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Seminar für Statistik, ETH Zürich
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1. Introduction

Often, one reads or hears statements like this: “In all fields of science, more and

more data are collected, frequently in an automated way. In order to analyze these

data, more statisticians are needed.”

In this talk, I try to give some explanations why this is not what happens. It is based

on my experience in building up a collaboration with environmental scienctists at

ETH.

My main point is that the current state of knowledge about environmental systems

makes it far more difficult for statistics to add something meaningful to the analysis

of the available data than one might naively think.

I will explain how I came to this conclusion. I will also try to show some statistical

problems and tools that I consider to be worthwile in this context.
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2. Data and models for aquatic systems

Data from environmental systems usually come as a multivariate space-time series.

I consider here examples of aquatic systems, but the situation is similar for soil,

atmospheric and oceanic systems.

A sewage treatment plant:

During two months, data were collected on water flows and on phosphate,

ammonia, oxygen and suspended solids in some of the reactors of one plant at

half-hourly intervals.

Monitoring of Lake Zurich:

Lake Zurich is a long narrow lake with a length of 30 km, a width between 0.5 and

2.5 km and a maximal depth of 137 m. The city of Zurich is at the lower end where

the only outflow of the lake is. The shores are densely populated, and the lake

provides drinking water for up to a million inhabitants.
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A large number of physical, chemical and biological variables are measured monthly

since 1972 at six stations. Data on inflow from rivers and sewage plants and

atmospheric deposition are also available.

What would a statistician do with such data ?

Presumably, we would try to decompose the series into trends, seasonal effects and

irregular part and then model the covariance structure of the irregular part.

Interactions between temporal and spatial components might be complicated to

handle. Finally, one might try to fit a (nonlinear) vector autoregression.
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However, environmental scientists and engineers have little interest in the outcome

of such a purely data-driven exercise. They are interested in models that

� take as much knowledge about the underlying processes into account as

possible,

� contribute to the understanding of these processes,

� are transferable to similar systems,

� allow prediction of the same system under different driving conditions than

those observed,

� have parameters with a clear subject matter interpretation.
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Why can’t we take knowledge about the underlying processes into account in our

statistical models ?

These processes can be described mathematically only in continuous time and

space (with ordinary or partial differential equations) and they involve many variables

that are not observed. Subject matter knowledge cannot be formulated in a way that

involves only the observed variables at the given discrete points in time and space.

In the following, I give a brief introduction into the kind of models that are used by

environmental scientists. Then I will try to describe some of the problems that occur

when one tries to fit such models to data.
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2.1 A simple biochemical process

Consider three variables X
t

; S

t

; O

t

denoting biomass, substrate and oxygen which

evolve in time according to the differential equation
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:

This takes the 3 processes growth of biomass, decay of biomass and reaeration into

account. For instance, the growth rate is �

S

t

K

S

+S

t

X

t

(linear in X
t

, but limited in a

nonlinear way by the available substrate). This rate adds to the rate of change for

each variable with different factors.

The unknown parameters are �, K
S

, b, Y , K
ex

, Osat, f
I

and the three initial

conditions.
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Figure 1: Solution of the differential equation for some initial condition. In a first

phase, the biomass increases, using up the substrate and reducing oxygen. In a

second phase, biomass decreases and oxygen moves back to the saturation level.
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2.2 Biochemical processes in larger systems

Many variables, many processes, more complicated rates. In addition, transport

processes have to be taken into account.

For our sewage plant:

Variables: phosphate, oxygen, nitrate, nitrogen, autotrophic and heterotrophic

bacteria concentrations etc. in different reactors. (17 in total).

Processes: aerobic/anoxic/anaerobic growth of bacteria, hydrolysis etc. (19 in

total).

For the lake Zurich:

Variables: phosphate, ammonia, nitrate, oxygen, organic phosphorus and dry mass

without P of two groups of algae, dry mass of zooplankton, etc. (14 in total).

Processes: growth, respiration and death of two groups of algae and of

zooplankton, aerobic and anoxic mineralization etc. (13 in total).
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Differential equations for these processes in case of perfect mixing (no spatial

dependence)

dX

i

dt

= r

i

(X) =

X

j

�

ij

�

j

(X):

Here �
j

is the rate of process j, and �
ij

is the factor by which this rate contributes

to the production rate r
i

for variable i.

For example growth of one group of algae depends linearly on the concentration of

this group and nonlinearly on the concentrations of nitrate and phosphate and on

temperature and light intensity.
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2.2 Spatial dependence, transport processes

Concentrations of variables and rates depend not only on time, but also on spatial

locations. Changes in space and time of concentrations are determined by physical

transport processes (advection, diffusion, sedimentation).

In sewage plants, reactors are usually well stirred and can thus be considered to a

good approximation as homogeneous. One obtains a system of ODE’s for each

reactor, coupled by the flow between reactors.

In lakes, horizontal mixing is typically fast, but vertical mixing is slow. Hence one

considers horizontally averaged variables, leaving depth z as the only spatial

dimension. The biochemical processes described above are then combined with the

physical processes in a mass balance equation

�X

�t

= �

�

�z

q + r

where r is the production rate as above and q is the flow.
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For instance, for diffusive mixing, q = �K�X=�z where the mixing coefficient K

depends on depth and time.

For the lake of Zurich, there are in addition two compartments corresponding to two

sediment layers, and there is exchange between these layers and the water column.

As a result, one has a complicated system of ordinary or partial differential

equations that reflect laws of nature and the current understanding of the processes

involved. On an “absolute scale” these models are fairly large and complicated, but

relative to the complexity of the system they must still be considered to be primitive.

In particular, there are very few possibilities for simplification.
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These models contain a large number of parameters (75 in the case of the sewage

plant, 52 in the case of the lake Zurich). In principle one would like to estimate them

by weighted nonlinear least squares, that is comparing the solution of the differential

equations with the data. Here the data are some of the variables at a discrete set of

time points and spatial locations.

Peter Reichert has developed a simulation and analysis program called AQUASIM. It

allows to define models of the kind described above, solve the differential equations,

fit parameters by least squares and perform sensitivity and uncertainty analysis.
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3. Parameter estimation in the non-identifiable case

Problems arise because all these models have many more parameters than can be

estimated from the available data. The algorithms for computing the optimal fit do

not converge, and there is a whole complicated surface in parameter space where

the sum of squares is minimal for all practical purposes.

This sounds like a wonderful occasion for Bayesian statistics. Indeed, there is prior

knowledge from laboratory experiments and earlier studies about most of the

parameters, and this can be quantified. There is also some feeling about which

parameters are connected, but it is an impossible task to specify a joint prior for 20

or 50 parameters.

In addition, computing one solution of the system of differential equations is time

consuming, and therefore simulating from the posterior is out of reach currently.
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3.1 Sensitivity and collinearity measures

Our approach tries to find subsets of the parameters which can be estimated

reasonably from the data when other parameters are fixed at some prior value.

Some notation: Let y be the available data put into a n� 1 vector in some

arbitrary order and let 
i

be the scale of variable y
i

. Let � be the m� 1 vector of

all parameters and let �(�) be the output vector of the model (same variables,

times and locations as for y, in the same order). The least squares criterion is then

(y � �(�))

T

W (y � �(�))

where W is diag(
�2

i

).
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Finding a subset of parameters which can be estimated from the available data

involves the following steps
� Select a reasonable parameter value �
0

.

� Define an uncertainty range ��

j

for each component �
j

.

� Compute the sensitivity matrix S = (s

ij

),

s

ij

=

1



i

��

i

(�)

��

j

j

�=�

0

��

j

;

and compute from it importance indices for each component �
j

and collinearity

indices for subsets K of components.

� Look for subsets of important parameters with low collinearity indices.

� Minimize the least squares criterion with respect to the components of the

chosen subset to obtain a new �

0

and iterate.
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Figure 2: Fitting the model for Lake Zurich: Collinearity indices for different subsets

At the end, one should look again at the collinearity indices in order to explore the

influence of the fixed components on the estimated components.
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How does this method work for the sewage plant and the Lake Zurich ?

The starting value �
0

is typically good, and only a few components undergo

substantial changes in the process.

Studying the influence of fixed values on the estimated parameters reveals that

these changes reflect not so much an error in the current opinion on the value of

these components, but rather a lack of knowledge about some crucial variables (e.g.

the precise composition of inflows) or a model deficit.

From an engineering point of view, the fit of the models is surprisingly good.

However, time series plots of residuals reveal that systematic errors often dominate

random errors.
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Figure 3: Comparison of observations and fitted model in the sewage plant example.

The variables are phosphate and ammonia in 3 reactors.
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4. Stochastic differential equations and time-varying parameters

If we want to include stochastic components in models that use the current

biological, chemical and physical knowledge, we are led naturally to stochastic

differential equations.

There is currently much activity in statistics for solutions of SDE’s where partial and

noisy observations are available at discrete time points. The main motivation for this

work comes from financial mathematics, but I think it has also potential applications

in natural sciences.

Recent work in this area has been done by Durham, Gallant, Shephard, Pitt and

Roberts.
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The most obvious reason for introducing randomness into a differential equation is

that many parameters are not really constant, but vary in time in a way that is not

predictable. This can account for instance for the systematic deviations that occur

with deterministic models.

If a parameter � enters linearly in a differential equation,

dX

t

dt

= �f(X

t

), then by

putting � = � plus “noise”, one obtains the SDE

dX

t

= �f(X

t

)dt+ �f(X

t

)dW

t

:

(this is for instance the first example in Oksendal’s book).

However, this implies extremely fast fluctuations in the parameter which is is not

reasonable for natural systems. We find it much more realistic to work with a model

d�

t

= �(�

t

)dt+ �(�

t

)dW

t

; dX

t

= f(X

t

; �

t

)dt:

Simple models like Ornstein-Uhlenbeck or Cox-Ingersoll-Ross for �
t

are presumably

sufficient.
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Figure 4: Model for biomass, substrate and oxygen with time varying parameters

� (maximal growth rate) and b (death rate) according to white noise and an OU-

processes respectively. Shown are the 2.5%, 50% and 97.5% quantiles based on

1000 simulations, together with one arbitrary simulation.
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4.1 MCMC for partially observed SDE’s

Consider an unobserved SDE with unknown parameters �

dX

t

= �(X

t

; �)dt+ �(X

t

; �)dW

t

; (0 � t � T ):

For implementations, we will always take the Euler approximation with small step

size Æ. What we observe is

Y

i

= HX

t

i

+ �

i

:

In the Bayesian approach, we want to simulate from the joint distribution of

((X

t

); �) given (Y
i

) with a Metropolis-Hastings algorithm. We will update either �,

keeping the whole path fixed, or update the part on (r; s) of the path, keeping �

and the parts on [0; r℄ and [s; T ℄ fixed.
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The key task is then to find a good proposal for a diffusion with given initial and end

points and partial information for a few points in between.

However, as Roberts and Stramer have pointed out, there is an additional difficulty:

If the volatility depends on �, the convergence is slow for small step size Æ. The

volatility is then almost completely determined by the path and it changes very little

during the modification of the path.
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4.2 The particle filter for partially observed SDE’s

Partially observed SDE’s are special cases of state space models. State space

models consist of an unobservable time-discrete Markov chain of state variables Z
j

and a sequence of observations Y
j

such that Y
j

depends only on Z
j

and different

Y

j

’s are conditionally independent. We denote the transition density of the states by

a(z

j

; z

j+1

) and the conditional obervation density by b(z
j

; y

j

).

state process . . . ! Z

j�1

! Z

j

! Z

j+1

! . . .

# # #

observation . . . Y

j�1

Y

j

Y

j+1

. . .

In the case of partially observed SDE’s, the state Z
j

is the path of X on (t
j�1

; t

j

℄.

After a discretization of time, we take a to be the product of normal densities from

the Euler approximation. b depends only on X
t

j

.
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The particle filter is a recursive Monte Carlo approximation to the conditional

density of Z
j

given (Y
1

; : : : Y

j

), the so-called filter density f
j

. In principle, f
j

can

be computed with the recursion

f

j+1

(z

j+1

) / b(z

j+1

; y

j+1

)

Z

a(z

j

; z

j+1

)f

j

(z

j

)dz

j

:

The problem is the computation of the integral (and to a lesser extent, the

normalization).

The particle filter uses approximations f
j

(z

j

) �

P

K
k=1

�

j;k

�(z

j;k

) where �
j;k

are weights and �(z) is a point mass at z. Inserting this into the recursion, we

obtain

f

j+1

(z

j+1

) / b(z

j+1

; y

j+1

)

K

X
k=1

�

j;k

a(z

j;k

; z

j+1

):

In order to complete the recursion, we have to generate a weighted sample from this

density. Due to lack of time, I skip the discussion how to do this.
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What can we do with the filter density ?

It allows us to approximate the likelihood since
p(y

j

j y

j�1

; : : : y

1

) =

Z

f

j�1

(z

j�1

)a(z

j�1

; z

j

)b(z

j

; y

j

)dz

j�1

dz

j

:

There are some problems however, because we obtain discontinuous

approximations of log likelihood, and for each value of the likelihood function we

need a different particle filter.

Information about the unobserved states is also of considerable interest, but usually

one wants the conditional distribution of Z
j

given all observations (y
1

; : : : y

n

)

rather than the filter distribution. The two are related by

p(z

j

j z

j+1

; y

1

; : : : y

n

) / a(z

j

; z

j+1

)f

j

(z

j

);

but in the context of SDE’s it is difficult to exploit this relation.
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4.3 ODE’s with random coefficients

d�

t

= �(�

t

)dt+ �(�

t

)dW

t

; dX

t

= f(X

t

; �

t

)dt:

Since (X
t

) is a deterministic function of �
t

, the MCMC algorithms need to be

modified. Fixing the values of (X
t

) outside (r; s) does not make sense. The

particle filter can be used.

Consider the time evolution for biomass, substrate and oxygen from the beginning

with maximal growth rate �
t

and death rate b
t

following OU-processes. Observed

are only oxygen values.

In the first phase, b
t

is not identifiable. Therefore the filter values for b
t

can be

slightly off, leading to errors in biomass and substrate. These errors become visible

at the beginning of the second phase also in the oxygen, and the filter has then to

make large adjustments quickly. This can lead to a breakdown of the algorithm.

28



'
&

$
%

m
in

−1

0
.0

0
1
5

0
.0

0
2
5

µ̂t
OU

A

m
in

−1

0
.0

0
0
0
6

0
.0

0
0
1
2

b
^

t
OU

m
g
C

O
D

 l
−1

−
1
.0

0
.0

1
.0

X
^

t − Xt
OU

m
g
C

O
D

 l
−1

−
0
.4

0
.0

0
.4

S
^

t − St
OU

m
g
O

 l
−1

−
0
.0

4
0
.0

0
0
.0

4
O
^

t − Ot
OU

time [min]

#
 r

e
j.
 p

e
r 

re
a
liz

a
ti
o
n

1
e
−

0
2

1
e
+

0
1

0 2 4 6 8 10 14 18

# rej OU

µ̂t
OU

B

b
^

t
OU

X
^

t − Xt
OU

S
^

t − St
OU

O
^

t − Ot
OU

time [min]

0 2 4 6 8 10 14 18

# rej OU

Figure 5: Particle filter for two realizations of the biomass, oxygen and substrate

model. Solid: True value, Dashed: Filter median. Shaded: 95% filter interval.
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5. Discussion

� The leading paradigm in many fields of science is the use of determinstic

continuous models formulated as PDE’s.

� These models are remarkably successful, and prior information allows even to

use nonidentifiable models.

� There is uncertainty about processes that cannot be resolved in the current

models, and quantifying this uncertainty is a challenge.

� Our students should get some exposure to PDE’s (physical background, analytic

and numerical methods).
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