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Motivation and introduction

Balance sheet equation:

A(t) = L(t) = D(t) + E(t)

where A: total value of assets; L: total value of liabilities;
D: value of debt (insurance liabilities); E : value of equity.

An insurer is solvent at time t if E(t) ≥ 0.
Insurance liabilities shall take the form

BEL + MVM

where
BEL: best estimate value to cover expected cash flows (CFs);
MVM: market value margin to cover uncertainty of CFs

References:
Article 30 No. 2 of the Insurance Supervision Ordinance [10]
Article 77 of the Solvency II Framework Directive [4].
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(Market-consistent) Balance sheet of a life insurer

Assets Liabilities
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Capital and risk measures (1/4)

All notions of capital embody the idea of a loss-absorbing buffer
that ensures that the financial institution remains solvent.

Regulatory capital: this is the capital an institution should hold
according to regulatory rules (Basel II/III for banks, SST and
Solvency II for insurers in Switzerland and the EU, respectively).

Economic capital: this is an internal capital requirement in order
to control the probability of becoming insolvent, typically over a
one-year horizon.

To ensure E(1) ≥ 0 with high probability 1− α (α small, say
α = 0.01), a company may require extra capital x0.

Department of Mathematics, ETH Zürich Valuing Options
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Capital and risk measures (2/4)

Capital requirements(extra amount x0) are often expressed as a
risk measure of the change in the company’s available capital

∆E(t + 1) = E(t)− E(t + 1)/(1 + r)

r : one-year risk-free interest rate.

Value-at-Risk:
q1−α

(
∆E(t + 1)

)
,

where qα(X ) = VaRα(X ) = F−1
X (α) = inf{x ∈ R : FX (x) ≥ α}.

Expected Shortfall:

ES1−α(∆E(t + 1)) =
1
α

∫ 1

1−α
qu
(
∆E(t + 1)

)
du.
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Capital and risk measures (3/4)

The capital requirement is derived as a risk measure of the change in
available capital:
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Capital and risk measures (4/4)

In the context of calculating capital risk measures, insurers are
challenged to revalue their assets and liabilities at the risk
horizon t (t = 1, say)

L(t): market-consistent value of an insurance obligation, i.e.

L(t) = f
(
t ,Z(t)

)
Z(t): risk factors (interest rates, mortality rates, lapse rates, . . . ).

The function f is derived as an expectation of future discounted
cash flows under a risk-neutral measure Q:

L(t) = f
(
t ,Z(t)

)
= EQ

[
future discounted cash flows

∣∣ Ft

]
Ft : information available at time t .

How to estimate conditional expectations?

Department of Mathematics, ETH Zürich Valuing Options
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Estimating conditional expectations

The empirical distribution of the liability value at the risk horizon
t = 1 can be obtained by a full stochastic Monte Carlo simulation
approach or nested simulation:

0 t = 1

Risk horizon: real-world scenarios Projection horizon: risk-neutral scenarios

Department of Mathematics, ETH Zürich Valuing Options
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Nested simulation

Nested simulation approach consists of two simulation sets:

Outer simulation from time 0 to time t = 1 represents the
real-world scenarios over the risk horizon, i.e. sampling of Z(1)
under the real-world measure P.

Inner simulation from time t = 1 to time T gives the risk-neutral
scenarios for the estimation of the liability value at time 1, i.e.
Monte Carlo approximation of EQ by generating paths for risk
factors (Z(s))s≥1 under Q and evaluating cash flows.

Nested simulation approach is computationally inefficient (due to
the scale and complexity of a life insurer’s liabilities)

Alternative methods are needed!

Department of Mathematics, ETH Zürich Valuing Options



Motivation Surrender option American options and LSMC Conclusions Appendix References

How to calculate a conditional expectation?

(1) Valuation Portfolio (aka Replicating Portfolio): subject of this
course

(2) Explicit calculation: possible for illustrative cases, but hardly in
practice

(3) Least-squares Monte Carlo simulation (LSMC): subject of this
lecture. LSMC

approximates the conditional expectation EQ at time t + 1.

assumes that EQ[ · |Ft ] can be represented as a linear combination
of a countable set of Ft -measurable basis functions.

Coefficients of the linear combination are obtained via least
squares.

Department of Mathematics, ETH Zürich Valuing Options
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Regulatory basis for the valuation of options

EU: Article 79 of Directive 2009/138/EC [4]:

When calculating technical provisions, insurance and
reinsurance undertakings shall take account of the value of
financial guarantees and any contractual options included in
insurance and reinsurance policies.

Switzerland: Article 9a Insurance Supervision Law [9]:

Das risikotragende Kapital und das Zielkapital werden auf der
Grundlage einer Gesamtbilanz, die sämtliche relevanten
Positionen berücksichtigt, auf marktkonformer Basis ermittelt.

Caution: Article 100 ISO (‘Deckungspflicht’):

Versicherungsunternehmen, die Derivate einsetzen, müssen
über genügend Liquidität verfügen, um die Zahlungs- und
Lieferverpflichtungen, welche sich aus derivativen Finanz-
transaktionen ergeben können, stets erfüllen zu können.

Department of Mathematics, ETH Zürich Valuing Options
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Options in life insurance contracts

Products offered by life insurance companies such as Variable
Annuities (VA) often incorporate sophisticated guarantee
mechanisms and embedded options such as

- maturity guarantees

- rate of return guarantee (interest rate guarantee)

- cliquet or rachet guarantees (guaranteed amounts are re-set
regularly)

- mortality aspects (guaranteed annuity options)

- surrender possibilities

- . . .

Department of Mathematics, ETH Zürich Valuing Options
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Surrender option in a pure endowment contract

A pure endowment contract of duration T provides for payment
of the sum insured only if the policy holder survives to the end of
the contract period.

Illustrative example:

- net single premium payment made at time t = 0 is invested in a
zero-coupon bond with the same maturity T as the policy.

- guaranteed interest rate rG (technical interest rate), e.g. rG = 3.5%

- no profit sharing

- contract shall provide for a terminal guarantee (at t = T ) and
surrender benefit (at t < T ), contingent on survival

- we assume that the surrender value equals the book value of the
mathematical reserves (no surrender penalty).

Department of Mathematics, ETH Zürich Valuing Options
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Visualization of the surrender option in a pure
endowment contract of duration T = 2
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Notation

Z (t1),Z (t2), . . . ,Z (tn): cash flows (lump sum payments) at time
tk emanating from the life insurance contract

L = {L(t) : 0 ≤ t ≤ T} market-consistent value of the life
insurance contract:

L(t) = B(t)EQ

[
n∑
i

Z (ti )1{t<ti}

B(ti )

∣∣∣Ft

]
, (1)

V (t): book value of the policy reserve, V (t) = V (0)(1 + rG)t with
deterministic technical interest rate rG (e.g. rG = 3.5%) and
V (T ) = 1.

tpx : probability that an individual currently aged-x survives for t
more years.

τ(x) or τ : future lifetime of a life aged x

Department of Mathematics, ETH Zürich Valuing Options
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Closed-form expression for surrender option price

Definition of the cash flows:

At maturity t = T = 2:

Z (2) = 1{V (1)≤P(1,2)}∩{τ>2} (2)

Interpretation:

- Z (2) = V (2) = 1 if the policy holder is alive at time t = 2 (τ > 2)
and has not terminated the contract at time t = 1. The policyholder
opts for continuation at t = 1 if the surrender value V (1) is less
than the value P(1, 2) of the reference portfolio.

- Z (2) = 0 if the policy holder died before t = 2 or exercised the
surrender option at time t = 1.

Department of Mathematics, ETH Zürich Valuing Options



Motivation Surrender option American options and LSMC Conclusions Appendix References

Definition of the cash flows (cont’d)

At time t = 1:

Z (1) = V (1) 1{V (1)>P(1,2)}∩{τ>1} (3)

Interpretation:

- Z (1) = V (1) in case the policyholder is alive at t = 1 and
surrenders, thus cashing in the amount V (1). Surrender occurs if
the policy reserve V (1) exceeds the value of the reference portfolio
P(1, 2).

- Z (1) = 0 if the policyholder died before t = 1 or does not exercise
the surrender option. The financial rational policy holder will not
exercise the surrender option as long as the policy reserve V (1) is
smaller than the reference portfolio value P(1, 2).

Department of Mathematics, ETH Zürich Valuing Options
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Calculation of the time-0 liability value L(0) (1/4)

By means of (1) we have that

L(0) = B(0)EQ

[
Z̃ (1) + Z̃ (2)

∣∣∣F0

]
= EQ

[
Z̃ (1) + Z̃ (2)

]
= EQ

[
Z (1)

B(1)

]
+ EQ

[
Z (2)

B(2)

]

= EQ

[
V (1)

B(1)
1{V (1)>P(1,2)}∩{τ>1}

]
+ EQ

[
1

B(1)
1{V (1)≤P(1,2)}∩{τ>2}

]

= 1px EQ

[
V (1)

B(1)
1{V (1)>P(1,2)}

]
+ 2px EQ

[
1

B(2)
1{V (1)≤P(1,2)}

]
(4)

Department of Mathematics, ETH Zürich Valuing Options
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Calculation of the time-0 liability value L(0) (2/4)

First term of (4): Set A = {V (1) > P(1,2)} and observe that

1px EQ

[
V (1)

B(1)
1A

]

= 1px EQ

[
V (1)

B(1)
1A

]
− 1px EQ

[
P(1,2)

B(1)
1A

]
+ 1px EQ

[
P(1,2)

B(1)
1A

]

= 1px EQ

[(
V (1)− P(1,2)

B(1)

)
1A

]
+ 1px EQ

[
P(1,2)

B(1)
1A

]

= 1px EQ

[
(V (1)− P(1,2))+

B(1)

]
+ 1px EQ

[
P(1,2)

B(1)
1A

]
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Calculation of the time-0 liability value L(0) (3/4)

Second term of (4):

2px EQ

[
1Ac

B(2)

]

= 2px EQ

[
1Ac

B(2)

]
+ 2px EQ

[
1A

B(2)

]
− 2px EQ

[
1A

B(2)

]

= 2px EQ

[
1

B(2)

]
− 2px EQ

[
1A

B(2)

]

= 2px P(0,2)− 2px EQ

[
P(2,2)

B(2)
1A

]

= 2px P(0,2)− 2px EQ

[
P(1,2)

B(1)
1A

]
(5)
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Calculation of the time-0 liability value L(0) (4/4)

Equation (5) follows because Q is an equivalent martingale
measure for the discounted price processes⇒ constant mean.
Hence:

L(0) = EQ

[
Z̃ (1) + Z̃ (2)

]
= First term + Second term

= l1 + l2 + l3,

where

l1 = 2pxP(0,2) , (6)

l2 = 1px EQ

[
(V (1)− P(1,2))+

B(1)

]
, (7)

l3 = (1px − 2px )EQ

[
P(1,2)

B(1)
1{V (1)>P(1,2)}

]
. (8)
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Decomposed liability value reveals important risk
management information

Interpretation of the three different components:

First term (6): market-consistent liability value of an identical
contract without surrender option.

Second term (7): surrender option premium; equal to the price of
a European put option with strike K = V (1), time-to-maturity
T = 1 written on a pure discount bond maturing at time S = 2
(providing protection against rising interest rates)

Third term (8): residual term (difference of two ‘neighbouring’
survival probabilities and thus negligible).

Department of Mathematics, ETH Zürich Valuing Options
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Numerical example

x = 45 with 1px = 0.998971 and 2px = 0.997860

rG = 3.5%, hence V (0) = (1 + 0.035)−2 = 0.9335

Vasicek short rate dynamics dr(t) = (b − a r(t)) dt + σdW (t) with
a = 0.36, b = 0.0216, σ ∈ {0.05, 0.25, 0.5}, yielding
r0 = (A(0, 2)− logV (0))/B(0, 2) = 0.0255 and
P(0, 2) = V (0) = 0.9335

For the calculation of l2, we use the explicit formulae for European bond
options in a Vasicek short rate dynamics (see Appendix)

Standard deviation of the Vasicek dynamics
Liability component σ = 5% σ = 25% σ = 50%

l1 0.932 97.8% 0.932 92.7% 0.932 87.1%

l2 0.021 2.2% 0.073 7.3% 0.139 12.9%

l1 + l2 0.953 100% 1.005 100% 1.071 100%

Department of Mathematics, ETH Zürich Valuing Options
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Valuation of a pure endowment contract with T > 2

The valuation of a multi-year pure endowment contract with
duration T > 2 can no longer be carried out in closed form

Reason is that the decision whether to surrender at time t
(t ≤ T − 2) must be made by comparing the payoff from
immediate exercise with the continuation values, which in this
case is non-trivial

Idea: use LSMC

simulate n independent paths of the underlying asset P(t ,T )

work backwards in time, starting from the contract maturity date T

determine the continuation value via least square regression of the
option value on the current values of state variables.

Department of Mathematics, ETH Zürich Valuing Options
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American options - Recap

Definition: An American option is a contract between two parties
giving the buyer the right to, say, purchase one unit of a security
for the amount K at any time on or before maturity T

Recall: a European option, in contrast, can only be exercised at
a fixed date

General facts:
- an American option can only be exercised once

- the buyer of the option has the choice when to stop

- exercise decision can only be based on price information up to the
present moment (Õ filtration, stopping times)

- American options are more valuable than their European
counterparts

- price of an American call option = price of the European call option
(Õ it is optimal to wait until the option expires)

Department of Mathematics, ETH Zürich Valuing Options
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Valuation framework

Valuing an American option means
- finding the optimal exercise rule (exercise time)
- computing the expected discounted payoff under this rule.

If the option seller knew in advance which stopping time τ0 the
investor will use:

U(0) = EQ

[
Y (τ0)

B(τ0)

]
, Y (t) =

(
K − S(t)

)+
Since τ is not known, the option seller should prepare for the
worst possible case, and charge the maximum value

U(0) = sup
τ∈T

EQ

[
Y (τ)

B(τ)

]
,

where T are the stopping times taking values in [0,T ]

Department of Mathematics, ETH Zürich Valuing Options
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Main result

Proposition. Suppose there is Q ∼ P and define
Z = {Z (t) : 0 ≤ t ≤ T} by

Z (t) = sup
τ∈Tt,T

EQ

[
Y (τ)

B(τ)

∣∣∣Ft

]
B(t) . (9)

Then Z (t)/B(t) is the smallest Q-supermartingale satisfying
Z (t) ≥ Y (t). Moreover, the supremum in (9) is achieved by an
optimal stopping time τ(t) that has the form

τ(t) = inf
{

s ≥ t : Z (s) = Y (s)
}

(10)

In other words, τ(t) maximises the right hand side of (9):

EQ

[
Y (τ(t))

B(τ(t))

∣∣∣Ft

]
= sup
τ∈Tt,T

EQ

[
Y (τ)

B(τ)

∣∣∣Ft

]
.
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Dynamic programming formulation

Explicit construction of Z (t) by means of dynamic programming:

V (t) :=



Y (t) , t = T

max

{
Y (t), EQ

[
V (t + 1)
B(t + 1)

∣∣∣Ft

]
B(t)

︸ ︷︷ ︸
expected payoff from continuation

}
, t ≤ T − 1 (11)

V = {V (t) : 0 ≤ t ≤ T} is called snell envelope. It is the smallest
supermartingale dominating Y . Thus, Z = V .

Continuation value: value of holding rather than exercising the
option:

C(ti ) = EQ

[
V (ti+1)

B(ti+1)

∣∣∣Fti

]
B(ti ) . (12)

Department of Mathematics, ETH Zürich Valuing Options
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Valuing American Options by LSMC

Longstaff and Schwarz [7] propose the following algorithm:

Step 1: approximate C(ti ) by a linear combination of known
functions of the current state S(ti ):

C(ti ) =
∞∑
j=0

αij Lj
(
S(ti )

)
,

where αij ∈ R and Lj (x) are basis functions (e.g. Laguerre,
Legendre, Hermite polynomials, . . . )

Step 2: use regression (least squares) to estimate the
coefficients αij from pairs(

S(ti , ω),V (ti+1, ω)
)
.

Department of Mathematics, ETH Zürich Valuing Options
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LSMC pricing algorithm (1/2)

(i) Simulate n independent paths(
S(t1, ωk ),S(t2, ωk ), . . . ,S(tm, ωk )

)
, k = 1,2, . . . ,n

under the risk neutral measure Q

(ii) At terminal nodes, set

V̂ (tm, ωk ) = Y (tm, ωk )

Department of Mathematics, ETH Zürich Valuing Options
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LSMC pricing algorithm (2/2)

(iii) Apply backward induction: for i = m − 1, . . . ,1

• Given estimated values V̂ (ti+1, ωk ), use regression to calculate
α̂i1, . . . , α̂iM

• Set

V̂ (ti ;ωk ) =

Y (ti ;ωk ), Y (ti ;ωk ) ≥ Ĉ(ti ;ωk ),

V̂ (ti+1;ωk ), Y (ti ;ωk ) < Ĉ(ti ;ωk ),

with

Ĉ(ti) =
M∑

j=0

α̂ij Lj
(
S(ti)

)
.

(iv) Set

V̂ (0) =
1
n

n∑
k=1

V̂ (t1, ωk ) .

Department of Mathematics, ETH Zürich Valuing Options
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Illustrative example of the LSMC algorithm (1/12)

Y (t) =
(
K − S(t)

)+ with K = 1.1 and S(ti , ωk ), k = 1, . . . ,8,
i = 0, . . . ,3 as follows:

t0 = 0 t1 = 1 t2 = 2 t3 = 3

ω1 1 1.09 1.08 1.34
ω2 1 1.16 1.26 1.54
ω3 1 1.22 1.07 1.03
ω4 1 0.93 0.97 0.92
ω5 1 1.11 1.56 1.52
ω6 1 0.76 0.77 0.90
ω7 1 0.92 0.84 1.01
ω8 1 0.88 1.22 1.34 0.

6
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time
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Illustrative example of the LSMC algorithm (2/12)

At time t = T : V (T ) = Y (T ) =
(
K − S(T )

)+, where K = 1.1

Cash flows occurring at time t = T (= t3):

t1 = 1 t2 = 2 t3 = 3

ω1 0
ω2 0
ω3 0.07
ω4 0.18
ω5 0
ω6 0.20
ω7 0.09
ω8 0

Goal: complete the above cash flow matrix!

Department of Mathematics, ETH Zürich Valuing Options
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Illustrative example of the LSMC algorithm (3/12)

At time t = t2, there are only five paths where the option is in the
money, namely ω1, ω3, ω4, ω6, ω7.

Decide for which of these paths the option should be exercised.

Payoff from immediate exercise: Y (t2) =
(
K − S(t2)

)+:

Y (t2, ω1) = 0.02
Y (t2, ω3) = 0.03
Y (t2, ω4) = 0.13
Y (t2, ω6) = 0.33
Y (t2, ω7) = 0.26.

Department of Mathematics, ETH Zürich Valuing Options
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Illustrative example of the LSMC algorithm (4/12)

We shall next determine the continuation values Ĉ(t2)

Choose L0(x) = 1, L1(x) = x , L2(x) = x2 as basis functions.

Hence: C(t2) = α20 + α21S(t2) + α22S2(t2)

Use regression to estimate the coefficients α20, α21 and α22:

V (t3, ω1) e−r = α20 + α21S(t2, ω1) + α22S2(t2, ω1)

V (t3, ω3) e−r = α20 + α21S(t2, ω3) + α22S2(t2, ω3)

V (t3, ω4) e−r = α20 + α21S(t2, ω4) + α22S2(t2, ω4)

V (t3, ω6) e−r = α20 + α21S(t2, ω6) + α22S2(t2, ω6)

V (t3, ω7) e−r = α20 + α21S(t2, ω7) + α22S2(t2, ω7)

Department of Mathematics, ETH Zürich Valuing Options
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Illustrative example of the LSMC algorithm (5/12)

We use R to evaluate the coefficients α20, α21 and α22:

R Console Page 1

> S.2 = c(1.08,1.07,0.97,0.77,0.84)

> r = 0.06

> d = exp(-r)

> V = c(0,0.07,0.18,0.2,0.09)*d

> out = lm(V ~ S.2 + I(S.2^2))

> round(out$coefficients,4)

(Intercept)         S.2    I(S.2^2) 

    -1.0700      2.9834     -1.8136 

> # continuation values (to be compared with the payoffs from immediate exercise at t = 2):

> round(out$fitted.values,4)

     1      2      3      4      5 

0.0367 0.0459 0.1175 0.1520 0.1564 

>

Department of Mathematics, ETH Zürich Valuing Options
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Illustrative example of the LSMC algorithm (6/12)
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Illustrative example of the LSMC algorithm (7/12)

We compare the continuation values with the values from
immediate exercise:

Ĉ(t2, ω1) = 0.0367 > 0.02 = Y (t2, ω1)

Ĉ(t2, ω3) = 0.0459 > 0.03 = Y (t2, ω3)

Ĉ(t2, ω4) = 0.1175 < 0.13 = Y (t2, ω4)

Ĉ(t2, ω6) = 0.1520 < 0.33 = Y (t2, ω6)

Ĉ(t2, ω7) = 0.1564 < 0.26 = Y (t2, ω7)
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Illustrative example of the LSMC algorithm (8/12)

The cash flow matrix at time t = t2 (and t = t3) thus looks as
follows:

t1 = 1 t2 = 2 t3 = 3
ω1 0
ω2 0
ω3 0.07
ω4 0.13 0
ω5 0
ω6 0.33 0
ω7 0.26 0
ω8 0
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Illustrative example of the LSMC algorithm (9/12)

Move one step backwards in time. The payoffs from immediate
exercise Y (t1) =

(
K − S(t1)

)+ at time t = t1 are:

Y (t1, ω1) = 0.01 Y (t1, ω6) = 0.34 Y (t1, ω8) = 0.22
Y (t1, ω4) = 0.17 Y (t1, ω7) = 0.18

Use regression to estimate the coefficients α10, α11 and α12:

V (t2, ω1) e−r = α10 + α11S(t1, ω1) + α12S2(t1, ω1)

V (t2, ω4) e−r = α10 + α11S(t1, ω4) + α12S2(t1, ω4)

V (t2, ω6) e−r = α10 + α11S(t1, ω6) + α12S2(t1, ω6)

V (t2, ω7) e−r = α10 + α11S(t1, ω7) + α12S2(t1, ω7)

V (t2, ω8) e−r = α10 + α11S(t1, ω8) + α12S2(t1, ω8)
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Illustrative example of the LSMC algorithm (10/12)

Again, we use R to evaluate the coefficients α10, α11 and α12:

R Console Page 1

> S.1 = c(1.09,0.93,0.76,0.92,0.88)

> r = 0.06

> d = exp(-r)

> V = c(0,0.13,0.33,0.26,0)*d

> out = lm(V ~ S.1 + I(S.1^2))

> round(out$coefficients,4)

(Intercept)         S.1    I(S.1^2) 

     2.0375     -3.3354      1.3565 

> # continuation values (to be compared with the payoffs from immediate exercise at t = 1):

> round(out$fitted.values,4)

     1      2      3      4      5 

0.0135 0.1087 0.2861 0.1170 0.1528 

>

>
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Illustrative example of the LSMC algorithm (11/12)

We compare the continuation values with the values from
immediate exercise

Ĉ(t1, ω1) = 0.0135 > 0.01 = Y (t1, ω1)

Ĉ(t1, ω4) = 0.1087 < 0.17 = Y (t1, ω4)

Ĉ(t1, ω6) = 0.2861 < 0.34 = Y (t1, ω6)

Ĉ(t1, ω7) = 0.1170 < 0.18 = Y (t1, ω7)

Ĉ(t1, ω8) = 0.1528 < 0.22 = Y (t1, ω8)
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Illustrative example of the LSMC algorithm (12/12)

Ultimate cash flow matrix at time t = t1 (and t = t2 and t = t3):

t1 = 1 t2 = 2 t3 = 3
ω1

ω2

ω3 0.07
ω4 0.17
ω5

ω6 0.34
ω7 0.18
ω8 0.22

Value of the American put option at time t = 0:

V (0) =
0.07 e−3·0.06 +

(
0.17 + 0.34 + 0.18 + 0.22

)
e−0.06

8
= 0.1144.
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Valuing a pure endowment contract with T > 2 (1/3)

(i) Simulate n independent paths(
P(t1,T ;ωk ),P(t2,T ;ωk ), . . . ,P(tm,T ;ωk )

)
, k = 1,2, . . . ,n

under the risk neutral measure Q where tj = jT/m for
j = 0,1, . . . ,m

(ii) At terminal nodes (policy expiry date), set

Û(T ;ωk ) = Y (T ;ωk ) (= 0)

with Y (t) = D(0, t) (V (t)− P(t ,T ))+ and V (T ) = P(T ,T ) = 1.
Choice of exercising or not at contract maturity T is irrelevant
since – by assumption – market value of the contract equals the
book value.
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Valuing a pure endowment contract with T > 2 (2/3)

(iii) Apply backward induction: for i = m − 1, . . . ,1
• Given estimated values Û(ti+1;ωk ), use OLS regression over all

simulated sample paths to calculate the regression weights
α̂i1, . . . , α̂iM , i.e. find how the values Û(ti+1;ωk ) depend on the state
variables P(ti ,T ;ωk ) known at time ti

• Set

Û(ti ;ωk ) =

Y (ti ;ωk ), Y (ti ;ωk ) ≥ Ĉ(ti ;ωk ),

Û(ti+1;ωk ), Y (ti ;ωk ) < Ĉ(ti ;ωk ),

with

Ĉ(ti ;ωk ) =
M∑

j=0

α̂ij Lj
(
P(ti ,T ;ωk )

)
for some basis functions Lj(x).
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Valuing a pure endowment contract with T > 2 (3/3)

(iv) Set

Û(0) =
1
n

n∑
k=1

Û(t1;ωk ) .

Numerical example: Surrender option values (absolute figures and
relative to the initial mathematical reserve V (0) = (1 + rG)−T ) with
Vasicek short rate dynamics (b − a r(t)) dt + σ dW (t) with a = 0.36,
b = 0.0216, σ = 5%.

Technical interest rate
Maturity rG = 1.5% rG = 3.5% rG = 5.5%

T = 5 0.078 8.4% 0.059 6.9% 0.044 5.7%

T = 10 0.194 22.5% 0.113 16.0% 0.063 10.7%

T = 15 0.327 40.8% 0.151 25.3% 0.062 13.9%
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Extracts from R-Codes (1/2)

T= 5 # contract maturity date
t= seq(from=0,to=T,by=1) # time instants when the contract can be surrendered
n = 100000 # number of simulated sample paths

r= matrix(0,nrow=n,ncol=T+1)
I= matrix(0,nrow=n,ncol=T+1) # I(t) = int_0ˆt r(u)du
D= matrix(0,nrow=n,ncol=T+1) # D(t) = exp(-I(t))
r[,1] = r0
Z1 = matrix(rnorm((T-1)*n,mean=0,sd=1),nrow=n,ncol=T)
Z2 = matrix(rnorm((T-1)*n,mean=0,sd=1),nrow=n,ncol=T)

#joint simulation of (r(t),D(t)), cf. Glasserman p. 115:
for (k in 2:(T+1)){

r[,k]= exp(-kappa*(t[k]-t[k-1]))*r[,k-1] + m*(1-exp(-kappa*(t[k]-t[k-1])))
+sigma*sqrt(1/(2*kappa)*(1-exp(-2*kappa*(t[k]-t[k-1]))))*Z1[,k-1]

...
I[,k]= I[,k-1]+mu.I[,k]+sqrt(sigma2.I[,k])*(rho.r.I[,k]*Z1[,k-1]+sqrt(1-(rho.r.I[,k])ˆ2)*Z2[,k-1])
D[,k]= exp(-I[,k])
}

# corresponding bond prices:
PtT = matrix(0,nrow=n,ncol=T)
for (k in (1:T)){

btT = (1-exp(-kappa*(T-t[k])))/kappa
atT = (m-sigmaˆ2/(2*kappaˆ2))*(btT-(T-t[k]))-sigmaˆ2/(4*kappa)*(btT)ˆ2
PtT[,k] = exp(atT-btT*r[,k])
}

PtT = cbind(PtT,1)
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Extracts from R-Codes (2/2)

#surrender value price process:
U = matrix(0,nrow=n,ncol=T) # surrender option value process
DU = matrix(0,nrow=n,ncol=T) # one-step back discounted value process
U[,T-1] = (V[,T-1]-PtT[,T-1])*(V[,T-1]>PtT[,T-1]) # can start at T-1 since book value=market value at t=T
C = matrix(0,nrow=n,ncol=T-1) # continuation values
Y = matrix(0,nrow=n,ncol=T-1) # payoffs from immediate exercise

M = 3 # number of basis functions
# [f(x) = 1, f(x) = x, f(x) = xˆ2]

alpha = matrix(0,nrow=M,ncol=T-1) # regression weights

for (i in ((T-2):1)){
P1 = PtT[,i]

P2 = (PtT[,i])ˆ2
DU[,i+1] = U[,i+1]*D[,i+1]/D[,i]
out = lm(DU[,i+1]˜ P1 + P2)
alpha[,i]= out$coeff # not explicitly used
C[,i] = out$fitted.values
Y[,i] = (V[,i]-PtT[,i])*(V[,i]>PtT[,i])
U[,i] = Y[,i]*(Y[,i]>C[,i]) + D[,i+1]/D[,i]*U[,i+1]*(Y[,i]<C[,i])
}

# surrender option price:
U0 = mean(U[,1]*D[,1])
round(U0,3)
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Conclusions

The valuation of embedded options and guarantees is a central
component in the pricing and reserving of life insurance products

Failure to take account of these options and guarantees can lead
to serious financial losses

We have evaluated the surrender option of a single premium
pure endowment contract by means of (i) closed-form formulae
(duration T = 2) and (ii) Monte Carlo simulation methods (T > 2)

Surrender option becomes more valuable with e.g.
+ increasing contract maturity date

+ decreasing guaranteed interest rate rG

+ increasing volatility of the short rate dynamics

+ lower mortality rates
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Appendix: Vasicek model (1/2)

Affine term structure: The term structure for the Vasicek model
(b − a r(t)) dt + σ dW (t), i.e. the family of bond price processes,
is given in the following result (c.f. Björk [3], Proposition 22.3,
p. 334)

Proposition: In the Vasicek model, bond prices are given by

P(t ,T ) = eA(t,T )−B(t,T )r(t) , (13)

where

B(t ,T ) =
1
a

(
1− e−a(T−t)

)
,

A(t ,T ) =
(B(t ,T )− T + t)(ab − σ2/2)

a2 − σ2B2(t ,T )

4a
.

�
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Motivation Surrender option American options and LSMC Conclusions Appendix References

Appendix: Vasicek model (2/2)

Proposition: In the Vasicek model, the price for a European call
option with time to maturity T and strike price K on an S-bond is
as follows:

ZBC(t ,T ,K ,S) = P(t ,S)Φ(d)− P(t ,T )K Φ(d − σp), (14)

where

d =
1
σp

log

(
P(t ,S)

P(t ,T )K

)
+
σp

2
,

σp =
1
a

(
1− e−a(S−T )

)√σ2

2a
(
1− e−2a(T−t)

)
.

�

Reference: Björk [3], Proposition 22.9, p. 338.
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