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1. Introduction

1.1 Examples of model selection problems

A model selection problem arises whenever “the number of things that you don’t

know is one of the things that you don’t know.” For instance

� Choice of explanatory variables in regression.

� Choice of orders p; q of an ARMA(p; q)-model.

� Choice of numbers of clusters in a cluster algorithm.

� ...
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The choice of tuning constants in nonparametric curve estimation (e.g. bandwidth or

smoothing parameters, number of knots in a CART procedure, choice of wavelet

coefficients to truncate) can also be considered as model selection problem .

Finally we have the choice between two or more models that are not nested, e.g. the

choice between a Fourier and a wavelet basis for expansion of a regression function.
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1.2 Purposes of model selection

� Understanding and interpretation

� Prediction

� Inference about a particular parameter of interest common to all models.
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1.3 Basic ideas for model selection

Ockham’s razor: “Entities are not to be mulitplied beyond necessity”

(William of Ockham, 1285 – 1347/49).

The goal is a distinction between reproducible and non-reproducible structures in

the data, or in other words a balance between systematic and random errors.

An unbiased (fair) assessment of goodness of fit of a model allows model selection

(and is of independent interest).

The sum of squared errors or the maximum of log likelihood are biased towards

complicated models. Possible corrections will be shown in this talk.
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2. Akaike’s Information Criterion (AIC)

2.1 Codes and entropy

For the following, we need some concepts from information theory.

Binary codes of a finite alphabet f1; 2; : : : ;mg are equivalent to probability

distributions on this set via

code length of symbol i !� log p(i):

The entropy is the minimal expected code length:

H(P ) = �

X

i

p(i) log p(i) = min

Q

�

X

i

p(i) log q(i):

In particular, the optimal code is based on the probabilities by which the symbols are

produced.
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The Kullback-Leibler divergence K(P;Q) is the increase in expected code

length when using q instead of p

�

X

i

p(i) log q(i) +

X

i

p(i) log p(i) =

X

i

p(i) log

p(i)

q(i)

:

These concepts and quantities can be generalized to continuous symbols by

discretizing the space. The expected code length contains then a term which

diverges, but is independent of the chosen code.
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2.2 The key idea of AIC

We use the following notation

Data: yobs = (y

obs

1

; : : : ; y

obs

n

).

Distribution that generated the data: G, with density g(y).

Model distributions: F
�

, with densities f(yj�).

Parameter: � in an open subset � of Rp (so p is the dimension of the parameter).

The lack of fit of a model distribution to the true distribution is measured by the

Kullback-Leibler divergence K(G;F

�

) =

Z

log

g(y)

f(yj�)

g(y)dy =

Z

log g(y) g(y)dy �

Z

log f(yj�) g(y)dy:

If only differences in the lack of fit are of interest, we can drop the first term.
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Hence the parameter of the model distribution that fits best to G ist

� = argmin

�

K(G;F

�

) = argmin

�

Z

� log(f(yj�)) g(y)dy:

Moreover,� log f(y

obs

j�) is an unbiased estimate of

R

� log f(yj�) g(y)dy

for any fixed �. Therefore the MLE
b

�(y

obs

) = argmin

�

(� log f(y

obs

j�))

maximizes the estimated goodness of fit.

However,� log f(y

obs

j

b

�(y

obs

)) is not an unbiased estimator of

R

� log f(yj

b

�(y

obs

)) g(y)dy and thus cannot serve as a basis for model

selection.

10



'
&

$
%

To see why, decompose
� log f(y

obs

j

b

�(y

obs

)) +

Z

log f(yj

b

�(y

obs

)) g(y)dy

= � log f(y

obs

j

b

�(y

obs

)) + log f(y

obs

j�)

� log f(y

obs

j�) +

Z

log f(yj�) g(y)dy

�

Z

log f(yj�) g(y)dy +

Z

log f(yj

b

�(y

obs

)) g(y)dy

=: D

1

+D

2

+D

3

:

Then D
2

has expectation zero, but D
1

and D
3

are always negative by the

definition of b� and �.
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2.2 Quantifying the bias

Use asymptotics for the bias of D
1

and D
3

. For simplicity, consider i.i.d.

observations:

g(y) =

Y

i

g

1

(y

i

); f(yj�) =

Y

i

f

1

(y

i

j�):

Then in regular situations

b

�(y

obs

)! �;

p

n(

b

�(y

obs

)� �)

d

! N (0; J

�1

0

I

0

J

�1

0

);

where

J

0

= �

Z

�

2

����

T

log f

1

(y

1

j�) g

1

(y

1

)dy

1

;

I

0

=

Z

�

��

log f

1

(y

1

j�)

�

�

��

log f

1

(y

1

j�)

�

T

g

1

(y

1

)dy

1

:
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Moreover,

IE[D

1

℄ � IE[D

3

℄ � �

1
2

trae(J

�1

0

I

0

):

This gives (multiplying by 2 for convenience)

AIC = �2 log f(y

obs

j

b

�(y

obs

)) + 2 trae(J

�1

0

I

0

):

Estimation of trae(J
�1

0

I

0

):

� The original approach by Akaike uses trae(J
�1

0

I

0

) � p. This is justified

because J
0

= I

0

if the model holds.

� Takeuchi suggested to estimate J
0

and I
0

by averages over the data.

� Konishi and Kitagawa use the bootstrap to estimate the bias of D
1

and D
3

.

This allows to use other estimators than MLE.
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2.3 Cross validation

This avoids the bias problem entirely by using

�

n

X

i=1

log f

i

(y

obs

i

j

b

�

(�i)

)

as an estimator of

Z

� log f(yj

b

�(y

obs

)) g(y)dy = �

n

X

i=1

Z

log f

i

(y

i

j

b

�(y

obs

)) g

i

(y

i

)dy

i

:

Here b�(�i) is the MLE based on (y

obs

j

; j 6= i). This is asymptotically equivalent to

�

n

X

i=1

log f

i

(y

obs

i

j

b

�(y

obs

)) + trae(J

�1

0

I

0

):
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2.4 The deviance information criterion

This is a Bayesian variant of AIC proposed by Spiegelhalter et al.:

DIC = �2 log f(y

obs

j

~

�(y

obs

)) + 2 p

D

where ~

�(y

obs

) is the posterior mean of � and p
D

is the Bayesian model complexity.

In AIC, the complexity of the model is

trae(J

�1

0

I

0

) � 2IE[D

1

℄ = IE[2 log f(y

obs

j

b

�(y

obs

))� 2 log f(y

obs

j�)℄:

In analogy they define the Bayesian model complexity as

p

D

= 2 log f(y

obs

j

~

�(y

obs

))� IE[2 log f(y

obs

j�) j y

obs

℄:

This can easily be approximated by standard MCMC methods.
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3. Rissanen’s Minimum Description Length (MDL)

A precursor is Wallace and Boulton (1968).

3.1 The key idea of MDL

We have seen, that a distribution is equivalent to a code for the data. Moreover, this

code achieves a good compression of the data iff the distribution is close to the

distribution which generated the data.

For a whole class of distributions, can we find a code that comes close to the best

compression achievable with these distributions ? In other words, is there a density

f such that for any y

� log f(y) � min

�

(� log f(yj�)) ?

(Note that the right hand side is not minus the log of a density.)
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Rissanen has shown that there are densities f such that

� log f(y) = min

�

(� log f(yj�)) +

p
2

log(n)

plus lower order terms, and this is the best what one can get (A rigorous statement

needs more care).

Therefore

min

�

�

� log f(y

obs

j�)

�

+

p
2

log(n) = � log f(y

obs

j

b

�(y

obs

)) +

p
2

log(n)

measures the compression of the data by the model and serves a model selection

criterion.
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3.2 Two part codes

How does the mysterious term

p
2

log(n) arise ?

min

�

� log f(yj�) is not a code length because b�(y), the � which achieves the

minimum, depends on y and is thus unknown to the person who does the decoding.

In order to get around this, encode b�(y) first and then encode y with the code

corresponding to f(:jb�(y)).

In order to do this, one needs to choose a precision for encoding b�(y). The best

choice turns out to be a precision Æ = 1=

p

n for each component �
i

. Then the

code length for encoding b�(y) is

p
2

log(n). This is obvious if � is the

p-dimensional unit cube. The general situation is slightly more complicated.
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3.3 Alternative codes

For a more specific criterion, take a density f which is asymptotically optimal.

Mixture MDL takes

f(y) =

Z

�

f(yj�)w(�)d�

with an arbitrary density w. A Laplace approximation gives again

� log f(y

obs

) � � log f(y

obs

j

b

�(y

obs

)) +

p
2

log(n):

Another possibility is normalized MDL:

f(y) =

max

�

f(yj�)

R

max

�

f(y

0

j�)dy

0

(if the denominator is infinite, some modification is necessary).
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4. Bayesian model selection

4.1 Bayesian theory

A Bayesian puts a prior � on the (finite) setM of models under consideration and

a prior �(�jM) on the parameters of each model and then computes �(M jyobs),

the posterior probabilities of the models given the data .

By Bayes’ formula

�(M jy

obs

) =

�(M)

R

�(M)

�(�jM)f(y

obs

j�;M)d�

P

M

0

�(M

0

)

R

�(M

0

)

�(�jM

0

)f(y

obs

j�;M

0

)d�

The model which maximizes �(M jyobs) is being selected. For prediction, one can

also average over the different models with weights �(M jyobs).
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The Bayes factors

�(M jy

obs

)

�(M

0

jy

obs

)

:

�(M)

�(M

0

)

=

R

�(M)

�(�jM)f(y

obs

j�;M)d�

R

�(M

0

)

�(�jM

0

)f(y

obs

j�;M

0

)d�

:

are independent of the priors and measure the relative strength of evidence in the

data of model M over model M 0.

The main problem is the evaluation of the integral

Z

�(M)

�(�jM)f(y

obs

j�;M)d� = f(y

obs

jM)

which is nothing else than the normalizing constant in Bayes formula. In most

applications it is not available in closed form.

Improper uninformative priors create additional difficulties because then the integral

does not exist.
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4.2 Laplace approximation and BIC

We can approximate the log of the integrand in f(yobsjM) by a quadratic around

its maximum ~

�(y

obs

), the mode of the posterior. This gives

f(y

obs

jM) � onst:�(

~

�(y

obs

)jM) f(y

obs

j

~

�(y

obs

);M) j det(H)j

�1=2

where H is minus the second derivative of the log posterior, evaluated at ~�.

Asymptotically, ~�(yobs) is equivalent to the MLE b�(yobs) and H is approximately

equal to the observed Fisher information which is proportional to the sample size n.

Dropping all terms of constant order, we obtain

log f(y

obs

jM) � log f(y

obs

j

b

�(y

obs

))�

p(M)

2

log(n):

This gives the model selection criterion of Schwartz, usually called Bayesian

Information Criterion (BIC), which has a substantially larger penalty than AIC.
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4.3 Markov chain Monte Carlo methods

Today, the most widely discussed methods approximate f(yobsjM) by Markov

chain Monte Carlo methods.

If one runs separate Markov chains for each model, the normalizing constants are

not obtained automatically. For this reason, DIC was proposed.

With reversible jump MCMC, we can estimate �(M jyobs) by counting how often

the chain visit the model M .
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5. Selecting covariates in regression

Data generating distribution: Y

i

= f(x

i

) + "

i

with "
i

independent, IE["
i

℄ = 0, IE["2
i

℄ = �

2.

Model M � f1; 2; : : :mg

Y

i

=

X

j2M

�

j

x

(j)

i

+ "

i

; "

i

i:i:d: � N (0; �

2

):

The MLE for � in model M is the least squares estimator:

b

�

M

= arg min

�

i

=0;i=2M

ky �X�k

2
2

:
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5.1 C
p

, AIC, BIC, RIC, ...

If �2 is assumed to be known, we have

AIC =

jjy �X

b

�

M

jj

2
2

�

2

+ 2jM j

This is up to a constant equal to Mallows’ C
p

and Akaike’s final prediction error

which provide unbiased estimates for the error in predicting new observations Y 0
i

at

the same values x
i

.

If �2 is unknown, then C
p

plugs in an estimate b�2 common to all models, obtained

either from the full model or from a nonparametric residual variance estimator.
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With �2 unknown, we have

AIC = n log b�

2

M

+ 2jM j = n log

jjy �X

b

�

M

jj

2
2

n

+ 2jM j:

The differences are usually minor because for good models b�2
M

� b�

2 and thus

log b�

2

M

� log b�

2

+

jjy �X

b

�

M

jj

2
2

nb�

2

� 1:
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There are criteria with other penalties. BIC has log n � jM j.

If we assume that the data were generated from the model, then we can compute

the bias exactly. One obtains a corrected AIC with penalty
2

n(jM j+ 1)

n� jM j � 2

� 2(jM j+ jM j

2

=n):

The risk inflation criterion (RIC) of Foster and George has penalty 2 log p � jM j.

This is interesting because it depends on the number of models under consideration

which is justified both intuitively and rigorously (Birgé and Massart).
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5.2 Lasso, Lars and other algorithms

If p is large, it is difficult to compute the best model



M = argmin

M

 

jjy �X

b

�

M

jj

2
2

b�

2

+ �jM j

!

(the value of � depends on the criterion used).

The Lasso replaces the penalty jM j = k�
M

k

0

by the L
1

-norm, i.e. one minimizes
jjy �X�jj

2
2

+ �jj�jj

1

over all �. For large values of �, some coefficients �
j

of the solution are exactly

zero. Hence by selecting �, we effectively perform model selection.
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The criterion of the Lasso is convex, and the solution can be found by a quadratic

programming algorithm. Least angle regression (LARS) is a very efficient algorithm

to compute the Lasso solutions for all �.

The relation between the models selected by Lasso and by minimizing AIC or BIC is

however unclear.

A recent preprint of Candes and Tao consider the following similar method:

b

� = argminfjj�jj

1

j jjX

T

(y �X�)jj

1

� ��g:

Again, this is convex and can be computed by linear programming. They give

conditions on X and � such that with high probability

jj

b

� � �jj

2
2

� C�

0
�

�

2

+

X

j

min(�

2

j

; �

2

)

1
A

:
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6. Discussion

The number of proposals discussed here is already large, and there are more

variants in the literature. The most important things to remember are AIC and BIC

(minus log likelihood plus p and

p
2

log(n) respectively) and cross validation.

BIC has been shown to be consistent if the data are generated by one model with

fixed dimension p, whereas AIC tends to overestimate the dimension in this case.

On the other hand, AIC tends to do better for prediction.

An objective yardstick is helpful when a variety of models are tried on the same

data. It is also necessary if one has to analyze many similar data sets in an

automatic manner.

The development of model selection criteria has led to interesting ideas and deep

theories, connecting statistics with information theory.
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6.1 Some more critical points

Model selection supposes that the set of all models that will be considered is fixed in

advance. It does not reflect the iterative nature of data analysis which develops new

models from deficiencies of previous ones. It is not a complete substitute for

assessing the generalizability of a selected model from independent test data.

In many applications, the idea of a single “best” model can be misleading.

The problem of quantifying uncertainty about the conclusions after model selection

has been made is largely unsolved. Recent results by Pötscher indicate that this is

very difficult. Presumably, one needs independent test data for this.
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