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Course material

• Slides

• Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American

Options by Simulation: A Simple Least-Squares Approach. The
Review of Financial Studies, Vol. 14, No. 1, pp. 113-147.

The above two documents can be downloaded from

www.math.ethz.ch/~hjfurrer/teaching/
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A. Motivation and Introduction

• The balance sheet equation asserts that

A(t) = L(t) = D(t) + E(t)

where A: total value of assets; L: total value of liabilities; D:

value of debt (insurance liabilities); E: value of equity

• An insurer is solvent at time t if E(t) ≥ 0. To work out whether

this is the case requires a valuation of both assets A(t) and debt

liabilities D(t), where the latter poses a significant challenge.
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• Liabilities stemming from policies written shall take the form

BEL +MVM

where BEL denotes the best estimate value to cover expected cash

flows and MVM is a risk margin to cover the uncertainty of cash

flows, see e.g. Article 77 of the Solvency II Framework Directive [4].
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Capital and Risk Measures (1/3)

All notions of capital embody the idea of a loss-bearing buffer that ensures that
the financial institution remains solvent.

• Regulatory capital: this is the capital an institution should hold according to
regulatory rules (Basel II/III for banks, SST and Solvency II for insurers in
Switzerland and the EU, respectively).

• Economic capital: this is an internal capital requirement in order to control the
probability of becoming insolvent, typically over a one-year horizon:

• To ensure solvency in 1 year’s time with high probability α (α = 0.99, say), a
company may require extra capital x0.
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Capital and Risk Measures (2/3)

• Let E(t) = A(t) −D(t) denote a company’s equity capital (eligible own funds
in Solvency II, risk-bearing capital in SST). The capital requirement then reads

x0 = inf
{
x : P[E(t + 1) + x(1 + r) ≥ 0] = α

}
= inf

{
x : P[−E(t + 1) ≤ x(1 + r)] = α

}
= inf

{
x : P[E(t)− E(t + 1)/(1 + r) ≤ E(t) + x] = α

}
.

Here r denotes the one-year risk-free interest rate.

• This shows that the sum of the available capital E(t) plus the amount x0 can
be taken as the solvency capital requirement; it is a quantile of the distribution
of ∆E(t + 1) = E(t)− E(t + 1)/(1 + r), i.e.

E(t) + x0 = qα

(
∆E(t + 1)

)
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Capital and Risk Measures (3/3)

• This is the Value-at-Risk idea but, more generally, capital can be computed by
applying risk measures to the distribution of ∆E(t + 1)

• In case expected shortfall (or Tail-Value-at-Risk) is used as risk measure:

ESα(∆E(t + 1)) =
1

1− α

∫ 1

α

qu

(
∆E(t + 1)

)
du.
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What does the Solvency II Directive say

• The Solvency II Framework Directive 2009/138/EC (Level 1) is structured as
follows:

Rules relating to technical provisions Articles 76 to 86

Determination (and classification) of own funds Articles 87 to 99

Solvency capital requirements Articles 100 to 127

Minimum capital requirement Articles 128 to 131

• Solvency II roadmap: Solvency II is likely to be set into force in mid
2013, followed by a six-month phase-in period (→ 01/01/2014). Before that,
the “Omnibus II Directive”, the “Implementing measures” (Level 2), and the
implementing technical standards (ITS) must be adopted.
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Article 77 of Directive 2009/138/EC

(1) The value of technical provisions shall be equal to the sum of a best
estimate and a risk margin [...]

(2) The best estimate shall correspond to the probability-weighted average
of future cash-flows, taking account of the time value of money (expected
present value of future cash-flows), using the relevant risk-free interest rate
term structure [...]

(3) The risk margin shall be such as to ensure that the value of the technical
provisions is equivalent to the amount that insurance and reinsurance
undertaktings would be expected to require in order to take over and meet
the insurance and reinsurance obligations.

(4) Insurance and reinsurance undertakings shall value the best estimate and
the risk margin separately. However, where future cash flows associated
with insurance or reinsurance obligations can be replicated reliably using
financial instruments for which a reliable market value is observable the
value of technical provisions [...] shall be determined on the basis of the
market value for those instruments.
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Relevant risk-free interest rate term structure

• The (Draft) Level 2 Implementing measures stipulate that the rates of the
relevant risk-free interest rate term structure shall be calculated as the sum of

(a) the rates of a basic risk-free interest rate term strucure;
(b) where applicable, a counter-cyclical premium (CCP);
(c) where applicable, a matching premium (MP).

• On 21 March 2012, the ECON (European Parliament’s Economic and Monetary
Affairs Committee) vote on the Omnibus II Directive passed. This will allow
(re-) insurers to use the CCP and MP in stressed situations!

• From an actuarial perspective, the concept of a CCP and MP seems to be in
contradiction with Article 76 of the Directive 2009/138/EC:

• Article 76 of 2009/138/EC: The calculation of technical provisions shall make
use of and be consistent with information provided by the financial markets [...]
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Article 79 of Directive 2009/138/EC

• Valuation of options and financial guarantees:

When calculating technical provisions, insurance and reinsurance under-
takings shall take account of the value of financial guarantees and any
contractual options included in insurance and reinsurance policies.

Any assumptions made by insurance and reinsurance undertakings with
respect to the likelihood that policy holders will exercise contractual options,
including lapses and surrenders, shall be realistic and based on current and
credible information. The assumptions shall take account, either explicitly
or implicitly, of the impact that future changes in financial and non-financial
conditions may have on the exercise of those options.
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Market-consistency and risk neutrality (1/2)

• Market-consistent valuation of technical provisions (and assets) has to be done
on a mark-to-model basis because there are no relevant quoted prices on ADLT
(active, deep, liquid and transparent) markets.

• Let L(t) denote the mark-to-model value of an insurance obligation. Mark-to-
model valuation is typically done according to

L(t) = f
(
t,Z(t)

)
where Z(t) denotes the (observable) risk factors such as interst rates, stock
prices, mortality rates, . . . .
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Market-consistency and risk neutrality (2/2)

• The function f is derived as an expectation of future discounted cash flows in a
pricing model under a risk-neutral measure Q:

L(t) = f
(
t,Z(t)

)
= EQ

[
future discounted cash flows

∣∣ Ft

]
Here Ft denotes the information available at time t.

• Likewise, the value of L(t + 1) is given by

L(t + 1) = f
(
t + 1,Z(t + 1)

)
= EQ

[
future discounted cash flows

∣∣ Ft+1

]
• The problem is how to estimate these conditional expectations?!
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Estimating conditional expectations (1/2)

Nested simulations

• Assuming that the valuation models embodied in f do not admit closed form
solutions, then a nested simualtion approach requires two rounds of simulation;
an outer simulation followed by inner simulation:

1. Outer simulation: sampling of Z(t+1) under a plausible model for real-world
dynamics of risk factors specified by a measure P.

2. Inner simulation: Monte Carlo approximation of EQ by generating paths for
risk factors (Z(s))s≥t+1 under Q and evaluating cash flows.

• Note: the amount of simulations and calculations required to proceed in this
way is often too demanding computationally (a set of inner scenarios branching
out from each outer scenario needs to be generated).
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Estimating conditional expectations (2/2)

Least-squares Monte Carlo simulation (LSMC)

• This alternative approach uses a form of analytic approximation involving
regressing for the liability value L(t + 1) on some key economic variables

• LSMC uses least-squares to obtain an approximation for the conditional
expectation EQ at time t + 1. It is assumed that EQ[ · |Ft+1] can be given
as a linear combination of a countable set of Ft+1-measurable basis functions

• With this LSMC approach to the liability valuation, the number of inner scenarios
required for each outer scenario projection can be reduced significantly (perhaps
just one single inner scenario)
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B. Options in life insurance contracts

• Products offered by life insurance companies such as “variable

annuities” (VA) for instance often incorporate sophisticated

guarantee mechanisms and embeddded options such as

- maturity guarantees

- rate of return guarantee (interest rate guarantee)

- ’cliquet’ or ’rachet’ guarantees (guaranteed amounts are re-set

regularly)

- mortality aspects (guaranteed annuity options)

- surrender possibilities

- . . .
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Dreadful past experience

• Such issued guarantees and written options constitute liabilities to the insurer,
and subsequently represent a value which in adverse circumstances may
jeopardize e.g. the company’s solvency position

• Historically, there was no proper valuation, reporting or risk management of
these contract elements

• Many (UK domiciled) life insurance companies were unable to meet their
obligations when the issued (interest rate) guarantees moved from being far out
of the money (at policy inception) to being very much in the money

• As a result, many companies have experienced severe solvency problems.
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C. Valuing American options by LSM

• Definition: An American option is a contract between two parties giving the
buyer the right to, say, purchase one unit of a security for the amount K at any
time on or before maturity T

• Recall: a European option, in contrast, can only be exercised at a fixed date

• General facts:

- an American option can only be exercised once
- the buyer of the option has the choice when to stop
- exercise decision can only be based on price information up to the present

moment (→ filtration, stopping times)
- American options are more valuable than their European counterparts
- price of an American call option equals price of the European call option

(→ it is optimal to wait until the option expires)
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Valuation framework (1/2)

• (Ω,F , (Ft), Q) filtered probability space supporting all sources of financial
randomness

• The probability measure Q is a risk-neutral probability measure (i.e. discounted
price processes are Q-martingales)

• Y = {Y (t) : 0 ≤ t ≤ T} with Y (t) representing the payoff from exercise at
time t. Example: Y (t) = (K − S(t))+

• B = {B(t) : 0 ≤ t ≤ T} with B(t) = exp{
∫ t

0
ru du} money market account and

{rt : 0 ≤ t ≤ T} instantaneous short rate process

• U = {U(t) : 0 ≤ t ≤ T} price process
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Valuation framework (2/2)

• Valuing an American option means

- finding the optimal exercise rule (exercise time)

- computing the expected discounted payoff under this rule

• If the option seller knew in advance which stopping time τ0 the investor will use:

U(0) = EQ

[
Y (τ0)
B(τ0)

]
, Y (t) =

(
K − S(t)

)+

• Since τ is not known, the option seller should prepare for the worst possible
case, and charge the maximum value

U(0) = sup
τ∈T

EQ

[
Y (τ)
B(τ)

]
,

where T are the stopping times taking values in [0, T ]
Valuing Options 20



Main result

Proposition. Suppose there is Q ∼ P and define Z = {Z(t) : 0 ≤ t ≤ T} by

Z(t) = sup
τ∈Tt,T

EQ

[
Y (τ)
B(τ)

∣∣∣Ft

]
B(t) . (1)

Then Z(t)/B(t) is the smallest Q-supermartingale satisfying Z(t) ≥ Y (t).
Moreover, the supremum in (1) is achieved by an optimal stopping time τ(t) that
has the form

τ(t) = inf
{
s ≥ t : Z(s) = Y (s)

}
(2)

In other words, τ(t) maximises the right hand side of (1):

EQ

[
Y (τ(t))
B(τ(t))

∣∣∣Ft

]
= sup

τ∈Tt,T

EQ

[
Y (τ)
B(τ)

∣∣∣Ft

]
.

Valuing Options 21



View the pricing problem through option values:
dynamic programming formulation

• Idea: to work backwards in time

• Explicit construction of Z(t) by means of dynamic programming:

V (t) :=



Y (t) , t = T

max

{
Y (t), EQ

[
V (t + 1)
B(t + 1)

∣∣∣Ft

]
B(t)

︸ ︷︷ ︸
expected payoff from continuation

}
, t ≤ T − 1 (3)

• V = {V (t) : 0 ≤ t ≤ T} is called snell envelope. It is the smallest super-
martingale dominating Y . Thus, Z = V .
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View the pricing problem through stopping times

• Dynamic programming rules (3) focus on option values

• Now we want to view the pricing problem through stopping rules

• Make restriction to options that can be exercised only at a fixed set of dates
t1 < t2 < · · · < tm. Restriction is regarded as an approximation to a contract
allowing continuous exercise

• Stopping rule: at any exercise time, compare payoff from immediate exercise
with the value of continuation. Exercise if the immediate payoff is higher

• Continuation value: value of holding rather than exercising the option:

C(ti) = EQ

[
V (ti+1)
B(ti+1)

∣∣∣Fti

]
B(ti) (4)
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Regression-based methods: the LSM algorithm

• Note: estimating the conditional expectations in (4) is the main

difficulty in pricing American options by simulation

• Idea: use regression methods to estimate the continuation values

from simulated sample paths:

- each continuation value C(ti) is the regression of the (discounted)

option value V (ti+1) on the current state S(ti)
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Regression in practice

• Step 1: approximate C(ti) by a linear combination of known functions of the
current state S(ti):

C(ti) =
∞∑

j=0

αij Lj

(
S(ti)

)
,

where αij ∈ R and Lj(x) are basis functions (e.g. Laguerre, Legendre, Hermite
polynomials)

• Step 2: use regression to estimate the coefficients αij in this approximation.
The coefficients αij are estimated from pairs(

S(ti, ω), V (ti+1, ω)
)

consisting of the value of the underlying at time ti and the corresponding option
value at time ti+1

Valuing Options 25



Comments

• The accuracy depends on the choice of basis functions

• Obviously, a finite sum will have to do it:

C(ti) =
M∑

j=0

αij Lj

(
S(ti)

)
• The coefficients αij are determined by means of least-squares

→ α̂ij

• The LSM algorithm is a fast and broadly applicable algorithm

(beyond classical American put options)
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Pricing algorithm (1/2)

(i) Simulate n independent paths(
S(t1, ωk), S(t2, ωk), . . . , S(tm, ωk)

)
, k = 1, 2, . . . , n

under the risk neutral measure Q

(ii) At terminal nodes, set

V̂ (tm, ωk) = Y (tm, ωk)
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Pricing algorithm (2/2)

(iii) Apply backward induction: for i = m− 1, . . . , 1

• Given estimated values V̂ (ti+1, ωk), use regression to calculate α̂i1, . . . , α̂iM

• Set

V̂ (ti, ωk) =

Y (ti, ωk), Y (ti, ωk) ≥ Ĉ(ti, ωk),

V̂ (ti+1, ωk), Y (ti, ωk) < Ĉ(ti, ωk),

with Ĉ(ti) =
∑M

j=0 α̂ij Lj

(
S(ti)

)
(iv) Set

V̂ (0) =
1
n

n∑
k=1

V̂ (t1, ωk) .
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Numerical example

Ω = {ω1, . . . , ω8}, K = 1.1 and S(ti, ωk) as follows:

t0 = 0 t1 = 1 t2 = 2 t3 = 3
ω1 1 1.09 1.08 1.34

ω2 1 1.16 1.26 1.54

ω3 1 1.22 1.07 1.03

ω4 1 0.93 0.97 0.92

ω5 1 1.11 1.56 1.52

ω6 1 0.76 0.77 0.90

ω7 1 0.92 0.84 1.01

ω8 1 0.88 1.22 1.34
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Stock price evolution
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D. Surrender option in a pure endowment contract

A pure endowment contract of duration n provides for payment of the sum insured
only if the policy holder survives to the end of the contract period.

• Illustrative example:

- net single premium payment made at time t = 0 is invested in a zero-coupon
bond with the same maturity T as the policy.

- guaranteed interest rate rG (technical interest rate), e.g. rG = 3.5%
- no profit sharing
- contract shall provide for a terminal guarantee (at t = T ) and surrender

benefit (at t < T ), contingent on survival
- we assume that the surrender value equals the book value of the mathematical

reserves (no surrender penalty)
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Visualization of the surrender option in a pure
endowment contract of duration n = 2
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Dynamic lapse rule

• Book value may be higher or lower than the market value ⇒ policy holder can
use the American option to improve the value of the contract by surrendering at
the right time

• Dynamic lapse rule: when market interest rates exceed the guaranteed
minimum interest rate the policy holder is assumed to terminate the contract at
time t = 1 and to take advantage of the higher yields available in the financial
market.

• Hence, the dynamic lapse rule is based on spread

market yield − technical interest rate

• From the viewpoint of asset pricing theory, surrender options equal American
put options (Bermudan options).

Valuing Options 33



General framework and notation (1/4)

• (Ω,F , (Ft)t≥0, Q) filtered probability space supporting all sources of financial
and demographic randomness

• Q: risk-neutral probability measure (i.e. discounted price processes are Q-
martingales)

• B = {B(t) : 0 ≤ t ≤ T} with dB(t) = r(t)B(t) dt: money market account and
{r(t) : 0 ≤ t ≤ T} instantaneous short rate process, i.e.

B(t) = exp
(∫ t

0

r(u) du

)
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General framework and notation (2/4)

• D(s, t): discount factor from time t to s (s ≤ t):

D(s, t) =
B(s)
B(t)

= exp
(
−

∫ t

s

r(u) du

)
.

• r = {r(t) : 0 ≤ t ≤ T}: dynamics of the term structure of interest rates; Vasicek
model:

dr(t) = (b− ar(t)) dt + σdW (t), r(0) = r0, (5)

with a, b, σ > 0 and W = {W (t) : 0 ≤ t ≤ T} standard Q-Brownian motion.

• U = {U(t) : 0 ≤ t ≤ T} option price process; U(t) is the value of the surrender
option at time t, assuming the option has not previously been exercised.
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General framework and notation (3/4)

• Z(t1), Z(t2), . . . , Z(tn): succession of cash flows emanating from the life
insurance contract, where payment Z(tk) occurs at time tk

• L = {L(t) : 0 ≤ t ≤ T} market-consistent value process of the life insurance
contract where

L(t) = B(t) EQ

[
n∑
i

Z(ti)1{t<ti}

B(ti)

∣∣∣Fti

]
, (6)

• V (t): book value of the policy reserve; given by V (t) = V (0)(1 + rG)t with
deterministic technical interest rate rG (e.g. rG = 3.5%) and V (T ) = 1.

• tpx: probability that an individual currently aged-x survives for t more years.
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General framework and notation (4/4)

• τ(x) or τ : future lifetime of a life aged x

• biometric risk assumed to be independent of the financial risk

• Y (t): payoff from exercise at time t, i.e. Y (t) = (V (t)− P (t, T ))+
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Closed-form expression for the price of the
surrender option

Definition of the cash flows:

• At maturity t = T = 2:

Z(2) = 1{V (1)≤P (1,2)}∩{τ>2} (7)

• Interpretation:

- Z(2) = V (2) = 1 if the policy holder is alive at time t = 2 (τ > 2) and
has not terminated the contract at time t = 1. The policyholder opts for
continuation at t = 1 if the surrender value V (1) is less than the value P (1, 2)
of the reference portfolio.

- Z(2) = 0 if the policy holder died before t = 2 or exercised the surrender
option at time t = 1.
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Definition of the cash flows (cont’d)

• At time t = 1:

Z(1) = V (1)1{V (1)>P (1,2)}∩{τ>1} (8)

• Interpretation:

- Z(1) = V (1) in case the policyholder is alive at t = 1 and surrenders, thus
cashing in the amount V (1). Surrender occurs if the policy reserve V (1)
exceeds the value of the reference portfolio P (1, 2).

- Z(1) = 0 if the policyholder died before t = 1 or does not exercise the
surrender option. The financial rational policy holder will not exercise the
surrender option as long as the policy reserve V (1) is smaller than the
reference portfolio value P (1, 2).
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Time-0 valuation (1/3)

By means of (6) we have that

L(0) = B(0) EQ

[
Z̃(1) + Z̃(2)

∣∣∣F0

]
= EQ

[
Z̃(1) + Z̃(2)

]
= EQ

[
Z(1)
B(1)

]
+ EQ

[
Z(2)
B(2)

]

= EQ

[
V (1)
B(1)

1{V (1)>P (1,2)}∩{τ>1}

]
+ EQ

[
1

B(1)
1{V (1)≤P (1,2)}∩{τ>2}

]

= 1px EQ

[
V (1)
B(1)

1{V (1)>P (1,2)}

]
+ 2px EQ

[
1

B(2)
1{V (1)≤P (1,2)}

]
(9)
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Time-0 valuation (2/3)

Rewriting the first term on the right-hand side of (9) yields

L(0) = 1px EQ

[
(V (1)− P (1, 2))+

B(1)

]
+ 1px EQ

[
P (1, 2)
B(1)

1{V (1)>P (1,2)}

]

+ 2px EQ

[
1

B(2)
1{V (1)≤P (1,2)}

]
.

Add and subtract 2pxEQ[1{V (1)>P (1,2)}/B(2)] and observe that

2pxP (0, 2) = 2pxEQ

[
1

B(2)

]

= 2pxEQ

[
1A

B(2)

]
+ 2pxEQ

[
1AC

B(2)

]
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Time-0 valuation (3/3)

L(0) = 1px EQ

[
(V (1)− P (1, 2))+

B(1)

]

+ 1px EQ

[
P (1, 2)
B(1)

1{V (1)>P (1,2)}

]
− 2px EQ

[
1

B(2)
1{V (1)>P (1,2)}

]
+ 2pxP (0, 2)

= 1px EQ

[
(V (1)− P (1, 2))+

B(1)

]

+ (1px − 2px) EQ

[
P (1, 2)
B(1)

1{V (1)>P (1,2)}

]
+ 2pxP (0, 2) .
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Decomposition of the liability value L(0) into
three components

We conclude that

L(0) = l1 + l2 + l3,

where

l1 = 2pxP (0, 2) , (10)

l2 = 1px EQ

[
(V (1)− P (1, 2))+

B(1)

]
, (11)

l3 = (1px − 2px) EQ

[
P (1, 2)
B(1)

1{V (1)>P (1,2)}

]
. (12)
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Decomposed liability value gives most valuable and
risk management-relevant information

Interpretation of the three different components:

• First term (10): market-consistent liability value of an identical contract without
surrender option.

• Second term (11): surrender option premium; equal to the price of a European
put option with strike K = V (1), time-to-maturity T = 1 written on a pure
discount bond maturing at time S = 2 (providing protection against rising
interest rates)

• Third term (12): residual term (difference of two ‘neighbouring’ survival
probabilities and thus negligible)
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Numerical example

• x = 45 with 1px = 0.998971 and 2px = 0.997860

• rG = 3.5%, hence V (0) = (1 + 0.035)−2 = 0.9335

• Vasicek short rate dynamics specified by the parameters a = 0.36, b = 0.0216,
σ ∈ {0.05, 0.25, 0.5} and r0 = (A(0, 2) − log V (0))/B(0, 2) = 0.0255, yielding
P (0, 2) = V (0) = 0.9335

• For the calculation of l2, we use the explicit formulae for European bond options
in a Vasicek short rate dynamics (see Appendix)

Standard deviation of the Vasicek dynamics

Liability component σ = 5% σ = 25% σ = 50%

l1 0.932 97.8% 0.932 92.7% 0.932 87.1%

l2 0.021 2.2% 0.073 7.3% 0.139 12.9%

l1 + l2 0.953 100% 1.005 100% 1.071 100%

Valuing Options 45



LSM algorithm for pricing the surrender option

• Recall: LSM approach is based on

- Monte Carlo simulation
- Least squares regression

• Decision whether to surrender at time t or not is made by comparing the payoff
from immediate exercise with the continuation value. The continuation value
is determined by a least square regression of the option value U(ti+1) on the
current values of state variables

• Idea is to work backwards in time, starting from the contract maturity date T .

• Note: following algorithm is formulated for time-0 discounted payoffs and value
estimates. Thus, with a slight abuse of notation, U(t) stands for D(0, t)U(t).
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Pricing algorithm

(i) Simulate n independent paths(
P (t1, T ;ωk), P (t2, T ;ωk), . . . , P (tm, T ;ωk)

)
, k = 1, 2, . . . , n

under the risk neutral measure Q where tj = jT/m for j = 0, 1, . . . ,m

(ii) At terminal nodes (policy expiry date), set

Û(T ;ωk) = Y (T ;ωk) (= 0)

with Y (t) = D(0, t) (V (t)− P (t, T ))+ and V (T ) = P (T, T ) = 1. Choice of
exercising or not at contract maturity T is irrelevant since – by assumption –
market value of the contract equals the book value.
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(iii) Apply backward induction: for i = m− 1, . . . , 1

• Given estimated values Û(ti+1;ωk), use OLS regression over all simulated
sample paths to calculate the weights α̂i1, . . . , α̂iM , i.e. find how the values
Û(ti+1;ωk) depend on the state variables P (ti, T ;ωk) known at time ti

• Set

Û(ti;ωk) =

Y (ti;ωk), Y (ti;ωk) ≥ Ĉ(ti;ωk),

Û(ti+1;ωk), Y (ti;ωk) < Ĉ(ti;ωk),

with

Ĉ(ti;ωk) =
M∑

j=0

α̂ij Lj

(
P (ti, T ;ωk)

)
for some basis functions Lj(x).

(iv) Set
Û(0) =

1
n

n∑
k=1

Û(t1;ωk) �

Valuing Options 48



Remarks

• Accuracy of the LSM approach (like any regression-based methods) depends on
the choice of the basis functions

• Polynomials are a popular choice

• Above pricing algorithm is formulated in discounted figures: payoffs and value
estimates are denominated in time-0 units of currency. In practice, however,
payoffs and value estimates are denominated in time-t units. This requires
explicit discounting in the algorithm:

- regress D(ti, ti+1)U(ti+1;ωk) (instead of U(ti+1;ωk)) against the state
variables Lj

(
P (ti, T ;ωk) to obtain the regression weights and the continuation

values.

• Glasserman [6] p. 115 presents an algorithm for the joint simulation of the pair
(r, D) at times t1, . . . , tm without discretization error.
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Extracts from R-Codes
T= 5 # contract maturity date
t= seq(from=0,to=T,by=1) # time instants when the contract can be surrendered
n = 100000 # number of simulated sample paths

r= matrix(0,nrow=n,ncol=T+1)
I= matrix(0,nrow=n,ncol=T+1) # I(t) = int_0^t r(u)du
D= matrix(0,nrow=n,ncol=T+1) # D(t) = exp(-I(t))
r[,1] = r0
Z1 = matrix(rnorm((T-1)*n,mean=0,sd=1),nrow=n,ncol=T)
Z2 = matrix(rnorm((T-1)*n,mean=0,sd=1),nrow=n,ncol=T)

#joint simulation of (r(t),D(t)), cf. Glasserman p. 115:
for (k in 2:(T+1)){
r[,k]= exp(-kappa*(t[k]-t[k-1]))*r[,k-1] + m*(1-exp(-kappa*(t[k]-t[k-1])))

+sigma*sqrt(1/(2*kappa)*(1-exp(-2*kappa*(t[k]-t[k-1]))))*Z1[,k-1]
...
I[,k]= I[,k-1]+mu.I[,k]+sqrt(sigma2.I[,k])*(rho.r.I[,k]*Z1[,k-1]+sqrt(1-(rho.r.I[,k])^2)*Z2[,k-1])
D[,k]= exp(-I[,k])
}

# corresponding bond prices:
PtT = matrix(0,nrow=n,ncol=T)
for (k in (1:T)){
btT = (1-exp(-kappa*(T-t[k])))/kappa
atT = (m-sigma^2/(2*kappa^2))*(btT-(T-t[k]))-sigma^2/(4*kappa)*(btT)^2
PtT[,k] = exp(atT-btT*r[,k])

}
PtT = cbind(PtT,1)
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Extracts from R-Codes (cont’d)

#surrender value price process:
U = matrix(0,nrow=n,ncol=T) # surrender option value process
DU = matrix(0,nrow=n,ncol=T) # one-step back discounted value process
U[,T-1] = (V[,T-1]-PtT[,T-1])*(V[,T-1]>PtT[,T-1]) # can start at T-1 because book value=market value at t=T
C = matrix(0,nrow=n,ncol=T-1) # continuation values
Y = matrix(0,nrow=n,ncol=T-1) # payoffs from immediate exercise

M = 3 # number of basis functions [f(x) = 1, f(x) = x, f(x) = x^2]
alpha = matrix(0,nrow=M,ncol=T-1) # regression weights

for (i in ((T-2):1)){
P1 = PtT[,i]
P2 = (PtT[,i])^2
DU[,i+1] = U[,i+1]*D[,i+1]/D[,i]
out = lm(DU[,i+1]~ P1 + P2)
alpha[,i]= out$coeff # not explicitly used
C[,i] = out$fitted.values
Y[,i] = (V[,i]-PtT[,i])*(V[,i]>PtT[,i])
U[,i] = Y[,i]*(Y[,i]>C[,i]) + D[,i+1]/D[,i]*U[,i+1]*(Y[,i]<C[,i])

}

# surrender option price:
U0 = mean(U[,1]*D[,1])
round(U0,3)
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Results

Surrender option values (absolute figures and expressed as a percentage of the
initial mathematical reserve V (0) = (1 + rG)−T ):

Technical interest rate

Contract maturity rG = 1.5% rG = 3.5% rG = 5.5%

T = 2 0.018 1.8% 0.015 1.7% 0.013 1.5%

T = 5 0.078 8.4% 0.059 6.9% 0.044 5.7%

T = 10 0.194 22.5% 0.113 16.0% 0.063 10.7%

T = 15 0.327 40.8% 0.151 25.3% 0.062 13.9%

Valuing Options 52



Conclusions

• We have evaluated the surrender option of a single premium pure endowment
contract by means of (i) closed-form formulae and (ii) Monte Carlo simulation
methods

• For the LSM algorithm we used polynomial basis functions in combination with
the reference portfolio values as state variables

• Surrender option becomes more valuable with e.g.

+ increasing contract maturity date
+ decreasing guaranteed interest rate rG

+ increasing volatility of the short rate dynamics
+ lower mortality rates

• model can be extended to include exogeneous surrender decisions (beyond
continuation values falling below surrender values)
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E. Appendix: Vasicek model

Affine term structure: The term structure for the Vasicek model, i.e. the family
of bond price processes, is given in the following result, see for instance Björk [3],
Proposition 22.3, p. 334.

Proposition: In the Vasicek model, bond prices are given by

P (t, T ) = eA(t,T )−B(t,T )r(t) , (13)

where

B(t, T ) =
1
a

(
1− e−a(T−t)

)
,

A(t, T ) =
(B(t, T )− T + t)(ab− σ2/2)

a2
− σ2B2(t, T )

4a
.

�
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European bond options (1/2)

Reference: Björk [3], Proposition 22.9, p 338.

Proposition: For the Vasicek model, the price for a European call option with
time to maturity T and strike price K on an S-bond is as follows:

ZBC(t, T, K, S) = P (t, S)Φ(d)− P (t, T )KΦ(d− σp), (14)

where

d =
1
σp

log
(

P (t, S)
P (t, T )K

)
+

σp

2
,

σp =
1
a

(
1− e−a(S−T )

) √
σ2

2a

(
1− e−2a(T−t)

)
.

�
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