
✬

✫

✩

✪

Filtering, Smothing and Parameter Estimation
for General State Space Models

Hans R. Künsch

Seminar für Statistik, ETH Zürich

EPFL, June 30, 2006.

1

✬

✫

✩

✪

Contents

1. State space and hidden Markov models: Introduction

2. Examples of state space models

3. Formulae for filtering, smoothing and likelihood

4. Cases where exact computations are possible

5. MCMC algorithms

6. Particle filters

7. Particle smoothing

8. Particle methods for parameter estimation

2

✬

✫

✩

✪

1. State space and hidden Markov models: Introduction

A general state space model consists of an unobserved state sequence (Xt) and

an observation sequence (Yt) with the following properties:

State evolution: X0, X1, X2, . . . is a Markov chain with X0 ∼ a0(x)dµ(x) and

Xt | Xt−1 = xt−1 ∼ at(xt−1, x)dµ(x)

Generation of observations: Conditionally on (Xt), the Yt’s are independent and

Yt depends on Xt only with

Yt | Xt = xt ∼ bt(xt, y)dν(y).

3

✬

✫

✩

✪

Some Notation

The term Hidden markov model is sometimes used as a synonym for state space

model, but other people reserve it for the case where the states are discrete.

For any s < t, we define Ys:t = (Ys, Ys+1, . . . Yt) and similarly Xs:t.

In general, we use p as the generic symbol for a (conditional) density of its

arguments, but we reserve the symbol at for p(xt | xt−1) and bt for p(yt | xt).

4

✬

✫

✩

✪

Graphical representation of state space models

The dependence between the variables of a state space model can be represented

as follows

. . . → Xt−1 → Xt → Xt+1 → . . .

↓ ↓ ↓

. . . Yt−1 Yt Yt+1 . . .

It implies various conditional independencies, which we will use when we treat the

smoothing problem.

Extensions with additional dependencies (e.g. second order Markovian states) can

be handled either by enlarging the state space, or directly by modifying the formulae.

5

✬

✫

✩

✪

History:

Origin in the 1960’s in engineering (Kalman-Bucy, Baum-Welch).

Recognized in time series analysis in 1980’s (Akaike, Hannan, Harvey).

Large interest in 1990’s (Molecular biology, Monte Carlo methods).

General references:

J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods, Oxford

2001

H.-R. K., Chapter 3 in Complex Stochastic Systems, Barndorff-Nielsen et al., eds.,

Chapman and Hall (2001).

A. Doucet, N. de Freitas and N. Gordon (eds.), Sequential Monte Carlo Methods in

Practice, Springer (2001).

P. Del Moral, Feynman-Kac Formulae, Springer 2004.

O. Cappé, E. Moulines, T. Rydén, Inference in Hidden Markov Models, Springer

2005.

6

✬

✫

✩

✪

2. Examples of state space models

Depending on the application, states can be interpreted as latent variables or as

time varying parameters.

An alternative representation of a general state space model is

Xt = Ft(Xt−1, Ut), Yt = Ht(Xt, Vt)

where (Ut) and (Vt) are two independent white noises and Ft andHt arbitrary

functions. This indicates the flexibility of the model.

A linear state space model has the form

Xt = FtXt−1 + Ut, Yt = HtXt + Vt

where now Ft and Ht are matrices.

7

✬

✫

✩

✪

As an example, the figure below shows a simulation of the model

Xt = αXt−1 + β
Xt−1

1 +X2
t−1

+ γ cos(1.2t) + Vt, Yt =
X2

t

20
+Wt.

which goes back to Andrade Netto et al., IEEE Trans. Autom. Control (1978). Yt

carries no information about the sign of Xt.

0 20 40 60 80 100
-2

0
-1

0
0

1
0

2
0

Time t

8

✬

✫

✩

✪

ARMA models as state space models

A stationary Gaussian ARMA(p, q) process (Yt) can be represented as a linear

state space model by defining the k = max(p, q + 1)-dimensional state vector

Xt = (Yt, Yt+1|t, . . . Yt+k−1|t)
T .

Here Yt|s the conditional expectation of Yt given Yu for all u ≤ s. The state

equation follows because with suitably defined coefficients gj

Yt+j|t+1 = Yt+j|t + gj(Yt+1 − Yt+1|t) (j = 1, . . . , k),

Yt+k|t =

p∑

j=1

φjYt+k−j|t.

This can be extended to ARIMA models.

9

✬

✫

✩

✪

Structural time series

Yt = Tt + St + Vt

where Tt is a (stochastic) trend, St a (stochastic) seasonal component and Vt the

irregular part. The trend is modeled as locally constant

Tt = Tt−1 + Ut

or locally linear

Tt = Tt−1 +Mt−1 + U
(1)
t , Mt = Mt−1 + U

(2)
t .

The seasonal part is modeled in the time domain as

St = −
s−1∑

j=1

St−j + U
(3)
t ,

(or alternatively in the frequency domain).

10

✬

✫

✩

✪

We then have a state space model with

Xt = (Tt,Mt, St, . . . , St−s+2)
T ,

and suitable definitions of F and H . It is easy to see that this is a seasonal

ARIMA-model with d = 2, D = 1 p = 0 and q = s+ 1.

All this can be extended to the multivariate case. Gaussian ARIMA models and

linear Gaussian state space models are equivalent.

By taking heavy-tailed noise distributions, we can model level shifts, innovation

outliers and observation outliers. This is important for robust time series analysis.

11

✬

✫

✩

✪

Random walk with Gaussian and non-Gaussian noise with the same variance.

0 50 100 150 200 250 300 350 400 450 500

−
1

8
−

1
4

−
1

0
−

6
−

2
2

4
6

8

time

x

0 50 100 150 200 250 300 350 400 450 500

−
1

6
−

1
2

−
8

−
4

0
2

4
6

8

time

x

12

✬

✫

✩

✪

Dynamic generalized linear models are an extension of structural time series

models. The definition of the state vector and its evolution remains the same, but the

observation density bt is now an exponential family:

bt(xt, yt) = exp(yt ·Hxt − c(Hxt))h(yt)

where HXt = Tt + St. In particular, this can be used to model count data as

conditionally Poisson or binomial.

13

✬

✫

✩

✪

Stochastic volatility models

Here the Yt’s are the log returns of some asset, and the Xt’s are exogenous

stochastic volatilities. The simplest model is

Xt = m+ φXt−1 + Ut, Yt = exp(Xt/2) Vt,

where (Ut) and (Vt) are independent Gaussian white noises. By considering

log |Yt| we obtain a linear, non-Gaussian state space model, but the noise is

strongly non-Gaussian and this should not be ignored in the analysis.

14

✬

✫

✩

✪

A continuous time model has the following form

dσ2(t) = a(σ2(t))dt+ b(σ2(t))dW (t)

dY (t) = (µ+ βσ2(t))dt+ σ(t)dB(t).

Here, Y (t) is the log price process, σ2(t) is the unobserved volatility, andW and

B are two independent Brownian motions. We observe Y at discrete time points

t1 < t2 < . . . < tn.

If we condition on the volatility (σ2(t),

Y (ti) − Y (ti−1) ∼ N (µ(ti − ti−1) + βv2
i , v

2
i),

where

v2
i =

∫ ti

ti−1

σ2(t)dt.

Hence this is a state space model if we define the discrete time state variable to be

Xi = (σ2(ti), vi).

15

✬

✫

✩

✪

State space models in biology:

Ion channels are proteins located in the cell membrane that can be open or closed.

The simplest model has two different means depending on whether the channel is

open or closed plus an additive noise. A more realistic model allows for several

internally different states of the channel, colored noise with state dependent

variance and the effect of filters (de Gunst et al., 2001):

Yt =
r∑

k=−r

γkµ(Xt−k) + Ct + σ(Xt)δt

Here Ct is a Gaussian AR process, δt is white noise and Xt is a continuous time

Markov chain with the following structure:

4q1 3q1 2q1 q1 q3

C1 ⇋ C2 ⇋ C3 ⇋ C4 ⇋ O ⇋ C5

q2 2q2 3q2 4q2 q4

16

✬

✫

✩

✪

DNA and protein sequences: One of the simplest examples are CG-islands. A

homogeneous Markov chain for the sequence of letters from the DNA alphabet

{A,C,G, T} is not adequate since the frequencies of letters and transition

changes. In CG islands the pairs CG occur more frequently. Two different

transition regimes P0 and P1 can be obtained by letting the state take values in

{A,C,G, T} × {0, 1} with transition matrix

 (1 − ε)P0 εQ

ηQ (1 − η)P1

 .

ε and η are the probabilities for switching between the two regimes.

17

✬

✫

✩

✪

Engineering:

Many examples with tracking and control applications can be found in Doucet et

al. (2001).

Usually, state = position and velocity of a moving object (satellite, robot etc.).

Observations = partial, noisy information about the state, e.g. position only or angle

only. State transitions usually depend also on a control variable ut which is a

function of y1:t−1.

One of the earliest uses of hidden Markov models is in speech analysis. In isolated

word recognition, one has a hidden Markov model for each word, the states being

the different phonems or different stages of the phonems. Transition probabilities

satisfy a(i, j) = 0 for j < i. Observations = features extracted from the acoustic

signal over short overlapping intervals. One then computes the likelihood p(y1:t) for

each word and applies Bayes rule.

18

✬

✫

✩

✪

State space models in geophysics:

Rainfall networks (Guttorp et al.): Observations = daily amount of rainfall at a

network of stations; states = weather types. Given the state, the rainfalls at different

stations are independent and Gamma-distributed with an additional atom at zero.

Data assimilation in numerical weather prediction: State vector = 7 atmospheric

variables (wind, density, potential temperature, pressure temperature) on a spatial

grid, containing about 107 elements. State transitions are determinstic and are

obtained by a numerical scheme for a partial differential equation. Filtering is used

to combine forecasts with actual observations to obtain initial conditions for next

integration period (usually 6h). Number of observations at each time point> 106.

19

✬

✫

✩

✪

Partially observed diffusion models

In various areas one considersa stochastic differential equation

dXt = f(Xt)dt+ σ(Xt)dWt, Yk = h(Xtk
) + Vk

where W is a Brownian motion and (Vk) an independent white noise.

For interest rates, this includes for instance the Cox-Ingersoll-Ross model. In data

assimilation, the additional noise term reflects model deficiencies. A popular toy

example in this area is the double well model which has

f(x) = −
d

dx
(x2 − 1)2, σ(x) ≡ σ.

The density of the invariant distribution is proportional to exp(−2(x2 − 1)2)/σ2)

and is therefore bimodal.

20

✬

✫

✩

✪

Another justification of such a diffusion model are time varying parameters. Assume

f(x) = f0(x) +
∑

j

βjfj(x)

where βj are some parameters, e.g. a growth or reaction rate. With time varying

parameters

βj(t) = β̄j + “white noise”,

Xt becomes a diffusion if we interprete “white noise” as the “derivative” of a

Brownian motion.

However, the highly irregular fluctuations in such a model somehow contradict

biological intuition. An alternative is to model βj(t) as mean-reverting

Ornstein-Uhlenbeck processes.

21

✬

✫

✩

✪

3. Filtering and smoothing

The main tasks we need to solve are

1. Inference about the states based on a stretch of observed values ys:t for a given

model (i.e. at and bt known).

2. Inference about unknown parameters in at, bt.

Inference aboutXs given y1:t is called prediction if s > t, filtering if s = t and

smoothing if s < t. We use the special symbol fs|t for p(xs|y1:t).

We begin with the filtering problem, and later on we will discuss smoothing and

parameter estimation. Difficulty increases in this order.

22

✬

✫

✩

✪

It is clear that the joint density of (X0:t, Y1:t) is given by

p(x0:t, y1:t) = a0(x0)
t∏

s=1

as(xs−1, xs)bs(xs, ys).

In particular (Xt, Yt) is also a Markov process.

The joint density of the observations y1:t follows by integration, but this is difficult or

impossible to compute. We see that the observations alone are not Markovian.

The conditional density p(x0:t | y1:t) is proportional to the joint density

p(x0:t, y1:t). This implies that conditionally on y1:t the state variables are still

Markovian (because the density factors into a product containing only pairs

(xs−1, xs)). The densities fs|t can be obtained in principle from this by integration,

but again this is not a practical way to proceed.

23

✬

✫

✩

✪

3.1 Filtering

With a recursive procedure, we can break down the multiple integrals that occur in

fs|t in a series of lower-dimensional integrals.

From filter to prediction density (Propagation):

ft|t−1(xt | y1:t−1) =

∫
ft−1|t−1(x | y1:t−1)at(x, xt)dµ(x).

This follows from the law of total probability and the fact that xt is conditionally

independent of y1:t−1 given xt−1.

Similarly, we can go from fs|t to fs+1|t for any s > t.

24

✬

✫

✩

✪

From prediction to filter density (Update):

ft|t(xt | y1:t) =
ft|t−1(xt | y1:t−1)bt(xt, yt)

p(yt | y1:t−1)

∝ ft|t−1(xt | y1:t−1)bt(xt, yt).

This follows from Bayes rule and the fact that yt is conditionally independent of

y1:t−1 given xt.

Combining the two steps, we have

ft|t(xt | y1:t) ∝

∫
ft−1|t−1(x | y1:t−1)at(x, xt)dµ(x) bt(xt, yt).

Because the denominator is just a normalization:

p(yt | y1:t−1) =

∫
ft|t−1(x | y1:t−1)bt(x, yt)dµ(x).

25

✬

✫

✩

✪

3.2 Smoothing

Similarly, we have recursions for the conditional densities of all states up to time t:

Propagation:

p(x0:t | y1:t−1) = at(xt−1, xt)p(x0:t−1 | y1:t−1).

Update:

p(x0:t | y1:t) =
bt(xt, yt)p(x0:t | y1:t−1)

p(yt | y1:t−1)
.

Combining the two steps

p(x0:t | y1:t) ∝ bt(xt, yt)at(xt−1, xt)p(x0:t−1 | y1:t−1).

26

✬

✫

✩

✪

Instead of the recursion with increasing dimension from the last slide, use that given

y1:t the state process is still a Markov chain (a fact we have seen before).

The forward transition densities of this conditional chain are

p(xs | xs−1, y1:t) = p(xs | xs−1, ys:t)

=
as(xs−1, xs)bs(xs, ys)p(ys+1:t | xs)

p(ys:t | xs−1)
.

The backward transition densities of this conditional chain are

p(xs | xs+1, y1:t) = p(xs | xs+1, y1:s)

=
as+1(xs, xs+1)fs|s(xs | y1:s)

fs+1|s(xs+1 | y1:s)
.

27

✬

✫

✩

✪

Forward computation - backward simulation

Assume that we can compute the filter densities fs|s for all s ≤ t. Then we can

simulate from the conditional density p(x0:t | y1:t) by generatingXt according to

ft|t and then simulating recursivelyXs given xs+1 according to the density

proportional to

as+1(xs, xs+1)fs|s(xs | y1:s).

This is an exact algorithm, there is no need to iterate.

28

✬

✫

✩

✪

Computation of smoothing marginals

We obtain fs|t from fs|s by incorporating the additional information ys+1:t with

Bayes formula:

fs|t(xs | y1:t) =
p(ys+1:t | xs, y1:s)p(xs | y1:s)

p(ys+1:t | y1:s)

=
p(ys+1:t | xs)

p(ys+1:t | y1:s)
fs|s(xs | y1:s).

The ratio

rs|t(xs, y1:t) =
p(ys+1:t | xs)

p(ys+1:t | y1:s)
=
fs|t(xs | y1:t)

fs|s(xs | y1:s)

satisfies the backward recursion

rs−1|t(xs−1, y1:t) =

∫
as(xs−1, xs)bs(xs, ys)rs|t(xs, y1:t)dµ(xs)

p(ys | y1:s−1)
.

29

✬

✫

✩

✪

Moreover, rs|t is also useful for the forward transitions

p(xs | xs−1, ys:t) = as(xs−1, xs)bs(xs, ys)
p(ys+1:t | xs)

p(ys:t | xs−1)

because

p(ys+1:t | xs)

p(ys:t | xs−1)
=

rs|t(xs, y1:t)

rs−1|t(xs−1, y1:t)

1

p(ys|ys−1)
.

Hence in order to compute low-dimensional marginals of the smoothing distribution,

we compute fs|s and p(ys | y1:s−1) by a forward filter recursion, and the ratio rs|t
by a backward recursion.

30

✬

✫

✩

✪

3.3 Likelihood

Assume now that both as and bs depend on a finite dimensional parameter θ. Then

the likelihood of θ given the observed series y1:T is

p(y1:t | θ) =
T∏

t=1

p(yt | y1:t−1, θ).

Each factor on the right is obtained as a normalization during the filter recursion.

Maximization can be done by a general purpose optimization algorithm.

31

✬

✫

✩

✪

The EM algorithm

Since the joint likelihood of the observations and the hidden states can be written

explicitely, using the EM algorithm is natural (It was developed by Baum and Welch,

several years before the Dempster et al. paper).

In the E-step, we have to compute

Q(θ, θ′) = E [log p(x0:T , y1:T ; θ) | y1:T , θ
′]

where θ′ is the current approximation to the MLE. In the M -step we maximize

Q(θ, θ′) with respect to θ. The maximizer becomes our new current approximation.

It can be shown that in each cycle the likelihood increases.

32

✬

✫

✩

✪

The function Q(θ, θ′) contains the terms

E [log at(xt − 1, xt; θ) | y1:T , θ
′]

and

E [log bt(xt, yt; θ) | y1:T , θ
′] .

Hence for the EM-algorithm we need the smoothing densities for consecutive pairs

and singletons of state variables.

33

✬

✫

✩

✪

4. Exact computations

Discrete states

If Xt is discrete with M possible values, integrals are sums. We obtain the

forward-backward algorithm due to Baum and Welch.

The filter recursion is

ft+1|t+1(j) ∝
M∑

k=1

ft|t(k)at+1(k, j)bt+1(j, yt+1)

(because the observations are fixed, we drop them in the filter densities). This is of

the form row vector times a matrix, followed by elementwise multiplication of two

vectors and a summation for normalization.

Each step of this recursion needs roughlyO(M2) operations. Thus the complexity

of the whole filter is O(TM2).

34

✬

✫

✩

✪

Similarly, the recursion for rs|t is

rs−1|t(j) =
1

p(ys | y1:s−1)

∑

k

as(j, k)bs(k, ys)rs|t(k).

This is the forward-backward algorithm due to Baum and Welch. It has the

complexityO(TM2).

For forward computation - backward simulation, we use

P [Xs = k | xs+1 = j, ys+2:T] ∝ as+1(k, j)fs|s(k).

Typically, generatingN values of the whole smoothing distribution has complexity

O(T (N +M2)).

35

✬

✫

✩

✪

Example: Excited potentials in a nerve celle (data by C. Stricker, Neuroinformatik).

Measurements of the current reaching a single nerve cell. This cell is connected via

synapses with a small number of other cells which are excited every second.

0 100 200 300 400 500 600 700 800 900
−

3
0

−
2
5

−
2
0

−
1
5

−
1
0

−
5

0
time

a
m

p
lit

u
d
e

36

✬

✫

✩

✪

One hypothesis is that this current is a superposition of a small number of unit

currents. This leads to a (normal) mixture model for the measurements. The data

are dependent, so we fit a normal mixture model with a Markovian regime.

amplitude

D
e

n
s
it
y

−30 −25 −20 −15 −10 −5 0

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

0
.0

4
0

0
.0

5
0

37

✬

✫

✩

✪

Fitted mixture with 4 components (using the EM-algorithm)

amplitude

D
e
n
s
it
y

−30 −25 −20 −15 −10 −5 0

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

0
.0

4
0

0
.0

5
0

0
.0

6
0

38

✬

✫

✩

✪

The estimated transition matrix between the regimes is

0.913 0.002 0.000 0.085

0.000 0.826 0.039 0.135

0.027 0.137 0.699 0.137

0.201 0.458 0.259 0.081

39

✬

✫

✩

✪

Observations together with the mean of the most likely regime.

0 50 100 150 200 250 300 350 400 450 500

−
3

0
−

2
0

−
1

0
0

Zeit

A
m

p
lit

u
d

e

500 550 600 650 700 750 800 850 900 950

−
3

0
−

2
0

−
1

0
0

Zeit

A
m

p
lit

u
d

e

40

✬

✫

✩

✪

Linear Gaussian models

For a linear state space model

Xt = FtXt−1 + Ut, Yt = HtXt + Vt

with Gaussian noises, all fs|t are Gaussian. Their meansms|t and variancesRs|t

follow from the general recursions with the help of some linear algebra.

For the filter, we obtain the famous Kalman filter

mt|t−1 = Ftmt−1|t−1

mt|t = mt|t−1 +Kt(yt −Htmt|t−1)

Rt|t−1 = E(UtU
T
t) + FtRt−1|t−1F

T
t ,

Rt|t = Rt|t−1 −KtHtRt|t−1,

where the so-called gain matrix is

Kt = Rt|t−1H
T
t (E(VtV

T
t) +HtRt|t−1H

T
t)−1.

41

✬

✫

✩

✪

For the smoothing means and variances, we obtain

ms|t = ms|s +Ks(ms+1|t −ms+1|s)

Rs|t = Rs|s −Ks+1(Rs+1|s −Rs+1|t)K
T

s+1

where

Ks+1 = Rs|sF
T
s+1R

−1
s+1|s.

There are many equivalent forms of the smoother in the literature. They differ

numerically with respect to speed and accuracy.

42

✬

✫

✩

✪

For the forward computation - backward simulation algorithm, we use that

conditional on xs+1 and y1:t, Xs is Gaussian with meanms and covariance matrix

Rs where

ms = ms|s +Ks+1(xs+1 −ms+1|s),

Rs = (FT
s+1E[Us+1U

T
s+1]

−1Fs+1 +R−1
s|s)

−1

= Rs|s −Ks+1Fs+1Rs|s.

43

✬

✫

✩

✪

Extended Kalman filter and smoother

In practically all other cases, the recursions are difficult to compute. In linear state

space models with non-Gaussian noises, the Kalman filter mean is still the best

linear unbiased estimator of the state. However, nonlinear estimators can be much

better.

In engineering, the extended Kalman filter is by far the most popular approximation.

It linearizes the system and then applies the Kalman filter. For instance, the

linearization for the prediction step is

Xt = Ft(Xt−1, Ut) ≈ Ft(x̂t−1|t−1, 0)

+
∂Ft(x, u)

∂x

∣∣∣∣
(x̂t−1|t−1,0)

(Xt−1 − x̂t−1|t−1)

+
∂Ft(x, u)

∂u

∣∣∣∣
(x̂t−1|t−1,0)

Ut.

44

✬

✫

✩

✪

The extended Kalman filter works reasonably in many, but not in all situations. The

disadvantages are that error bounds are extremely difficult to produce and that we

cannot reduce the error by a better (although more complicated) approximation. In

addition, the method gives no information about the conditional distributions which

can be very non-Gaussian.

Numerical integration is problematic in high dimensions. We do not know in advance

where the filter density has its main mass, adn thus it is difficult to construct a

reasonable grid in advance.

Much current interest focuses on Monte Carlo methods. These will be discussed in

the remainder.

45

✬

✫

✩

✪

5. MCMC algorithms

Standard Markov chain Monte Carlo methods can be used to simulate from the

smoothing density p(x0:t | y1:t) which is known up to normalization. The filter then

follows by marginalisation. It is clear that a recursive implementation is not possible:

With each new observation one has to start in principle from scratch. Still, for off-line

problems this is often useful.

We can apply a single site Gibbs or Metropolis-Hastings sampler. The Gibbs

sampler starts with an arbitrary series x
(0)
0:t and then changes one component at a

time according to the full conditionals that were given on a previous slide. If we

cannot sample directly from the full conditionals, we still can use the

Metropolis-Hastings recipe.

However, in most applications, this chain mixes extremely slowly. If we know xt−1

yt and xt+1 then Xt is often determined almost completely, and thus the changes

at each step are too small.

46

✬

✫

✩

✪

Static MCMC: blockwise updates

Large gains are possible in the following situation. Assume that each xt consists of

two components (ξt, ηt), and that we can sample from p(ξ0:t | η0:t, y1:t) and also

from p(η0:t | ξ0:t, y1:t). Then obviously we can iteratively update ξ0:t and η0:t,

always keeping the other component fixed.

The assumption is fulfilled if conditional on ξ0:t, (ηs, Ys) is either a linear Gaussian

state space model or a hidden Markov model (and the same holds if we exchange ξ

and η). Then we can use a forward computation backward simulation algorithm.

Such models are called partial non-Gaussian models.

47

✬

✫

✩

✪

Examples

Gaussian AR with t-distributed observation noise:

Write the t-distribution as scale mixture of Gaussian distributions:

Yt = Xt +
Vt√
Zt/ν

where Vt is standard normal and Zt ∼ Γ(ν, 1). By including Zt among the states,

we obtain a different representation as a state space model. This representation

belongs to the class of partial non-Gaussian models: Conditionally on (Zt), it is a

linear Gaussian state space model, and conditionally on (Xt) we have

independence.

In this model, the filter density ft|t can be bimodal when there is ambiguity whether

an observation is due to an observation outlier or a large innovationl

48

✬

✫

✩

✪

The same idea has been used for stochastic volatility models. Taking log’s, the

observation equation is

log(Y 2
t) = Xt + log(V 2

t),

and thus one has to approximate the log of a chisquare(1) by a mixture of normals.

49

✬

✫

✩

✪

Unknown parameters

With MCMC, it is straightforward to do Bayesian inference about the states and

unknown parameters θ at the same time. One simply iterates between sampling

from the density of θ given x0:t and y1:t and sampling from the density of x0:t

given θ and y1:t. The former usually presents no difficulty, and the latter has been

discussed before. However, the additional component can make the convergence

even slower.

50

✬

✫

✩

✪

Example: Ion channels (de Gunst et al.).

Yt =
1∑

k=−1

γkµ(Xt−k) + Ct + σ(Xt)δt

We alternate between 3 blocks of updates, of (Xt) given (Yt, Ct, θ), of (Ct) given

(Yt, Xt, θ) and of θ given (Xt, Yt, Ct).

51

✬

✫

✩

✪

6. Particle filters

Importance (re)sampling and particle filtering

The passage from ft|t to ft+1|t is complicated analytically, but usually simple to

implement by sampling: If (xt,j) is a sample from ft|t, then

zt+1,j ∼ at+1(xt,j , z)dµ(z) (j = 1, . . . , N)

is a sample from ft+1|t. In order to generate a sample from ft+1|t+1 and thus to

close the recursion, we need a sampling implementation of Bayes rule.

52

✬

✫

✩

✪

Dropping the time index for a moment, this is the following problem: Given a sample

(x̃j) from the prior fprior, generate a sample from the posterior

fpost(x) ∝ fprior(x)b(x).

Importance sampling uses the same x̃j ’s with weights

λj =
b(x̃j)∑
k b(x̃k)

.

Sampling importance resampling (Rubin, 1988) takes a sample from x̃1, . . . , x̃N

with probabilities λj :

xj = x̃Ij
, P [Ij = k] = λk.

53

✬

✫

✩

✪

Combining this, we obtain the standard particle filter

1. Generate (x0,1, . . . , x0,N) from a0(x)dµ(x) and set t = 0.

2. Generate x̃t+1,j ∼ at+1(xt,j , x)dµ(x).

3. Compute weights

λt+1,j =
bt+1(x̃t+1,j , yt+1)∑

k bt+1(x̃t,k, yt+1)
.

4. Generate Ij with P [Ij = k] = λt+1,k and set xt+1,j = x̃t+1,Ij
.

5. Increase t by 1 and go back to 2.

54

✬

✫

✩

✪

This is extremely simple to implement and very intuitive. We consider the xt,j ’s as

particles who live in the state space. They move according to the dynamics of the

state process, and then there is a selection step to take into account the next

observation: Particles who do not fit to the next observation die (with high

probability), those who fit have several descendants which move independently in

the next step.

A simple implementation is shown in R !

Disadvantage: If the next observation is highly informative, most of the particles will

not fit. The weights λt+1,j become very unbalanced, and there are many ties

among the xt+1,j .

55

✬

✫

✩

✪

The most general form of the particle filter

Here, we consider weighted samples (xt,j , λt,j) as approximations of ft|t:

ft|t ≈
N∑

j=1

λt,j∆(xt,j)

where ∆(x) is the point mass (Dirac function) at x.

Inserting the approximation into the recursion, we obtain

ft+1|t+1(x) ≈ fN
t+1|t+1(x) ∝ bt+1(x, yt+1)

N∑

j=1

λt,jat+1(xt,j , x)

(fN
t+1|t+1 is the exact filter density at time t+ 1, if the approximation at time t is

exact). Hence we need to generate a sample from fN
t+1|t+1.

56

✬

✫

✩

✪

One obtains a whole class of algorithms to sample from fN
t+1|t+1 by considering

fN
t+1|t+1 as the marginal of the following joint distribution of an index j and a state

variable x:

πt+1(j, x) ∝ λt,jbt+1(x, yt+1)at+1(xt,j , x).

This is the auxiliary variables idea of Pitt and Shephard (1999).

Importance sampling from πt+1 selects pairs (j, x) from a proposal distribution

τjρ(j, x)dµ(x) and attaches weights porportional to

πt+1(j, x)

τjρ(j, x)

to each pair. Finally, we discard the indices and keep only the state values and the

weights.

57

✬

✫

✩

✪

Thus the general version of the particle filter is

1. Generate (x0,1, . . . , x0,N) from a0(x)dµ(x) and set λ0,j = 1
N and t = 0.

2. Choose probabilities (τk) for the index and generate Ij with P [Ij = k] = τk .

3. Choose a transition density ρ(x, x′) and generate xt+1,j ∼ ρ(xt,Ij
, x)dµ(x).

4. Compute weights

λt+1,j ∝
λt,Ij

bt+1(xt+1,j , yt+1)at+1(xt,Ij
, xt+1,j)

τIj
ρ(xt,Ij

, xt+1,j)
.

5. Increase t by 1 and go back to 2.

With τj = λt,j and ρ(x, x′) = at+1(x, x
′), this is the same algorithm as before:

The sampling step now occurs at the beginning of an iteration (in step 2) instead of

at the end.

58

✬

✫

✩

✪

The choice of the proposal

An algorithm that is even simpler than the standard particle filter is obtained by

choosing τj ≡ 1
N . Then the sampling step 2 is not needed, we can simply take

Ij = j, i.e. we select each particle exactly once. Hence this amounts to propagate

particles independently and to multiply and renormalize at each time step the

importance weights. The algorithm is therefore called sequential importance

sampling. However, this is in most cases a poor algorithm since the weights

become quickly unbalanced. In the end, all the weight is carried by one or a few

particles.

The sampling step is needed to avoid this sample depletion. The advantage of the

general form above is that the components τ and ρ of the proposal distribution can

take yt+1 into account. The goal is to choose them in such a way that the new

weights λt+1,j are as equal as possible.

59

✬

✫

✩

✪

We can make all λt+1,j equal to 1
N by choosing

τk ∝ λt,kp(yt+1 | xt,k) = λt,k

∫
at+1(xt,k, xt+1)bt+1(xt+1, yt+1)dµ(xt+1)

and

ρ(xt, xt+1) = p(xt+1 | xt, yt+1) =
at+1(xt, xt+1)bt+1(xt+1, yt+1)

p(yt+1 | xt)
.

An example where we can compute this “ideal” proposal is

Xt+1 = f(Xt) + Ut, Yt+1 = HXt+1 + Vt

with Gaussian noises Ut and Vt and arbitrary nonlinear conditional mean f(xt).

Then both log at+1(xt, xt+1 and log bt+1(xt+1, yt+1) are quadratic functions in

xt+1 and thus at+1(xt, xt+1)bt+1(xt+1, yt+1) is proportional to a Gaussian

distribution.

60

✬

✫

✩

✪

If at+1(xt, .) is close to a point mass, then we can construct a proposal as follows:

p(yt+1 | xt) ≈ bt+1(µ(xt), yt+1)

where µ(xt) is the mean or median of at+1(xt, .) implies

p(xt+1 | xt, yt+1) ≈ at+1(xt+1, xt).

Hence we take ρ = at+1 and

τj ∝ λt,jbt+1(µ(xt,j), yt+1).

The new weights are

λt+1,j ∝
bt+1(xt+1,j , yt+1)

bt+1(µ(xt,Ij
), yt+1)

.

61

✬

✫

✩

✪

Another general strategy for constructing good proposals is to approximate

log(at+1(xt, xt+1)bt+1(xt+1, yt+1))

by a piecewise quadratic function of xt+1

∑

i

(
ci(xt, yt+1) + di(xt, yt+1)

Txt+1 − xT
t+1Fi(xt, yt+1)xt+1

)
1Bi

(xt+1).

Exponentiating the right hand side gives a mixture of truncated normal distributions

times a normalizing constant Z(xt, yt+1). Hence we can take as ρ this mixture

and τk ∝ λt,kZ(xt,k, yt+1).

This is particularly simple if at+1(xt, .) is a normal distribution and bt+1(., yt+1)

is log concave.

62

✬

✫

✩

✪

Example: Stochastic volatility

Here (Xt) is a Gaussian AR(1), and Yt = exp(Xt/2)Vt implies

log bt(xt, yt) = −
1

2
(log 2π + xt + y2

t exp(−xt)).

For |yt| small, this varies strongly as a function of xt (and for yt = 0 it is even

unbounded). In this case, the standard particle filter can give stronly unbalanced

weights. The recipes discussed in the previous slides can be applied and give much

better results. In particular, we can use the accept/reject method easily.

63

✬

✫

✩

✪

Gaussian AR with t-distributed observation noise

In this case the filter density ft|t can be bimodal. This occurs if it is not clear

whether an observation is an outlier or not. With the standard particle filter, one

proposes mostly values around one mode and thus can miss the second mode.

This will not show up in unbalanced weights.

The observation density bt(., yt) is not log concave. Still, we can bound it from

above by a function which is quadratic in the center, linear in the intermediate range

and constant in the extremes. Using this, one obtains proposal that are mixtures of

truncated Gaussian distributions.

64

✬

✫

✩

✪

log of a t-density and a piecewise quadratic approximation.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−
3

.0
−

2
.5

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

x

lo
g

 f

65

✬

✫

✩

✪

Partially observed diffusions

Here, the main difficulty is that the transition density from Xtk
to Xtk+1

is not

available. Fearnhead et al. (2006) have suggested to replace it with an unbiased

estimator which is available for some diffusions.

The alternative is to include the values of Xt at intermediate time points tk + jh,

h = (tk+1 − tk)/m in the state vector. If m is large enough, we can use the

Euler approximation

Xtk+jh | Xtk+(j−1)h

∼ N (Xtk+(j−1)h + hf(Xtk+(j−1)h), hσ2(Xtk+(j−1)h)).

66

✬

✫

✩

✪

If the observation equation is linear with Gaussian noise, we can obtain a Gaussian

approximation for

p(xs+h | xs, yk+1) ∝ p(xs+h | xs)p(yk+1 | xs+h).

The log of the first factor is quadratic in xs+h. The following approximation leads to

a quadratic expression in xs+h also in the log of the second factor.

Yk+1 = HXtk+1
+ Vk+1

≈ H(Xs+h + (tk+1 − s− h)f(Xs+h)

+σ(Xs+h)(Wtk+1
−Ws+h)) + Vk

≈ H(Xs+h + (tk+1 − s− h)f(Xs)

+σ(Xs)(Wtk+1
−Ws+h)) + Vk.

(Based on Durham and Gallant, 2002).

67

✬

✫

✩

✪

Balanced sampling

In the resampling step, we choose indices I1, . . . , IN with probabilities

P [Ij = k] = τk . This is necessary to avoid sample depletion in the long run, but

the additional randomness increases the variance in the short run.

If τk = 1
N , we have seen before that we can take each index exactly once, i.e.

Ij = j (the order is irrelevant). In general, we cannot eliminate randomness

completely: The index k should be chosenNτk times, butNτk is not an integer.

The best we can achieve is

Nk = Number of times k is chosen ∈ {[Nτk], [Nτk] + 1}.

We call this balanced sampling.

68

✬

✫

✩

✪

There are at least two algorithms for balanced sampling.

Tree based resampling was proposed by Crisan and Lyons (2002). Consider the

empirical and the true distributions

FN (j) =
1

N

j∑

k=1

Nk, F (j) =

k∑

j=1

τ(k).

Then the algorithm generates FN (j) as a Markov chain such that

|N(FN (j) − F (j))| ≤ 1, |Nj −Nτ(j)| ≤ 1.

(A little thought shows that this is possible). The same procedure can be used with

more general recursive splittings of {1, 2, . . . , N}.

69

✬

✫

✩

✪

Illustration of tree sampling. Black: F . Green and Red: Upper and lower envelopes

for FN . One out of the 4 possible jumps is excluded by the condition

|Nj −Nτj | < 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

x

f(
x
)

70

✬

✫

✩

✪

Circular resampling is due to Whitley (1994) (rediscovered by Carpenter et al.,

1999). It takes U uniform and starts with the balanced sample

{
U

N
,
U + 1

N
, . . . ,

U +N − 1

N

}

on (0, 1). This is then transformed by F−1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

x

f(
x
)

71

✬

✫

✩

✪

Other approaches to reduce the variability due to resampling are:

1. Use sequential importance sampling, i.e. τk ≡ 1
N , as long as the variance of the

weights (or some other criterion of unbalance) is less than a threshold. Otherwise

use resampling.

2. Choose τk = λ
1/2
t,k (or some other fractional power) as a compromise between

sequential importance sampling and resampling.

72

✬

✫

✩

✪

Particle filters with accept-reject

The “ideal” proposal produces an unweighted sample from the target fN
t+1|t+1. We

can obtain an unweighted sample directly with the accept-reject method.

If at time t we have an unweighted sample, then we have to sample from

fN
t+1|t+1(xt+1) ∝

∑

j

bt+1(xt+1, yt+1)at+1(xt,j , xt+1).

The straightforward approach is to propose from

1

N

∑

j

at+1(xt,j , xt+1)

and accept with probability

bt+1(xt+1, yt+1)/ sup
x
bt+1(x, yt+1).

More efficient proposals can be constructed with the auxiliary variable idea of Pitt

and Shephard.

73

✬

✫

✩

✪

Ensemble Kalman filter

This is due to Evensen and has become popular in atmospheric physics. Like the

particle filter, it approximates the filter density at time t by a sample (xt,j) which is

propagated forward according to the state dynamics to give a prediction sample

(x̃t+1,j).

The difference is in the update step. It assumes a linear Gaussian observation

model

Yt+1 = Ht+1Xt+1 + Vt+1.

If ft+1|t were Gaussian, then ft+1|t+1 would also be Gaussian with mean and

variance given on the next slide. The ensemble Kalman filter draws from this

Gaussian distribution, even when the prediction sample is not Gaussian.

74

✬

✫

✩

✪

Mean and variance are

mt+1|t+1 = mt+1|t +Kt+1(yt+1 −Ht+1mt+1|t)

Rt+1|t+1 = Rt+1|t −Kt+1Ht+1Rt+1|t,

where Kt+1 is the gain matrix

Kt+1 = Rt+1|tH
T
t+1(E(Vt+1V

T
t+1) +Ht+1Rt+1|tH

T
t+1)

−1.

One can easily check that the following sample has the correct first two moments

xt+1,j = x̃t+1,j +Kt+1(yt+1 −Ht+1x̃t+1,j + Vt+1,j),

(The gain matrix is computed with the covariance matrix Rt+1|t estimated from the

sample x̃t+1,j .)

Even though there is no theoretical foundation for this update step, it is in some

applications preferable to an update by weighting.

75

✬

✫

✩

✪

7. Particle smoothing

Particle algorithms for forward smoothing

Consider particle appoximations for the joint smoother:

p(x0:t | y1:t) ≈
N∑

j=1

λt,j∆(x0:t,j).

(The notation would need another index to indicate how many observations we use,

but this becomes clumsy, and so I assume that it is clear from the context).

Inserting this into the recursion, we obtain

p(x0:t+1 | y1:t+1) ≈ pN (x0:t+1 | y1:t+1)

∝
N∑

j=1

λt,j∆(x0:t,j)at+1(xt,j , xt+1)bt+1(xt+1, yt+1).

76

✬

✫

✩

✪

Using the same ideas as for the particle filter, we obtain the algorithm:

1. Generate (x0,1, . . . , x0,N) from a0(x)dµ(x) and set λ0,j = 1
N and t = 0.

2. Choose probabilities (τk) for the index and generate Ij with P [Ij = k] = τk .

3. Choose a transition density ρ(x, x′) and let

z0:t,j = x0:t,Ij
, zt+1,j ∼ ρ(zt,j , x)dµ(x).

4. Compute weights

λt+1,j ∝
λt,Ij

bt+1(zt+1,j , yt+1)at+1(zt,j , zt+1,j)

τIj
ρ(zt,j , zt+1,j)

.

5. Increase t by 1, set x0:t,j = z0:t,j and go back to 2.

77

✬

✫

✩

✪

We sample from a distribution that is discrete in the first t variables. The resampling

step leads to sample depletion in (xs,j) for any fixed s as t increases.

This has drastic consequences: The particle approximation to quantities like

E [h(Xs) | Y1:t]

degenerates for fixed s andN when t→ ∞. The same is true for

1

t

t∑

s=1

E [h(Xs) | Y1:t] .

78

✬

✫

✩

✪

A possible remedy proposed by Berzuini et al. is to do additional Gibbs-sampler or

Metropolis-Hastings transitions with the samples (x0:t,j) before generating xt+1,j .

Let q(x0:t, x
′
0:t) be any transition density which leaves p(x0:t | y1:t) invariant.

Then another approximation of p(x0:t+1 | y1:t+1 is the density proportional to

N∑

j=1

λt,jq(x0:t,j , x0:t)at+1(xt, xt+1)bt+1(xt+1, yt+1).

Sampling from this approximation can be done similarly as before. Because we now

sample also x0:t from a continuous distribution, all ties that occur in sampling the

indices Ij are broken. Sample depletion does not occur any more.

However, the complexity of the procedure is now quadratic in the number of time

points.

79

✬

✫

✩

✪

Particle filtering followed by particle smoothing

This is an attempt to use the results of the particle filter (xs,j). In order to avoid

confusion, we will call the smoother sample (z0:t,j).

As derived before, the backward transitions are:

p(xs | xs+1, y1:t) ∝ as+1(xs, xs+1)fs|s(xs | y1:s).

If we directly insert the particle filter approximation for fs|s, we have

p(xs | xs+1, y1:t) ∝ as+1(xs, xs+1)
N∑

j=1

λs,j∆(xs,j)

80

✬

✫

✩

✪

This means that the smoother sample is concentrated on the same values as the

filter. More precisely, zt,j = xt,j and given zs+1,j we set zs,j = xs,k with

probability proportional to

as+1(xs,k, zs+1,j)λs,k.

This can suffer from the problem of sample depletion (if the smoother is much more

concentrated than the filter). More seriously, this algorithm has complexityO(N2).

81

✬

✫

✩

✪

A better idea is to use the approximation fN
s|s which is based on the filter sample at

time s− 1:

p(xs | xs+1, y1:t) ∝ as+1(xs, xs+1)bs(xs, xs+1)
N∑

i=1

λs−1,ias(xs−1,i, xs).

Hence given zs+1,j we have to generate zs,j from the density proportional to

as+1(xs, zs+1,j)bs(xs, ys)
N∑

i=1

λs−1,ias(xs−1,i, xs).

Since for every j we have a different density to simulate from, importance sampling

(or resampling) is not useful. Accept/reject can be used, again with the index as

auxiliary variable.

However, we should not use a different proposal for every j because this will lead to

a O(N2) complexity. We can construct efficient algorithms if the state is

low-dimensional or if the dependence in the state process is not too strong.

82

✬

✫

✩

✪

8. Particle methods for parameter estimation

Approximate likelihood

The particle filter gives an approximate likelihood as a by-product:

p(yt+1 | y1:t, θ) ≈
∑

j

λt,j

∫
at+1(xt,j , x; θ)bt+1(x, yt+1; θ)dµ(x)

= E

[
λt,Iat+1(xt,I , X ; θ)bt+1(X, yt+1; θ)

τIρ(xt,I , X)

]

where (I,X) has the distribution

I ∼ τ, X | I = i ∼ ρ(xt,i, x)dµ(x).

The particle filter has generated a sample from this distribution.

83

✬

✫

✩

✪

For an approximate MLE, we need the likelihood at many values θ. Running

independent particle filters for different θ’s is computationally demanding and leads

to a non-smooth likelihood.

A better idea is to use the same τ and ρ for all θ’s in a small neighborhood. We then

have to store the indices in addition to the particles (LeGland et al., 2005).

Pitt has suggested running particle filters for different θ’s with different proposals,

but the same random numbers. Still, this will not give a continuous likelihood

approximation, because sampling from

(I,X) ∼ τiρ(xt,i, x)dµ(x)

is not continuous. We need to modify the discrete approximation
∑
λt,j∆(xt,j).

In one dimension, we can smooth the empirical distribution and use the quantile

transform. In higher dimensions, things are more difficult.

84

✬

✫

✩

✪

There is a method to compute a smooth approximation of log likelihood from a

smoother sample from one fixed parameter, see HRK (2001).

Alternatively, a stochastic version of the EM-algorithm has also been proposed.

Again, I refer to HRK (2001).

85

✬

✫

✩

✪

Recursive estimation

In a sequential setting, maximizing the whole likelihood function each time a new

observation becomes available is too complicated and often not feasible. One would

like a simple explicit update formula to compute θ̂t+1 from yt+1 θ̂t and some other

statistics that can be updated simply.

This leads to the area of recursive estimation. Almost all proposals discussed so far

rely on approximations not only of ft|t, but also of the derivative of ft|t with respect

to θ, the so-called tangent filter.

86

✬

✫

✩

✪

Bayesian estimation

The simplest idea is to include θ among the states, with the trivial evolution

θ ≡ const., i.e. θt+1 = θt.

At the beginning, we generate (θ0,j) from the prior and x0,j from

a0(x0; θ0,j)dµ(x0), and we take uniform weights. One iteration of the particle

filter then goes as follows:

1. Choose probabilities (τk) for the index and generate Ij with P [Ij = k] = τk .

2. Choose a transition density ρ(x | x′, θ) and let

θt+1,j = θt,Ij
, xt+1,j ∼ ρ(x | xt,Ij

, θt,Ij
)dµ(x).

87

✬

✫

✩

✪

3. Compute new weights

λt+1,j ∝
λt,Ij

bt+1(xt+1,j , yt+1; θt+1,j)at+1(xt,Ij
, xt+1,j ; θt+1,j)

τIj
ρ(xt,Ij

, xt+1,j; θt+1,j)
.

In doing so, we encounter again the problem of sample depletion: (θt+1,j) is a

subsample of (θt,j). If the posterior converges to a point mass, only one value from

the original sample will survive.

88

✬

✫

✩

✪

There are several approaches to solve this problem: One can introduce jittering by

adding some noise with small variance to the θt+1,j ’s. In order to compensate for

the increased variance we should also shrink the θt+1,j ’s towards their mean.

The choice of the spread of the jitter is difficult. For consistent estimation, it has to

decrease.

89

✬

✫

✩

✪

Another possible remedy is to use an additional Gibbs or Metropolis-Hastings step

for θ. However, because p(θ | xt, y1:t) is not available, we cannot find a transition

density which leaves this density invariant. We have to approximate the whole

smoothing distribution.

This means that at time t+ 1 we sample from the density proportional to

N∑

j=1

λt,j∆(x0:t,j)p(θ | x0:t,j , y1:t)at+1(xt,j , xt+1; θ)bt+1(xt+1, yt+1; θ).

This can be done similarly as before. The problem of sample depletion in the

smoother sample remains. If we are not interested in the smoother sample, this

seems not to matter.

90

✬

✫

✩

✪

In some situations, we don’t even have to store the smoother samples. Assume

there is a finite dimensional sufficient statistics Tt(x0:t, y1:t) such that

p(θ | x0:t,j , y1:t) = p(θ | Tt)

and there is a simple update

Tt+1 = ψ(Tt, xt+1, yt+1).

A simple example is a dynamic generalized linear model, i.e. a Gaussian AR-model

for (xt) and an exponential family for bt(xt, yt).

Then we can implement a particle filter recursion for the variables (xt,j , θj , Tt,j)

with weights λt,j where ties or sample depletion apparently does not occur. This is

due to Storvik (2002).

91

✬

✫

✩

✪

Still, there is a hidden depletion in the state variables that enter into Tt,j , and in

general it is not true that

N∑

j=1

λt,jh(Tt,j) → E [h(Tt) | y1:t]

as N → ∞, uniformly in t.

The simulations in Storvik (2002) look good, but presumably the procedure breaks

down eventually.

92

✬

✫

✩

✪

10. Extensions and outlook

Feynman-Kac formula

The structure of filtering and smoothing can be put into the larger framework of

Feynman-Kac formulae. There one considers measures of the following form

Qt(d(x0:t)) =
1

Zt

t∏

s=0

Gs(xs)Pt(d(x0:t)).

Here Pt is the distribution of the first t elements of a Markov chain (Xt), andGs

are arbitrary nonnegative functions such that the normalizing constant Zt is finite.

We can use the same particle algorithms as before: Propagate the particles at time

t and adjust according to Gt.

93

✬

✫

✩

✪

Clearly, if Gs(xs) = bs(xs, ys) then Qt is nothing else than the conditional

distribution of X0:t given y1:t, i.e. the smoother distribution. Moreover, Zt is then

the marginal density p(y1:t).

Hence, in some sense, the generalization consists “only” in abandoning the

interpretation of bs as the likelihood of Xs given Ys.

However, this opens up a number of interesting applications. For instance, if we

want to minimize some complicated function H(x), we can put

Gs(xs) = exp(−β(s)H(x))

where β(s) increases slowly. The corresponding particle system explores the

space according to a Markov process, gradually steering them towards regions with

low values of H . This is the basic idea of genetic algorithms.

94

✬

✫

✩

✪

Other applications include simulation of polymers (which are modeled as

self-avoiding random walks), estimating the probability of rare events in Markov

processes, etc.

There is also a natural continuous time version of Feynman-Kac formulae:

dQt =
1

Zt
exp(

∫ t

0

V (xs))dPt

where Pt is the distribution of the path of a Markov process in continuous time.

Again, one can use particle systems to simulate from Qt.

All this is in the book of Pierre Del Moral.

95

✬

✫

✩

✪

11. Conditional densities in the continuous case

Let p be multivariate density on R
n with respect to Lebesgue measure. Write a

point in R
n as (x, y) with x ∈ R

m and y ∈ R
n−m. Marginal and conditional

densities are as follows

p(y) =

∫
p(x, y)dx, p(y | x) =

p(x, y)

p(x)
.

From this we obtain the law of total probability

p(y) =

∫
p(y | x)p(x)dx.

A conditional version of this law is

p(y | z) =

∫
p(y | x, z)p(x | z)dx.

96

✬

✫

✩

✪

Similarly, we obtain Bayes law

p(x | y) =
p(y | x)p(x)

p(y)
=

p(y | x)p(x)∫
p(y | x)p(x)dx

∝ p(y | x)p(x),

and its conditional version

p(x | y, z) =
p(y | x, z)p(x | z)

p(y | z)
.

We call X and Y conditionally independent given Z if

p(x, y | z) = p(x | z)p(y | z) ⇔ p(x | y, z) = p(x | z)

(we can also exchange x and y on the right). For the equivalence, note

p(x | y, z) =
p(x, y, z)

p(y, z)
=
p(x, y | z)

p(y | z)
.

97

