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The problem

Computing the probability of rare events for Markov models
arises in many applications, e.g.
• Buffer overflow in queueing models
• Transitions between different modes of the stationary
distribution in stochastic kinetic models.

Typical probabilities are in the range 10−6 − 10−20. Naive
Monte Carlo produces estimates equal to zero even with long
simulations. Want the relative mean square error to be
bounded.

Importance sampling can be used, but constructing good
proposal distributions where weights have small variance is
difficult.
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Importance splitting

Importance splitting (Garvels and Kroese 1998, Glasserman et
al. 1999, Garvels 2000, L’Ecuyer et al. 2006) is an attractive
alternative, based on “divide and conquer”.

Write the event of interest E as the last member in a
decreasing sequence of m events

Dm = E ⊂ Dm−1 ⊂ . . . ⊂ D0 = Ω.

Then

P(E) =
m∏

k=1

pk where pk := P(Dk | Dk−1) =
P(Dk )

P(Dk−1)

and we estimate pk for each k .
Amrein and Künsch Importance Splitting
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Rare events in Markov models

(Xt ) Markov process on E (discrete or continuous time).
Starting point x0 fixed (unless stated otherwise).
A, B two disjoint subsets of E , x0 /∈ B, often x0 ∈ A.
τ = first hitting time of B, ξ = first time Xt (re)enters A.
Want to know γ := P(τ < ξ)

Other choices of ξ are possible, e.g. a fixed time t0, but make
notation more complicated.
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Defining the sets Dk

Choose an importance function Φ : E → R with
A = {x ; Φ(x) ≤ 0}, B = {x ; Φ(x) ≥ 1}.
Choose m and levels l0 = Φ(x0) < l1 < . . . < lm = 1.
Let τk = first hitting time of {x ; Φ(x) ≥ lk} and
Dk = {τk < ξ}.
For later use, define also µk = law of Xτk given Dk

In particular, τ0 = 0, µ0 is the point mass in x0 and τm = τ .

Amrein and Künsch Importance Splitting
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The recursive algorithm

Assume we have a sample of size Nk from µk .
Simulate independent chains starting at each point of this
sample until min(τk+1, ξ) and let Rk+1 be the number of
chains where τk+1 < ξ.
If Rk+1 = 0, set γ̂ = 0 and stop.
Otherwise

p̂k+1 =
Rk+1

Nk

and inflate the sample of the Rk+1 values of Xτk+1 to a
sample of size Nk+1. (Ties will disappear in the next step
of the recursion)
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Sample inflation strategies

Fixed splitting: Nk+1 = ck+1Rk+1 with ck+1 given.
Fixed effort, random inflation: Nk+1 given, inflation by
sampling with replacement
Fixed effort, balanced inflation: Nk+1 given, take each
value [Nk+1/Rk+1] times plus a sample without
replacement
Fixed number of successes (our proposal): Rk+1 ≥ 2
given, sample with replacement at the level k until this is
achieved. Need to use

p̂k+1 =
Rk+1 − 1
Nk − 1

(the UMVU estimator for the negative binomial)
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Choice of the importance function

Bad choices of Φ make importance splitting fail! Garvels et al.
(2002) propose

Φ(x) = g(P(τ < ξ|X0 = x))

with g monotone. If we cannot compute γ, we cannot compute
this Φ either.

If E is discrete and (Xt ) time homogeneous, we suggest as
approximation of the above
Φ(x) = probability of the most likely path from x to B without
entering A.
This can be computed by Dijkstra’s algorithm. Choice of g
equivalent to choice of levels (to be discussed later).
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Unbiasedness

Is p̂k unbiased for pk ?
Is γ̂ unbiased for γ ?

The answer is no for the first question, and yes for the second
(for all versions above).

Some “Proofs” of unbiasedness of γ̂ have appeared which
claim conditional unbiasedness of p̂k given the history up to
level k − 1.

Correct proofs for some versions are in Del Moral and Garnier
(2005) and Dean and Dupuis (2009). We give a more direct
proof for all cases.
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Advantages of fixed number of successes

Fixed number of successes controls precision instead of
effort.
Fixed number of successes avoids the problem of returning
estimates with the value zero.
For a single step, fixed number of successes with
Rk = Nkpk is slightly less efficient than fixed effort.
For several steps, fixed effort with constant Ni is worse
than fixed number of successes with constant Ri if the pi
are different.
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Efficiencies for 2 steps

Efficiency for fixed effort (thin blue line) and fixed number of
successes (thick black line) for m = 2,p1 = p1+δ,p2 = p1−δ.
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Analysis assuming conditional independence

Analytic results in general situations are difficult to obtain. We
make the simplifying assumption

P(Dk+1|Dk ,Xτk = x) = P(Dk+1|Dk ) = pk (a.s.)

Although this is restrictive, it holds if

Φ(x) = P(τ < ξ|X0 = x) and Φ(Xτk ) = lk

(“the process cannot jump over the levels”).

We study how to choose the number of levels m, the
probabilities pk (subject to

∏m
k=1 pk = γ) and the sample sizes

Nk or Rk , respectively, to minimze workload W for a given
relative mean square error q.
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Main results

If workload is independent of m and k , then the optimal solution
as q → 0 is

m = −0.6275.. log(γ), pk ≡ 0.2032...

(the exact values can be written with the solution of the
equation exp(1/c) = 2c/(2c − 1)). Furthermore

Nk ≡ n ∼ 2.46
− log(γ)

q
, Rk ≡ r ∼ − log(γ)

2q
.

Can also express the optimal Rk ’s (or Nk ’s) for given m, q and
p1, . . . ,pm.
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Implications for the algorithm

Everything unknown at the beginning Two-stage procedure:
In the first stage, take many levels and Rk ≡ 20.
If the algorithm does not complete in reasonable time, find
a better importance function (or buy a faster computer).
Otherwise, we have initial guesses of γ and pk . If some of
the pk seem close to zero or one, delete or introduce new
levels.
In a second stage, take Rk ≡ r according to the formulae
for optimal choice (where q is now the only tuning
constant).
Alternatively, take

√
r replicates of the second stage with√

r number of successes. Average the results and compute
a confidence interval by bootstrapping on the log scale.

Amrein and Künsch Importance Splitting



Introduction
Defining the algorithm

Theory
Examples

Connections with the particle filter

The G/G/1 queue
The Jackson tandem queue

Overflow in the G/G/1 queue

Weibull inter arrival and service times with shape
parameters ka, ks. Scale parameters λ, µ fixed.
Xt = (number of customers, remaining time until next
arrival, remaining service time).
x0 = (0,0,0), A = {x1 = 0}, B = {x1 = 104}.
Φ(x) = x1.
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Results

100 repetitions of the two-stage procedure above. Nominally
Var(γ̂) = (0.1 · γ)2, Workload W (γ̂) = generated random
numbers.

k 0.75 1.00 1.25
r ≈ 1290 2060 2910

rk = r
〈γ̂〉 1.68 · 10−6 2.22 · 10−10 4.40 · 10−15

V̂ar(γ̂)/〈γ̂〉2 0.0134 0.0102 0.0116
〈W (γ̂)〉 7.067 · 106 2.254 · 107 5.304 · 107

rk = r1/2 with averaging
〈γ̂〉 1.66 · 10−6 2.21 · 10−10 4.41 · 10−15

V̂ar(γ̂)/〈γ̂〉2 0.0197 0.0124 0.0127
〈W (γ̂)〉 7.122 · 106 2.259 · 107 5.318 · 107

Amrein and Künsch Importance Splitting



Introduction
Defining the algorithm

Theory
Examples

Connections with the particle filter

The G/G/1 queue
The Jackson tandem queue

Overflow in the Jackson tandem queue

Two queues in series, arrival rate λ = 1, mean service times
ρi = 1/µi , ρ1 = 1/2.
Xt = (X1,t ,X2,t ) = number of customers at both queues,
x0 = (0,0).
A = {x0}, B = {x : x2 ≥ 30}. For ρ2 < ρ1, B is a rare event.
Can compute γ numerically.

Naive importance function Φ(x) = x2, fails. Want
Φ(x1, x2) < Φ(x1 + 1, x2) for small x1, because more customers
at the first queue make B more likely. Our proposal provides
this.
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Results

100 repetitions of the two-stage procedure above with the
averaged estimator. Nominally Var(γ̂) = (0.1 · γ)2, Workload
W (γ̂) = generated random numbers.

ρ 1/2 1/3 1/5
γ 1.86 · 10−9 1.94 · 10−14 8.59 · 10−21

〈γ̂〉 1.85 · 10−9 1.92 · 10−14 8.58 · 10−21

V̂ar(γ̂)/γ2 0.0321 0.0387 0.0340
〈W (γ̂)〉 3.704 · 106 7.495 · 106 2.183 · 107
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100 Confidence intervals for overflow probability
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A general framework (Feynman-Kac)

Want to sample successively from a sequence of target
distribution µn on spaces Fn which are connected in the
following way:

µn(dzn) =
1

Mn
gn(zn)

∫
Fn−1

µn−1(dzn−1)Kn(zn−1,dzn)

where Mn is a normalising constant, gn ≥ 0 and Kn is a
transition kernel from Fn−1 to Fn.

Look for weighted samples (ζi,n, λi,n; i = 1,2, . . . ,N) that are
constructed recursively for computational efficiency.

Amrein and Künsch Importance Splitting
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Filtering and smoothing in state space models

(Zt ) unobserved Markov process, observations Yt conditionally
independent of (Zs,Ys; s 6= t) given Zt .

µn = conditional distribution of Zn given Y1, . . . ,Yn (filtering), is
an instance of the general framework if we put gn = conditional
density of Yn given Zn, Kn = transition kernel of Zn given Zn−1.

For µn = conditional distribution of (Z0,Z1, . . . ,Zn) given
(Y1, . . . ,Yn) (smoothing), gn is as above and Kn(zn−1, .) is a
point mass at zn−1 for components 0,1, . . . ,n − 1 times the
transition kernel of Zn for the last component.
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Importance splitting

Let ∆ /∈ E be an additional (absorbing) state and set

Zn = Xτn1[τn<ξ] + ∆1[τn>ξ].

If gn(z) = 1[z 6=∆], then µn is the distribution of Xτn conditioned
on τn < ξ.

In this example, the normalizing constant is Mn = P(Dn|Dn−1),
and we want to estimate it. In filtering, Mn is the conditional
density of Yn given Y1,Y2, . . . ,Yn−1 which is also of interest.

Amrein and Künsch Importance Splitting
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The vanilla version of the particle filter

Resample: ζ∗i,n = ζj,n with probability λj,n

Propagate: generate ζi,n+1 ∼ Kn+1(ζ∗i,n,dzn+1)
independently
Reweight: λi,n+1 ∝ gn+1(ζi,n+1)

Estimate:

M̂n+1 =
1
N

N∑
i=1

gn+1(ζi,n+1)

Resampling need not be i.i.d.. It suffices that the expected
number of times ζj,n is chosen equals Nλj,n.
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More sophisticated versions

For more balanced weights, anticipate the effect of gn+1 at the
resampling and propagation steps and adjust the weights:

Choose a distribution ν for resampling, set Ji = j with
probability νj and ζ∗i,n = ζJi ,n.
Choose a kernel L for propagation and generate
ζi,n+1 ∼ L(ζ∗i,n,dzn+1) independently,
Reweight:

λi,n+1 ∝
λJi ,n

νJi

dKn+1(ζ∗i,n, ζi,n+1)

dL(ζ∗i,n, ζi,n+1)
gn+1(ζi,n+1).
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Implications from the connection

Use asymptotic results (as number of particles→∞) for
particle filtering to obtain corresponding results for
importance splitting.
In particular, functionals of the path from x to B given τ < ξ
can also be estimated (but need large N).
Particle filtering algorithms show how to combine
importance sampling and importance splitting (need to
consider the whole path on [τn−1, τn] in order to compute
the weights).
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Implications, ctd.

Unbiasedness of estimated normalizing constants is
important also for particle filtering (used by Andrieu et al.,
JRSSB 2010). Notice that it implies that estimated log
likelihood is biased.
Working with random sample sizes to achieve a given
effective sample size in the next step could be useful in
particle filtering also (less extreme that accept/reject).
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Thank you for your attention !
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