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Numerical precipitation predictions
Numerical predictions of 3-h rainfall in northern Switzerland
(50× 100 grid with spacing of 2.2 km), separated by 12 h.



Statistical postprocessing

Numerical weather predictions (MWP) are deterministic with
high spatial and temporal resolution. Statistical postprocessing
is needed to

I Correct biases of deterministic forecasts,
I Quantify uncertainty of deterministic forecasts,
I Account correctly for spatial and temporal dependence,
I Obtain predictive distributions which are calibrated and

sharp.
Sigrist et al. (2014) use NWP forecasts as explanatory
variables in a statistical space-time model of precipitation. The
Kalman filter is an essential tool for fitting this model and for
making predictions.



Mean absolute error of 3 forecasts
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Effect of postprocessing
NWP forecast (left) and median of predictive distribution (right)
for one day in the validation period.
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Weather prediction and data assimilation

As noted in the previous example, weather prediction is based
on deterministic physical models, formulated as systems of
differential equations. Since these equations are sensitive to
initial conditions, predictions become unreliable after a few
days. One needs to readjust the initial conditions for the next
integration cycle frequently, using observations about the state
of the atmosphere. In contrast to the previous example,
observations are used not only for postprocessing forecasts,
but as an input to the next forecast cycle.

Methods which use observations iteratively to estimate the
state of a system are called data assimilation. In engineering,
the same problem is called filtering.



Lorenz models

Because any real data assimilation example from atmospheric
physics or oceanography is extremely high-dimensional and
complex, often simple toy models are used as testbeds. The
two most famous are due to Lorenz in 1963 and 1996. The
Lorenz 63 model is

d
dt

 X 1
t

X 2
t

X 3
t

 =

 10(X 2
t − X 1

t )
X 1

t (28− X 3
t )− X 2

t
X 1

t X 2
t − 8

3X 3
t

 .

The Lorenz 96 model is

dX k
t

dt
= (X k+1

t −X k−2
t )X k−1

t −X k
t +8, k = 1, . . . ,40, X k ≡ X k+40.

One can also consider stochastic differential equations by
adding white noise on the right-hand side to take model
deficiencies into account.



The Lorenz 63 model
This model has a famous attractor of fractional dimension.
Switches between the two parts seem to occur at random
times.
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The Lorenz 96 model

This model mimicks large scale motions of a one-dimensional
atmosphere.



Particle filter for the Lorenz 63 model
Black: Xt , Blue: Filter median, Green: 10% and 90% quantiles.
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Stochastic kinetic reaction networks

Systems biology studies reaction networks with r reactions and
p species of molecules. The number of molecules at time t is
xt = (x1

t , . . . , x
p
t ). If reaction i occurs at time t , then xt changes

as follows:

x j
t = x j

t− − vij + uij (j = 1, . . . ,p).

This means that reaction i consumes vij molecules of type j and
produces uij molecules of type j . Reaction i occurs at the rate

µi(t) = θi

∏
j,vij≥1

(
x j

t
vij

)

provided all x j
t ≥ vij . I.e. the rate of reaction i is proportional to

the number of ways the required molecules can be selected.



Stochastic kinetic reaction networks, ctd.

(xt ) is a Markov process in continuous time:
I At time t , the time until the next reaction is exponential with

mean 1/(µ1(t) + . . .+ µr (t)).
I If a reaction occurs, it is type i with probability
µi(t)/(µ1(t) + . . .+ µr (t)).

I The lack of memory of the exponential distribution means
that the future depends only on the current state.

The goal is to estimate the rate constants θi and the trajectory
of the process from noisy measurements of some components
x j

ti at discrete times ti .

Because of the incomplete and noisy observations, this is an
example of a state space model.



A simulated example (Amrein and H.K., 2011)
A system with 3 species and 5 reactions. Two species are
observed, the path of the third one is estimated.



Rare event estimation in a queueing network

From Amrein & H.K., ACM Transactions, 21, 2011.

I Goal: Estimate probabilities of rare events in Markov
models, e.g. overflow in 2 queues in series.

I Arrival at queue 1 according to a Poisson process with rate
1. Service times independent exponential with means ρi .

I State Xt = (X 1
t ,X

2
t ), where X i

t = number of customers in
queue i at time t .

I Let A = {0,0}, B = {(x1, x2); x2 ≥ L} and τA, τB first times
of (re)entering A, B. Estimate γ = P(0,0)(τB < τA).

I If ρ1 < 1, ρ2 < 1,L� 1, γ is small, and direct Monte Carlo
fails.



Importance splitting

Alternatives to direct Monte Carlo are importance sampling and
importance splitting.

Importance splitting recursively simulates from
L(XτBk

| τBk < τA} and estimates P(τBk < τA | τBk−1 < τA)

where Ac ⊃ B1 ⊃ . . . ⊃ Bn = B.

It is a generalization of particle filtering where one wants to
approximate conditional distributions of a latent Markov process
given an increasing number of instantaneous noisy
observations. More generally, one studies recursive simulation
from a sequence of different target distributions, so-called
sequential Monte Carlo.



Illustration of results

100 replicates of an interval estimate of γ (on log-scale) for
ρ1 = 1

2 and ρ2 = 1
2 ,

1
3 ,

1
5 .

0 10 20 30 40 50 60 70 80 90 1001.
0e

−
09

2.
0e

−
09

4.
0e

−
09

rho2=1/2, Coverage: 93 %

0 10 20 30 40 50 60 70 80 90 100

1.
0e

−
14

2.
0e

−
14

4.
0e

−
14 rho2=1/3, Coverage: 92 %

0 10 20 30 40 50 60 70 80 90 100

6.
0e

−
21

1.
2e

−
20

2.
2e

−
20

rho2=1/5, Coverage: 91 %



Section 2
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State space models
Let Xt be the state vector of a system at time t . It is typically not
fully observed, but has a simple Markovian dynamics. Available
are partial observations Yi of X at certain time points ti ,
corrupted by independent noise variables.

To simplify notation, assume ti = i and (Xt ) is
time-homogeneous with

Xt | Xt−1 = xt−1 ∼ K (dxt | xt−1).

(Xt ) can be in continuous time and deterministic, i.e. given by a
differential equation.

Observations Y1,Y2, . . . are conditionally independent with

Yt | (Xs) ∼ g(y | xt )dy .

Existence of a density is crucial, but it could be w.r. to a
different reference measure.



Graphical representation of state space models

The dependence between the variables of a state space model
can be represented as follows

. . . → Xt−1 → Xt → Xt+1 → . . .
↓ ↓ ↓

. . . Yt−1 Yt Yt+1 . . .

It implies various conditional independencies which we will use
later.

An alternative representation of a general state space model is

Xt = F (Xt−1,Ut ), Yt = H(Xt ,Vt )

where (Ut ) and (Vt ) are two independent white noises and F
and H are arbitrary functions.



Notation

Xs:t is shorthand for (Xs,Xs+1, . . . ,Xt ), similarly ys:t .

Define conditional distribution of states in time interval [s, t ]
given observations up to time r :

πs:t |r (dxs:t | y1:r ) := L (Xs:t | y1:r ) .

The y ’s are fixed and thus are often omitted in πs:t |r . To simplify,
use πt |r for the marginal πt :t |r . Call πt |t−1 the prediction and πt |t
the filter distribution. Distributions with s < r are called
smoothing distributions.

By abuse of notation, we use P (P(. | .)) for other (conditional)
distributions that will play a role, and p(.) (p(. | .)) for
(conditional) densities. The arguments will indicate which
variables are involved.



Gibbs sampler for state space models
If K (dxt | xt−1) = k(xt | xt−1)dxt , full conditionals are

p(xs | y1:t , x0:s−1, xs+1:t ) = p(xs | ys, xs−1, xs+1)

∝ g(ys | xs)k(xs | xs−1)k(xs+1 | xs).

If the model contains unknown parameters θ:

p(θ | x0:t , y1:t ) ∝ p(θ)
t∏

s=1

kθ(xs | xs−1)gθ(ys | xs).

Hence the Gibbs sampler can be used. But
I Convergence is in most cases slow: Full conditionals are

too tight.
I Better to update x0:t jointly (or at least in big blocks).
I If observations become available sequentially, want to

update the samples recursively.



Filtering recursions

Prediction and filter distributions can be computed recursively:
I Propagation πt−1|t−1 −→ πt |t−1 via conditioning on Xt−1

πt |t−1(dxt ) =

∫
K (dxt | xt−1)πt−1|t−1(dxt−1).

I Update πt |t−1 −→ πt |t via Bayes’ formula:

πt |t (dxt ) ∝ πt |t−1(dxt )× g(yt | xt ).

We start the recursion with π0|0 = the initial distribution of X0.

The denominator in Bayes’ formula is∫
g(yt | xt )πt |t−1(dxt ) = p(yt | y1:t−1)

Thus the joint density of Y1:t is a byproduct of the filter.



Smoothing

Analogous recursions as for the filter hold for π0:t |t with an
extension instead of a propagation step

π0:t |t−1(dx0:t ) = K (dxt | xt−1)π0:t−1|t−1(dx0:t−1)

π0:t |t (dx0:t ) ∝ π0:t |t−1(dx0:t )× g(yt | xt ).

Alternatively, we can use that given y1:t the state process is still
a Markov chain, by rules for conditional independence. If
K (dxt | xt−1) = k(xt | xt−1)dxt , then the backward transition of
the conditional chain is a modification of the filter distribution:

P(dxs | xs+1, y1:t ) = P(dxs | xs+1, y1:s)

∝ k(xs+1 | xs)πs|s(dxs).

There are also expressions for the forward transition
distributions.



Implementations

I Although the recursions look simple, doing the integrations
is in most cases difficult.

I Closed form solutions exist if Xt takes values in a finite set
(Baum-Welch) or in the Gaussian linear case (Kalman) that
we will discuss in the next section. These are all practically
relevant cases.

I Analytical approximations exist (Extended Kalman filter,
unscented Kalman filter), but they are limited in scope.

I Numerical approximations are difficult because Xt is often
high-dimensional and πt |t lives in different parts of the state
space for different t ’s.

I Particle and Ensemble Kalman filters are recursive Monte
Carlo approximations.
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Gaussian linear state space models

A Gaussian linear state space model has the form

Xt = FXt−1 + Ut , Yt = HXt + Vt

where (Ut ) and (Vt ) are independent Gaussian white noises
with mean 0 and covariance Q and R, respectively. In other
words, we have a partially observed vector autoregression.

If also X0 is Gaussian, then all conditional distributions πs:t |r are
again Gaussian. The Kalman filter and smoother computes
required conditional means and covariances recursively. It can
be derived from the general recursions above, or directly from
basic properties of orthogonal projections.



Kalman filter

Denote mean and covariance of πs|t by µs|t and Ps|t . Then

µt |t−1 = Fµt−1|t−1, Pt |t−1 = FPt−1|t−1F ′ + Q

and

µt |t = µt |t−1 + Kt (yt − Hµt |t−1),

Pt |t = (I − KtH)Pt |t−1 = (I − KtH)Pt |t (I − KtH)′ + KtRK ′t

where

Kt = K (H,Pt |t−1,R) = Pt |t−1H ′(HPt |t−1H ′ + R)−1

= Cov
(
Xt − µt |t−1,Yt − Hµt |t−1

)
Cov

(
Yt − Hµt |t−1

)−1
.

is the so-called Kalman gain.



Kalman smoother
Because P(dxs | xs+1, y1:t ) ∝ k(xs+1 | xs)πs|s(dxs), backward
transitions are obtained as in the filter update

E(Xs | Xs+1, y1:t ) = E(Xs | Xs+1, y1:s)

= µs|s + K (F ,Ps|s,Q)−1(Xs+1 − Fµs|s),

Cov (Xs | Xs+1, y1:t ) = (I − K (F ,Ps|s,Q))Ps|s.

Thus we can simulate from π0:t |t using forward-filtering
backward-simulation.

If F ,Q,R contain unknown parameters θ, use Metropolis with
simultaneous updates of θ and x0:t : Propose

(x∗0:t , θ
∗) | (x0:t , θ) ∼ q(θ∗ | θ)p(x∗0:t | y1:t , θ

∗)

and accept it with probability

min
(

1,
p(θ∗)p(y1:t | θ∗)
p(θ)p(y1:t | θ)

)
.



Computational complexity

If Xt ∈ Rq and Yt ∈ Rd and we consider T time steps:
I Forward filtering and likelihood evaluation has complexity

O(T (q2 + d3)).
I Backward simulation has additional complexity O(Tq3).
I If q and/or d are large, efficient computation becomes

crucial.
I Savings are possible if we approximate Pt−1|t and Pt |t by

sparse matrices (→ sparse Cholesky factorizations).
I In the introductory example of precipitation forecast, we

obtain a state space model where all matrices are block
diagonal.



Back to the first example

I now show how the Kalman filter and smoother is used for the
statistical postprocessing of numerical weather predictions
(NWP).

Rainfall y(t ,s) is skewed and has an atom at zero, and thus we
cannot use a Gaussian distribution. We assume it depends on
a latent “potential rainfall” w(t ,s) which has a Gaussian
dsitribution through

y(t ,s) = w(t ,s)λ 1{w(t ,s)>0}.

I will first discuss a class of Gaussian space-time models
assuming Gaussian observations. At the end I show how we
handle the non-linear dependence of y(t ,s) on w(t ,s).



Modeling potential rainfall

We assume that the potential rainfall w(t ,s) is a Gaussian
space-time random field

w(t ,s) = β1yF (t ,s)1/λ̃ + β21{yF (t ,s)=0} + X (t ,s) + ν(t ,s),

I yF (t ,s) NWP forecast made at 0:00 UTC of the same day,
I X (t ,s) structured random effect (mean zero),
I ν(t ,s) white noise in space and time, variance σ2

ν

I Unknown parameters: β1, β2, λ > 0, σ2
ν and parameters for

X (to be discussed later). λ̃ is estimated from a preliminary
analysis.

We estimate w and the parameters based on precipitation data
from 32 stations that the NWP forecast does not use directly.



Gaussian space-time fields

I X (t ,s) = Gaussian process on [0,∞)×Rd with mean zero
and covariance function Cθ. How to choose Cθ ?

I General considerations:
I Take different nature of time and space into account
I Avoid separable models
I Find compromise between simplicity and generality
I Use parameters which have a clear interpretation

I Computational tractability:
I Evaluation of likelihood has in general the complexity

O
(
(TN)3

)
, T and N number of points in time and space.

I Adding noise to simple physics based models satisfies the
requirements above. Other people have proposed similar
approaches. Our contribution: Solution of computational
issues.



Stochastic advection-diffusion model

I Gaussian process defined through stochastic partial
differential equation (SPDE)

∂

∂t
X (t ,s) = −µ · ∇X (t ,s) +∇ ·Σ∇X (t ,s)− κX (t ,s)+ε(t ,s)

I −µ · ∇X (t ,s) transport, µ drift vector (”advection”)

I ∇ ·Σ∇X (t ,s) anisotropic diffusion

I −κX (t ,s) damping

I ε(t ,s) temporally white noise and spatially colored forcing
or source-sink (”convection”)

I Continuous time and space model



Illustration of deterministic PDE



Illustration of SPDE



Elementary solutions of the SPDE

Assume that for a fixed wavenumber k ∈ R2

X (0,s) = α(0) exp (ik ′s), ε(t ,s) = Ẇ (t) exp (ik ′s)

where Ẇ is white noise (i.e. W is Brownian motion).

Then the solution is

X (t ,s) =

(
e−h(k)tα(0) +

∫ t

0
e−h(k)(t−u)Ẇ (u)du

)
exp (ik ′s)

where h(k) = iµ′k + k ′Σk + κ. Because Re(h) > 0, the
solution forgets the initial amplitude α(0), and we have for large
t a Gaussian amplitude which is stationary in time.

By linearity of the SPDE, sums of such solutions are again
solutions.



Stationary solutions of the SPDE

If X (0,s) and ε(t ,s) are stationary in space, by the Cramér
representation

X (0,s) =

∫
exp (ik ′s)α(0,dk), ε(t ,s) =

∫
exp (ik ′s)Ẇ (t ,dk),

with E
(

Ẇ (t ,dk)Ẇ (u,d j)
)

= δt ,uδk ,j fε(k)dk , and similarly for
α(0,dk).

Then the solution has the representation

X (t ,s) =

∫
exp (ik ′s)α(t ,dk),

α(t ,dk) = e−h(k)tα(0,dk) +

∫ t

0
e−h(k)(t−u)Ẇ (u,dk)du.

Amplitudes develop independently for different wavenumbers.



Discretizing time and space

Assume we are interested in X at a finite set of locations and
times. Truncating wavenumbers to a finite set, we have

X (ti) = Φα(ti), α(ti) = Gα(ti−1) +N (0,Q).

Here
I Φ has elements exp(ik ′`sj).
I G and Q are diagonal.
I G depends on the time step ti − ti−1 and on the

parameters µ, Σ and κ of the SPDE.
I Q depends on the time step ti − ti−1 and on the assumed

spatial spectral density fε of ε(t , .). We use the Matérn
density with smoothness parameter 1.

I The time discretization of α(t) is exact, the only
approximation is the truncation of wavenumbers.



Fitting with linear Gaussian observations

Adding observation noise to X , we obtain a Gaussian linear
state space model with states α(ti) and observations w i :

α(ti) = Gα(ti−1) +N (0,Q), w i = Φα(ti) +N (0, σ2
ν I).

If we use sin and cos instead of the complex exponential, G
becomes 2× 2 block diagonal.

We can estimate θ and α using Metropolis with simultaneous
updates as long as the set of wavenumbers and the set of
locations with observations are not too big. Estimates of
X (ti ,s) follow from estimates of α.



Fitting with linear Gaussian observations, ctd.

If w is on an n × n grid with spacing ∆, we can use
wavenumbers on the grid with spacing 2π/(∆n). The Kalman
filter and smoother decouple into 2-dimensional subproblems
because Φ is then orthogonal:

Φ′w i = α(ti) +N (0, σ2
ν I),

and FFT makes evaluation of Φ′w i fast.



Nonlinear and non-Gaussian observations

In the precipitation example, iterate between updates of (w , λ)
given α,y , σ2

ν and updates of (θ, α) given w . For the former,
propose first a new λ. If accepted, modify w deterministically at
sites where y > 0. At other sites, sample w from a truncated
Gaussian distribution.

Similar procedure is possible for binary data in a probit model.
Otherwise, need to use iterative methods with Gaussian
approximations of p(y(t ,s) | X (t ,s)).



Section 4

Introductory Examples

Basics of state space models and filtering

Kalman filter and its applications

Particle filters
The basic particle filter
Balanced sampling
Auxiliary particle filter
Likelihood estimation
Importance splitting as a particle filter

Ensemble Kalman filters

Extensions of particle filters



Particle Filter

Remember the filtering recursions:
I Propagation: πt |t−1(dxt ) =

∫
K (dxt | xt−1)πt−1|t−1(dxt−1).

I Update: πt |t (dxt ) ∝ πt |t−1(dxt )× g(yt | xt ).

Recursive Monte Carlo implementation: If (x j
t−1|t−1; j = 1, . . .N)

is an (approximate) sample from πt−1|t−1, construct an
(approximate) sample from πt |t by

I Propagation: Generate (x j
t |t−1) by simulating the Markov

process with initial conditions Xt−1 = x j
t−1|t−1,

independently for different j ’s.
I Update: Obtain (x j

t |t ) by resampling from (x j
t |t−1) with

probabilities proportional to g(yt | x j
t |t−1).

The x j
t |t−1’s and x j

t |t ’s are called particles which move in space
and have offsprings. They interact via the number of offsprings.



The update step

I Update can be split into a weighting step

πt |t (dxt ) ≈
N∑

j=1

w j
t ∆x j

t|t−1
(dxt ), w j

t ∝ g(yt | x j
t |t−1).

(importance sampling), followed by resampling.
I Without resampling, weights would be updated by

multiplication and become very unbalanced.
I Resampling introduces additional noise but it avoids

waisting simulation efforts in the next propagation step with
unlikely starting values.

I Hence it is better to use the weighted approximation of πt |t
and to resample at the beginning of the propagation step.



Ties due to resampling

I Resampling introduces ties among x j
t |t . These are broken

in the next propagation step (called “rejuvenation”) if state
dynamics is stochastic.

I If some components of state change deterministically, can
break ties by adding noise (compensated by shrinkage to
the mean).



A single step of the particle filter
Left: Propagation (only few arrows shown).
Right: Reweighting and resampling
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Several steps of the particle filter

Blue: Xt nonlinear AR, Yt = X 2
t + Vt . Black: Particle filter with

area of circles ∝ weight. .
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Effective sample size (ESS)

If we have a weighted sample (X j ,w j) of size N constructed by
importance sampling, to how many unweighted sample values
does this correspond ? Liu et al. gave the answer

ESS =

 N∑
j=1

(w j)2

−1

.

This is correct in the two extreme cases w j = 1/N for all j and
w j = 1 for one j . The general case follows from an
approximation of the variance of

∑
j w jψ(X j).

It has been suggested to resample only if ESS is below a
certain threshold. Note however that in a recursive setting, ESS
is presumably too optimistic since the propagation step does
not fully compensate the loss of precision due to weighting and
resampling at time t − 1.



Balanced sampling

For resampling, can use any scheme s.th. x j
t |t−1 is chosen on

average Nw j
t times. A sampling scheme is called balanced if

x j
t |t−1 is chosen

[
Nw j

t

]
or
[
Nw j

t

]
+ 1 times.

There are many balanced sampling schemes. The simplest
such scheme is

x j
t |t = x Ij

t |t−1, Ij = F−1
t ((j − U)/N)

where U is uniform(0,1) and Ft is the cdf of the discrete
distribution on {1,2, . . . ,N} with weights w j

t , see figure.

This is hard to analyze theoretically because no limit theory
applies. So-called tree sampling is an alternative.



Illustration of balanced sampling
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Auxiliary particle filter

Idea: Propagate particles with a transition Q 6= K to bring them
closer to yt and adjust with suitable weights which are more
equal

I Generate x∗jt ∼ q(xt | x j
t−1|t−1, yt )dxt , independently for

different j ’s. (Change of notation since the x∗jt are no
longer a sample from πt |t−1).

I Resample the particles x∗jt with probabilities

w j
t ∝ w̃(x j

t−1|t−1, x
∗j
t , yt ) =

g(yt | x∗jt )k(x∗jt | x
j
t−1|t−1)

q(x∗jt | x
j
t−1|t−1, yt )

.

I More generally, replace ratio k/q by Radon-Nikodym
derivative provided K � Q.



Auxiliary particle filter ctd.
I Weights w j

t depend on x∗jt and x j
t−1|t−1.

I ((x j
t−1|t−1, x

∗j
t ),w j

t ) is a weighted sample from πt−1:t |t .

I Variance of weights w̃ is minimal for

q(xt | xt−1, yt ) = p(xt | xt−1, yt ) =
g(yt | xt )k(xt | xt−1)

p(yt | xt−1)
.

In this case, w j
t ∝ p(yt | x j

t−1|t−1), and resampling before
propagation increases diversity.

I Also in other cases one can add a resampling step with
probabilities τ(x j

t−1|t−1, yt ) before propagation. Then
weights after propagation are

w j
t ∝ w̃(x j

t−1|t−1, x
∗j
t , yt ) =

g(yt | x∗jt )k(x∗jt | x
j
t−1|t−1)

τ(x j
t−1|t−1, yt )q(x∗jt | x

j
t−1|t−1, yt )

.



Auxiliary particle filter, ctd.
Instead of sampling approximately from πt−1:t |t , we can also
look at sampling from the approximate filter density

π̂t |t (xt ) ∝
1
N

N∑
j=1

g(yt | xt )k(xt | x j
t−1|t−1).

Importance sampling of xt ,∗ alone leads to an O(N2) algorithm
since computing a single weight involves a sum over N terms.
Importance sampling of a mixture index I together with xt ,∗
avoids this problem: If we use a proposal

P(I = j) ∝ τ(x j
t−1|t−1, yt ), p(xt ,∗ | I = j) = q(xt ,∗ | x j

t−1|t−1, yt )

then the importance weights are indeed proportional to

g(yt | x∗jt )k(x∗jt | x
j
t−1|t−1)

τ(x j
t−1|t−1, yt )q(x∗jt | x

j
t−1|t−1, yt )

.



Implementing the auxiliary particle filter

The optimal choices τ(x j
t−1|t−1, yt ) = p(yt | x j

t−1|t−1) and
q(xt | xt−1, yt ) = p(xt | xt−1, yt ) are usually not available
explicitely, so need an approximation. Simplest choice by
Gaussian approximation

log k(xt | xt−1) + log g(yt | xt )

≈ c(xt−1, yt ) + b(xt−1, yt )
′xt +

1
2

x ′t A(xt−1, yt )xt ,

obtained by using e.g. a Taylor approximation around the
arg maxxt of k(xt | xt−1)g(yt | xt ).



Likelihood estimation
Remember that the the likelihood increment p(yt | y1:t−1) is the
denominator in Bayes formula in the update step,∫

g(yt | xt )πt |t−1(xt )dxt =

∫
g(yt | xt )πt−1:t |t−1(xt , xt−1)dxtdxt−1.

Hence we have the estimate

p̂(yt | y1:t−1) =
1
N

N∑
j=1

g(yt | x j
t |t−1)

which we compute when normalizing the weights.

If we use the auxiliary particle filter, we have similarly

p̂(yt | y1:t−1) =
1
N

N∑
j=1

w̃(x j
t−1|t−1, x

∗j
t , yt ).



Likelihood estimation is unbiased

In general the particle filter does not produce unbiased
estimates of

∫
ψ(xt )πt |t (dxt ). But we have

Lemma If x j
0 is sampled from the initial distribution of X0 and if

resampling is unbiased, then

E(
n∏

t=1

p̂(yt | y1:t−1)) =
n∏

t=1

p(yt | y1:t−1) = p(y1:n),

but in general E(p̂(yt | y1:t−1)) 6= p(yt | y1:t−1).

This will be used in rare event estimation and in particle MCMC.



Properties of particle filter

I Under weak conditions, it is consistent (as N →∞) and a
CLT holds.

I Under strong conditions, can also show that consistency is
uniform in t and variance in CLT is uniformly bounded in t .

I Respects constraints ψ(x(t)) ≡ 0.
I Weights degenerate quickly as dimensions grow (see

Bickel et al. for a theoretical explanation). Particle filter can
loose track easily.

I Auxiliary particle filter can bring substantial improvements,
but not applicable if density k does not exist or is not
available analytically.



Importance splitting as a particle filter

I Let (Xt ) be a Markov process on some set E , A,B ⊂ E
A ∩ B = ∅. We want to estimate γ = Px0(τB < τA) where τA
and τB are first times of (re)entering A, B and x0 /∈ B.

I Importance splitting chooses Ac ⊃ B1 ⊃ . . .Bn = B and
simulates recursively from L(XτBk

| τBk < τA}.
I If we consider the state process X ′k = XτBk

and assume
that “observations” Yk = 1[τBk

<τA] all have the value 1, this
becomes a filtering problem.

I Moreover

γ =
n∏

k=1

P(τBk < τA | τBk−1 < τA) =
n∏

k=1

P(Yk = 1 | Y1:k−1 ≡ 1).

Therefore estimation of the “likelihood” gives the desired
estimate of γ, and it is unbiased !



Implementing importance splitting

I A particle with τBk > τA gets weight 0 and is thus killed.
Resampling inflates the number Rk of surviving particles at
step k back to N. Impossible if Rk = 0, so then γ̂ := 0.

I Observations are not made available sequentially, so
simulation effort can vary in each step. It is better to control
precision by propagating particles until a fixed value ≥ 2
for Rk is achieved. Then Nk−1 becomes random.

I Unbiasedness of γ̂ continues to hold if we use the UMVU
estimator for the negative binomial

P̂(τBk < τA | τBk−1 < τA) =
Rk − 1

Nk−1 − 1
.

I In our paper we also address the choices of n, Bk , Rk by a
two-step procedure and construct confidence intervals for
γ by running particle filters in parallel.



Section 5

Introductory Examples

Basics of state space models and filtering

Kalman filter and its applications

Particle filters

Ensemble Kalman filters
Basic idea
Square root and perturbed observation versions
Fine tuning
Bridging the two methods

Extensions of particle filters



Basic idea of Ensemble Kalman filter (Evensen, 1994)

Assume arbitrary state dynamics, but Gaussian-linear
observations

Yt = HXt +N (0,R).

Prediction step is the same as in the particle filter, but update
assumes (wrongly) that πt |t−1 = N (µt |t−1,Pt |t−1).

Then – as in the Kalman filter – πt |t = N (µt |t ,Pt |t ) where

µt |t = µt |t−1 + K (H,Pt |t−1,R)(yt − Hµt |t−1)

Pt |t = (I − K (H,Pt |t−1,R)H)Pt |t−1.

Ensemble Kalman filter estimates µt |t−1 and Pt |t−1 and converts
(x j

t |t−1) into a sample with the correct first and second moment.



Square root and stochastic version

The Ensemble Kalman filter comes in two versions:
I Stochastic: Perturbed observation EnKF

x j
t |t = x j

t |t−1 + K̂t (yt + εj
t − Hx j

t |t−1), εj
t ∼ N (0,R)

where K̂t = K (H, P̂t |t−1,R). This is the update for the
mean with artificial noise added to the observation.

I Deterministic: Ensemble square root filter. It applies an
affine linear transformation to (x j

t |t−1).



Particle filter for banana-shaped prediction

A single observation y = x1 +N (0,0.52) ∈ {−1,1}.
Banana-shaped prediction sample (black). Particle filter update
(blue).
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Ensemble Kalman filter for banana-shaped prediction
A single observation y = x1 +N (0,0.52) ∈ {−1,1}. Prediction
sample (black). Two versions of the ensemble Kalman filter
update (blue). (left: stochastic, right: deterministic).
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Comparison of deterministic and stochastic version

Suppose that πt |t−1 is not Gaussian. What is the limit of the
empirical distribution of (x j

t |t ) for N →∞? Because prediction
sample is modified, the limit distribution is not Gaussian.

Some analysis is possible when πt |t−1 is a Gaussian mixture.
Limit distribution exists for both versions, but is different from
the correct update according to Bayes formula, and depends on
which version is used.

Typically (see next slide) the stochastic version is too close to a
Gaussian distribution, the deterministic version often has peaks
at wrong places.



Comparing the two versions: Examples
A single observation y = x +N (0,1). The prediction
distribution is a Gaussian mixture with L components and
composite variance equal to one. True update
distribution (black), EnSRF (blue), POEnKF (golden).
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Properties of the EnKF

Both versions:
+ With some tuning: Works well also for N � dim(y ).
− Not consistent unless πt |t−1 is Gaussian. Observation y

influences only location, but not scale or shape of the
updated ensemble. Does not respect constraints
ψ(x(t)) ≡ 0.

Stochastic:
+ Robust in highly non-linear non-Gaussian systems.
− Loss of skill due to additional Monte Carlo error in update.

Deterministic:
+ No Monte Carlo error in update formula.
− Susceptible to outliers in the prediction ensemble that arise

in highly non-linear systems.



Fine tuning

Essentially, two different sources of error may impact filter
performance:

I Systematic errors
I Misspecifed dynamics
I Misspecified observation mechanisms (representation

errors, wrong error covariances)
I Non-Gaussian prediction distributions

I Monte Carlo error due to limited ensemble size. Affects in
particular estimation of covariance matrix Pt |t−1.

Both sources of error typically lead to a too small spread of the
updated ensemble, i.e., the uncertainty is underestimated.



Covariance inflation

Basic idea: Artificially increase the spread of the prediction
ensemble by a factor δ > 1:

x j
t |t−1 7→ x̃ j

t |t−1 = x t |t−1 + δ · (x j
t |t−1 − x t |t−1). (j = 1, . . . ,N)

Prediction mean is unchanged, but sample covariance is
inflated: Ĉov(x̃t |t−1) = δ2 · Ĉov(xt |t−1). Can be used also for
modifications of the method that we will discuss below.

Inflation factor δ may be spatially varying (a different factor for
each coordinate). δ is typically chosen such that the filter is
correctly calibrated, i.e., in the long run the observations should
behave as if taken from the prediction or updated ensemble.



Localization

The components of x and y have a spatial interpretation in
many applications. An observation y should have low impact on
spatially distant state variables.

Two paradigms:
I Covariance tapering (“covariance filtering, background

localization”)
I Local updates (“observation localization, localization in grid

space”)
Localized prediction covariance does not give local updates.



Covariance tapering

Basic idea: Replace the sample covariance matrix P̂t |t−1 of the
prediction ensemble by a regularized estimate that has a
smaller Monte Carlo error.

If components of x correspond to spatial location, regularize by
assuming that separated state variables should be uncorrelated
(called tapering):

P̂t |t−1 7→ C ◦ P̂t |t−1,

where C is a sparse correlation matrix and ◦ denotes
entry-wise multiplication.

Taper C is usually constructed via a compactly supported
correlation function.



Bridging the two methods: Overview

I Many methods in the literature attempt to combine
advantages of Ensemble Kalman and particle filter.

I In our experience, these methods are difficult to
implement: Either the description of the algorithm is not
clear, or it has many tuning parameters which are hard to
choose, or we could not reproduce the results.

I We have proposed two generalizations of the stochastic
EnKF, called XEnKF and EnKPF. Both rely on an exact
update formula for Gaussian mixtures and have one tuning
constant.

I XEnKF is based on clustering of the prediction particles.
Tuning parameter is the number of clusters.

I In this talk, focus on the EnKPF.



Updates of Gaussian mixtures

If πt |t−1 is a Gaussian mixture, πt |t is again a Gaussian mixture:

πt |t−1 =
L∑
`=1

α`t |t−1N (µ`t |t−1,P
`
t |t−1)⇒ πt |t =

L∑
`=1

α`t |tN (µ`t |t ,P
`
t |t )

where (µ`t |t−1,P
`
t |t−1)→ (µ`t |t ,P

`
t |t ) as in the Kalman filter and

α`t |t ∝ α
`
t |t−1 × ϕ(y |Hµ`t |t−1,HP`

t |t−1H ′ + R)

(ϕ denotes the Gaussian density).

“Particle filter for the weights, Kalman filter for means and
covariances”.



Bridging between EnKF and PF: EnKPF

We can apply Bayes formula in two steps (progressive
correction)

πt |t (dxt ) ∝ πt |t−1(dxt )g(yt | xt )
γg(yt | xt )

1−γ (0 ≤ γ ≤ 1).

Step 1: From πt |t−1(dxt ) to πγt |t (dxt ) ∝ πt |t−1(dxt )g(yt | xt )
γ by

Ensemble Kalman Filter: Simply replace R by R/γ or P̂t |t−1 by
γP̂t |t−1 in the Kalman gain.

Step 2: From πγt |t (dxt ) to πt |t (dx) ∝ πγt |t (dxt )g(yt | xt )
1−γ by

particle filter.

The essential trick is to do both steps analytically, and to
sample only at the end. See next slide.



EnKF as a Gaussian mixture

The EnKF in step 1 produces updates

x j
t |t = x j

t |t−1 + K̂ γ
t (yt + εj − Hx j

t |t−1)

where K̂ γ
t = K (H, γP̂t |t−1,R). This can be considered as a

balanced sample from the Gaussian mixture

π̂γt |t =
1
N

N∑
j=1

N (x j
t |t−1 + K̂ γ

t (y − Hx j
t |t−1),

1
γ

K̂ γ
t RK̂ γ′

t ).

There is no need to draw the sample !

Step 2 converts π̂γt |t into another Gaussian mixture from which

we sample to get (x j
t |t ).



Choice of tuning parameter γ

The exponent γ trades off systematic and Monte Carlo errors:

I γ = 0 corresponds to particle filter, γ = 1 to Ensemble
Kalman filter, with continuous interpolation in between.

I A small γ means small bias but large Monte Carlo
variance.

I A large γ means large bias but small Monte Carlo variance.

Need to find an interesting compromise!

Ansatz: Choose γ to achieve a given sampling diversity, i.e., the
mixture weights in step 2 should not be too different from
uniform weights.



Diversity as a function of γ

Left/right: Two different values of y . Two priors: Gaussian (top)
and bimodal (bottom). State dimension: 10, 50, 250.
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Single update for bimodal prior I

Left: EnKF, Right: EnKPF, diversity ≈ 40%.
Dots: Prior sample, Dotted: Contours of underlying update
density.
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Single update for bimodal prior II

As before, but with observation leading to a bimodal posterior.
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Example: Lorenz 96 model: RMSE for 2000 cycles

Every 2nd component observed, N = 400.

10% median mean 90%
XEnKF L = 2 0.49 0.70 0.78 1.16

L = 2, mod. weights 0.50 0.70 0.77 1.10
L = 5 0.46 0.70 1.01 2.20
L = 5, mod. weights 0.44 0.63 0.71 1.04

EnKPF 25%–50% diversity 0.49 0.70 0.78 1.16

EnKF (stochastic version) 0.56 0.81 0.87 1.25

mod. weights: heavy tailed instead of Gaussian likelihood was
used.



Summary and Outlook

I Particle filter fails in high-dimensional problems, EnKF
works much better, although its success is still a bit of a
mystery.

I In particular, the errors due to nonlinear state evolution are
difficult to assess.

I Finding algorithms which relax the assumption of a
Gaussian prediction distribution remains a challenge. How
well do our proposals meet that challenge ?

I We intend to find out in a large scale weather prediction
scheme where the Ensemble Kalman Filter is used.



Section 6

Introductory Examples

Basics of state space models and filtering

Kalman filter and its applications

Particle filters

Ensemble Kalman filters

Extensions of particle filters
Particle smoothing
Parameter estimation
General sequential Monte Carlo



Smoothing by filtering of paths

We can implement the recursion

π0:t |t−1(dx0:t ) = K (dxt | xt−1)π0:t−1|t−1(dx0:t−1)

π0:t |t (dx0:t ) ∝ π0:t |t−1(dx0:t )× g(yt | xt ).

by a particle filter that generates samples of paths (x j
0:t |t ):

Attach the propagated particle to the current path

x j
0:t |t−1 = (x j

0:t−1|t−1, x
j
t |t−1)

and resample (x j
0:t |t−1) with probabilities ∝ g(yt | x j

t |t−1).

But then (x j
s|t ) degenerates quickly to a single value for any

fixed s since this component is not rejuvenated. So this method
is useless for uncertainty quantification, but it still can generate
a reasonable path from π0:t |t .



Particle filter for π0:t |t

Black: Filter samples. Red: True state.
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Forward filtering, backward smoothing

We can combine the formula

P(dxs | xs+1, y1:t ) = P(dxs | xs+1, y1:s)

∝ k(xs+1 | xs)πs|s(dxs).

with the particle filter approximations of πs|s to generate
recursively an approximate sample from π0:t |t :

P(x j
s|t = x i

s|s | x
j
s+1|t ) =

k(x j
s+1|t | x

i
s|s)∑N

`=1 k(x j
s+1|t | x

`
s|s)

.

If πs|t is much more concentrated than πs|s, diversity is too low.
Moreover, sampling from this discrete distribution by inversion
leads to an overall complexity O(N2).



Smoothing by accept/reject

We can get rid of both problems by using the approximation

πs|s ∝ g(ys | xs)
N∑

j=1

k(xs | x j
s−1|s−1)

instead of the empirical distribution of (x j
s|s). Then

p(x j
s|t | x

j
s+1|t , y1:s) ∝ k(x j

s+1|t | xs)g(ys | xs)
N∑

i=1

k(xs | x i
s−1|s−1).

Since we need only one draw from this distribution, we have to
use the accept/reject method: Propose an index I∗ and a value
x∗s as in the auxiliary particle filter and accept x∗s as x j

s|t with the
appropriate probability.



Smoothing using the two filter formula

A different approach is based on the formula

πs|t ∝ πs|s−1p(ys:t | xs).

The second factor is unknown, but it satisfies the recursion

p(ys+1:t | xs) =

∫
p(ys+1:t | xs+1)k(xs+1 | xs)dxs+1

p(ys:t | xs) = g(ys | xs)p(ys+1:t | xs).

This has the same structure as the filter relations, except that
p(ys:r | xs) is not a probability density in xs (hence there is no
normalization in the update step).



Approximating the 2-filter formula
We can turn this into a recursion for densities by setting

π̃s|s(dxs) =
p(ys:t | xs)γs(xs)∫

p(ys:t | xs)γs(xs)dxs

where γs is a density s.th. the denominator is finite.

Then we start with a sample (x̃ j
t |t ) from π̃t |t ∝ g(yt | xt )γt and

construct recursively approximate samples (x̃ j
s|s) from π̃s|s by

propagation, weighting and resampling.

In this way we obtain an approximation of πs|t with density
proportional to

N∑
i=1

k(xs | x i
s−1|s−1)︸ ︷︷ ︸

≈πs|s

g(ys | xs)
N∑

j=1

k(x̃ j
s+1|s+1 | xs)

γs+1(x̃ j
s+1|s+1)︸ ︷︷ ︸

≈p(ys+1:t |xs)

.



An O(N) smoothing algorithm

The density on the previous slide is a mixture of N2

components. Like in the auxiliary particle filter we generate a
weighted sample by sampling first the two indices of the
mixture and then xs from an approximation to the chosen
component and finally by weighting.

If we try to use an approximately optimal choice of the two
indices, we end up again by an O(N2) algorithm. However, we
obtain an O(N) algorithm if we choose the two indices
independently. The price we pay is a potential loss of effective
sample size.

Fearnhead, Wyncoll and Tawn, Biometrika (2010).



Parameters as components of the state

We discuss next the estimation of parameters θ in the state
transition K and/or the observation density g.

The easiest method is to include θ as a deterministic
component of the state:

K (dθt ,dxt | θt−1, xt−1) = ∆θt−1(dθt )K (dxt | xt−1, θt−1)

where ∆ is a point mass. The particle filter degenerates quickly
because there is no rejuvenation of the θ-component.

One can avoid this by adding noise to θj
t |t−1, possibly combined

with shrinkage to the mean. But we need to let the variance of
the noise go to zero in order that (θj

t |t ) approximates p(θ | y1:t ).



Particle MCMC

In the linear Gaussian case, we used simultaneous updates of
parameters and states: We proposed

(x∗0:t , θ
∗) | (x0:t , θ) ∼ q(θ∗ | θ)dθ∗π0:t |t ,θ∗(dx∗0:t )

and accepted it with probability min(1,p(θ∗ | y1:t )/p(θ | y1:t )).

This cannot be used in general because we cannot draw true
realizations from π0:t |t ,θ, and for the acceptance probability we
need p(y1:t | θ) which we cannot compute exactly.

Andrieu et al. JRSS B (2010) showed that using particle
approximations at both instances still gives a consistent
algorithm.



The particle MCMC algorithm

Assume we have currently the values (θ, x0:t ) for parameters
and states and an approximation p̂(y1:t | θ). Then we do

I Choose a new θ∗ according to q(θ∗ | θ).
I Use a particle filter to generate a sample (x j

0:t |t ) from
π0:t |t ,θ∗ and an approximation p̂(y1:t | θ∗).

I Choose x∗0:t uniformly from (x j
0:t |t ).

I Accept (θ∗, x∗0,t ) with probability

min
(

1,
p(θ∗)p̂(y1:t | θ∗)
p(θ)p̂(y1:t | θ)

)
.



Sampling from moving targets

In many applications outside from state space models, one also
wants to sample not from one distribution π, but from a
sequence of related distributions πt , t = 0,1, . . . ,n.

In particular, if the target π is difficult to sample, one can start
with a simpler distribution π0 and construct an approximating
sequence such that πn = π. Examples are importance splitting
as discussed in the Introduction, or simulated tempering where

πt (dx) ∝
(

dπ
dπ0

(x)

)βt

π0(dx) (0 = β0 < β1 < . . . < βn = 1).

To simplify the notation, assume that all πt have densities which
are known up to a normalizing constant.



Sequential sampling

Generalizing the particle filter, we want to approximate πt by a
sequence of particles (x j

t ) which evolve by propagation and
resampling.

If in the propagation step x∗jt ∼ qt (xt | x j
t−1)dxt (independently

for different j ’s), then resampling must be with probabilities

w j
t =∝ w̃t (x

∗j
t ) =

πt (x
∗j
t )∫

πt−1(xt−1)qt (x
∗j
t | xt−1)dxt−1

.

But typically, the integral in the denominator cannot be
computed analytically. One exception is when qt leaves πt−1
invariant, e.g. a Metropolis-Hastings transition. But then we
move from πt−1 to πt only by importance resampling,
propagation just does some rejuvenation by breaking ties from
the resampling step.



Resampling pairs of particles

I We cannot compute the density of (x∗jt ), but the density of
(x j

t−1, x
∗j
t ) is known: πt−1(xt−1)qt (xt | xt−1).

I Importance resampling can convert (x j
t−1, x

∗j
t ) to a sample

from a distribution with second marginal πt .
I Such distributions have the density πt (xt )rt−1(xt−1 | xt )

where rt−1 is an arbitrary transition density.
I By marginalization, we can choose any “backward

transition” rt−1 and resample (x∗jt ) with probabilities

w j
t ∝ w̃t (x

j
t−1, x

∗j
t ) =

πt (x
∗j
t )rt−1(x j

t−1 | x
∗j
t )

πt−1(x j
t−1)qt (x

∗j
t | x

j
t−1)

.



Choice of the transitions

We are free to choose forward and backward transitions qt and
rt−1. For given qt , the variance of w̃t is minimal if

rt−1(xt−1 | xt ) =
πt−1(xt−1)qt (xt | xt−1)∫

πt−1(xt−1)qt (xt | xt−1)dxt−1
,

bringing us back to the problem at the start. Still, one can
approximate the optimal choice by something which does not
involve an integral.

E.g. approximating logπt−1(xt−1) + log qt (xt | xt−1) by a
quadratic expression in xt−1, will lead to a Gaussian backward
density.



The case of the particle filter

For the particle filter πt = πt |t for which we do not have an
explicit expression up to a normalizing constant. But if we
choose the pair target density πt (xt )rt−1(xt−1 | xt ) to be

πt−1:t |t (xt , xt−1) =
πt−1(xt−1)k(xt | xt−1)g(yt | xt )

p(yt | y1:t−1)
,

the weights are explicit up to a normalizing constant

w̃t (xt−1, xt ) ∝
k(xt | xt−1)g(yt | xt )

q(xt | xt−1, yt )
.

As stated earlier, the optimal choice of q is p(xt | xt−1, yt ).



Sequential Monte Carlo squared

Chopin, Jacob and Papaspiliopoulos, JRSS B (2013).

Sequential Monte Carlo can be used to sample from a posterior
π(θ) = p(θ|y1:n): Simply take πt = p(θ|y1:t ) and use a forward
transition qt which leaves πt−1 invariant. Reweighting is then by

w j
t ∝

p(θj
t | y1:t )

p(θj
t | y1:t−1)

= p(yt | y1:t−1, θ
j
t ).

In state space models, p(yt | y1:t−1, θ) is not available
analytically. The idea of (SMC)2 is to approximate it by running
particle filters for each θj

t . Again, this gives only approximate
weights, but they show that the method is still consistent.



Approximate Bayesian computation (ABC)

I Models where computing the likelihood p(y | θ) is much
harder than to simulate from it occur frequently.

I Examples: State space models, models in genetics, other
models with many latent variables.

I Basic ABC “algorithm”: Draw a parameter θ from the prior
and an observation from the corresponding likelihood. If
simulated observation ysim 6= actual observation yobs,
reject the parameter and repeat. The accepted parameters
are then a sample from the posterior.

I ABC tries to obtain a practical algorithm by relaxing the
condition for an exact match with the actual observation.



Relaxing the exact match condition
I Keep the draws with d(ysim, yobs) ≤ ε where d is a metric

on the space of observations.
I Reduce dimension by choosing a statistic (feature) S and

keep the draws with d(S(ysim),S(yobs)) ≤ ε.
I Use sequential Monte Carlo to sample from

πt (y , θ) ∝ p(θ)p(y | θ) exp(−d(S(y),S(yobs))/εt )

for large ε0 and small εn.
I Because p(y | θ) is unknown, the choice of forward

transitions is limited: Have to take Metropolis-Hastings with
proposal q(θ∗ | θ)p(y∗ | θ∗).

I Albert et al. propose to make only Metropolis-Hastings
transitions, without any importance weighting and
resampling (as in simulated annealing). Use the set of
particles to derive a good cooling schedule (εt ), based on
ideas from non-equilbrium thermodynamics.



Summary
I State space models have an unobserved Markovian state

process and conditionally independent observations. They
are used in many applications.

I Linear Gaussian state space models with unknown
parameters can be fitted with the Kalman filter and
smoother. Some extensions to nonlinear/non-Gaussian
observations are possible.

I The particle filter samples from the current state given
observations and parameters. The auxiliary particle filter
can reduce the problem of sample depletion.

I Ensemble Kalman filter is an alternative to the particle filter
in high dimensions.

I There are more complex methods to extend particle
filtering for sampling all unobserved variables and the
parameters.

I Particle filter ideas can be used to sample from a
complicated distribution using successive approximations.



A few references

I C. Andrieu, A. Doucet and R. Holenstein. Particle Markov
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I A. Doucet and A. M. Johansen. A tutorial on particle
filtering and smoothing: Fifteen years later. In Handbook
on Nonlinear Filtering, Oxford, 2011.

I G. Evensen. Data Assimilation: The Ensemble Kalman
Filter, Springer, 2007.

I M. Frei and H. R. Künsch. Bridging the ensemble Kalman
and particle filter, Biometrika 100 (2013).

I H. R. Künsch State space and hidden Markov models. In
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