always be written down explicitly. The following formulation
is to be found in Zolotarev (1986), representation (B).

Proposition 1 A random wvariable X has a stable distribution if and only if the

logarithm of its characteristic function g can be represented in the form
log g(0) = —0*|0|°w(6, @, B) + imd

where
w(0,a, B) = { exp{—ifsign(0) 7K (a)/2} a1,
/2 + i log 0] sign(0 a=1,

0<a<2, -1<f<1,0>0, meR and K(«

~—

=a—1+ sign(l —a).

Since univariate stable distributions are characterized by four parameters, we denote
stable laws by S,(o, 8, m) and write X ~ S,(o, 8, m) to indicate that X has the

stable distribution S,(o,3,m). Because m and o merely determine location and
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scale we shall mostly consider stable distributions with m = 0 and ¢ = 1. Note that
by doing so we are excluding the degenerate case 0 = 0. We introduce the notation
G(-;a,0), g(-;a,0) for the distribution function and density function of a stable

law with parameters a, 3, 0 =1 and m = 0, respectively.

Definition 1 A stochastic process Z, = (Z,(t) : t > 0) is called (standard) o -stable
Lévy motion if

(1) Z,(0) =0 a.s.
(ii) Z, has independent increments.

(iii) Za(t) — Za(s) ~ Su((t — 5)¥*,3,0) for any 0 < s < t < oo and for some
0<a<2 || <1.

See Figure 1 for some simulated sample paths in the case a« =1.2, 8 =0. Observe
that the process Z, has stationary increments. It is Brownian motion when o = 2.
For a comprehensive survey of properties of a-stable random variables and « -stable
Lévy motions we refer to Janicki and Weron (1994) or Samorodnitsky and Taqqu
(1994).
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Figure 1: Simulations of «-stable Lévy motion with aa =1.2, #=0.

The classical risk process R = (R(t) : t > 0) is given by

N(t) 0 def
Rt)y=z+ct— > Y, (ZY,C£0> : (1)
k=1 k=1



where x > 0, N = (N(t) : t > 0) is a homogeneous Poisson process with intensity
A, (Y : k € N) is a sequence of independent and identically distributed (iid) random
variables independent of N with distribution function F' on [0,00) and finite mean
. The premium rate ¢ is given by ¢ = (1 + 0)Ap, where the relative safety loading
6 is assumed to be positive. We now consider a process @ = (Q(¢) : t > 0) defined
by Q(t) = R(t) +1nZ4(t), where R is given in (1), i.e.

N(t)

Q) =z +ct— > Yi+nZy(t), t>0. (2)

Here 7 is a positive number and 7, is a-stable Lévy motion with 1 < a < 2 and
(8 = —1, independent of R. The condition 3 = —1 ensures that there are no upward
jumps of Z, and the condition a > 1 is needed to have a finite mean. It will turn
out that the above conditions on the parameters of 7, are crucial in some of the
derivations below. From a modelling point of view, one could view the downward
jumps of Z, as certain extra random payments either involving the income side or
the claim payment side. Figure 2 shows one simulated sample path of the process @

together with the underlying classical risk process R.
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Figure 2: Simulation of a classical risk process R (initial capital x = 15, premium
rate ¢ = 2.5, intensity A = 1 and exponentially distributed claims with mean p = 2)
and of its perturbed version Q = R+ nZ,. Here « = 1.5 and n =0.75.

The functional

U(@) = Plinf Q1) < 0]Q(0) =a] , x>0, (3)
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the so—called ruin probability, is the object of this paper.
Under the above conditions, the process (Q(t) —z : ¢ > 0) belongs to the class = =
{(Y(t) : t > 0),Y(0) = 0} of homogeneous processes with independent increments,

not having positive jumps. Such a process is characterized by
E[efY ] = ¢8() | Re{s} >0, (4)

where €£(®) is the Lévy-Khintchine representation of the characteristic function of an

infinitely divisible distribution, i.e. £(s) can be written in the form

£(s) =

1) I (du) + / 1 sw)T(du),  (5)

where c € R, 0 > 0 and II;, II, are measures defined on the negative half line such
that
0 0
/ lu| IT; (du) < oo , / u? Iy (du) < oo .
-1

—1
In addition, in the case when Il; can not be made identically zero by varying II;
and c, we have [° |u|Tly(du) = oo, [ |u|Ty(du) < cc.

The following theorem from Zolotarev (1964) turns out to be crucial.

Proposition 2 Let (Y(t) :t > 0) € E and v = E[Y(1)] > 0. Define ¥(z) =
P[ggY(t) < —z| for x > 0. Then the function ¥ is determined from the Lévy
ezponent &(s) by the relation

S/O e (x)de =1— % , Re{s} > 0. (6)
The idea now is to apply Proposition 2 to the process (Q(t) —z : ¢ > 0) and to
solve for U(z) in (6). For the sake of simplicity we assume in the sequel 7 =1. The
formula we shall derive in Theorem 1 can easily be generalized for arbitrary positive
n, see formula (16) in connection with Theorem 1. Denote by I;, I, the integrals in
(5) with respect to IT; and II,. For the process (Q(t) —x:t > 0) we have 0 =0,

(4, 0) = A1 — F(—u)), u<0, (7)

ala—1)

Iy (du) = ‘(fml( 00, 0)(u) du  with ¢ = T2—a) (8)

|u

The representation for II, is given in Zolotarev (1986), p. 68.
Set F(x) =1— F(z). We define the integrated tail distribution F; as



The Laplace-Stieltjes transform f;(s) of Fj is given by

ils) = [ e i) = i |7 e Fw)du (10)

With the aid of (10), the integral I; can be expressed as
I = =Xpsfi(s) . (11)

Set & = a—1 and note that 0 < @ <1, ¢ = a@/T'(1—&). Using (8), we immediately
find for I

IQ =3s5%. (12)
Combining (11) and (12) yields

E(s)=ces+ 1L+ 1,
= s(c— Aufi(s) + %) .

Consider now 7ys/&(s) , where v = E[Q(1) — z] = ¢ — Au is assumed to be strictly
positive. Define p = Au/c. Then we can write

s _ gl
(s)  c— Aufi(s) + s@
—(l-p)——
e+ 5% — Aufi(s)
C
=(1-p—Ct
1_pr(S)C+Sd

The function 4(s) = ¢/(c + s*) with 4(0) = 1 is completely monotone, i.e. pos-
sesses derivatives 4(™(s) of all orders and (—1)"a((s) > 0. Hence @(s) is the
Laplace-Stieltjes transform of a probability distribution U on R (Feller (1971),
p. 439). The following lemma characterizes the law U in terms of the density of
extremal stable laws (3 = 1) or the so—called Mittag—Leffler functions E,(z) =
Y ,x"/T(1+on), o >0.1If f and g are two functions, we mean by f(z) ~ g(z)
that lim, o f(2)/g(z) = 1. Recall that for a stable random variable X ~ S, (1, 3,0)
we denote by G(-;a,0), g(-;a,3) its distribution function and density function,
respectively.

Lemma 1 Let X ~ S3(1,1,0) with index 0 < & < 1. Then for ¢ >0, s> 0 one
has



0 0 1/&. x 1
YR Y g _/ 9(y/u'®a,1)
(i) u(s) = e —/0 e Yu(y)dy , where u(y) = | i/a ce “du .
(i) Uz) = /wu(y) dy=1-% 29" e B |
0 ~T(1+an)
o :L.n
here Ej(z) =S —— 5>0.
where E,(x) ,;)I‘(l—i—on) o>
(11i) The distribution U has a regqularly varying tail:
— 1 ~
U(./E):]__U(.T)me_a, Tr — Q.

(iv) For 0 <6 < & we have

% P(146/&)T(1 - 6/&)
/0 wou(z) dz = T3]

REMARKS.

1. The Mittag-Leffler function E,(z) = Y ,2"/T'(1 4+ on), o > 0 is a general-

ization of the exponential to which it reduces when ¢ =1.

2. As @ decreases from 1 to 0, the tails of the distribution U become thicker, see

Figure 3 below.
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Figure 3: Function U(z) for ¢ =1 and & € {0.2,0.5,0.8,1}



0(s) = ¢/(c+ s). Then ¥(s) is the Laplace

(i) Consider the function
0(s) = [T e ¥u(y) dy with v(y) = ce V.

PRroOOF.
transform of the exponential law, i.e.

Now
as) = —— = 0(s") = [ e Vu(y)dy (13)
the Laplace transform of X exists for s > 0 and is

Since 0 < @< 1 and =1,
given by Ele **X] = exp{—5%}, see Zolotarev (1986), p. 112. It follows that

_sdy — e_(syl/&)d

=F I:e*(syl/&)X:I
—/ e~ (v g(u: &, 1) du
0

e

e glv/yt%a,1)
; e S/ dv

With (14) we obtain for (13)
[e's) [e'e} 1/a. 1
/ ( / osu 9(w/y' % 8,1) du) e dy
0

u(s) = l/a

l/a )

:/000 (/ g(y/u il _cudu) dy

which proves (i).
(ii) Straightforward calculation yields

Ulz) = /0 / ( / gy/ull//aa D, - du) a

00 z/ull’
:/ ce (/ 9(v;&,1) dv) du
0 0
00 1/&.
=1 —/ e~ (ig(x/u Al 1)> du
0

ou ul/a

B Z 1 + an)
The last equality establishes the connection between extremal stable laws and the
Mittag—Leffler function and follows from Feller (1971), p. 453
(iii) Note that for £k € Ny we have

S/Ooe—su ﬂdu — <_£~)k .

0 I'(1+ ak) 58

Thus we obtain by interchanging the order of integration and summation
¢ ¢

) _
s e MEy(—cu®)du = — _
/0 a( ) c c+ s®




and conclude that B
o

s/ e By (—cu®) du ~ = , s40.
0 c
Applying Karamata’s Tauberian Theorem (Bingham et al. (1987), p. 37) we obtain

. 1 .
1—U(.T):E&(_Cxa)fvmx_a, Tr — Q0 .

(iv) The proof of the last statement follows by direct calculation and is omitted. [

We now return to the calculation of the function ¥(z). Recall that p = Au/c. Hence

/oo e dl1-Y(z))=1- s/oo e *"VU(z)dz

0 0
s
&(s)
1 u(s)
N R
= (1= p)i() 3 (pfi(s) ()"
Inverting the last expression yields
1-V(z) = (1-p) X p"(F7" U )(2)
n=0

where F*" . n > 1 denotes the n—fold convolution of F with itself and F*° is the
distribution function corresponding to the Dirac measure at zero. We summarize our
result in the following theorem.

Theorem 1 Consider a classical risk process perturbed by o -stable Lévy motion with

1 < a< 2 and skewness parameter = —1
N(t)
QUt)=z+ct— D Yi+ Zu(t), t>0,
k=1

where x >0, ¢= (1+0)A\u, (N(t):t > 0) is a homogeneous Poisson process with
intensity A, (Yy : k € N) is a sequence of iid random variables with distribution
function F' on [0,00) and mean p. Then the probability of ruin V(x) defined in
(3) satisfies

o0

1= 0(z) = (1L p) Y p"(F" « U D)(2) (15)

n=0

where p = A\ufc, Fr(z) = ﬁfé”?(y) dy and U(z) = ,20:0%335‘" with & =

a—1.



REMARKS.

1. Formula (15) generalizes formula (3.4) of Dufresne and Gerber (1991) to which
it reduces when o« = 2. In that case U(z) = 1 — e~ is the distribution

function of the exponential law.

2. If we consider a perturbation term of the form 7nZ,(t) instead of Z,(t) for
some positive number 7, it follows that the distribution function U has the

form

i 0/77 ) &n ] (16)

1+ om)

n—O

3. Intuitively we expect that the ruin probability is a decreasing function of « .
The smaller «, the more “dramatic” the stable Lévy motion behaves. Let
1 < a < ay < 2. Itis tempting to conjecture that for fixed z > 0 the
following inequality holds

U(aq,z) > ¥(ag, ) . (17)
However, the question is still open whether or not (17) is true.

4. When the intensity A of the claim arrival process equals 0, the process (Q(?) :
t > 0) reduces to a stable Lévy motion with drift:

Qty=z+ct+nZ,(t), t>0.

Such a process can be viewed as a weak approximation of a classical risk process
when the claim size distribution has infinite variance, see Furrer et al. (1997).

Formula (15) then becomes

1—‘I/($)= i 0/77 ) dn

1+om)

and can be interpreted as an approximation for the infinite-time ruin probability

of a risk process with infinite claim size variance.
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3 Asymptotic Behaviour of the Ruin Probability

The purpose of this section is the investigation of the asymptotic behaviour of the
ruin probability U(z) as = becomes large. Notice that we can write ¢(z) :=1 —
U(x) = K xU(z), where K is the distribution function of the random geometric
sum X; 4+ ---+ Xy, all X; having distribution F} * U . Roughly speaking the tail
behaviour of ¢ is then related to that of F; and/or U. Intuitively we can think of
a balance, putting on each scale the tails of F; and U, respectively. Both weights
then contribute to the tail behaviour of ¢ when holding in equilibrium, see Theorem
2. If the mass of one tail exceeds the one of the other, the equilibrium is disturbed
and it is solely the dominant distribution that affects the asymptotic behaviour of .
See Theorem 3 when we allow for “large” claims such that the tail of F; dominates
and Theorem 4 when the perturbation U is the relevant quantity.

In the following we shall carry out the above heuristic reasoning in more mathematical
detail. An appropriate tool for modelling the possibility of large claims is the class
S of subexponential distribution functions. Typical examples are Pareto, lognormal,
distribution functions with regularly varying tails. The definition of & is as follows.

Definition 2 If F' is a distribution function on [0,00) with unbounded support,

then we say that F is a subexponential distribution function (F € §) if and only if
1— F*Z
7(3;) —2, T—00.

1—F(x)

The name subexponential comes from the following property: if F € §, then the
right tail of F' decreases slower than any exponential, i.e. lim e F(x) = oo for all
€ > 0. The class S has the following closure properties under convolution operations.

Proposition 3 Let H = F x F, be the convolution of two distribution functions on
[0,00) .

a) If Fy, € S and Fi(z) = o(Fy(z)) as v — oo, then H € S. Moreover,
H(z) ~ Fy(x) as x — 0.

b) If He S and Fi(z) = o(H(x)), then F, € S and indeed Fy(x) ~ H(zx) as

T —r OQ.

For a proof see Embrechts et al. (1979). The next proposition can also be found in
the same paper.

Proposition 4 Suppose p € (0,1) and H a proper distribution function on [0, 00) .
If K(z) = (1—p) X2, p"H*"(x), then the following assertions are equivalent:

11



We will also need the following proposition from Feller (1971), p. 278 which also
shows that S contains the class of distribution functions with regularly varying tails.
Denote by RV, 6 € R, the class of regularly varying functions, i.e. a positive
measurable function h defined on [0,00) is regularly varying with index ¢ if for all
t>0,

lim hltz)

T—00 h(x)
The case 0 = 0 corresponds to the class of slowly varying functions, therefore h € RV}
can be written as h(z) = 2°L(z), L € RV} .

=1,

Proposition 5 If Fy and F, are two distribution functions such that F;(z) ~
r70L;i(x), x — oo, with L; € RVy, then the convolution G = F\ * Fy has a regularly
varying tail such that G(x) ~ x79(Ly(x) + Ly(z)), = — oo.

3.1 FeRV,

We first consider the case F' € RV_,, where o equals the index of stability of the
stable Lévy motion. Observe that in this case F' belongs to the domain of attrac-
tion of a stable law with index o and skewness parameter § = 1, see for instance
Ibragimov and Linnik (1971), Theorem 2.6.1. We prove the following theorem.

Theorem 2 Suppose that 1 < a < 2 and F € RV  , i.e. F(x) = x7“L(x) for

some slowly varying function L. Then
_ 1 -
U(z)~Fr(2)/0+ ———=2%, =00
Y

- <IHJ,(52 * W(ll_ &)) o0, (18)

where 0 =c/(Ap) —1, y=c— Ay and a=a—1.
REMARKS.

1. When a 2 the second summand in (18) tends to 0 and hence ¥(z) ~
F1(z)/0, a result which can be found in Veraverbeke (1993) for distribution
functions F; € S.
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2. Whereas monotonicity in « for ¥(z) is still an open problem, the desired

property holds for the above asymptotic form of ¥(z).

Define W (a,x)

(M—i- T a)) 2%, Then for 1 < a; < a3 < 2 and z > 1 one has

Oua

W(ay, ; > Wag, ).

Proor. With ¢ =1— ¥ we can write

p=(1=p) 3 p"(Ff"+UHY)

n=0
—p) D pHT U
n=0

=KxU,

where H = F; U and K = (1 — p) X2, p"H*™. Since F € RV_, , we conclude

that the tail of F; behaves as

(19)

(Feller (1971), p. 281). From Proposition 5 and Lemma 1, (iii) we obtain

F(.’L’) =1 —FI*U(II)) ~ <Ld(f[,) + Cr(ll— d)) .'L'_d )

and therefore H € S. Consequently, by Proposition 4, wlgglof(x)/ﬁ(x) =

or

T — o0

K(z) ~ <1fp) (Lafz) + le_ a)) %, 00

= Ax)a,

say. Finally,

- (<1fp> Léfz) i VF(ll— 54)) o

or equivalentely, because of (19),

U(z) ~ Fr(z)/0 + ﬁ:f& , T —00.

p/(1=p)



O
The following corollary is an immediate consequence of Theorem 2. We consider the
case where F' € RV_, and assume that the slowly varying function L tends to a
finite positive constant as x — oo. A typical example where this condition is fulfilled

are Pareto distributed claims.

Corollary 1 Suppose that F(z) = 27*L(z), 1 < a <2 and limg_, L(z) = k with

0< k <oo. Then
1+pb 4

ZT(l-a) "
where b= limy,_ oo F1(2)/U(z) = kel'(1 — &)/ (ap) .

U(z) ~ T — 00,

REMARK. In the proof of Theorem 2 we basically used the knowledge of the functions
¢ and U . However, the same result can be obtained without knowing those functions

explicitly. Recall that
—cs+/ 1) [Ty (du) +/ 5 —1 — su) y(du) ,

where II;, I, are defined in (7) and (8), respectively. Note that [°_ wII;(du) =
—Ap. Set II = II; 4+ Il and keep in mind that under the net profit condition
v = ¢— Mg > 0. Introduce the notation h(s) = [°e **h(z)dz, where h(z) =
J=2 11(y) dy . Consequently,

0
= s +/ (€™ — 1 — su) II(du)
= s+ s2h(s) ,

where the last equality follows by two—fold integration by parts. We conclude that

1—% %S}Az(s), 510

and therefore

s/ooo e (z)de =1— %

~

sh(s), sl0

:%s/oooe_” (/_:H(y)dy) dzx .

Because of the definition of Il and the assumption on F' it is obvious that the

~J

P,

function IT belongs to the class RV_g. An argument of Abelian and Tauberian type
then yields

1 —T
\I!(:v)fv;/_ooﬂ(y)dy, T — 00

14



3.2 [Fje S, U(ZL’) = O(FI(ZE))

We next consider the case where F; € S and U(z) = o(F(x)) . The above conditions
are satisfied for instance when F € RV_; with § < o.

Theorem 3 Suppose that Fy € S and that U(x) = o(F(x)). Then

with 0 = c/(Ap) — 1.

REMARK. The above asymptotic version of ¥(z) is independent of the perturbation
Z..

PROOF.  Again we can write ¢ = K « U with K = (1 — p) >0%, p"H*™ and
H = F; xU. From the assumptions and Propostions 3 and 4 we conclude that
HeS, H~F; and K € S. Moreover,

K(z) ~ Fi(z)/0, x—o00.

Consequently, since U(z) = o(F;(z)), we have U(z) = o(K(z)). Together with
K € S we conclude that ¢ = K xU € S and ¥(z) = ¢(z) ~ K(z) as z — o0
(Proposition 3) which ends the proof. O

REMARK. One may also consider the case where F;(z) = o(U(x)), which means
that the perturbation law has heavier tails than the claim size law. This condition
is fulfilled for instance when the claim size distribution F' is exponential or when
F € RV; with § > a. However, from a modelling point of view, this assumption
may not be very relevant. The following theorem is added for the sake of completeness.

The proof is based on the same arguments as the proof of Theorem 3.
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Theorem 4 Suppose that Fi(z) = o(U(z)). Then one has

1 N
\I} ~N— oy« —
(z) fyF(l—o?)x , T — 00,

where y=c—Au >0 and a=a—1.

Acknowledgement
The author would like to thank Paul Embrechts and Hanspeter Schmidli for useful

discussions which lead to an improvement of the paper.

References

[1] Baxter, G. and Donsker, M. D. (1957). On the distribution of the supremum
functional for processes with stationary independent increments. Trans. Amer.
Math. Soc., 85 (1), 73-87.

[2] Billingsley, P. (1986). Probability and Measure. Second Edition. John Wiley, New
York.

[3] Bingham, N. H., Goldie, C. M., Teugels, J. L. (1987). Regular Variation. Cam-
bridge University Press, Cambridge.

[4] Dufresne, F. and Gerber, H. U. (1991). Risk theory for the compound Poisson
process that is perturbed by diffusion. Insurance: Mathematics and Economics,
10, 51-59.

[6] Embrechts, P., Goldie, C. M. and Veraverbeke, N. (1979). Subexponentiality and
Infinite Divisibility. Z. Wahrsch. Verw. Geb., 49, 335-347.

[6] Embrechts, P. and Schmidli, H. (1994). Modelling of extremal events in insurance
and finance. Zeitschrift fir Operations Research, 39, 1-34.

[7] Feller, W. (1971). An Introduction to Probability Theory and its Applications.
Vol. 11, Second ed., John Wiley, New York.

[8] Furrer, H. J., Michna, Z. and Weron, A. (1997). Stable Lévy motion approx-
imation in collective risk theory. Insurance: Mathematics and Economics. To

appear.

16



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Furrer, H. J. and Schmidli, H. (1994). Exponential inequalities for ruin prob-
abilities of risk processes perturbed by diffusion. Insurance: Mathematics and
Economics, 15, 23-36.

Gerber, H. U. (1970). An extension of the renewal equation and its application
in the collective theory of risk. Scand. Actuarial J., 205-210.

Grandell, J. (1991). Aspects of Risk Theory. Springer—Verlag, New York.

Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and stationary sequences
of random wvariables. Wolters—Noordhoff Publishing, Groningen, The Nether-
lands.

Janicki, A. and Weron, A. (1994). Simulation and Chaotic Behavior of Stable
Processes. Marcel Dekker, New York.

Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non—-Gaussian Random
Processes. Chapman and Hall, London.

Veraverbeke, N. (1993). Asymptotic estimates for the probability of ruin in a
Poisson model with diffusion. Insurance: Mathematics and Economics, 13, 57—
62.

Zolotarev, V. M. (1964). The first passage time of a level and the behaviour
at infinity for a class of processes with independent increments. Theory Probab.
Appl., 9 (1), 653-661.

Zolotarev, V. M. (1986). One—dimensional Stable Distributions, Vol. 65 of
“Translations of mathematical monographs”, American Mathematical Society.

17



