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Ensemble methods

Assess uncertainty and improve the skill of predictions and
projections through a collection of answers (an ensemble).
Popular in weather prediction, seasonal forecasting and
climate studies.
Ways to generate ensemble members: Single model with
perturbed forcing and/or perturbed physics vs. multi-model
ensembles.
Multi-model ensembles in climate studies are small and
rather a “sample of opportunities” than a random sample.
Example of ensembles of global climate models (GCMs):
4th IPCC report with 21 models.
Examples of ensembles of regional climate models
(RCMs): PRUDENCE and ENSEMBLES projects in
Europe, NARCCAP in the US.
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Regional Climate Models

Resolution of GCMs is low, typically 2.5◦ ( ≈ 250 km in
mid-latitudes). Unable to represent varying topography.
Need higher resolution for regional projections and impact
studies.
RCMs perform dynamic downscaling by using the result of
a GCM as driving boundary conditions. Resolution of a
RCM typically 0.25◦ − 0.5◦.
As a consistency check, run RCMs driven by a reanalysis.
NARCCAP has 6 RCMs and 4GCMs plus reanalysis.
Factorial design for RCM/GCM combinations.
PRUDENCE and ENSEMBLES have more GCMs and
RCMs with a much sparser and less balanced design
matrix.
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Data used in our analysis

Output of 5 RCMs from the PRUDENCE project with
different driving GCMs (or at least different runs of the
same model).
Observations from CRU (Climate Research Unit).
Control period: 1961-1990. Scenario period: 2071-2100,
Emission scenario A2.
Averages over seasons and the alpine region (44◦ − 48◦N,
5◦ − 15◦E). No average over different years.
Use temperature alone or temperature and precipitation
jointly.
Most recent paper considers all PRUDENCE regions, a
different set of RCMs from the ENSEMBLES project,
E-OBS data, the A1B scenario and the period 2021-2050.

H.R. Künsch, ETHZ Climate projections



Introduction
Biases

Univariate analysis
Extensions

Analyzing yearly values

Do not average over years because interest not only in
averages, but also in interannual variability.

Problems and solutions:
Climate not constant over control and scenario period→
assume linear trend over the period (which cancels by
averaging).
Because of chaotic nature of climate, cannot compare
model outputs of two models for the same year (or model
output and observation for the same year)→ assume
independence between deviations from linear trend (both
within and between models).
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Examples
Bias extrapolation

Precipitation and temperature: Alpine region, control

Blue: Observations, Red: Model output.
Top: Summer, Bottom: Winter.

0 200 400 600

12
14

16
18

20
22

te
m

pe
ra

tu
re

  [
 °

C
 ]

CHRM

0 200 400 600

12
14

16
18

20
22

CLM

0 200 400 600
12

14
16

18
20

22

precipitation  [ mm ]

Arpege

0 200 400 600

12
14

16
18

20
22

HIRHAM

0 200 400 600

12
14

16
18

20
22

RCAO

0 200 400 600

−6
−4

−2
0

2
4

te
m

pe
ra

tu
re

  [
 °

C
 ]

CHRM

0 200 400 600

−6
−4

−2
0

2
4

CLM

0 200 400 600

−6
−4

−2
0

2
4

precipitation  [ mm ]

Arpege

0 200 400 600

−6
−4

−2
0

2
4

HIRHAM

0 200 400 600

−6
−4

−2
0

2
4

RCAO
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Biases of temperature: Alpine region

Q-Q plots of model output vs. observed values (detrended).
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Biases of temperature: Mediterranean

Bias vs. observed monthly values for RCMs driven by
reanalysis, from Christensen et al. (2008).
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Extrapolation of biases

“... one would expect that some sort of extrapolation based on
the existing data could make a good first order approximation of
the (otherwise undetermined) temperature bias in a simulation.”
(Christensen et al., Geophys. Res. Letter, 2008)

Which kind of extrapolation ?
Most studies consider only additive bias and assume no
change between control and scenario (→ no bias left in
scenario minus control).
Q-Q-plots showed also multiplicative bias: models
overestimate difference between warm and cold summers
→ 2 possible extrapolations of additive bias (next slide).
Christensen et al. suggest that additive bias is a function of
true value (or boundary conditions driving the RCM).
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Graphical illustration of two bias assumption

Values after trend adjustment. Black lines represent additional
bias changes (to be discussed later).
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Bias or internal variability ?

Could the biases be explained as internal variability ?
We think no:

Models are run with observed sea surface temperatures
and sea ice conditions which reduces internal variability.
In those cases where we had additional runs of the same
RCM for the control period, estimated biases changed only
little.
We divided GCM preindustrial control runs of 330 years
into 11 periods. Estimated additive and multiplicative
biases from Q-Q plots of all pairs of periods are smaller
than in our plots.
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Internal variability versus bias in RCMs
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Model averaging in NWP (Raftery et al., 2005)

xt ,0: observed univariate predictand at day t .
(xt ,1, . . . , xt ,I): forecast ensemble at day t .
Based on a training period t = 1,2, . . . ,T , fit a predictive
distribution

xt ,0|xt ,1, . . . , xt ,I ∼
I∑

i=1

ŵiN (âi + b̂ixt ,i , σ̂
2)

and use it as forecast distribution at day T + 1. Empirically,
T ≈ 30 gives best results.

Bias correction through âi and b̂i . Additional increase of
ensemble spread through σ̂.

In climate, training = control. xt ,i attempts to be a draw from the
same distribution as xt ,0, not a forecast.

H.R. Künsch, ETHZ Climate projections
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Notation and basic assumption

Analysis for a fixed region and season.

Notation:
Xt ,0 = observed data for year 1960 + t ,
Xt ,i = output of model i for the same year,
Yt ,0 = unobserved future data for year 2070 + t ,
Yt ,i = output of model i for the same year.

Distributional assumptions:
All variables are independent and Gaussian Only mean and
variances needed.

H.R. Künsch, ETHZ Climate projections
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Mean and variances

E(Xt ,0) = µ+ γ(t − 15.5),

E(Xt ,i) = µ+ βi + (γ + δi)(t − 15.5),

E(Yt ,0) = µ+ ∆µ+ (γ + ∆γ)(t − 15.5).

βi = additive bias, δi = trend bias of model i , ∆µ = additive
climate change, ∆γ = trend change. By including also biases
β0, δ0 for observations, we would loose identifiability.

Var(Xt ,0) = σ2,

Var(Xt ,i) = σ2b2
i ,

Var(Yt ,0) = σ2q2.

bi = multiplicative bias of model i , q = change in interannual
variability of climate.

H.R. Künsch, ETHZ Climate projections
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Means and variances in the scenario period

Constant bias assumption (used implicitly in most climate
studies):

E(Yt ,i) = E(Xt ,i) + E(Yt ,0)− E(Xt ,0)

= µ+ βi + ∆µ+ (γ + δi + ∆γ)(t − 15.5),

Var(Yt ,i) = σ2q2b2
i .

Constant relation assumption (Same error in estimating
climate change as in estimating difference between a warm and
a cold year in the control):

E(Yt ,i) = E(Xt ,i) + bi(E(Yt ,0)− E(Xt ,0))

= µ+ βi + bi∆µ+ (γ + δi + bi∆γ)(t − 15.5),

Var(Yt ,i) = σ2q2b2
i .

H.R. Künsch, ETHZ Climate projections
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Bias change and non-identifiability

Allow in addition biases changes between scenario and control.
“Constant bias” (keep this terminology!):

E(Yt ,i) = µ+ βi + ∆µ+ ∆βi + (γ + δi + ∆γ + ∆δi)(t − 15.5),

Var(Yt ,i) = σ2q2b2
i q2

bi
.

and similarly for “constant relation”.

Problem: Parameters are no longer identifiable (e.g. ∆βi
confounded with ∆µ).

Frequentist solution: Side conditions∑
∆βi = 0,

∑
∆δi = 0,

∏
qbi = 1.

Bayesian solution: Informative priors for bias changes.
H.R. Künsch, ETHZ Climate projections
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Bayesian analysis

A priori, all parameters are independent. Put flat priors on all
identifiable parameters and informative priors for ∆βi , ∆δi and
qbi , e.g.

βi ∼ N (0, (4◦)2), ∆βi ∼ N (0, (0.7◦)2).

A more cautious assumption would use a hierarchical model

βi | µβ, σ2
β ∼ N (µβ, σ

2
β) i .i .d .

with a vague prior for µβ and σβ.

Compute posteriors and predictive distributions by MCMC.
Under “constant relation” some conditionals are non-standard
(but log-concave).
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Posteriors for main parameters

Red: Constant relation, Black: Constant bias.
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Predictive distributions

Boxplots and corresponding densities: scenario outputs of
individual models, adjusted for βi .
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Sensitivity to prior variance of bias change

Red: Prior. Black: Posterior. Upper row: ∆β1. Lower row: ∆µ.
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Cross validation

Take one of the models as reference and use the other 4 to
predict the mean change projected by the reference model.
95% confidence intervals:

Reference Truth SCEN - CTL Constant Constant
Model Bias Relation

CHRM 4.17 [5.42,6.23] [5.01,6.52] [3.85,7.20]
CLM 4.79 [5.26,6.08] [4.85,6.33] [3.23,6.22]
Arpege 4.97 [5.22,6.04] [4.80,6.31] [3.86,7.25]
Hirham 5.02 [5.20,6.03] [4.77,6.29] [4.33,8.01]
RCAO 8.53 [4.46,5.01] [3.94,5.44] [2.94,5.90]

H.R. Künsch, ETHZ Climate projections
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Constant bias or constant relation ?

Ideas to distinguish between “constant bias” and “constant
relation”:

More than one emission scenario: Differences between
projections for different scenarios are proportional to bi
under “constant relation”. Results so far are not conclusive.
Look at correlation between projected change Ȳ.,i − X̄.,i
and estimated multiplicative bias b̂i .
Look at the outputs for the whole period 1961 - 2100, or for
longer periods in the past. Difficult because trend will not
be linear any more.

H.R. Künsch, ETHZ Climate projections
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Projected change and multiplicative bias

Correlation between projected change and multiplicative bias of
16 ENSEMBLES members, estimated for 4 season and 8
regions.

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

−
0.

5
−

0.
3

−
0.

1
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8

regions

co
rr

el
at

io
n
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Convex combination of the two assumptions

Consider a larger model where E(Yt ,i) is a convex combination
of the expectation under the constant bias and the constant
relation assumption.

Choose uniform prior for the additional parameter κ of the
convex combination. Posterior for κ typically still close to
uniform, i.e. data cannot decide between the two assumptions.
If assumptions matter, spread of posterior for ∆µ increases
(see next slides).
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PRUDENCE regions
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Results for ENSEMBLES data
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Multivariate analysis: Models

As in Tebaldi and Sanso (2009), regress the k -th variable on
the variables 1,2, . . . , k − 1. Each regression coefficient then
has model bias in the control, true change from control to
scenario and bias change.

(Strict) constant relation assumption: There is a matrix Mi such
that

Xt ,i
d
= E(Xt ,i) + Mi(Xt ,0 − E(Xt ,0)),

Yt ,i
d
= E(Xt ,i) + Mi(Yt ,0 − E(Xt ,0))

= E(Xt ,i) + Mi(E(Yt ,0)− E(Xt ,0)) + Mi(Yt ,0 − E(Yt ,0)).

In the multivariate case, Mi is determined only up to orthogonal
transformations.

H.R. Künsch, ETHZ Climate projections
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Posterior predictive for summer temp. + precip.
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Posterior predictive for winter temp. + precip.
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Monthly data/Finer spatial resolution

For monthly data, need to take temporal dependence into
account. Use AR-models with seasonally varying coefficients.

For analysing individual grid points, need spatially varying
smooth parameters µ, βi , σ etc. Presumably computationally
intensive.

A regression model with altitude, longitude and latitude as
covariables captures most of the spatial structure in the Alpine
region. Can use a 4-dimensional analysis of the estimated
regression coefficients (individually for each year and season).
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Monthly mean temperature changes for Switzerland

Note the different scales for the two July figures!
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RCM/GCM correlations

Correlation between RCM and driving GCM is high.
Set Xi,t = output of GCM i for year t of control,
Xj(i),t = output of RCM j for year t when driven by GCM i .

Possible model (omitting trends for ease of notation)

Xi,t ∼ N (µ+ βi , σ
2b2

i ),

Xj(i),t |Xi,t ∼ N (µ+ αj + ωj(Xi,t − µ), σ2r2
j )

This means: Additive bias of RCM = αj + ωjβi

Multiplicative bias of RCM =
√
ω2

j b2
i + r2

j

Correlation between RCM and GCM = ωjbi/
√
ω2

j b2
i + r2

j .
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Relation between driving GCMs and one RCM
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Summary and conclusions

Biases in climate models cannot be ignored.
Interannual variability is of interest by itself and allows a
more detailed analysis of biases.
There is strong evidence against the hypothesis of no bias
change.
Multiplicative biases lead to 2 equally plausible
assumptions (called “constant bias” and “constant
relation”) for extrapolating additive biases into the scenario.
For many seasons and regions they lead to substantial
differences in projections.
Further work is required to deal with several variables,
higher temporal and spatial resolution, hierachical
dependence in GCM/RCM chains.

H.R. Künsch, ETHZ Climate projections



Introduction
Biases

Univariate analysis
Extensions

Multivariate analysis
Higher resolution
Using all available RCM/GCM chains

The End

Thank you for your attention.
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