
Stochastic Simulation
Script for the course in spring 2012

Hansruedi Künsch
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Chapter 1

Introduction and Examples

1.1 What is Stochastic Simulation?

(stochastic) Simulation = Implementation of a (stochastic)
system on a computer for
investigating the properties of the
system.

Simulation is therefore different from both a mathematical analysis of a system and a real
world experiment or observation study based on data.

The common point with a real experiment is

the empirical approach (measuring or counting something)

The commom point with a mathematical analysis is

the use of a mathematical model to represent reality

The advantages of simulations over a real experiment are the savings of time and money
and the possibility to change the parameters of a system easily.

The advantage of simulations over a mathematical analysis is the possibility to use com-
plex and thus more realistic models which cannot be handled with current mathematical
techniques. In particular, one has not to rely on asymptotic approximations.

In the following sections of this chapter, we will illustrate the range of problems which
can be solved with the help of stochastic simulations. But let us first give a general
mathematical description of a stochastic simulation. We consider a system which consists
of random input variables X = (X1, . . . , Xp) and a deterministic function h which maps
inputs into outputs Y = (Y1, . . . , Yq) = h(X). Here, p may be large and the function
h can be quite complicated, but the distribution of X and h are supposed to be known.
The goal is to obtain information about the distribution of the output Y. If we can draw
samples of X on a computer (something you will learn in this course), then we can easily
obtain draws from the output distribution. We simply draw a sample of size N of X, i.e.

Xi = (Xi1, . . . , Xip) i = 1, . . . , N

1
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and compute the corresponding output

Yi = h(Xi1, . . . , Xip) i = 1, . . . , N.

The law of large numbers justifies then the use of approximations like

E(Y1) ≈ 1

N

N∑
i=1

Yi1, P(Y1 ≤ c) ≈
1

N

N∑
i=1

1{Yi1≤c}.

The technique of approximating expected values by sample averages of simulated random
variables is also called the Monte Carlo method.

1.2 Distribution of Estimators and Test Statistics

1.2.1 Precision of the trimmed mean

Van Zwet (Statistica Netherlandica, 1985) reports a historical example of a simulation
before the age of computers:

“In the issue of May 20, 1942, of the Bulletin of the Astronomical Institutes of the Nether-
lands, E. Hertzsprung, director of the Observatory at Leiden, describes a sampling ex-
periment to determine the variance of the trimmed mean. In connection with the deter-
mination of relative proper motions of stars in the Pleiades, Hertzsprung discusses how
one should assign weights to the observed values to account for differences in quality of
the observations. He writes: “The simplest way to deal with exorbitant observations is
to reject them. In order to avoid special rules for onesided rejection the easy way of
symmetrical rejection of the largest deviations to each side may be considered. The first
question is then: How much is, in the case of Gaussian distribution of errors, the weight
of the result diminished by a priori symmetrical rejection of outstanding observations?
As the mathematical treatment of this question appears to be laborious beyond the needs
mentioned above I gave preference to an empirical answer. On each of 12534 slips of paper
was written with two decimals a deviation from zero in units of the mean error, in such
a way that these deviations showed a Gaussian distribution. Thus 50 slips were marked
with .00, 50 with +.01, 50 with -.01 etc.. Of these slips somewhat more than 1000 times
24 were picked out arbitrarily. Such 24 slips were in each case arranged according to the
size of the deviation and the mean squares of the sums of 24 − x deviations calculated
after symmetrical rejection of x = 0, 2, 4, . . . , 22 extreme values.”

This paragraph should warm a statistician’s heart, except that he may feel slightly uneasy
about “somewhat more than 1000” replications. And he has reason to feel uneasy: “Of
all these samples of 24 exactly 1000 were picked out in such a way that the sum of all 24
deviations (x = 0) fairly well showed a Gaussian distribution with a mean square of 24.”
From a theoretical point of view, this ruins a perfectly good sampling experiment, as Van
Dantzig was quick to point out, especially since no further information is supplied. There
is no way of assessing the accuracy of the estimated variances any more. On the other
hand, if we assume that this data cleaning was done sensibly, there seems to be no reason,
a priori, why the estimates should be much worse than they would have been otherwise.”

Let us formulate this problem and the solution by Hertzsprung mathematically. We con-
sider the trimmed mean

X̄(k)
n =

1

n− 2k

n−k∑
j=k+1

X(j),
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where the Xi are i.i.d. ∼ N
(
µ, σ2

)
and X(j) denotes the j-th element of the ordered

sample. One would like to know how much larger the variance σ(n, k)2 of the trimmed
mean is compared to the variance σ(n, 0)2 = σ2/n for k = 1, 2, . . . and n = 24. Without
loss of generality, we can assume µ = 0 und σ = 1.

This fits into our general framework: The inputs are (X1, . . . , Xn), they are i.i.d. standard
normal, and the function h is the trimmed mean. We would thus generate a N ×n matrix

of independent standard normal random variables Xij , compute the trimmed mean X̄
(k)
n,i

of each row and then use

nσ(n, k)2 ≈ n

N

N∑
i=1

(X̄
(k)
n,i )

2.

At the time of Hertzsprung, they had to generate the Xij from a discretization of the
normal distribution: The real line was partitioned into equispaced intervals centered at
xk = k · 0.01. Then an urn was made which contained M slips, each value xk appearing
approximately

M(Φ(xk + 0.005)− Φ(xk − 0.005)) ≈ 0.01 ·Mφ(xk)

times on a slip. Random draws from this urn have then approximately a standard normal
distribution. If one wants the value 0 to appear 50 times, one should take M ≈ 12′533.2.
In order to have a symmetric composition of the urn, they chose an even M .

Note that Hertzsprung used a slightly different approximation for the relative increase in
variance due to trimming, namely ∑N

i=1(X̄
(k)
n,i )

2∑N
i=1(X̄

(0)
n,i )

2
.

This estimate does not use the well-known fact that σ(n, 0)2 = 1/n which seems strange at
first glance. One can however show that this improves the precision of the approximation
because numerator and denominator are strongly correlated. We will discuss this in more
detail in section 3.9.2 below.

Hertzsprung’s procedure to eliminate certain rows of Xij in order to make the untrimmed
mean more normally distributed is doubtful. In particular, it destroys the possibility to
estimate the precision of the approximation, and it is hard to decide whether one has done
too much adjustment.

Nowadays, this problem can be solved easily by asymptotic arguments. In fact, even at
Hertzsprung’s time, one student of him, Van de Hulst hated the labor involved in the
simulation by hand and looked instead for an analytic answer. He succeeded, and showed
his result to van Dantzig, who was the pioneer of statistics in Holland at that time. But
van Dantzig mainly criticized the lack of rigor in the proof and failed to do justice to van
de Hulst’s achievement.

Formulated in modern mathematical language, the result is the following

Theorem 1.1. If Xi i.i.d. ∼ f(x)dx and f(x) = f(−x), then for n→∞ and k
n → α

P(
√
nX̄(k)

n ≤ x)→ Φ

(
x

σα

)
where σ2

α = 1
(1−2α)2

∫
min

(
x2, a2

)
f(x)dx and a = F−1(1− α).
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Proof. See any textbook on mathematical statistics.

This means that σ(n, k)2 ≈ σ2
k/n/n, and one can compute σ2

α easily in the case f is the
standard normal density.

Even nowadays, simulations and asymptotics are the two main tools to approximate the
distribution of any kind of statistical estimator and thus to compare the properties of
competing estimators of the same parameter. Similarly, one can use simulations and
asymptotics in order to derive critical values or power functions of statistical tests. Both
methods have advantages and disadvantages. Asymptotics usually shows how results de-
pend for instance on the assumed distribution of the observations whereas simulations can
only cover a few cases which have to be carefully chosen. On the other hand, asymptotics
relies on the consideration of limits which may have little to do with the sample size of
interest. Analytical error bounds are typically both very difficult and too pessimistic.
Because of this, simulations usually complement asymptotic arguments in order to obtain
an idea how different the distribution for a given sample size is from the asymptotic limit
distribution.

1.2.2 Bootstrap

In the previous subsection we assumed 1.2.1 the distribution of Xi to be known. This
makes sense if one wants to understand the advantages and disadvantages of the trimmed
mean compared to the arithmetic mean. Because it is known that the latter is optimal
under the assumption of normality, one wants to know how much precision the trimmed
mean looses in this case. Because the answer is “only little” and because the trimmed
mean offers in addition protection against outliers, the conclusion is that one should rather
use the trimmed mean.

Things are different if one wants to use the standarad deviation
√

Var (Tn) of an estimator
Tn to assess uncertainty about the true value, for instance in the form of an approximate
95% confidence interval a Tn±2

√
Var (Tn). In this case, one would like to avoid assuming

the distribution of the Xi to be known. Instead, we estimate also the distribution of the
Xi from the same data which were used to compute the estimator Tn. Such a procedure
is called bootstrap because of the double use of the data.

The empirical distribution F̂n of the observations is the natural estimator of the underlying
distribution if one does not assume that it belongs to some parametric family like Normal
or Gamma. The empirical distribution is a discrete distribution which puts mass 1

n on

every observed value xi (i = 1, . . . , n). If Xi is univariate, the distribution function of F̂n
is a step function In any case, if X∗ ∼ F̂n, then

P(X∗ = xj) =
1

n
(j = 1, . . . , n).

(We write X∗ instead of X to distinguish it from the random variable with distribution
F ).

The situation that we consider here can be summarized as follows

• We assume X1, . . . , Xn to be i.i.d. random vectors with unknown distribution F .

• We use an estimator Tn = tn(X1, . . . , Xn), tn : Rnp → R to estimate a parameter of
the underlying distribution F (e.g. we estimate the true correlation matrix of Xi by
the empirical correlation matrix of the data).
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• We estimate the standard error σ(Tn;F ) =
√

VarF (tn(X1, . . . , Xn)) of Tn by σ(Tn; F̂n)

Since we usually cannot compute σ(Tn; F̂n) analytically, we use simulation instead. The
procedure is like in the Hertzsprung example, but we draw our samples from the empirical
distribution F̂n instead of some assumed distribution F . If we had no computer, then our
urn would contain n slips with the n values xi which were actually observed.

The bootstrap algorithm is thus the following:

Algorithm 1.1.

1. Draw n · N times with replacement from the observations (x1, . . . xn) and put the
draws into a matrix (X∗ij ; 1 ≤ i ≤ N, 1 ≤ j ≤ n)

2. Compute the function tn for every row T ∗n,i = tn(X∗i1, . . . , X
∗
in)

3. Approximate σ2(Tn; F̂n) and thus also σ(Tn;F )2 by

1

N − 1

N∑
i=1

(T ∗n,i − T̄ ∗n)2 where T̄ ∗n =
1

N

N∑
k=1

T ∗n,k.

1.3 Simulation in Bayesian Statistics

We need here the concept of conditional distributions in the (absolutely) continuous case
which we recall first briefly.

1.3.1 Conditional distributions of continuous random vectors

Let X = (X1, X2) be a two-dimensional random vector with joint density f , i.e. for any
(measurable) subset A ⊆ R2 we have

P((X1, X2) ∈ A) =

∫
A
f(x1, x2)dx1dx2

Heuristically, the density is the probability of a small rectangle divided by the area of the
rectangle

P(x1 ≤ X1 ≤ x1 + dx1, x2 ≤ X2 ≤ x2 + dx2) = f(x1, x2)dx1dx2.

If such a joint density exists, we call X absolutely continuous.

The marginal densities are then

fX1(x1) =

∫ ∞
−∞

f(x1, x2)dx2, fX2(x2) =

∫ ∞
−∞

f(x1, x2)dx1.

We thus accumulate the mass of the density along one of the two coordinate axes. We call
X1 and X2 independent if

f(x1, x2) = fX1(x1) · fX2(x2).

Under independence, the two marginal densities thus determine the joint density. In
general this is not true. There are many joint densities which have the same marginal
densities.
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If X is absolutely continuous, P(Xi = x) = 0 for any x. Hence we cannot define conditional
probabilities given Xi = x by the well known formula from discrete probability theory.
Nevertheless, we call

fX2|X1
(x2 | x1) =

f(x1, x2)

fX1(x1)

the conditional density of X2 at x2 given X1 = x1. Heuristically, the left hand side is

P(x2 ≤ X2 ≤ x2 + dx2 | x1 ≤ X1 ≤ x1 + dx1)

dx2
,

and this can be justified rigorously as a limit if f and fX1 are continuous. Note that the
conditional density of X2 given X1 = x1 is obtained as the restriction of the joint density
along the line X1 = x1, normalized such that the total mass is one. Thus we can also
write

fX2|X1
(x2 | x1) ∝ f(x1, x2)

(proportional means up to a factor which depends on x1, but not on x2 – x1 is considered
fixed because it is the value on which we condtion).

The above formula can be used in two directions: If we know the joint density, then we can
compute the marginal and the conditional densities. On the other hand, we can choose
one marginal and one conditional density arbitrarily up to positivity and total mass one
and then compute the joint density as the product. Using each of the two directions once,
we obtain Bayes formula

fX1|X2
(x1 | x2) =

fX2|X1
(x2 | x1)fX1(x1)∫∞

−∞ fX2|X1
(x2 | x′1)fX1(x′1)dx′1

∝ fX2|X1
(x2 | x1)fX1(x1).

This is Bayes formula in the absolutely continuous case.

1.3.2 Introduction to Bayesian statistics

Statistics usually assumes that the observations were obtained as realizations of random
variables whose distribution is not fully known, but depend on an unknown parameter
θ. The parameter could be infinite dimensional, but we consider here only cases where θ
belongs to an open subset Θ ⊆ Rp. Moreover, we assume that for any θ the distributions
have densities with respect to some measure µ which for our purposes here is just the
Lebesgue measure.

X = (X1, . . . , Xn) ∼ pθ(x)dx.

The parameter θ is unknown to us, and we want to obtain information about it from the
observations, In the frequentist approach to statistics, θ has an unknown, but fixed value,
whereas in the Bayesian approach θ is also considered as a random variable. Although
we usually cannot sample different values of θ, the interpretation as a random variable
makes sense if we interprete probabilities as expressions of (subjective) beliefs how likely
different values are.

If we accept the idea of putting probabilities on the possible values of θ, then there are
two distributions for θ: The prior α which describes our beliefs about possible values of
θ before we have seen the data, and the posterior which describes the beliefs after we
have seen the data. The two distributions are then connected through Bayes formula: We
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interprete pθ(x) as the conditional density of X given θ and the prior density α(θ) as the
marginal density. Thus the joint density of (θ,X) is

α(θ)pθ(x).

Bayes formula then tells us that the posterior density of θ which is nothing else than the
conditional density of θ given X = x is equal to

α(θ|x) =
α(θ)pθ(x)∫

Θ α(θ′)pθ′(x)dθ′
∝ α(θ)pθ(x)

In words: The posterior is proportional to the product of prior and likelihood (where
proportional means up to factors which may depend on x, but not on θ).

Example 1.1. Let X1, . . . , Xn i.i.d. ∼ N
(
θ, σ2

)
, with σ2 known and θ unknown.

Thus the likelihood is

pθ(x) =

(
1√
2πσ

)n
exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2

)
.

As our prior for θ we choose a N
(
ξ, κ2

)
-distribution, that is

α(θ) =
1√
2πκ

exp

(
− 1

(2κ2)
(θ − ξ)2

)
How we should choose the “hyperparameters” ξ and κ is one of the main difficulties in
Bayesian statistics, but we do not discuss it here.

The joint density is then

α(θ,x) =
1

(2π)
n+1
2 σnκ

exp

(
− 1

2κ2
(θ − ξ)2 − 1

2σ2

n∑
i=1

(xi − θ)2

)
and this is proportional to the posterior. In order to derive the posterior, we have to
consider only those factors which contain θ. By completing the square, we obtain

α(θ|x) ∝ exp

(
− 1

2κ2
(θ − ξ)2 − 1

2σ2

n∑
i=1

(xi − θ)2

)

∝ exp

(
− 1

2ν2

(
θ − ν2

κ2
ξ − ν2

σ2
nx̄

)2
)

where ν2 is the harmonic mean of κ2 and σ2/n:

1

ν2
=

1

κ2
+

n

σ2
⇔ ν2 =

κ2 σ2

nκ2 + σ2
.

Since the last expression is up to a constant a normal density, we have found that the
posterior is again a normal density, but with expectation

µ(x) =
ν2

κ2
ξ +

ν2n

σ2
x̄ =

σ2

σ2 + nκ2
ξ +

nκ2

σ2 + nκ2
x̄

and standard deviation ν. Note that the expectation of the posterior is a convex combi-
nation of the prior expectation and the maximum likelihood estimate (MLE) of θ. It thus
represents a compromise between these two pieces of information. The weighting relates
the prior variance to the variance of the MLE.
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What can we do with the posterior ? As a point estimate of a function g(θ) we can use
for instance the posterior mean

E[g(θ) | X = x] =

∫
Θ
g(θ)α(θ|x)dθ

or the posterior median of g(θ). Instead of a frequentist confidence interval a Bayesian
would use a credible interval, that is any interval I(x) such that

P(g(θ) ∈ I(x) | X = x) = 1− γ.

In the example above, µ(x)±Φ−1(1− γ/2)ν would be such an interval. Note however the
different interpretation: x is fixed, and 1− γ is our belief on the basis of the data and the
prior that the invterval contains g(θ).

Another use of the posterior concerns prediction of new observations. If Y is independent
of X, but its distribution has the same value of the parameter θ, then

P(Y ∈ B | X = x) =

∫
P(Y ∈ B | θ)α(θ | x)dθ =

∫
B

∫
Θ
pY |θ(y)α(θ | x)dθdy.

In contrast to a simple plug-in rule P(Y ∈ B | θ̂) where θ̂ is a point estimate like the MLE,
the above prediction interval takes the uncertainty about the parameter θ into account.

In the above example, let us assume that Y is also N
(
θ, σ2

)
-distributed. Then

P(Y ≤ b | X = x) =

∫ b

−∞

∫
R

1

σ2
φ

(
y − θ
σ

)
1

ν
φ

(
θ − µ(x)

ν

)
dθdy.

Because the convolution of two normal densities is again normal, we obtain

P(Y ≤ b | X = x) = Φ

(
b− µ(x)√
σ2 + ν2

)
.

In the example above, we could do all computations analytically. The reason for this is
that we have chosen the prior such that the posterior belongs to a standard distribution
family where moments or the distribution function are readily available. If we had used as
prior for instance a Cauchy distribution, then the posterior would not belong to any of the
standard distribution families. Because the parameter is one-dimensional, we still could
study the shape of the posterior by plotting α(θ)pθ(x) and do the integrations numerically.
In many applications, the parameter θ is however high-dimensional and the posterior does
not belong to a standard family of distributions. In high-dimensions numerical integration
is difficult. Therefore, in such cases simulation is usually the easiest way to approximate
marginal posterior distributions, posterior expectations, credible intervals and prediction
intervals. We will see examples later on.

1.4 Simulations in Statistical Mechanics

We consider a so-called spin system which consists of magnetic particles arranged on a
lattice L = {1, 2, . . . , n}d with two possible values ±1 for the spin. The possible states
(configurations) x of the system are therefore elements of Ω = {±1}L. For physical reasons,
we use a so-called Gibbs distribution on Ω:

π(x) =
1

Z(T )
exp

− 1

T

∑
i 6=k

Jikxixk

 .
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Here Z(T ) is a normalizing constant, T is the absolute temperature and Jik = Jki denotes
the interaction between particles at sites i and k. If xi = xk, the probability p contains
the term exp(−Jik), and if xi 6= xk it contains the term exp(Jik), that is the sign of Jik
tells whether there is a preference for equal or opposite spins at sites i and k, and the
absolute value of Jik expresses the strength of this preference. If all Jik ≤ 0, we speak of
ferromagnetic interaction. In any case, the distribution π is symmetric with respect to an
interchange of the spin at all sites.

In physics
∑

i 6=k Jikxixk is the energy of the configuration. Hence log p(x) is a constant
minus energy divided by temperature. As T → 0, π converges to the uniform distribution
on the configurations with minimal energy. As T →∞ π(x) converges to a constant, that
is to the uniform distribution on all configurations.

The simplest special case which already shows interesting features is the so-called Ising
model (studied first by Ising in 1924) where

Jik =

{
0 falls ‖i− k‖ 6= 1
−1 falls ‖i− k‖ = 1.

Ising was interested in the distribution of the so-called average magnetization

Mn =
1

nd

∑
i∈L

Xi

for large n. It is always symmetric about zero. For large fixed n and T = ∞, nd/2Mn is
approximately standard normal by the central limit theorem. Also in the limit T → 0, for
fixed n, Mn = ±1 with probability 1

2 each. For some values T in between, the distribution
will thus be bimodal. The question is what happens if we keep T fixed and let n go to
infinity: Will the two modes disappear, or will there be a bimodal and thus non-normal
limit distribution ? If the two modes remain, we call this spontaneous magnetization.
For d = 1 one can show rather easily that there is no spontaneous magnetization for any
T > 0, a result also obtained by Ising. Moreover, he gave a plausibility argument that
this is the case also for d = 2. Unfortunately, this is wrong: In 1936, Peierls showed that
for d ≥ 2, there is a so-called phase transition: There is some critical temperature Tc such
that for T > Tc there is no spontaneous magnetization whereas for T < Tc spontaneous
magnetization occurs. For d = 2, Onsager in 1944 was also able to compute Tc.

For more complicated systems, analytical results are very difficult to obtain, and physicists
often use simulation instead in order to formulate conjectures and to verify plausibility
arguments.

How to simulate from a Gibbs distribution is immediately obvious because the space Ω is
huge (although finite !). The easiest simulation algorithms is based on the fact that the
conditional distribution of a spin at a single site given all the other spins can be easily
computed. We can write for any i ∈ L:∑

k 6=l
Jklxkxl = 2xi

∑
k 6=i

Jikxk +
∑
`6=k 6=i

J`kx`xk =: 2Aixi +Bi

where Ai and Bi do not contain xi. Then

P(Xi = +1|Xk, k 6= i) =
exp(− 1

T (2Ai +Bi))

exp(− 1
T (2Ai +Bi)) + exp(− 1

T (−2Ai +Bi))

=
exp(− 1

T 2Ai)

exp(− 1
T 2Ai) + exp(+ 1

TAi)
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If most Jik = 0, then we can compute Ai and therefore also these conditional probabilities
easily (in particular, we do not need the normalizing constant Z(T )).

From the definition of the conditional probability it follows immediately, that if X has
distribution π(x), then the configuration X′ which has X ′k = Xk for all k 6= i whereas X ′i
is drawn according the conditional probabilities above, also has the distribution π(x). We
will see later in Chapter 4, that repeated sampling according to the correct conditional
distribution not only leaves the Gibbs distribution invariant, but we even have convergence
to the Gibbs distribution from any starting distribution. We thus can choose an arbitrary
initial configuration and sweep through the lattice many times, always adjusting one spin
according to the correct conditional distribution. After a suitable burn-in period, we will
have samples from the Gibbs distribution. This is called the Gibbs-sampler.

The Gibbs sampler has found applications also in Bayesian statistics. In most cases it is not
possible to sample directly from the posterior, but often the so-called full conditionals, that
is the conditional distribution of one component of theta given all the other components
α(θi | θj , j 6= i,x) are simple enough so that we can simulate from them.

1.5 Simulations in Operations Research

We discuss here queueing systems as an example. Such a system consists of different
servers and customers which wait until a server is available to meet their service requests.
Input variables are the arrival times and service requests (type and time required for its
execution) of the customers. They are usually modeled as stochastic. Output variables
are for instance the time a customer spends in the system until his service requests are
fulfilled, the total amount of work the system has still to provide at a given time, the length
of time a server is idle etc. The function which links output variables to input variables
depends on the number and the specialization of servers and the queueing discipline.

In this example the time component is important. The state of the system changes in
time in a random way due to the randomness of the inputs; it is thus a stochastic process.
The state of the system does however not change continuously, but at discrete random
time points. Because of this, one speaks of “discrete event simulation”. Output variables
also change with time. Often, the system becomes stationary asymptotically, which means
that the distribution of the state of the system is the same at different time points. In
such a case one can simulate the system only once, but over a long time and then take
time averages of output variables instead of averages over independent realizations.

In contrast to such jump type processes there are also examples where the state changes
continuously. In deterministic systems, this is almost always the case because they are
usually modeled by ordinary or partial differential equations. If one perturbs such differ-
ential equations by a stochastic noise term, one obtains stochastic differential equations
where simulations are also widely used. We will give a brief introduction to this topic in
Section ?? below.

1.6 Simulations in Financial Mathematics

Financial mathematics is another area where simulations are wide spread, both for pricing
of financial instruments and for risk assessment. We consider a simple model for loss in a
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portfolio with investments in J creditors: lj is the loss if the j-th creditor defaults and Yj
is the indicator for this event (in a given time period). The total loss is then

L =
J∑
j=1

Yj`j .

We assume that lj is deterministic with integer values (in a suitable unit) whereas the
YJ ’s are stochastic. The joint distribution of the Yj ’s is of the following form: There are
latent variables W = (W1, . . . ,Wp) ∼ F such that given W the Yj ’s are conditionally
independent with

P(Yj = 1 |W ) = fj(W ).

The Wi represent the economic conditions of different countries and different industrial
sectors which influence the risk of default. The functions fj describe how much the j-th
investment is influenced by these economic conditions and are assumed to be known. A
possible form is

fj(W ) =
1

1 + exp(−
∑p

i=1 ajiWi)

with suitable weights aji. The Wi finally are assumed to be independent with a known
distribution, e.g. a Gamma or Lognormal distribution.

The task is to compute the distribution of L. In principle, setting up a simulation which
generates replicates of (Y1, Y2, . . . , Yn) is straightforward. However, this is usually not
sufficiently accurate, in particular for the right tails which are of interest here. We will see
in the following that straightforward simulation is not suitable for approximating small
probabilities, and we will learn alternatives like importance sampling.

In the example here, another possible solution is to use the characteristic function of L
which is defined as

χL(λ) = E(exp(iλL)) =
N∑
n=0

exp(iλn)P(L = n)

(we use that L takes positive integer values and is bounded). If we know χL for λ =
2πk/(N + 1) (k = 0, 1, . . . , N), then we can use Fourier inversion to compute

P(L = n) =
1

N + 1

N∑
k=0

exp(−i2πnk/(N + 1))χL(2πk/(N + 1)).

By choosing N + 1 as a power of 2, this can be evaluated easily with the Fast Fourier
Transform even when N + 1 is large. In order to approximate χL, we use

χL(λ) = E(E(exp(iλ

J∑
j=1

Yj`j) |W )).

The conditional expectation on the right-hand side can be evaluated analytically because
conditionally on W , we have a product of independent random variables with only two
possible values

E(exp(iλ

J∑
j=1

Yj`j) |W ) =

J∏
j=1

(1 + (exp(iλ`j)− 1)fj(W )) .
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Simulations is then used to approximate the expectation over the distribution of W . This
means we generate independent replicates of W , compute the right-hand side above for
each replicate and average the results for all values λ = 2πk/(N + 1). More details can
be found in S. Merino und M. Nyfeler, “Calculating portfolio loss”, RISK, August 2002,
82–86.

1.7 The accuracy of Monte Carlo methods

The use of sample averages to approximate expected values is justified by the law of large
numbers. The central limit theorem provides additional information on the accuracy.

Let us assume that the input variables belong to a space X and denote their distribution
of the input variables by π. The output variable is assumed to be one-dimensional and
has the form Y = h(X) where h is a deterministic function. Moreover, we are interested
in the expectation of Y , that is

θ = E(h(X)) =

∫
h(x)π(dx).

We use the simulation approximation

θ̂N =
1

N

N∑
i=1

h(Xi), Xi ∼ π

The following theorem gives a bound on the approximation error.

Theorem 1.2. Assume
∫
h(x)2π(dx) <∞ and let

σ2 = σ2(h) =

∫
(h(x)− θ)2π(dx).

Then for all t ∈ R
P(
√
N(θ̂N − θ) ≤ σt)→ Φ(t)

Moreover, if

S2
N =

1

N

N∑
i=1

(h(Xi)− θ̂N )2

denotes the sample variance, then the probability that the interval

IN = θ̂N ± Φ−1(1− α

2
)
SN√
N
,

contains the true value θ, converges to 1− α for N →∞.

Remarks:

1. The accuracy is not known in advance and has uncertainty α.

2. The rate 1√
N

is slow! For twice the accuracy, we need four times as many replicates.

3. Since N is always large , it does not matter whether we use N or N − 1 in the
denominator of S2

N .
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Proof. The first statement is simply the central limit theorem. The second statement is a
part of the Slutsky theorem, see Mathematical Statistics for details. To sketch the idea,
we fix a δ > 0 and we set WN =

√
N |θ̂N − θ| and z = Φ−1(1 − α

2 ). Then P(WN ≤ zSN )

differs from P(WN ≤ zSN , |SNσ − 1| ≤ δ) by at most P(|SNσ − 1| ≥ δ) which by the law

of large numbers for SN converges to zero as N → ∞. Moreover, if |SNσ − 1| ≤ δ, then
WN ≤ zSN implies that WN ≤ zσ(1 + δ) and on the other hand WN ≤ zσ(1− δ) implies
WN ≤ zSN . Combining all this, we obtain

2Φ(z(1− δ))− 1 ≤ lim inf P(WN ≤ zSN ) ≤ lim supP(WN ≤ zSN ) ≤ 2Φ(z(1 + δ))− 1

As δ → 0, the two bounds converge to 1− α.

In the special case where one wants to approximate the probability θ = π(A) (i.e. h(x) =
1A(x)), there is also an a priori estimation for the required number of replications because
in this case σ2 = π(A)(1 − π(A)). Assume for instance that the error should be with
probability 95% at most 0.1× π(A). Then

1.96×
√
π(A)(1− π(A))

N
≤ 0.1× π(A)

which is equivalent to

N ≥ 385× (1− π(A))

π(A)
.

When π(A) is very small, then N must be very large. Different methods to increase the
accuracy are discussed in Section 3.10.

Similarly, we can obtain information on the Monte Carlo error for more complicated
functionals of π than expected values. We consider specifically the quantiles and refer to
a course in Mathematical Statistics for the proofs.

Let Yi := h(Xi) and let qα be the α-quantile of Yi, qα = inf{y;P(Yi ≤ y] ≤ α}. The
empirical quantile is q̂α = Y([(N+1)α]), where Y(1) ≤ Y(2) ≤ ... ≤ Y(N) denotes the ordered
observations, and [x] the integer part of x. Then we have:

Theorem 1.3. If P(Yi ≤ qα) = P(Yi < qα) = α, then [Y(k1), Y(k2)] where

k1 = [Nα+ 0.5−
√
Nα(1− α)Φ−1(1− γ

2
)],

k2 = [Nα+ 0.5 +
√
Nα(1− α)Φ−1(1− γ

2
)] + 1,

is an approximate (1− γ)-confidence interval for qα.

Proof. This follows from the Central Limit Theorem for binomial random variables. We
have

P
(
qα /∈ [Y(k1), Y(k2)]

)
= P(Y(k1) > qα) + P(Y(k2) < qα).

The event Y(k1) > qα is equivalent to saying that there are at most k1 − 1 observations
≤ qα. It follows

P(Y(k1) > qα) =

k1−1∑
j=0

(
N

j

)
αj(1− α)N−j → Φ(

k1 − 1−Nα+ 0.5√
Nα(1− α)

) =
γ

2

for N →∞ (0.5 is a continuity correction).

For the second term we proceed similarly.
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For a concrete example, we take α = 0.9, N = 1000 and γ = 0.05. Then we get k1 = 881
and k2 = 920.

1.8 Other applications of stochastic simulation

We mention briefly two other applications of stochastic simulations: randomized algo-
rithms and teaching.

The most straightforward example of a randomized algorithm is Monte Carlo integration.
Assume we have a function h : A ⊆ Rp → R and we want to compute the integral∫
A h(x)dx. By a suitable transformation of variables we can always achieve A = [0, 1]p.

Monte Carlo integration generates then Np uniform random variables Uij on [0, 1] and
uses the approximation

1

N

N∑
i=1

h(Ui1, . . . , Uip).

A numerical integration method chooses N deterministic points xi ∈ [0, 1]p and uses the
approximation

∑N
i=1wih(xi) with given weights wi. In the simplest case, the xi are on a

cubic lattice

xi ∈
{

1

2K
,

3

2K
, . . . ,

2K − 1

2K

}p
,

with N = Kp and the weights are constant. For smooth functions h, one can show that
in this case the convergence rate is equal to N−1/p, which is very slow in high dimen-
sions. In contrast, Monte Carlo integration has convergence rate N−1/2 independent of
the dimension p and without any smoothness assumptions.

It may be surprising that a random choice leads to a better algorithm than a systematic,
deterministic choice, even though the problem that one wants to solve is purely deter-
ministic. This is however not the only example of such a phenomenon, there are many
randomized algorithms which perform better than deterministic ones. We refer to the
literature for such examples.

Simulation is also a very useful tool for teaching. It allows to experience random variability
since one obtains slightly different results each time an experiment is repeated, and one
can observe cases where randomness behaves differently that one would naively expect
(consider for instance the lenght of runs in a coin toss). Using the computer instead of
throwing dice or tossing a coin also has the advantage that one can do many replicates
without getting tired. Finally, simulations allow to quickly see interesting phenomena
which are difficult to prove analytically, e.g. arc sine laws for random walks.



Chapter 2

Generating Uniform Random
Variables

Practically all simulations use “random” numbers, which are not really random, but gen-
erated by a deterministic algorithm. They are thus call pseudo-random numbers. This
seems to be a contradiction, but from a practical point of view what matters are the
properties of the numbers, not how they were generated. Pseudo-random numbers should
behave in as many ways as possible like realizations of i.i.d. uniform random variables.
There have been attempts to exploit the randomness of some physical systems like ra-
dioactive decay. However, for these physical random numbers it is usually easier than for
good pseudo-random numbers to detect that they don’t behave like i.i.d. uniform random
variables . Moreover, reproducibility of results is also important which is easier to achieve
with pseudo random numbers.

The question what it means to behave like i.i.d. uniform random numbers leads to deep
mathematical theories developed by Kolmogorov and Martin-Löf. We take here a more
pragmatic approach based on visual properties and some numerical indices for the distri-
bution of d-tupels.

All algorithms that we discuss here, generate pseudo random numbers (un) according to
the following rules:

zn+1 = f(zn), un = h(zn), (2.1)

with given functions f and h. This means that un is a in general not invertible function of
a sequence zn defined recursively from its predecessor. Such an algorithm needs a starting
or seed value z0.

If the set of possible values of zn is finite, then it is easy to see that (zn) and (un)
are periodic except for maybe a finite number of values at the beginning. (Consider
the first n such that zn ∈ {z0, z1, . . . zn−1}). Clearly, a good generator should have a
period length which is substantially longer than the number of values used in a given
simulation experiment. This is however only necessary, but not sufficient for a good
generator. Important is also that the sequence of successive d-tupels fills out the d-
dimensional unit cube well.

We discuss first a few simple generators and then show how one can combine them in
order to satisfy more stringent requirements.

15
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2.1 Linear Congruential Generators

A linear congruence generator has the form un = xn/M where (xn) satisfies the recursion

xn+1 = (axn + c) mod M

where x0, a, c,M ∈ N.

The issue of the period length of such generators is covered in the following theorem.

Theorem 2.1. It holds

1. If c 6= 0, the period is equal to M for all x0 iff c and M are relatively prime and if
a ≡ 1 mod p for all prime divisors p of M and also for p = 4 if M is a multiple of
4.

2. If c = 0, the period is equal to M − 1 for all x0 6= 0 iff M prim and a(M−1)/p 6= 1
mod M for all prime divisors p of M − 1.

3. If c = 0 and M = 2k ≥ 16, then the period is M
4 iff x0 is odd and a mod 8 ∈ {3, 5}.

4. If c = 0, M = 2k ≥ 16 and a mod 8 = 5, then xn mod 4 is constant =: b, and if
b ∈ {1, 3}, then 1

4(xn− b) is identical to the sequence produced by the generator with
a′ = a, c′ = ba−1

4 , M ′ = M
4 . (This means we should simply ignore the last two bits

which are constant anyhow).

Proof. The proof uses basic results of number theory, see siehe Ripley (1987) Section 2.7,
or Knuth (1998) Theorems A and C in Section 3.2.

Thus the case c 6= 0 leads to the easiest criterion for a maximal period, but it has the
disadvantage that 0 appears in the sequence (un). The choice M = 2k is prefered because
mod M is then particularly easy to implement on a computer. However, low order bits
have then always a very short period. For M = 2k − r with r small, mod M is also easy
to compute, but the condition for a in case 2 of the above theorem is then more involved.

For any M there are many choices of c and a which guarantee a long period. As the figures
show, these choices differ in the distribution of successive pairs. We study therefore the
distribution of d-tupels. We denote by Λd the set of all d-tupels produced by the generator
and in the case c = 0 we add the origin

Λd = {(xn, xn+1, . . . , xn+d−1), 0 ≤ n < M} (∪{(0, . . . , 0)} if c = 0) .

If the period of the generator is maximal, Λd contains for any d only M points from the
Md possible points of the set {0, . . . ,M − 1}d. Hence with increasing d, the d-tupels
are necessarily farther apart from each other. Whereas this is unavoidable, for a good
generator distances should increase in all directions equally. We are going to formulate
this more precisely in the following.

The figures show that Λd has the regular structure of a so-called lattice. A lattice L ⊂ Rd
is the set of all integer linear combinations of a set of d linear independent vectors gi ∈ Rd:

L = {x = t1g1 + . . . tdgd; ti ∈ Z}.

The set of the gi’s are called a basis of L. Note that there are many bases of the same
lattice. A lattice is a subgroup of (Rd,+).

We now show that Λd consists of all points of a lattice shifted by a fixed vector which
belong to the the integer cube {0, . . . ,M − 1}d.
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Theorem 2.2. Let Ld denote the lattice with generating vectors

g1 = (1, a, a2, . . . , ad−1)T ,

gj = (0, . . . , M︸︷︷︸
j

, . . . , 0)T (j = 2, 3, . . . , d).

If c > 0 and the period is equal to M or if c = 0 and the period is M − 1, then

Λd =
(
c(0, 1, 1 + a, . . . , (1 + a+ · · ·+ ad−2))T + Ld

)
∩ {0, . . . ,M − 1}d.

Proof. First one shows by induction that

xn+j = (ajxn + c(aj−1 + · · ·+ 1) +M · Z) ∩ {0, 1, . . . ,M − 1}.

Hence Λd is a subset of the lattice Ld shifted by c(0, 1, . . . , (1+· · ·+ad−2))T and intersected
with {0, . . . ,M − 1}d. In order to show the opposite inclusion, we prove that the two sets
have the same cardinality. Because we have assumed that the period is maximal, Λd
contains M points. For any t1 ∈ {0, 1, . . . ,M − 1} there is exactly one choice for t2, . . . , td
such that t1g1 + . . .+ tdgd lies in {0, . . . ,M −1}d shifted by −c(0, 1, . . . , (1 + · · ·+ad−2))T .
Hence the claim follows.

In particular, the theorem shows that the quality of a generator is not affected by the
value c because c simply shifts the lattice.

The points of any lattice lie on parallel equidistant hyperplanes as the figures clearly
indicate. Mathematically, this can be described with the so-called dual (or reciprocal)
lattice

L⊥ = {v ∈ Rd; vTx ∈ Z ∀x ∈ L}.

Let us show first that L⊥ is a lattice and find a basis.

Lemma 2.1. If L is a lattice with basis vectors gi, then also L⊥ is a lattice and the set of
vectors hi which satisfy hTi gk = 0 for i 6= k and hTi gi = 1 is a basis of L⊥. In other words,
if G is the matrix with column vectors gi, then the columns of H = G−T from a basis of
L⊥.

Proof. It is clear that v ∈ L⊥ iff vT gk ∈ Z for all k. Hence the lattice generated by the
vectors hi is contained in L⊥. On the other hand, if v ∈ L⊥, then the vector

∑
i(g

T
i v)hi

is in the lattice generated by the the vectors hi. But
∑

i(g
T
i v)hi is in matrix notation

nothing else that HGT v = v.

For v ∈ L⊥, the hyperplanes vTx = 0,±1,±2, . . . are parallel, they contain by definition
all points in L, and the distance between two neighboring such hyperplanes is equal to

1
‖v‖ . Hence points v ∈ L⊥, v 6= 0 with small norm give those directions where the points
of the lattice are far apart.

For a good generator, we therefore want that the smallest possible value ‖v‖ > 0 with
v ∈ L⊥ is large. By the Lemma above, we can easily find a basis of L⊥, namely

h1 = (1, 0, . . . , 0)T , hj =
1

M
(−aj−1, 0, . . . , 1, . . . , 0)T (j = 2, 3, . . . , d).
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Moreover, any integer combination of the hi’s has the form

v =
1

M
(Mt1 − at2 − a2t3 + · · · − ad−1td, t2, . . . , td)

T (ti ∈ Z)

=
1

M
(u1, . . . , ud)

T (ui ∈ Z, u1 + au2 + a2u3 + · · ·+ ad−1ud = 0 mod M).

Hence we take as a measure of the quality of a generator in d dimensions the value

νd := M min{‖t‖ ; ‖t‖ 6= 0, t ∈ Zd, t1 + at2 + a2t3 + · · ·+ ad−1td = 0 mod M}.

(large values of νd are good).

Unfortunately, there is no simple formula to express νd as a function of a and M , but there
are algorithms to compute νd efficiently, see Ripley (1987) or Knuth (1998). Moreover, νd
can decrease drastically if d is increased by one, which makes choosing a difficult (typically
M is chosen large and in such a way that the recursion can be computed quickly).

2.2 Other Generators

Because of the lattice structure and because even the choice M = 232 or M = 264 do not
have a long enough period, one considers also other types of generators. We list a few of
those which have been discussed in the literature.

Nonlinear Congruential Generators An obvious variant is given by xi = g(xi−1)
where g : {0, 1, . . .M − 1} → {0, 1, . . .M − 1} is nonlinear, e.g. g(x) = (ax2 + bx + c)
mod M oder the division modulo M if M is prime. These types of generators avoid the
lattice structure of the d-tupels, but the computational effort is large. Moreover, the
restriction that only M out of the Md possible values for d-tupels can occur remains the
same.

Shift Register Generators These generators are based on a binary sequence bn ∈
{0, 1} which follows the recursion

bn = bn−p + bn−q mod 2.

Then consecutive L-tupels of (bn) with distance t are used to represent un in a binary
expansion

un =
L∑
j=1

bnt+j2
−j .

The value of t controls the overlap of L-tupels. The maximal period of (bn) is 2p − 1, and
there are choices of p and q such that this value of the period is attained.

Lagged Fibonacci This generator uses a recursion of the form

xi = F (xi−p, xi−q),

which is analogous to the shift register generator, but the xi need not be binary and F is
arbitrary. Possible choices of F are

F (Xi−p, Xi−q) = (Xi−p +Xi−q) mod M

or in case the xi’s are binary vectors, componentwise addition modulo 2 (the logical
operation “exclusive or”).
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Multiplication with Carry-over This generator uses zi = (xi, ci) where

xi = (axi−1 + ci−1) mod M, ci =

[
axi−1 + ci−1

M

]
In words, one uses not only the remainder, but also the result of integer division. This is
very easy to implement for M = 2k, a < M and c0 ≤ a because then ax0 +c0 ≤ aM ≤M2.
Thus by induction cn ≤ a and axn−1 + cn−1 ≤ M2 for all n. Hence if we write xi in the
binary system, axn−1 + cn−1 has at most 2k digits, the first k digits of axn−1 + cn−1 are
equal to xn and the last k digits are cn.

One can show that the period is (aM−2)/2 if M = 2k and if both aM−1 and (aM−2)/2
are prime.

Mersenne-Twister of Matsumoto and Nishimura (1998) This generator uses a
recursion of the following form

xk = xk−227 + xk−623

(
0 0
0 I31

)
A+ xk−624

(
I1 0
0 0

)
A

where xk is a row vector in {0, 1}32, A is a 32 × 32 matrix with binary elements and
all operations are modulo 2. This means that we have a linear recursion in a space
with 232·623+1 = 219937 elements (all components of the 623 preceeding vectors and one
component of the 624-th preceeding vector). The two inventors have constructed a matrix
A such that the recursion is easy to implement and the period is 219937−1 for any starting
value different from the one with all zeroes. This period is larger than the number of
atoms in the universe, and thus it is sufficient for all simulations that will ever be run.

The pseudorandom numbers are then obtained by multiplying xn by another binary matrix
T and using the 32 binary elements as digits in a binary expansion of un. The inventors
also show that the d-tupels are nicely equidistributed for all d ≤ 623. R uses this generator
as its default.

2.3 Combination of Generators

Most generators which are used nowadays combine several basic generators. This not only
increases the period, but usually also makes the d-tuples more evenly distributed. There
are at least two possibilities to combine generators. The first one combines the the current
values x′n and x′′n of the two generators by a function of two arguments xn = F (x′n, x

′′
n)

for a given F , e.g. addition modulo M if x′n und x′′n take values in {0, 1, 2, . . . ,M − 1}
or bitwise addition modulo 2 if x′i und x′′i are written in the binary system. The period
of the combined generator is then less or equal to the least common multiplier of the two
periods.

Let us look at the distribution of d-tupels of the combined generator. We denote by L
and L′ the set of possible values of d-tuples for the two individual generators which are
subsets of W = {0, 1, 2, . . . ,M − 1}d. We assume that the seeds are chosen uniformly
and independently for the two generators. This induces distributions p′, p′′ on W for the
individual and thus also for the combined generator:

p(w) =
∑

F (w′,w′′)=w

p′(w′)p′′(w′′). (2.2)
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Here, by abuse of notation, F is the componentwise application of the function which
combines the two generators. The following lemma shows that the distribution p of the
combined generator is at least as uniform as p′ and p′′ of the two individual generators.

Lemma 2.2. Let p′ and p′′ be two distributions on a finite set W and let F be a function
from W × W to W such that F (., w) and F (w, .) are both bijections for any w ∈ W .
Moreover, let p be the distribution on W defined by (2.2). Then it holds that

∑
w

∣∣∣∣p(w)− 1

|W |

∣∣∣∣ ≤ min

(∑
w

∣∣∣∣p′(w)− 1

|W |

∣∣∣∣ ,∑
w

∣∣∣∣p′′(w)− 1

|W |

∣∣∣∣
)
.

Proof. Let us define a transition matrix

Q(w′, w) =
∑

w′′,F (w′,w′′)=w

p′′(w′′).

We have
∑

wQ(w′, w) = 1 for any fixed w′ ∈ W : Each w′′ ∈ W appears exactly once as
solution of F (w′, w′′) = w if w runs through W . Similarly,

∑
w′ Q(w′, w) = 1. Therefore∑

w′

p′(w)Q(w′, w) = p(w),
∑
w′

1

|W |
Q(w′, w) ==

1

|W |
.

From this, we obtain

∑
w

∣∣∣∣p(w)− 1

|W |

∣∣∣∣ =
∑
w

∣∣∣∣∣∑
w′

(
p′(w′)− 1

|W |

)
Q(w′, w)

∣∣∣∣∣ ≤∑
w

∑
w′

∣∣∣∣p′(w′)− 1

|W |

∣∣∣∣Q(w′, w).

Exchanging the role of p′ and p′′ concludes the proof.

This lemma can be seen as a special case of a coupling inequality which we will meet again
in the last chapter.

The second combination possibility is by shuffling: The second sequence determines the
order in which the members of the first sequence are used. At the beginning we set
t = (x′1, x

′
2, . . . , x

′
k). In the n-th call we generate with the help of x′′n a random index

in ∈ {1, . . . k}, returns xn = tin and replaces tin with x′n+k. Although this is appealing it
is very difficult to analyze this method theoretically.

2.4 Testing of Random Numbers

Any test for uniformity on [0, 1]d can be used to test the quality of generators. Usually,
the case d = 1 is not interesting because practically all generators pass such a test. The
picture is quite different for d > 1.

In particular we can use the chisquare test based on partitioning [0, 1]d into K mutually
disjoint classes and counting how many d-tuples of consecutive values lies in each class.
The question is which partition one should use. Partitioning in subcubes with faces parallel
to the coordinate axes quickly leads to too many classes. Moerover, if one uses overlapping
d-tuples, the multinomial distribution does not hold because of the dependence between
overlapping d-tuples and this has to be taken into account when calculating p-values.

One way to deal with these problems, is to count not how often each class occurs, but
simply that number W of classes which never occur. This is easy to store even if the
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number of classes is large, and computing the expectation and variance of W reduces to
a combinatorial problem which can be solved in many cases. For instance for d = 2,
k = 1024 and a sequence of n = 221 random numbers one obtains E [W ] = 141′909 and
VarW = 2902. The critical value is then obtained by assuming W to be approximately
normal. Such tests are called “monkey tests” because one counts how many words of
length d a monkey who hits a key board with k keys n times never writes (Remember that
by the lemma of Borel-Cantelli a monkey who hits a key board randomly for ever writes
the collected works of Shakespeare not only once, but infinitely often).
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Chapter 3

Direct Generation of Random
Variables

We consider the following problem: Given a distribution π on a space X with a σ-field
F and a sequence of uniform random variable U1, U2, . . . i.i.d. ∼ Uniform(0, 1), find an
algorithm which produces an i.i.d. sequence X1, X2, . . . with distribution π. We therefore
ignore that in practice our uniform random variables are not really random.

3.1 Quantile Transform

Let F be a cumulative distribution function on R.

Definition 3.1. The quantile function F−1 is defined on (0, 1) by

F−1(u) = inf{x|F (x) ≥ u}.

I assume that the following result is known.

Theorem 3.1. If U ∼ Uniform(0, 1), then X = F−1(U) ∼ F .

Example 3.1 (Exponential distribution). If F (x) = 1− e−λx, then F−1(u) = − 1
λ log(1−

u).

Example 3.2 (Cauchy distribution). The densitiy and the distribution function are

f(x) =
1

π

1

1 + x2
, F (x) =

1

2
+

1

π
arctan(x).

Hence F−1(u) = tan(π(u− 0.5)).

Example 3.3 (Discrete distributions). If X takes the values x1 < x2 < . . . with probabil-
ities p1, p2, . . . an. Then both F and F−1 are step functions:

F (x) =
∑
xk≤x

pk, F−1(u) = xk for p1 + p2 + · · ·+ pk−1 < u ≤ p1 + p2 + · · ·+ pk.

Clearly, this can also be used to generate variables with values in any countable set. Note
that the number of terms we have to add is k−1 if F−1(U) = xk, hence the expected number
of additions is equal to

∑
k kpk−1. We should therefore list the values in descending order

of their probabilities. If we need more than one realization, it is advantageous to compute
and store the cumulative sums p1 + p2 + · · · + pk. Then we only need comparisons, and
there are clever algorithms which minimize the number of comparisons to find the interval
to which U belongs.

23
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3.2 Rejection Sampling

The key idea is to simulate with a different distribution τ (called the proposal) and then
to correct to obtain a sample from the target π.

Theorem 3.2. Let π and τ be distributions on an arbitrary space (X,F) with densities f
and g (with respect to some reference measure µ.) Assume that there is a constant M <∞
such that f(x) ≤Mg(x) for all x and thus

a(x) :=
f(x)

Mg(x)
≤ 1.

If X and U are independent random variables with X ∼ τ und U ∼ Uniform(0, 1), then
the conditional distribution of X given U ≤ a(X) is π:

P(X ∈ A | U ≤ a(X)) = π(A) ∀A ∈ F .

Proof. By definition of the conditional probability

P(X ∈ A | U ≤ a(X)) =
P({X ∈ A} ∩ {U ≤ a(X)})

P(U ≤ a(X))

By the assumption on the distribution of (X,U)

P({X ∈ A} ∩ {U ≤ a(X)}) =

∫
X×[0,1]

1A(x)1[0,a(x)](u)τ(dx)du =

∫
A
a(x)τ(dx)

=
1

M

∫
A

f(x)

g(x)
g(x)µ(dx) =

1

M

∫
A
f(x)µ(dx) =

1

M

∫
A
π(dx).

The same argument shows that the denominator is equal to 1/M .

This leads to the following algorithm

Algorithm 3.1.

1. Generate (X,U) independent with X ∼ τ and U ∼ Uniform(0, 1).

2. If U ≤ a(X), output X, otherwise go back to 1. .

For obvious reasons, a is called the acceptance function. Note that because f and g
integrate to one, M ≥ 1. The following Lemma shows that M controls the number of
rejected values.

Lemma 3.1. Let T denote the number of pairs (X,U) that have to be generated until
U ≤ a(X) for the first time. Then T is geometrically distributed with parameter 1/M , in
particular E(T ) = M .

Proof. It is clear that T has a geometric distribution since all generated pairs (U,X) are
i.i.d. In the proof of Theorem 3.2, we have already shown that P(U ≤ a(X)) = 1/M .

For this algorithm, it is sufficient to know f up to a normalizing constant. If f(x) = 1
Z f∗(x)

and f∗(x) ≤ Mg(x), then the acceptance function is a(x) = f∗(x)
Mg(x) , and thus we do not

need to know Z.
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Example 3.4 (Uniform distribution on a bounded subset of Rp). Let X = Rp and A ⊂ Rp
be a bounded and open subset. The uniform distribution on A has the density

f(x) =

{
const. x ∈ A
0 x /∈ A

As proposal, we choose the uniform distribution on a rectangle R with A ⊂ R. The
acceptance function is then nothing else than the indicator of A.

Example 3.5 (Beta-distribution). The density is

f(x) ∝ f∗(x) = xα−1(1− x)β−1 (0 < x < 1)

For α ≥ 1 and β ≥ 1 f∗ is bounded and we can therefore choose g(x) = 1. One obtains

sup
x
f∗(x) =

(α− 1)α−1(β − 1)β−1

(α+ β − 2)α+β−2

For α < 1 and β ≥ 1 we can choose g(x) = αxα−1. Then

f∗(x)

g(x)
=

(1− x)β−1

α
≤ 1

α
.

In many cases, we can find a proposal density by partitioning the space X. Consider

X =
⋃
Bi, Bi ∩Bj = ∅ (i 6= j),

and suppose that for each Bi we have a density gi with support Bi and f∗(x) ≤ Migi(x)
(x ∈ Bi). Then we can take

g(x) =
k∑
i=1

Mi

M1 + · · ·+Mk
gi(x)IBi(x). (3.1)

In order to compute the acceptance function, note that by construction for x ∈ Bi

f∗(x)

g(x)
=

f∗(x)
Mi

M1+···+Mk
gi(x)

≤M1 + · · ·+Mk,

and therefore

a(x) =
f∗(x)

Migi(x)
(x ∈ Bi).

Example 3.6 (Beta-distribution with α < 1, β < 1). We choose the partition with
B1 = (0, 0.5) and B2 = [0.5, 1) and the densities

g1(x) = 2ααxα−1 (x ∈ B1), g2(x) = 2ββ(1− x)β−1 (x ∈ B2).

Example 3.7 (Gamma distribution with γ < 1). If we set the scale parameter equal to
one, the density is

f∗(x) = xγ−1 exp(−x) (x ≥ 0).

For γ < 1 we can use B1 = [0, 1), B2 = [1,∞) and the densities

g1(x) = γxγ−1, g2(x) = exp(−(x− 1)).

Then M1 = 1/γ, M2 = 1/e.
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Example 3.8 (log-concave densities). If Bi = (ci, ci+1] ⊂ R we can choose gi(x) =
Z−1
i exp(bix) with arbitrary bi because we can simulate from such a density with the quantile

transform. The constant Mi must be such that for x ∈ Bi log f(x) ≤ logMi− logZi + bix.
If log f is concave, we can therefore compute the tangent ai + bix to log f at some point
in Bi and take Mi = aiZi. If the intervals are small, this will give a good approximation
of f and thus a high acceptance probability. The idea can be used in an adaptive way:
Start with 2 intervals, and whenever a proposal is rejected, compute a new tangent at the
proposed value and a corresponding finer partition.

3.3 Ratio of Uniform Random Variables

This method is limited to the one-dimensional case. We need example 3.4, which is why
we first had to discuss rejection sampling.

We have seen above that one can generate a Cauchy variable as the tangent of a uniformly
distributed variable. If one wants to avoid the calculation of the tangent, one can take the
quotient V/U of two variables (U, V ) which are uniformly distributed on the semi-circle
{(u, v);u2 + v2 ≤ 1, u ≥ 0}: In polar coordinates, V/U = tan(ϕ), and ϕ is uniform on
[0, π], see Lemma 3.3 below. We show here that many distributions can be generated as
quotients of random variables which are uniform in an appropriate set G.

Theorem 3.3. Let f ∝ f∗ be any density on R (there is no need to know the normalizing

constant). If (U, V ) is uniform on G =
{

(u, v); 0 ≤ u ≤
√
f∗(v/u)

}
, then V/U has the

density f .

The easiest way to understand the set G is to consider the intersection of G with the line
v = ux for fixed slope x: This intersection is the segment between the points (0, 0) and
(
√
f∗(x), x

√
f∗(x)). In particular, G is bounded if the endpoints of these segments are

bounded. Hence it follows

Lemma 3.2. If f∗(x) and |x|
√
f∗(x) are bounded, then G is contained in the rectangle

R = [0, sup
x

√
f∗(x)]× [inf

x
x
√
f∗(x), sup

x
x
√
f∗(x)].

We can therefore sample from the uniform distribution on G by rejection sampling.

Moreover, we obtain a heuristic proof of Theorem 3.3. The density of V/U at x is equal
to

P(x ≤ V
U ≤ x+ dx)

dx
=

P(U · x ≤ V ≤ U · (x+ dx))

dx
.

Because (U, V ) is uniform on G, the numerator is proportional to the area of G intersected
with the cone {(u, v);ux ≤ v ≤ u(x+dx)}. Up to terms of higher order, this intersection is
equal to the triangle with vertices (0, 0), (

√
f∗(x), x

√
f∗(x)) and (

√
f∗(x), (x+dx)

√
f∗(x)).

Hence its area is to first order equal to 1
2f∗(x)dx.

For a rigorous proof, we need a theorem about the transformation of multivariate densities
under invertible differentiable mappings.

Theorem 3.4. Let g : G ⊆ Rp → G′ ⊆ Rp be a continuously differentiable, invertible map-
ping whose Jacobian determinant D(u) = det( ∂gi

∂uj
(u)) vanishes nowhere in G. Moreover,
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let U be a random vector with values in G and probability density f∗(u). Then X = g(U)
has density, namely

fX(x) =
f∗(g

−1(x))

|D(g−1(x))|
.

Proof. Let h : Rp → R be continuous and bounded. Then with the substitution x = g(u)
we obtain

E(h(X)) = E(h(g(U))) =

∫
G
h(g(u))f∗(u)du =

∫
G′

h(x)f∗(g
−1(x))

|D(g−1(x))|
dx

Such expectations determine the distribution of X, so the claim follows.

Proof of Theorem 3.3: g : (u, v) → (x, y) = (u, vu) is a bijection from R+ × R into itself,
with Jacobian

D(u, v) = det(
∂g

∂(u, v)
) = det

(
1 0
− v
u2

1
u

)
=

1

u

Thus, fX,Y (x, y) ∝ x · 1
[0<x<

√
f∗(y)]

, so the marginal density of Y is

fY (y) =

∫
fX,Y (x, y)dx ∝

∫ √f∗(y)

0
xdx =

f∗(y)

2
.

Example 3.9 (Standard Normal Distribution). Since f∗(x) = exp(−x2/2), we obtain
supx

√
f∗(x) = 1 and supx x

√
f∗(x) =

√
2/e. This defines the rectangle R. The inequality

u <
√
f∗(v/u) is equivalent to log u ≤ −v2/(4u2), or v2 ≤ −4u2 log u

Similarly, we can use this procedure for the Gamma (γ, 1)-distribution with γ > 1. For the
Cauchy distribution, we find that G is a semi-circle in accordance with previous results.

3.4 Relations between Distributions

Relations between distributions can be exploited for simulation. For example, if X and Y
are independent, X has a standard normally distribution and kY 2 is chi-square distributed
with k degrees of freedom, then X/Y has a t-distribution with k degrees of freedom.
Furthermore, the chi-square distribution with k degrees of freedom is the distribution of
the sum

∑
Z2
i of k independent squared standard normal variables, or for k even, the

distribution of the sum of k/2 independent exp(1/2)-distributed variables.

3.4.1 The Normal Distribution

Let (X,Y ) be a two-dimensional random variable. Consider the polar coordinates:

R =
√
X2 + Y 2,Φ = arctan(Y/X).

Lemma 3.3. 1. Let X,Y be i.i.d. N(0, 1) distributed. Then R and Φ are independent,

Φ is uniform on (0, 2π)and R has the distribution function 1− e−
1
2
r2.

2. Let (X,Y ) be uniformly distributed on (x2 +y2 ≤ 1). Then R and Φ are independent
with Φ uniform (0, 2π) and R2 uniform (0, 1).



28 Direct Generation of Random Variables

Proof. Let A ⊂ R2 be the set {(x, y);
√
x2 + y2 ≤ r, arctan( yx) ≤ φ}. The first assertion

follows from

P(R ≤ r,Φ ≤ φ) =
1

2π

∫
A

exp(−1

2
(x2 + y2))dxdy

=
1

2π

∫ φ

0

∫ r

0
s exp(−s

2

2
)dsdψ

= − φ

2π
exp(−s

2

2
) |r0=

φ

2π
(1− exp(−r

2

2
)).

The second assertion follows similarly:

P(R2 ≤ r2,Φ ≤ φ) =
Total area of A

π
= r2 · φ

2π

This leads to two methods to generate a pair of independently standard normal distributed
random variables. Both are based on U , V i.i.d. ∼ Uniform (0, 1). For the first method,
one uses that 2πV and

√
−2 log(U) are independent and have the same distribution as

Φ and R respectively (this follows from the quantile transformation). So the random
variables

(X,Y ) =
√
−2 log(U)(cos(2πV ), sin(2πV ))

are iid ∼ N(0, 1) distributed. This is the Box-Muller algorithm.

For the second method, we first generate with the rejection method (U, V ) uniformly on
(x2 + y2 ≤ 1) and then form

(X,Y ) =
√
−2 log(R2)(U/R, V/R) =

√
−2 log(U2 + V 2)

U2 + V 2
(U, V )

This method does not need trigonometric functions.

Once we have univariate normally distributed random variables, then we can also simulate
multivariate normal distributions. The multivariate normal distribution Np(µ,Σ) has the
density

(2π)−p/2(det Σ)−1/2 exp(−1

2
(x− µ)TΣ−1(x− µ)),

where µ = E(X) is the vector of expected values of X, and Σ is the matrix of variances
and covariances of X. For the simulation we use that X can be represented in the form

X = µ+AY, with Y1, ..., Yp i.i.d. ∼ N (0, 1)

We do not give a full derivation of this result, but indicate how to choose the matrix A.
From the rules for the expectation of random vectors, we obtain

Σ = E((X − µ)(X − µ)T ) = AE(Y Y T )AT = AAT

This equation has many solutions. The easiest way is to require that in addition A is
a lower triangular matrix. Then we have a fast and numerically stable algorithm to
compute A, the Cholesky decomposition. Of course, if we can compute the eigenvalues
and eigenvectors of Σ easily, then we can also use a symmetric A.

If Σ−1 is given instead of Σ, we decompose Σ−1 as BBT , where B is a lower triangular
matrix. It then follows that Σ = (BBT )−1 = B−TB−1 i.e. A = B−T . For the calculation
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of X from Y , we solve BTX = Y by backward elimination, i.e. there is no need to invert
matrices.

This approach is feasible for dimension p ≤ 1000. Larger p’s occur in the simulation
of Gaussian stochastic processes. However, there Σ usually has the special structure
Σij = R(i − j), i.e. Σ is a so-called Toeplitz matrix. In this case, there are special
algorithms which are based on the Fourier transform.

3.4.2 The Poisson Distribution

Lemma 3.4. Let (Xi) be i.i.d. ∼ Exp(1) and Sn =
∑n

i=1Xi with S0 = 0. Then Sn is
Gamma(n, 1) distributed and

P(Sn ≤ t ≤ Sn+1) = e−t
tn

n!
.

Proof. The first claim follows by induction on n, using the convolution formula for the
density of the sum of two independent random variables. For the second claim, we observe
that:

P(Sn ≤ t < Sn+1) = P(Sn ≤ t)− P(Sn+1 ≤ t)

=

∫ t

0
e−x(

xn−1

(n− 1)!
− xn

n!
)dx = e−x

xn

n!
|t0

Interpretation: We consider Xi as the time between arrivals of customers in a queueing
system. Then Sn is the arrival time of the n-th customer, and Sn ≤ t < Sn+1 means that
the number of customers that have arrived up to time t is equal to n. This number has
therefore a Poisson distribution with paramer t.

Application for simulation: If Ui is uniform, thenXi = − log(Ui) has an Exp(1)-distribution,
and according to the above result:

Y = min{n |
n∑
i=1

(− log(Ui)) > t} − 1 = min{n | U1 · U2 · · ·Un < e−t} − 1

is Poisson(t) distributed.

3.5 Summary: Simulation of Selected Distributions

Normal Distribution. Use the ratio of uniform random variables X = V
U with (U, V )

uniformly on
{v2 ≤ −4u2 log(u)} ⊂ [0, 1]× [−2

√
2/e,

√
2/e],

or the representation of independently normal distributed pairs in polar coordinates:

(X,Y ) =
√
−2 log(U)(sin(2πV ), cos(2πV )),

with U and V independent and uniform on (0, 1), or

(X,Y ) =

√
−2 log(U2 + V 2)

U2 + V 2
(U, V ),
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with (U, V ) uniform on {u2 + v2 ≤ 1}. In R, the quantile transform with a numerical
approximation of the quantile function is used as default.

Binomial Distribution. For small n use the representation of the sum of independent
binary variables. For large n use the quantile transformation with an enumeration of pos-
sible values that start at [np] (see Example 3.3).

Poisson Distribution. Use the quantile transformation (for large λ starting with [λ]) or
the connection with i.i.d. exponentially distributed arrival times:

X = min{n ≥ 1;U1U2 · · ·Un < exp(−λ)} − 1

with (Ui) i.i.d. Uniform (0, 1).

Cauchy Distribution. Use the quantile transformation X = tan(π(U − 0.5)) with U ∼
Uniform (0, 1), or the quotient of uniform random variables X = V

U with (U, V ) uniform
on {u2 + v2 ≤ 1}.

Gamma (γ, 1) Distribution. For γ < 1 use rejection sampling with proposal density

g(x) =
e

e+ γ
γxγ−1I[0,1](x) +

γ

e+ γ
exp(−(x− 1))I(1,∞)(x),

For γ = 1 (the exponential distribution), use the quantile transformation X = − log(U).
For γ > 1 use the ratio of uniform random variables X = V

U with (U, V ) uniform on

{2 log(u) < (γ − 1) log(v/u)− v/u} ⊂ [0, a]× [0, b]

with a2 = ((γ− 1)/e)γ−1 and b2 = ((γ+ 1)/e)γ+1. For large γ, write γ = k+ γ1 with k an
integer and 1 < γ1 < 2 and use the representation as a sum of k exponentially-distributed
and a Γ(γ1, 1)-distributed independent random variables.

Beta(α, β) Distribution. Use either the representation of

X =
X1

X1 +X2
,

where X1 and X2 are independent and Gamma(α, 1) and Gamma(β, 1) distributed respec-
tively; or the rejection method with a proposal density

g(x) = 1 (α > 1, β > 1),

g(x) = αxα−1 (α < 1, β > 1),

g(x) = β(1− x)β−1 (α > 1, β < 1),

g(x) =
β

α+ β
2ααxα−11[0,0.5](x) +

α

α+ β
2ββ(1− x)β−11[0.5,1](x) (α < 1, β < 1)

t-distribution. with ν degrees of freedom . One uses the representation

X =
X1√

2X2/ν

where X1 and X2 are independent and normal- and Gamma(ν/2, 1)- distributed, respec-
tively.
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3.6 Random Sampling and Random Permutations

We assume that we want to draw a random sample S = (i1, i2, ..., in) without replacement
from the population {1, 2, ..., N}. If the sample is ordered, each such sample has probability

1

N(N − 1) · · · (N − n+ 1)
.

For n = N we obtain a random permutation. If the order within the sample does not

matter, each sample has probability
(
N
n

)−1
.

The following algorithms are available

Algorithm 3.2. Sampling without consideration of the order.

1. Set S = (1, 2, ..., n) and k = n.

2. If k = N , then S is the desired sample; otherwise set k = k + 1.

3. Choose U ∼ Uniform (0, 1). If U < n
k , let I be uniformly distributed on (1, 2, ..., n),

and replace the I-th element of S by k; otherwise S does not change.

4. Go back to step 2.

For this algorithm we do not need to know N in advance; for each k, S is a random subset
of size n from k elements. The proof that it is correct, proceeds by induction: Assume
that for some k, the algorithm gives a set S with uniform distribution among all subsets
of size n from k elements. By removing one element of S at random, we obtain a subset
of size n − 1 from k elements which is again uniform. Hence for k + 1, any set of size n
which contains k + 1 has probability

n

(k + 1)
(
k

n−1

) =
n · (n− 1)! · (k − n+ 1)!

(k + 1) · k!
=

1(
k+1
n

) .
Similarly a set which does not contain k + 1 has probability

k + 1− n
(k + 1)

(
k
n

) =
(k + 1− n) · n! · (k − n)!

(k + 1) · k!
=

1(
k+1
n

) .
Algorithm 3.3. Sampling with consideration of the order.

1. Generate U1, ..., UN i.i.d. ∼ Uniform (0, 1).

2. Sort the Ui’s and set Ri = rank(Ui).

3. S = {rank(U1), ..., rank(Un)}.

This algorithm is easy to program, but sorting requires N logN comparisons, hence it is
slow for large N .

Algorithm 3.4. Sampling with consideration of the order.

1. Set M = (1, 2, ..., N) and k = 1.

2. Choose I uniformly distributed on (k, k + 1, ..., N), and swap Mk with MI .

3. If k = n, S = (M1, ...,Mn) is the result, otherwise set k = k + 1 and go back to step
2.

The proof that these two algorithms are correct is easy.
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3.7 Importance Sampling

Recall that the rejection algorithm simulates a distribution π by first simulating a variable
X according to an incorrect proposal distribution τ and then accepting X with probability
a(X) = f(X)/(Mg(X)). Here f and g are the densities of π and τ respectively, and M is
an upper bound for the ratio w = f/g.

Importance sampling is based on a similar idea, but the correction does not occur in the
generation of variables, but by weighing the average. It is based on the identity

Eπ(h(X)) =

∫
h(x)π(dx) =

∫
h(x)

f(x)

g(x)
g(x)µ(dx) =

∫
h(x)w(x)τ(dx) = Eτ (h(X)w(X)).

If we have variables Xi, which are i.i.d. and τ -distributed, the estimator

θ̃ =
1

N

N∑
i=1

h(Xi)w(Xi)

is therefore unbiased.

In contrast to the rejection algorithm, importance sampling does not need an upper bound
for the ratio w. It is obvious that

Var(θ̃) =
1

N
Var(h(Xi)w(Xi)) ≤

1

N

∫
h(x)2w(x

2
τ(dx) =

1

N

∫
h(x)2 f(x)2

g(x)
µ(dx).

Thus in order to have a finite variance for all bounded functions h,
∫
f(x)2/g(x)µ(dx)

must be finite. This is a weaker condition than f/g is bounded. The density g, however,
should have heavier tails than f . In order to avoid a huge variance, g must also be
similar to f . It is more difficult to achieve this in high dimensions as most distributions
in high dimensions tend to differ greatly, and there are very few candidates as proposal
distribution g. Therefore, the use of importance sampling in high dimensions is limited.

Importance sampling is not linear: If a constant is added to h, then the importance
sampling does not add the same constant to the estimate:

1

N

N∑
i=1

(h(Yi) + c)w(Yi) =
1

N

N∑
i=1

h(Yi)w(Yi) + c
1

N

N∑
i=1

w(Yi)

and N−1
∑N

i w(Yi) 6= 1 although it converges to one as N → ∞. Alternatively, we can
use the estimate

1
N

∑N
i=1 h(Yi)w(Yi)

1
N

∑N
i=1w(Yi)

which is linear, but no longer unbiased. Note that the second version can be used also if
f is known only up to a normalization constant, whereas for the first version we need the
normalization constant.

3.8 Markov Chains and Markov Processes

In principle, one can simulate recursively from a p-dimensional distribution: Let π1 be
the marginal distribution of X1 and πj|j−1,...,1 be the conditional distribution of Xj given



3.8 Markov Chains and Markov Processes 33

X1 = x1, . . . , Xj−1 = xj−1. Then one can first generate X1 from π1 and then iteratively
Xj from πj|j−1,...,1 for j = 2, ..., p. However, this only works if π1 and πj|j−1,...,1 can be
calculated explicitly. In general, one has to calculate a number of integrals for πj|j−1,...,1,
which is usually not possible. Remember that we simulate because we want to avoid
numerical integration.

One exception are multivariate normal distributions. Their conditional distributions are
again normal, and we obtain the conditional expected values and variances from the
Choleski decomposition.

Another important example where this approach is feasible are Markov chains. These
are stochastic processes in discrete time, where the conditional distribution of Xj given
X1 = x1,...,Xj−1 = xj−1 only depends on xj−1, and is explicitly given by a so-called
transition kernel, see Section 4.1 in the next chapter.

Markov processes in continuous time with a continuous state space are more difficult
to simulate. Such processes are generated by stochastic differential equations, which we
briefly discuss next.

3.8.1 Simulation of Stochastic Differential Equations

A stochastic differential equation arises from an ordinary differential equation by adding
a stochastic noise Nt:

dXt

dt
= f(Xt) + σ(Xt)Nt.

The noise is assumed to be white, that is Nt and Ns are stochastically independent for
t 6= s. White noise is however a pathological object, because independence in different
intervals implies that

Var(

∫ t

0
Nsds) = const t

However if the constant is positive and finite, then
∫ t

0 Nsds is of the order
√
t and thus

not differentiable, i.e. (Nt) does not exist.

The solution is to give an interpretation of the above equation which does not involve
Nt, only the integral Bt =

∫ t
0 Nsds which is called Brownian motion. It is defined by the

following two properties:

1. B0 = 0 almost surely.

2. For all t0 = 0 < t1 < t2 < · · · < tn, the increments Bti − Bti−1 (i = 1,...n) are
independent and N (0, ti − ti−1)-distributed.

Wiener has shown that there is such a process and it can be chosen so that the paths
are almost surely continuous. Therefore, a Brownian motion is often also called a Wiener
process. The following lemma gives a proof by constructing a sequence of piecewise linear
approximations which converges almost surely to a Brownian motion and which can be
used for simulation.

Lemma 3.5. Let (B1, Xn,j , n = 1, 2, . . . , j = 1, 2, . . . , 2n−1) be i.i.d. standard normal

random variables and for each n let (Y
(n)
t ) be the continuous process on [0, 1] which is
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equal to Xn,j for t = (2j − 1)2−n, equal to zero for t = (2j)2−n and interpolates linearly

in between. Then the sequence B
(0)
t = tB1,

B
(n)
t = B

(n−1)
t + Y

(n)
t 2−(n+1)/2.

converges with probability one uniformly in t to a Brownian motion on [0, 1] with contin-
uous sample paths.

Proof. For uniform convergence, we use that

P(max
j
|Xn,j | > cn) ≤ 2n−12(1− Φ(cn)) ≤ 2n

∫ ∞
cn

x

cn
φ(x)dx = 2n

φ(cn)

cn
.

Hence if we choose cn = θ
√

2n log 2 with θ > 1, then∑
n

P(max
j
|Xn,j | > cn) ≤

∑
n

const.√
n

2(1−θ2)n <∞.

By the Borel-Cantelli Lemma, it follows that with probability one supt |Y
(n)
t |2−(n+1)/2 ≤

cn2−(n+1)/2 for all but finitely many n’s. Hence uniform convergence follows because
cn2−(n+1)/2 is summable, and by a standard result from analysis the limit is continuous.

In order to check that the limit process is a Brownian motion, we show by induction that

the increments (B
(n)
j2−n −B

(n)
(j−1)2−n) are uncorrelated and normally distributed with mean

zero and variance 2−n. This follows easily because two such consecutive increments are
equal to

1

2

(
B

(n−1)

j2−(n−1) −B
(n−1)

(j−1)2−(n−1)

)
±Xn,j2

−(n+1)/2.

Formally, Nt is the derivative of Bt, but the paths of Bt are nowhere differentiable. We
therefore write the above stochastic differential equation in integral form

Xt = X0 +

∫ t

0
f(Xs)ds+

∫ t

0
σ(Xs)dBs,

or in shorthand version

dXt = f(Xt)dt+ σ(Xt)dBt.

The crucial point is that we can define the ”stochastic integral”
∫
ZsdBs in a mathemat-

ically rigorous way for processes (Zt), which have finite second moments and where Zt
depends only on Bs for s ≤ t. This does not work as a Lebesgue or Stieltjes integral
because (Bt) not only is not differentiable but also has infinite total variation. Instead we
use a Riemann approximation of the form

n∑
j=1

Ztj−1(Btj −Btj−1)

and show that this converges in L2 as the partition gets finer. It is essential that we take
the left boundary point of the subinterval and not an arbitrary point.
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In this way, one can define rigorously what is meant by a solution. Next, one must show
that solutions exist. This is done as for ordinary differential equations by the iterative
approximation

X
(m)
t = X0 +

∫ t

0
f(X(m−1)

s )ds+

∫ t

0
σ(X(m−1)

s )dBs.

The simulation of solutions of these stochastic differential equations has received much
interest in the past 20 years. The simplest method generates an approximate solution at
time points k∆ according to the Euler scheme

X(k+1)∆ = Xk∆ + f(Xk∆)∆ + σ(Xk∆)(B(k+1)∆ −Bk∆).

Because the increments of B are normally distributed, the implementation is trivial. One
can show that it converges to the solution for ∆ → 0, though slowly. In analogy to the
numerical solution of ordinary differential equations, one immediately thinks of higher
order approximation schemes (Runge-Kutta). It turns out that one cannot improve the
convergence rate in this way. There are procedures that have a faster convergence rate,
but these are complicated. Recent work by Beskos, Papaspiliopoulos and Roberts shows
that one can simulate exactly by the rejection method under certain assumptions on f
and σ.

3.9 Variance Reduction

We have seen in Section 1.7 that if we estimate

θ = E(h(X)) =

∫
h(x)π(dx).

by

θ̂N =
1

N

N∑
i=1

h(Xi), Xi ∼ π,

then the precision is given by the standard deviation

σ(h)√
N

=

√∫
(h(x)− θ)2π(dx)

N
.

We discuss now several methods to reduce the variance, i.e to increase the precision.

3.9.1 Antithetic Variates

The variance of the arithmetic mean of dependent random variables depends on the co-
variances. One immediately sees that the variance decreases (vs. the independent case) if
all the correlations between the variables are negative. Antithetic variables are a way to
introduce such negative correlations.

We consider the following situation:

θ =

∫ 1

0
h(x)dx = E(h(U)), U ∼ Uniform (0,1).



36 Direct Generation of Random Variables

Instead of θ̂N = 1
N

∑N
i=1 h(Ui), we consider here

θ̃N =
1

2N

N∑
i=1

(h(Ui) + h(1− Ui)).

We obtain

Var(θ̃N ) =
N

4N2
Var(h(Ui) + h(1− Ui))

=
1

2N
Var(h(Ui)) + Cov(h(Ui), h(1− Ui)).

If Cov(h(Ui), h(1 − Ui)) < 0, θ̃N has a smaller variance than θ̂2N . The following lemma
gives conditions for this to hold.

Lemma 3.6. If the function h is monotonic, then Cov(h(U), h(1 − U)) < 0, unless h is
constant on (0, 1).

Proof. Let U1 and U2 be independent and Uniform(0,1) distributed. Then we have

Cov(h(U), h(1− U)) =
1

2
E[(h(U1)− h(U2)) · (h(1− U1)− h(1− U2))].

We assume that h is for example monotonically increasing. If U1 < U2, then the first factor
is negative and the second positive, and vice versa for U1 > U2. Thus, the integrand is
always non-positive.

To verify that the covariance is strictly negative, we investigate when the integrand is zero.
One factor must be 0, that is almost surely either h(U1) = h(U2) or h(1−U1) = h(1−U2).
Because h is monotone, this is only possible if h is constant.

This can be applied in particular for the approximation of
∫
h(x)F (dx), if h is monotone

and we simulate F with the quantile transformation (because F−1 is monotone).

3.9.2 Control Variates

We assume that there exists a function r such that E(r(Xi)) is known. W.l.o.G., let
E(r(Xi)) = 0. Then for any c

θ̃N,c =
1

N

N∑
i=1

(h(Xi)− cr(Xi)).

is an unbiased estimator of θ. Its variance is

Var(θ̃N,c) =
1

N
Var(h(Xi)− cr(Xi))

=
1

N
[Var(h(Xi))− 2cCov(h(Xi), r(Xi)) + c2 Var(r(Xi))]

The optimal copt that minimizes this variance is therefore

copt =
Cov(h(Xi), r(Xi))

Var(r(Xi))
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and the minimal variance is

Var(θ̃N,copt) =
1

N
Var(h(Xi))(1− Corr(h(Xi), r(Xi))

2) ≤ 1

N
Var(h(Xi)).

In general, copt is unknown, but it can be estimated by

ĉopt =

∑N
i=1(h(Xi)− θ̂N )r(Xi)∑N

i=1 r(Xi)2
.

This is consistent, and we obtain asymptotically the same variance as if copt is known.

For r(Xi) > 0, one usually scales r such that E(r(Xi)) = 1 and uses a multiplicative
correction:

θ̃N =
1
N

∑N
i=1 h(Xi)

1
N

∑N
i=1 r(Xi)

Here one cannot calculate the expected value and variance of θ̃N exactly. However,

θ̃N − θ =
1
N

∑N
i=1[h(Xi)− θr(Xi)]
1
N

∑N
i=1 r(Xi)

.

Hence for N → ∞, θ̃N converges almost surely to θ, and
√
N(θ̃N − θ) is asymptotically

normal with mean zero and variance Var(h)− 2θCov(h, r) + θ2 Var(r)). (This is another
application of Slutsky’s theorem). Multiplicative correction thus provides an improvement,
if h(Xi) and r(Xi) are strongly correlated.

Example 3.10 (Variance of Trimmed Means). We consider the estimation of the variance
of the trimmed means of n standard normal random variables, see Example 1.5.1. As a
control variable we can use n times the square of the (untrimmed) mean.

3.9.3 Importance Sampling and Variance Reduction

We have introduced importance sampling in Section 3.7 as an alternative to the rejection
algorithm. The idea is to estimate θ =

∫
h(x)π(dx) with the help of random variables with

the ”wrong” distribution of τ . To correct it, one then computes at the weighted average

θ̃N =
1

N

N∑
i=1

h(Yi)w(Yi), Yi i.i.d. ∼ τ,

where

w(x) :=
f(x)

g(x)

and f and g are the density of π and τ respectively (with respect to some reference measure
µ).

This method can be applied not only in situations where it is impossible or difficult to
generate random variables with distribution π. There are also cases where a suitable choice
of τ leads to a more accurate estimate than the one based on the direct approximation

θ̂N =
1

N

N∑
i=1

h(Xi), Xi i.i.d. ∼ π.
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It easily follows that

E(θ̂N ) = E(θ̃N ) = θ

N Var(θ̂N ) =

∫
h(x)2π(dx)− θ2

N Var(θ̃N ) =

∫
h(x)2w(x)2τ(dx)− θ2

=

∫
h(x)2w(x)π(dx)− θ2.

The following lemma shows how one must choose τ so that (θ̃N ) has minimal variance.

Lemma 3.7. For any choice of g, we have

N Var(θ̂N ) ≥ (

∫
|h(x)|π(dx))2 − θ2,

and we have equality if and only if g(x) = const.|h(x)|f(x).

Proof. By the Cauchy-Schwarz inequality

(

∫
|h(x)|π(dx))2 = (

∫
|h(x)|w(x)τ(dx))2

≤
∫
h(x)2w(x)2τ(dx) · 1

The optimal g can practically never be used because for the weioghts we need the normal-
ized density g(x) = |h(x)|f(x)/

∫
|h(x)|f(x)µ(dx) and we cannot compute the normaliza-

tion if we cannot compute
∫
h(x)f(x)µ(dx). In particular, if h ≥ 0 the optimal choice of

g would give Var(θ̂N ) = 0. Still, the Lemma is useful, because it implies that Var(θ̂N ) will
be small if g(x) is approximately proportional to |h(x)|f(x).

Example 3.11. Let h(x) = 1A(x) where A is a rare event under the distribution π. Then
θN needs many replicates, see section 1.7. If we use importance sampling, by the previous
Lemma the optimal τ is simply the conditional distribution of X under π given that X ∈ A.
Clearly, this cannot be implemented. It is however sufficient to choose a density g which
is small outside of A and approximately proportional to f in A.

“Did Mendels Facts Fit His Model?” is the title of a section in Freedman, Pisani, Purves
and Adhikari (1991). The answer is that the agreements between theory and Mendel’s data
are too good to still be credible. In other words, it is almost certain that Mendel’s data
were systematically “massaged”. The basis for this verdict is as follows: If one calculates
the chi-square test statistics for each of Mendel’s experiment, and adds these values, we
obtain a value of 42, and this sum is a random deviation from a chi-square distribution
with 84 degrees of freedom. How big is the probability of observing this distribution with a
value less or equal to 42? It cannot be found in any table.

The density of χ2
84, i.e. Gamma(42, 1

2) is

f(x) =
(1

2)42

Γ(42)
x41e−

x
2 .
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We choose τ as a Gamma(42, 1) distribution, which has an expected value of 42. Then

w(x) =
f(x)

g(x)
=

(
1

2

)42

e21e
(x−42)

2

where (
1

2

)42

e21 = 3 · 10−4

therefore,

P(X ≤ 42) ≈ 3 · 10−4]
1

N

N∑
i=1

e
1
2

(Yi−42)1[Yi≤42].

A simulation with N = 1000 yields an approximation of 3.6 · 10−5. The exact value
generated by a (more complicated) numerical approximation is 3.54 · 10−5.

We can also look at the second version of importance sampling

1
N

∑N
i=1 h(Yi)w(Yi)

1
N

∑N
i=1w(Yi)

which can be used also in cases where f is known only up to a normalization constant.
This is nothing else than an example of a multiplicative control variate. Which of the two
versions is more precise, depends on h. For estimation of the probability of rare events,
this version is typically less precise.

3.9.4 Quasi-Monte Carlo

So far we have concentrated on reducing the variance. We discuss now briefly Quasi-Monte
Carlo, a method which reduces also the rate of convergence. It assumes that we want to
simulate from the uniform distribution on [0, 1]d (in principle this can be achieved by a
transformation of variables). The points (ui; 1 ≤ i ≤ N) constructed by Quasi-Monte
Carlo are more regular than random points, but less regular than points from a regular
grid.

The simplest way to construct Quasi-random points, is due to Halton. In the one-
dimensional case, one chooses a natural number b ≥ 2 and represents natural numbers
k in the basis b:

k =
∞∑
i=1

ai(k)bi−1 (ai(k) ∈ {0, 1, . . . , b− 1}).

The k-th element of the Halton sequence is then

uk = H(k, b) =

∞∑
i=1

ai(k)b−i ∈ (0, 1).

This means one writes k in the basis b, reverses the order of the digits and adds 0. in front
of it. In the d-dimensional case, one uses for the j-th component the Halton sequence with
basis bj where bj is the j-the prime number:

uk = (H(k, 2), H(k, 3), H(k, 5), . . . ,H(k, bp))
T .
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(Sometimes, the first component is taken as the equidistant sequence (k − 0.5)/N . This
gives some improvement, but one has to generate all points again if one wants to increase
the sample size N).

More advanced Quasi-Monte Carlo methods use so-called (t,m)-nets in base b ≥ 2. These
are sets of points {u0, u1, . . . , ubm−1} ⊂ [0, 1)d such that any “elementary cube”

d∏
i=1

[
ai
bci
,
ai + 1

bci

)
with c1 + c2 + . . .+ cd = m− t and arbitrary 0 ≤ ai < bci contains exactly bt points (note
that such a cube has the volume bt−m; therefore such cubes contain exactly the expected
number of points). The construction of such nets is based on algebraic results that we
cannot discuss here.

One can show that Quasi-Monte Carlo methods allow to approximate an integral
∫

[0,1]d h(x)dx

where h has bounded variation with an error of the order N−1(logN)d−1.



Chapter 4

Markov Chain Monte Carlo

In many cases, especially in high dimensions, there are no good methods to simulate from
a general target distribution π. The rejection algorithm fails because it almost always
rejects (the bound for the ratio of the densities is too large). Importance sampling fails,
because the variance of the weights is too large.

In this chapter, we discuss the current standard method for the simulation of distributions
in high dimensions. The basic idea is to generate a sequence (X0, X1, . . .) recursively
such that Xt for large t has approximately the desired distribution π and then to use the
approximation

Eπ(h(X)) ≈ 1

N − r + 1

N∑
t=r

h(Xt). (4.1)

Here r is a so-called “burn-in” time, the time required until we reach the target π.

Recursive generation means that Xt+1 depends on Xt and new (uniform) random variables,
but not on previous values Xs with s < t, i.e. the generated variables form a Markov
chain. We have to specify the transition rule of the Markov chain, that is how to get
Xt+1 if we have Xt, in such a way that the approximation (4.1) is valid. The minimum
requirement is that if the starting value X0 has already the desired distribution π, then
all the following variables X1, X2, . . . also have the distribution π. We call such a π an
invariant or stationary distribution of the Markov chain. So the first question we will
address is: How to construct for a given π a transition rule, so that π is invariant ? We
will see that there are many possible transition rules and there are some general methods
to find some of them.

The second question is: Does the distribution of Xr converge to π for any arbitrary initial
distribution of X0? This also has a relatively simple answer. However, in order to use the
approximation (4.1), we should also answer two more questions, namely: How big should
r be, i.e. how quickly does the distribution of Xr converge to π ?, and, How accurate is
this approximation ? These two questions are difficult to answer explicitely. We will see
that they are connected and give a few answers in simple situations. First, however, we
present some basic concepts and results about Markov chains.

4.1 Basic Concepts about Markov Chains

Let X be any space with a σ-algebra F . A Markov chain describes a discrete time evolution
on X with a simple dependence structure: The next state depends on the present, but not

41
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on past states. Hence for a Markov chain we have to choose the probabilities

P(Xt+1 ∈ A|Xt = x) = P (x,A)

for all x ∈ X and all A ∈ F Mathematically, we require the following properties of the
so-called transition kernel P .

Definition 4.1. A transition kernel P of (X,F) onto itself is a mapping from X × F to
[0, 1] such that

• P (x, .) is a probability on (X,F) for every x ∈ X.

• P (., A) is a measurable function for every A ∈ F .

If X is discrete, we usually write i, j, . . . instead of x, y, . . .. In the discrete case, all we
need are the transition probabilities

P(Xt+1 = j|Xt = i) = P (i, j).

which must be non-negative and
∑

j P (i, j) = 1 for all i. The transition kernel is then
P (i, A) =

∑
j∈A P (i, j). We denote the matrix with elements P (i, j) also by P .

A Markov chain requires in addition to the transition kernel also an initial distribution.

Definition 4.2. A (time-homogeneous) Markov chain on (X,F) with initial distribution
ν0 and transition kernel P is a sequence (X0, X1, X2, ...) of random variables with values
in X such that

P(X0 ∈ A) = ν0(A),

and
P(Xt+1 ∈ A|Xt = xt, ..., X0 = x0) = P(Xt+1 ∈ A|Xt = xt) = P (xt, A).

The joint distribution of (X0, X1, ..., Xt) is then

ν0(dx0)

t∏
s=1

P (xs−1, dxs).

In order to simplify the notation for the rest of the chapter, we introduce now some
operations with transition kernels. A kernel defines a mapping of the set of measurable
and bounded functions on (X,F) into itself by

Pf(x) =

∫
P (x, dy)f(y).

A kernel also defines a mapping of set of probabilities on (X,F) by

νP (A) =

∫
ν(dx)P (x,A).

Further, one can compose two kernels to form a new kernel by

PQ(x,A) =

∫
P (x, dy)Q(y,A).

The verification of these claims is an exercise in measure theory. By P k we mean the
kernel P composed k times with itself.
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In the discrete case, Pf corresponds to the multiplication of P with a column vector from
the right, νP corresponds to the multiplication of P with a row vector from the left, and
the composition corresponds to matrix multiplication:

Pf(i) =
n∑
j=1

P (i, j)f(j) = (Pf)(i),

νP [i] =

n∑
k=1

ν(k)P (k, i) = (νTP )(i),

PQ(i, j) =

n∑
k=1

P (i, k)Q(k, j) = (PQ)(i, j).

Using these definitions, one can easily show that for any k > 0

P(Xk ∈ A) = ν0P
k(A),

P(Xt+k ∈ A|Xt = xt, Xt−1 = xt−1, ..., X0 = x0) = P k(xt, A),

E(f(Xt+k)|Xt = xt) = P kf(xt).

Definition 4.3. A probability distribution π on (X,F) is called invariant or stationary
for a transition kernel P , if

πP = π.

The meaning should be clear: if one chooses π as the initial distribution, then all the Xt

have the distribution π.

Definition 4.4. A probability distribution π on (X,F) is called reversible for a transition
kernel P if

π(dx)P (x, dy) = π(dy)P (y, dx).

This means that with the initial distribution π, (X0, X1) and (X1, X0) have the same
distribution. One can easily conclude that then (X0, X1, ...Xt) and (Xt, Xt−1, ...X0) have
the same distribution for every t, i.e. the direction of time does not matter. By integrating
over X × A, it immediately follows that a reversible probability distribution is always
invariant. The converse is not always true.

Definition 4.5. A transition kernel is called irreducible if a probability distribution ψ on
(X,F) exists such that

∑∞
k=1 P

k(x,A) > 0 for all A ∈ F with ψ(A) > 0 and for all x ∈ X.

Irreducibility means intuitively that the chain can reach with positive probability all states
for any initial distribution . Often one can combine reducible kernels Pi(i = 1, ..., k) so
that the resulting kernel is irreducible. The combination may be either the sequential
composition in the order (i(1), i(2), ..., i(k))

P = Pi(1)Pi(2) · · ·Pi(k)

or random selection amongst the k possible transitions

P =
1

k
(P1 + P2 + · · ·+ Pk).

If π is invariant for all Pi’s, then π is invariant for P in both versions. On the other hand,
reversibility is preserved only in the second version.

Irreducibility implies that an invariant distribution is unique and that the law of large
numbers applies.
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Theorem 4.1. Let P be an irreducible transition kernel with a stationary distribution π.
Then π is the only stationary distribution, and the following statements are true

• For all x ∈ X and all A ∈ F with π(A) > 0

P(Xt ∈ A infinitely often |X0 = x) > 0.

• For π-almost all x ∈ X and all A ∈ F with π(A) > 0

P(Xt ∈ A infinitely often |X0 = x) = 1.

• For π-almost all x ∈ X and all f with
∫
|f(x)|π(dx) <∞

P

(
1

n+ 1

n∑
t=0

f(xt)→
∫
f(x)π(dx)|X0 = x

)
= 1.

Proof. See for instance Meyn and Tweedie (1993).

The exceptional set in the last two statements is not satisfactory. There are sufficient
conditions under which the last two statements are valid even for all x. Such a condition
is, for example, that there exists a k, so that P k(x, .) for all x has a component which is
absolutely continuous with respect to π. For the proof, I refer again to Meyn and Tweedie
(1993).

Remember that our goal is to approximate
∫
h(x)π(dx) according to (4.1). For this purpose

we have to choose a transition kernel satisfying the following three conditions:

1. P is irreducible.

2. π is stationary or reversible for P .

3. Simulation from P (x, .) should be easy for all x.

In the following sections, we will construct kernels with these three properties in progres-
sively more complex situations.

4.2 The Metropolis-Hastings Algorithm

We first consider the discrete case. The condition for reversibility is then

π(i)P (i, j) = π(j)P (j, i). (4.2)

For each pair of i < j, one can therefore choose either P (i, j) or P (j, i); the other value is
then determined by (4.2). However, with this construction the condition

∑
j P (i, j) = 1 is

not always satisfied. If the sum is less than one, we can correct this by modifying P (i, i),
but if the sum is bigger than one, we have a problem.

Before solving this problem, let us discuss in some detail what (4.2) means if some prob-
abilities are zero. If both πi = 0 and πj = 0, the condition is satisfied automatically.
If πi = 0 and πj 6= 0, then P (j, i) must be zero: We must not go to a state which has
probability zero from a state with positive probability. If both πi 6= 0 and πj 6= 0, then we
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must have P (i, j) > 0 ⇔ P (j, i) > 0: If a transition between two states which both have
positive probability is possible, then also the reverse transition must be possible.

The following construction leads to the goal of satisfying both (4.2) and
∑

j P (i, j) = 1.
We start with an arbitrary transition matrix Q(i, j) such that

π(i)Q(i, j) > 0⇔ π(j)Q(j, i) > 0 (4.3)

For each pair i < j, we set either P (i, j) = Q(i, j) or P (j, i) = Q(j, i) and determine
the other value from (4.2). We do this in such a way that both P (i, j) ≤ Q(i, j) and
P (j, i) ≤ Q(j, i) are satisfied. Then obviously∑

j;j 6=i
P (i, j) ≤

∑
j;j 6=i

Q(i, j) ≤ 1,

and we obtain an transition matrix, if we set

P (i, i) = 1−
∑
j;j 6=i

P (i, j)

If we set P (i, j) = Q(i, j), then we must have P (j, i) = π(i)Q(i, j)/π(j) and this is less
than or equal to Q(j, i) if and only if π(i)Q(i, j) ≤ π(j)Q(j, i). If this is not satisfied, then
setting P (j, i) = Q(j, i) and P (i, j) = π(j)Q(j, i, )/π(i) has the required properties. This
definition can be written in compact form as follows for any i 6= j

P (i, j) = min

(
Q(i, j),

π(j)

π(i)
Q(j, i)

)
= Q(i, j)a(i, j)

where

a(i, j) = min

(
1,
π(j)Q(j, i)

π(i)Q(i, j)

)
≤ 1.

Simulation according to the transition matrix P (i, .) is not difficult. We have the following
algorithm:

Algorithm 4.1. 1. Choose Y ∼ Q(i, .) and U ∼ Uniform(0, 1).

2. If U ≤ a(i, Y ), then set X = Y , otherwise X = i.

This is similar to rejection sampling, but when we reject the new proposed value Y , we
keep the current value, in accordance with the definition P (i, i) = 1−

∑
j 6=i P (i, j). A new

value is proposed only in the next iteration.

Q is called the proposal distribution and a is called the acceptance probability. Note that
always one of the two acceptance probabilities a(i, j) or a(j, i) is equal to one, i.e. we
accept with the largest possible probability.

In the continuous case, the procedure is similar, with an appropriate definition of the
acceptance probability. The condition (4.3) becomes crucial. If the state space is large,
we usually allow only certain kinds of transitions, that is most Q(i, j) = 0, and we must
make sure that the reverse of a possible transitions is always possible. Mathematically,
this is expressed by absolute continuity.

The general result is as follows:
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Theorem 4.2 (Metropolis-Hastings). Let π be a probability on (X,F) and Q be a kernel in
the same space such that the two probabilities π(dx)Q(x, dy) and π(dy)Q(y, dx) on (X,F)×
(X,F) are equivalent in the sense of measure theory, i.e. the two probabilities should have
the same null sets. Then the Radon-Nikodym density of π(dy)Q(y, dx) with respect to
π(dx)Q(x, dy) exists, which we denote r(y, x). Furthermore, let a(x, y) = min(1, r(y, x)).
Then the following kernel is reversible regarding π:

P (x,A) =

∫
A
a(x, y)Q(x, dy) + 1A(x) ·

(
1−

∫
X
a(x, y)Q(x, dy)

)
(4.4)

The first term in (4.4)is the probability that the kernel Q(x, .) proposes a value in A and
that this value is accepted. The second term is the probability that the process remains
at the current value x because the proposed value is not accepted.

Proof. We must show that for any bounded function h that∫ ∫
h(x, y)π(dx)P (x, dy) =

∫ ∫
h(x, y)π(dy)P (y, dx).

The left side according to the definition of P is∫ ∫
h(x, y)a(x, y)π(dx)Q(x, dy) +

∫
h(x, x)

(
1−

∫
X
a(x, y)Q(x, dy)

)
π(dx),

and the right side is∫ ∫
h(x, y)a(y, x)π(dy)Q(y, dx) +

∫
h(y, y)

(
1−

∫
X
a(y, x)Q(y, dx)

)
π(dy).

Both second terms are obviously equal (how the variables are denoted does not matter).

In order to see that both first terms are equal, we first show that

a(x, y) = r(y, x)a(y, x).

By the definition of r, we have r(y, x)r(x, y) = 1. If r(y, x) ≤ 1, then a(x, y) = r(y, x) and
r(x, y) ≥ 1. Therefore a(y, x) = 1 and both sides above are equal to r(y, x). If r(y, x) ≥ 1,
then a(x, y) = 1 and r(x, y) ≤ 1. Therefore a(y, x) = r(x, y) and both sides above are
equal to 1.

Using this equality, it follows from the definition of r(y, x) that∫ ∫
h(x, y)a(y, x)π(dy)Q(y, dx) =

∫ ∫
h(x, y)a(y, x)r(y, x)π(dx)Q(x, dy)

=

∫ ∫
h(x, y)a(x, y)π(dx)Q(x, dy).

How can we verify the condition of the above proposition, and how do we calculate the
Radon-Nikodym density r(y, x)? The following Lemma, which is a simple exercise in
measure theory, covers the important cases:

Lemma 4.1. Let P1 and P2 be two probabilities on (X,F).



4.2 The Metropolis-Hastings Algorithm 47

(i) If P1 and P2 have densities p1 and p2 w.r. to a σ-finite measure µ, then P1 is absolutely
continuous with respect to P2 iff {x|p2(x) = 0, p1(x) > 0} is a null set with respect
to µ. The Radon-Nikodym density of P1 with respect to P2 is then p1(x)/p2(x),
independent of the choice of µ.

(ii) Let φ be a measurable injective mapping from (Y,G) to (X,F). Assume P ′1 and P ′2
are two distributions on (Y,G) such that P ′1 has density r with respect to P ′2. If P1

and P2 are the distributions of X = φ(Y ) with Y ∼ P ′i for i = 1, 2, then P1 has
density r(φ−1(x)) with respect to P2.

We will apply this lemma with P1 = π(dx)Q(x, dy) and P2 = π(dy)Q(y, dx). In the
simplest examples both π(dx) and the proposal distributions Q(x, dy) have densities π(x)
and q(x, y) respectively with respect to the Lebesgue measure in the continuous case
or counting measure in the discrete case. Then π(dx)Q(x, dy) and π(dy)Q(y, dx) are
equivalent if for all pairs (x, y)

π(x)q(x, y) > 0⇔ π(y)q(y, x) > 0.

This implies q(x, y) = 0 if π(x) > 0 and π(y) = 0, as well as q(x, y) > 0⇔ q(y, x) > 0. In
this case

r(y, x) =
π(y)q(y, x)

π(x)q(x, y)
⇒ a(x, y) = min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
.

Because only the ratio π(y)/π(x) appears in this formula, it is sufficient to know π up to
a normalizing constant.

The second statement of this lemma is used when the space X where the target density
π lives is not an open subset of Euclidean space, but it can be partitioned into sets each
of which can be parametrized by an invertible map φ from an open subset of Euclidean
space. Then we can still compute densities in Euclidean spaces. Examples will be given
in Subsections 4.2.2 and 4.2.2.

Whether the Metropolis-Hastings transition is irreducible or not depends on Q. Irre-
ducibility of Q is transferred to P . In particular, q(x, y) > 0 for all x, y is sufficient (but
not necessary).

Two simple examples are

Example 4.1 (Independence sampler). Let q(x, y) = q(y) for all x, i.e., the proposed
value y is independent of the current state x. This vlaue is then accepted with probability

a(x, y) = min

(
1,
π(Y )q(x)

q(Y )π(x)

)
.

This is similar to the rejection algorithm and to importance sampling. If we also choose
X0 with distribution Q, then we can write

1

N + 1

N∑
t=0

h(Xt) =

n∑
i=1

wih(Yi)

where n is the number of accepted values, every Yi is generated according to Q and wi
denotes the relative frequency of Yi in (X0, X1, ...XN ). In contrast to importance sampling,
the Yi are dependent here.
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Example 4.2 (Random walk Metropolis). Let X = Rp and q(x, y) = q(y − x) with
q(x) = q(−x). This means, if Xt = x, then Y = x+ ε with ε ∼ q(z)dz, independent of x.
In other words, the proposal is a random walk in Rp. The acceptance probability becomes

a(x, y) = min

(
1,
π(y)

π(x)

)
,

i.e. if the probability of the proposed value is greater than the probability of the current
value, one always accepts the proposed value, otherwise only with some probability < 1.

4.2.1 Componentwise Modification

In many cases choosing a proposal distribution Q(x, dy) with a density does not lead to
an efficient algorithm. With such a choice, the proposed value can be anywhere in the
space X. If the current value x is plausible for π and X is high-dimensional, then the
proposed value will almost always be less plausible than the current one, hence rejection
is practically certain. In such cases it is much better if the proposed value differs from the
current one in only a few components.

We formulate the algorithm in the case of a product space with two components (the
second component may again be a product space). Hence, let X = X1×X2, i.e., x ∈ X has
the form (x1x2) with xk ∈ Xk. We further assume that π is absolutely continuous with
respect to the product measure µ1(dx1)µ2(dx2) and we denote the density also by π. We
will consider a proposal distribution Q, which modifies only the first component with an
absolutely continuous distribution while the second component remains the same:

Q(x,A1 ×A2) =

∫
A1

q(x, y1)µ1(dy1) · 1A2(x2).

Then π(dx)Q(x, dy) and π(dy)Q(y, dx) are concentrated on the set of pairs with y2 =
x2 whereas the three components (x1, x2, y1) have densities π((x1x2))q((x1x2), y1) and
π((y1x2))q((y1x2), x1) respectively. If we set φ(x1, x2, y1) = (x1, x2, y1, x2), then the second
statement of Lemma 4.1 shows that the conditions of Theorem 4.2 are satisfied and

r(x, y) =
π((x1x2))q((x1x2), y1)

π((y1x2))q((y1x2), x1)
1y2=x2

if the numerator and denominator are both non-zero. Note that for pairs with x2 6= y2, it
does not matter how r(x, y) is defined, since we only propose values with x2 = y2. This
expression can also be writen with the help of the conditional density π1|2(x1|x2) of the
first component given the second:

r(x, y) =
π1|2(x1|x2)q((x1x2), y1)

π1|2(y1|x2)q((y1x2), x1)
.

If one modifies only one component, one can of course never get an irreducible kernel. But
one can analogously consider a second kernel, which modifies only the second component,
and then apply both kernels in an alternating sequence. Likewise, instead of 2 components,
one can also consider k components and for each component a kernel which keeps all other
components fixed. The combination can be made according to a fixed or random order.
For a fixed order, the reversibility is usually lost, but the stationary distribution does not
change.
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As a proposal density, we can in particular use

q(x, y1) = q(x2, y1) = π1|2(y1|x2) (4.5)

Then the Radon-Nikodym density r above is always one, and so the proposal is always
accepted. The combination of these kernels is nothing else than the Gibbs sampler already
mentioned in the first chapter.

We can also generalize the idea of random walk Metropolis algorithm and use a proposal
density of the form

q(x, y1) = q(x1, y1) = q(y1 − x1).

If the random walk is symmetric, the acceptance probabilities are equal to

min

(
1,
π1|2(y1|x2)

π1|2(x1|x2)

)
.

4.2.2 Metropolis-Hastings on the Space of Step Functions

The most complicated case that we discuss is the one where X is the union of the subspaces
of different dimensions and where the Markov chain jumps between these subspaces. We
explain the problem and the idea in this section in the example where we want to simulate
random piecewise constant functions on [0, 1]. That is, we consider the space

X =

∞⋃
k=0

Xk

where Xk describes the space of piecewise constant functions with exactly k jumps. We
parametrize the elements of Xk by the jump points (0 < t1 < . . . < tk < 1) and by the
function values (gi; i = 1, ..., k + 1), i.e.

x(t) =

k+1∑
i=1

gi1(ti−1,ti](t)

with t0 = 0 and tk+1 = 1. The space Xk is therefore isomorphic to an open subset of
R2k+1. We denote the distribution on X from which we want to simulate by π, and we
assume that for all k π restricted to Xk has a density πk with respect to the Lebesgue
measure on R2k+1.

This situation occurs for example in Bayesian nonparametric regression which uses the
model

Yi = x(si) + εi (i = 1, ..., n)

where the observation points si are fixed (e.g., equidistant, i.e., si = (i− 0.5)/n), and the
error terms εi are i.i.d. ∼ N (0, 1). The mean function of x is unknown. For simplicity, the
variance of the error εi is assumed to be known, but there would be no problem treating it
as additional unknown parameter. As a prior distribution for x, we choose a distribution
on our space X of jump functions: We choose a Poisson(λ)-distribution for the number of
jumps, and given the number of jumps, we choose the jump times ti as i.i.d. uniform and
the function values gi as i.i.d. N (0, τ2)-distributed. The density of π on Xk is then

πk(x) = exp(−λ)
λk

k!
k! 1[t1<t2<...<tk]

1

(
√

2πτ)k+1
exp

(
− 1

2τ2

k+1∑
i=1

g2
i

)
.
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By Bayes formula, the posterior distribution of x given the observations y1, . . . , yn has on
Xk the density

πk(x|(yj)) ∝ πk(x)
1

(2π)n/2
exp

−1

2

k+1∑
i=1

n∑
j=1

1(ti−1,ti](sj)(yj − gj)
2

 .

We want to use the Metropolis-Hastings recipe. This means that we propose transitions
according to a distribution Q and then by an appropriate acceptance probability ensure
that the target distribution π (the posterior) is reversible. In order to access the whole
space X, we need to have transitions from Xk to Xj with j 6= k. The simplest transitions
go from Xk to Xk−1 and Xk+1 and they do not modify the step-function x everywhere: We
only add or delete a jump. Because the two functions are partially identical, the transitions
are then certainly not absolutely continuous. Specifically, we propose for a current value
x = ((ti), (gi)) ∈ Xk a value z = ((ri), (hi)) ∈ Xk+1 according to the following algorithm:

1. Choose the j-th interval Ij = (tj−1, tj ] for subdivision with probability tj−tj−1 (long
intervals have a greater probability of being divided). Set ri = ti and hi = gi for
i < j, ri = ti−1 for i > j and hi = gi−1 for i > j + 1 (i.e. x is unchanged outside of
Ij).

2. Choose the new jump point rj uniformly on Ij .

3. Select two new function values hj and hj+1 according to a density f , independently
of rj .

This defines a transition kernelQ+
k (x, dz) from Xk to Xk+1. The distribution πk(dx)Q+

k (x, dz)
on Xk × Xk+1 is concentrated on the union of the sets

Ajk = {(x, z)|x(t) = z(t) ∀t /∈ (tj−1, tj ]} (j = 1, 2, ..., k + 1).

Each pair (x, z) in Ajk has 2k + 4 free components, and we parametrize (x, z) with the
components of x, the new jump point and the two new heights on both sides of the new
jump. In this parametrization, πk(dx)Q+

k (x, dz) has the density

πk(t1, ..tk, g1, ...gk+1)(tj − tj−1)1(tj−1,tj ](rj)
1

tj − tj−1
f(hj)f(hj+1). (4.6)

In order to apply Theorem 4.2, we have to allow also transitions from Xk+1 to Xk according
to some kernel Q−k+1. Moreover, πk+1(dz)Q−k+1(z, dx) must be concentrated on the same

sets Ajk and it must also have a density. Hence Q−k+1(z, dx) must remove exactly one of
the k + 1 jumps of z, each jump must have positive probability to be removed, and the
new function value must be selected according to a density.

To be specific, we choose the jump point to be removed uniformly and let the new function
value have the same density f as used in Q+

k . If z = ((ri), (hi)) and we remove rj , then
(x, z) ∈ Ajk. The jump points of x are ti = ri for i < j and ti = ri+1 for i ≥ j, and
the function values are gi = hi for i < j, gi = hi+1 for i > j whereas gj is drawn with
density f . Hence if we use the same parametrization of (x, z) as above, then the density
of πk+1(dz)Q−k+1(z, dx) on Ajk is

πk+1(z)
1

k + 1
f(gj). (4.7)
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Suppose the current state is x ∈ Xk. In order to completely specify the proposal, we
have to decide whether we add or eliminate a jump. We do this by tossing a coin with
parameter βk (where β0 = 1). Then our proposal distribution Q can be written as

Q(x, dz) = βkQ
+
k (x, dz)1Xk+1

(z) + (1− βk)Q−k (x, dz)1Xk−1
(z) (x ∈ Xk).

The condition of Theorem 4.2 is satisfied by this choice: π(dx)Q(x, dz) and π(dz)Q(x, dz)
are concentrated on the sets Ajk, and according to Lemma 4.1 (ii) we can compute the
Radon-Nikodym density on any Ajk by considering the densities for the parametrization
of (x, z) ∈ Ajk by (t1, . . . , tk, rj , g1, . . . , gk+1, hj , hj+1). Thus we have to take the ratio of
βk times the density (4.6) and (1 − βk+1) times the density (4.7), giving the acceptance
probabilities

a(x, z) = min

(
1,

πk+1(z)(1− βk+1)f(gj)

πk(x)βkf(hj)f(hj+1)(k + 1)

)
((x, z) ∈ Ajk)

and

a(z, x) = min

(
1,
πk(x)βkf(hj)f(hj+1)(k + 1)

πk+1(z)(1− βk+1)f(gj)

)
((x, z) ∈ Ajk).

The second expression follows also from the general property r(x, z)r(z, x) = 1.

This allows simulation both from the prior and the posterior: For the latter, we simply
take πk(x|y) and πk+1(z|y) instead of πk(x) and πk+1(z), respectively.

The transition mechanism described above is obviously not the only possible one. Some-
times it is advantageous to propose only modifications where the mean

∫ 1
0 x(t)dt is con-

stant. This is achieved by the following algorithm for adding a jump:

1. Choose the j-th interval Ij = (tj−1, tj ] for subdivision with probability tj − tj−1.
Then set ri = ti and hi = gi for i < j, ri = ti−1 for i > j and hi = gi−1 for i > j+ 1.

2. Choose the new jump point rj uniformly on Ij .

3. Choose as new values of the function

hj = gj +
u

rj − tj−1
, hj+1 = gj −

u

tj − rj

where u has the density f and is independent of rj .

This defines another transition kernel Q+
k (x, dz) from Xk to Xk+1. The distribution

πk(dx)Q+
k (x, dz) on Xk × Xk+1 is now concentrated on the union of the sets

Bj,k = {(x, z)|x(t) = z(t) ∀t /∈ (tj−1, tj ],

∫ 1

0
x(t)dt =

∫ 1

0
z(t)dt}

Every pair (x, z) in Bjk has 2k + 3 free components. We can for instance freely choose
the components of x, the new jump point r and the above-defined variable u. For these
variables πk(dx)Q+

k (x, dz) has the density

πk(t1, ...tk, g1, ...gk+1)(tj − tj−1)I(tj−1,tj ](rj)
1

tj − tj−1
f(u). (4.8)

In order to apply Theorem 4.2, πk+1(dz)Q−k+1(z, dx) must again be concentrated on the

same sets Bjk and also have a density. This means that Q−k+1(z, dx) must remove exactly
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one of the k+1 jumps, each jump must have positive probability to be removed and the new
jump height must be equal to the weighted average of the two old jump heights. Except for
choosing which jump is removed, the transition is therefore deterministic, and the density
of πk+1(dz)Q−k+1(z, dx) on Bjk is thus essentially the density πk+1(z). We must however
express z = (r1, . . . , rk+1, h1, . . . , hk+2) with the variables (t1, . . . , tk, g1, . . . , gk+1, rj , u),
and we must also take this change of variables into account in the density by multiplying
with the Jacobian determinant. For most components the change of variables is trivial:
ri = ti and hi = gi for i < j, ri = ti−1 for i > j and hi = gi−1 for i > j + 1. Finally,
the relation between (hj , hj+1) and (gj , u) is given in step 3. above. This relation has the
Jacobian determinant

tj − tj−1

(tj − rj)(rj − tj−1)
.

Thus if each jump has the same probability to be removed, the density of πk+1(dz)Q−k+1(z, dx)
is equal to

πk+1(z)
1

k + 1

tj − tj−1

(tj − rj)(rj − tj−1)
. (4.9)

Using this, we can compute the acceptance probability.

4.2.3 General Transitions between Spaces of Different Dimensions

Now we generalize the approach that we have seen in the previous section. Let

X = ∪∞k=0Xk,

where Xk is an open subset of Rk and assume π has a strictly positive density πk (with
respect to Lebesgue measure) on each Xk. In order to simulate from π, we consider
transitions from Xk to Xm of the type

x→ z = z(x, Ukm),

where Ukm is a dkm dimensional random variable with strictly positive density fkm. The
relationship z = z(x, ukm) is assumed to be deterministic. Let Qkm(x, dz) be the corre-
sponding transition kernel. Then the distribution πk(dx)Qkm(x, dz) is concentrated on a
k + dkm-dimensional surface in Rk+m; namely, the surface consisting of all pairs of the
form (x, z(x, ukm)). Moreover, the density of (x, ukm) is equal to πk(x)fkm(ukm).

To satisfy the conditions of Theorem 4.2, we must therefore allow also a transitionQmk(z, dx)
from Xm to Xk with the property that πm(dz)Qmk(z, dx) is concentrated on the same
surface. If Qmk(z, dx) has the same structure as Qkm(x, dz), i.e. if a dmk-dimensional
random variable umk is drawn and x is obtained deterministically as x(z, umk), then
πm(dz)Qmk(z, dx) is concentrated on the surface (z, x(z, umk)). So we have two parametriza-
tions of the same surface. In particular the dimensions must match:

k + dkm = m+ dmk,

and there must be a bijection
(x, ukm)↔ (z, umk)

Finally, for the Radon-Nikodym density, we need to convert the density πm(z)fmk(umk)
for (z, umk) into the density for (x, ukm), i.e., we need to multiply by the Jacobian∣∣∣∣∂(z, umk)

∂(x, ukm)

∣∣∣∣ .
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To complete the proposal distribution, we also have to choose the dimension m of the
proposal. This can be done with a stochastic matrix (βkm), which leads to the following
transition kernel from X into itself:

Q(x, dz) =
∞∑
j=0

βkjQkj(x, dz)1Xj (z) (x ∈ Rk).

In summary, we give the formula for the acceptance probabilities as a result of the above
considerations:

a(x, z) = min

(
1,
πm(z)βmkfmk(umk)

πk(x)βkmfkm(ukm)

∣∣∣∣∂(z, umk)

∂(x, ukm)

∣∣∣∣) (x ∈ Xk, z = z(x, ukm) ∈ Xm).

4.3 The Accuracy of MCMC Approximations

If we use Markov chain Monte Carlo, then the random variables X1, X2, X3,...are de-
pendent and not identically distributed. In particular, Xt has the distribution π only
asymptotically for t→∞. If we use the estimator

θ̂N =
1

N

N∑
t=1

h(Xt)

for θ =
∫
h(x)π(dx), then we make an systematic error:

E(θ̂N ) =
1

N

N∑
t=1

E(h(Xt)) 6= θ.

This bias is of the order O(1/N), provided

∞∑
t=1

∣∣∣∣E(h(Xt))−
∫
h(x)π(dx)

∣∣∣∣ <∞.
Furthermore, the dependence of Xt’s changes also the distribution of the random error

θ̂N −E
[
θ̂N

]
. In particular,

Var(θ̂N ) =
1

N2

N∑
s=1

N∑
t=1

Cov(h(Xs), h(Xt)),

and the covariances are not zero in general.

The mean square error (MSE) takes into account both the bias and the random error:

E
(

(θ̂N − θ)2
)

=
(
E(θ̂N )− θ

)2
+ Var

(
θ̂N

)
.

For an error bound, we need to estimate both the bias and the variance. These are
unfortunately rather difficult problems. We will see that typically the variance of θ̂N
is still of order O(1/N). As mentioned above, the bias is typically of O(1/N), and its
contribution to the mean square error is asymptotically negligible (because the bias is
then squared). It is not clear if this is also true in the case of a finite N .



54 Markov Chain Monte Carlo

For the bias we are often satisfied with graphical tools, e.g. a plot of h(Xt) versus t. Based
on this, we try to find a time t0 after which systematic deviations no longer occur. Then
we only use the values after iteration t0 and ignore the bias.

In the following, we first make a few theoretical considerations about bias and variance
of arithmetic means in the case of Markov chains, and then discuss the treatment of
dependence in the stationary case, where all Xt have the target distribution π, but are
not independent.

4.3.1 Convergence Results on Markov Chains

We discuss here the bias of a Markov Chain Monte Carlo method. Let (Xt) be a Markov
chain with initial distribution ν, transition P and invariant distribution π. We want to
estimate how quickly

E(h(Xt))−
∫
h(x)π(dx) =

∫
P th(x)ν0(dx)−

∫
P th(x)π(dx)

converges to zero.

We restrict ourselves to the simplest case, where π is a probability on the discrete space
{1, 2, ...n}. Then we have

|E(h(Xt))−
∫
h(x)π(dx)| = |

∑
j

(ν0P
t(j)−πP t(j))h(j)| ≤ max

i
|h(i)|

∑
j

|ν0P
t(j)−πP t(j)|.

In particular, it is sufficient to bound the L1-distance

||ν0P
t − πP t||1 =

∑
j

|ν0P
t(j)− πP t(j)|.

An algebraic approach uses a result on the eigenvalues of the transition matrix P : The
Frobenius theorem states that the eigenvalue with the largest absolute value of a stochastic
irreducible and aperiodic matrix equals to 1 and its multiplicity is 1. The convergence
speed is then determined by the eigenvalue with the second largest absolute value.

We use here a stochastic method, the coupling of Markov chains. This means that one

constructs a Markov process (X
(1)
t , X

(2)
t ) on the state space (1, 2, ...n)2 with the following

characteristics: Marginally, (X
(1)
t ) and (X

(2)
t ) are both Markov chains with transition

matrix P and initial distributions µ and ν, respectively. These two chains are dependent

because they stay together after they have met for the first time, that is if X
(1)
t = X

(2)
t for

some t, then X
(1)
s = X

(2)
s for all s > t. How we make the transition as long as X

(1)
t−1 6= X

(2)
t−1

is left open.

If we introduce the transition matrix for the coupled process

Q(i, j; k.l) = P(X
(1)
t = k,X

(2)
t = l|X(1)

t−1 = i,X
(2)
t−1 = j)

then the above requirements translate into∑
l

Q(i, j; k, l) = P (i, k) for all i 6= j, k∑
k

Q(i, j; k, l) = P (j, l) for all i 6= j, l

Q(i, i; k, k) = P (i, k),

Q(i, i; k, l) = 0 if k 6= l
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There are still many choices for Q, the easiest one being Q(i, j; k, l) = P (i, k)P (j, l) if
i 6= j which means that transitions occur independently of each other as long as the chains
have not met.

Lemma 4.2. For any coupling satisfying the above properties,

||νP t − µP t||1 ≤ 2P(X
(1)
t 6= X

(2)
t ).

Moreover, there is a coupling such that

P(X
(1)
t 6= X

(2)
t ) ≤ αtP(X

(1)
0 6= X

(2)
0 )

where

α =
1

2
max
i,j
||P (i, .)− P (j, .)||1.

The proof of Lemma 4.2 is based on the following Lemma

Lemma 4.3. For two probabilities P (1) and P (2) on a discrete space, we have

1

2
||P (1) − P (2)|| =

∑
j

(p(1)(j)− p(2)(j))+ = 1−
∑
j

min(p(1)(j), p(2)(j)) = sup
A
|P (1)(A)− P (2)(A)|

= min

∑
i 6=j

r(i, j); r ≥ 0,
∑
j

r(i, j) = p(1)(i),
∑
j

r(j, i) = p(2)(i)

 .

(x+ is the positive part of x, i.e x+ = max(x, 0).)

The last expression is nothing else than the minimum of P(X 6= X ′) over all joint distri-
butions of (X,X ′) such that X ∼ P (1) and X ′ ∼ P (2). The distribution R which realizes
the minimum in the last expression, is called the optimal coupling of P (1) and P (2). If we
use the optimal coupling of P (i, .) and P (j, .) in order to define the joint transition matrix

Q, then the probability that X
(1)
t = X

(2)
t given X

(1)
t−1 6= X

(2)
t−1 is at least α for any t, and

so the second claim in Lemma 4.2 follows. The first claim follows because any coupling of
the two Markov chains also induces a coupling of µP t and νP t.

Proof. (of Lemma 4.3). We set x− = max(−x, 0). Then x = x= − x− and |x| = x+ + x−.
Hence the first equality follows from

∑
j(p

(1)(j) − p(2)(j)) = 0. For the second equality,
we observe that

(p(2)(j)− p(1)(j))+ = p(2)(j)−min(p(1)(j), p(2)(j)).

For the third equality, we use that for any A

P (1)(A)−P (2)(A) =
∑
j∈A

(p(1)(j)−p(2)(j)) ≤
∑

j;p(1)(j)>p(2)(j)

(p(1)(j)−p(2)(j)) =
∑
j

(p(1)(j)−p(2)(j))+,

and for A = {j; p(1)(j) > p(2)(j)} we have equality. Exchanging the role of P (1) and P (2)

thus proves the third equality.

For the last equality, we again prove two inequalities. For every r satisfying the specified
conditions, and for every A we have

|P (1)(A)−P (2)(A)| = |
∑
i,j

r(i, j)(1A(i)− 1A(j))| ≤
∑
i,j

r(i, j)|1A(i)− 1A(j)| ≤
∑
i 6=j

r(i, j).
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For the other inequality, we choose r as follows

r(i, j) =

{
min(p(1)(i), p(2)(i)) if i = j

2
||P (1)−P (2)||1

(p(1)(i)− p(2)(i))+(p(2)(j)− p(1)(j))+ if i 6= j
.

One can easily check that this r satisfies the specified conditions. Obviously∑
i 6=j

r(i, j) = 1−
∑
i

r(i, i) = 1−
∑
i

min(p(1)(i), p(2)(i)).

The proof also shows how we can sample from the optimal coupling r. We set γ =∑
i min(p(1)(i), p(2)(i)) and then with probability γ we generate X = X ′ according to the

distribution (min(p(1)(i), p(2)(i))/γ); and with probability 1 − γ X and X ′ are indepen-
dent with the distributions ((p(1)(i)− p(2)(i))+/(1− γ)) and ((p(2)(i)− p(1)(i)))+/(1− γ))
respectively.

If α = 1, there must be two states i and j such that for all k either P (i, k) = 0 or
P (j, k) = 0, that is there is no state which can be reached both from i and j. This
happens for instance in the following example:

Example 4.3. Consider the random walk on (1, 2, 3, 4, 5) with reflection at the boundary:

P =


1
2

1
2 0 0 0

1
2 0 1

2 0 0
0 1

2 0 1
2 0

0 0 1
2 0 1

2
0 0 0 1

2
1
2

 .

The uniform distribution π = (1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5) is reversible. If we make the transition for all

chains with the same step direction Ut, then the chains couple the first time four steps in
the same direction are chosen. In other words, for any i, j

P(X
(1)
t = X

(2)
t |X

(1)
t−4 = i,X

(2)
t−4 = j) ≥ 2(

1

2
)4 =

1

8
> 0.

This again gives exponential convergence. The idea to consider several steps at once is
helpful in general.

For more complex transitions, however, the problem remains difficult to give sharp a priori
estimates for the bias. Alternatively, one can try after the simulation has been carried out
to infer from the plot of h(Xt) against t “when the chain has converged”.

4.3.2 Estimation of the Variance in the Stationary Case

Next, we consider the stochastic error under the assumption that (X1, X2, ..., Xk) and
(Xi+1, Xi+2, ..., Xi+k) have the same distribution for all i and for all k, i.e. (Xt) is sta-
tionary.

If (Xi) is a Markov chain with a transition kernel that does not depend on time, then we
have stationarity if and only if X1 ∼ π (π is the stationary distribution). Stationarity is
therefore often reasonable after an initial “burn in” period has been deleted.
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Lemma 4.4. Let (Xi) be stationary, Yi = h(Xi), and R(k) = Cov(Yi, Yi+k). Then

1.

Var

(
1

N

N∑
i=1

Yi

)
=

1

N

N−1∑
k=−N+1

(1− |k|
N

)R(k).

2. If
∑∞

k=1 |R(k)| <∞, then as N →∞

N Var(θ̂N )→ σ2
∞ =

∞∑
k=−∞

R(k).

3. If
∑∞

k=1 |R(k)| <∞, then

Corr

(
1

N

N∑
i=1

Yi,
1

N

2N∑
i=N+1

Yi

)
→ 0.

Proof. Expression 1. follows from

Var

(
N∑
i=1

Yi

)
=

N∑
i=1

N∑
j=1

Cov(Yi, Yj)︸ ︷︷ ︸
=R(i−j)

=
N−1∑

k=−N+1

R(k) · (number of pairs with i− j = k)︸ ︷︷ ︸
(=N−|k|)

For 2. we write

N Var
(
θ̂N

)
=

N−1∑
k=−N+1

(1− |k|
N

)R(k)

=
∞∑

k=−∞
max(0, 1− |k|

N
)R(k)︸ ︷︷ ︸

→R(k) as N→∞

The claim therefore follows from the convergence theorem of Lebesgue.

For 3. we start with

Cov

(
N∑
i=1

Yi,
2N∑

i=N+1

Yi

)
=

2N−1∑
k=1

min(k, 2N − k) ·R(k).

Because of 2., it is sufficient to show that the expression on the right is growing less rapidly
than N . This follows from the following estimate:

|
2N−1∑
k=1

min(k, 2N − k) ·R(k)| ≤
√
N

√
N∑

k=1

|R(k)|+N
∞∑

k=
√
N

|R(k)|

≤
√
N
∞∑
k=1

|R(k)|+N
∞∑

k=
√
N

|R(k)| = o(N)
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Under the assumption
∑
|R(k)| <∞ we therefore have (using the Chebyshev inequality)

P
(
|θ̂N − θ| > ε

)
≤

Var
(
θ̂N

)
ε2

∼ σ2
∞

Nε2

Hence we need to estimate σ∞. Moreover, since the Chebyshev inequality is usually not
sharp, we would like to use the normal approximation instead.

This raises the following questions:

1. When is
∑
|R(k)| <∞?

2. How can we estimate σ∞?

3. Does a central limit theorem hold?

About 1.: Let (Xi) be a stationary Markov chain with transition kernel P . Then we have

Cov(h(X0), h(Xt)) = E(h(X0)− θ)(h(Xt)− θ))
= E ((h(X0)− θ)E((h(Xt)− θ)|X0))

=

∫
(h(x)− θ)(P th(x)− θ)π(dx).

So what matters is how quickly P th(x)− θ goes to zero, as in the analysis of the bias. In
particular, the following condition is sufficient:

sup
x

∑
t

|P th(x)− θ| <∞.

About 2.: A natural estimate for R(k) is:

R̂(k) =
1

N

N−|k|∑
i=1

(Yi − θ̂N )(Yi+|k| − θ̂N )

(The reason for the denominator N instead of N − |k|, is discussed in the course on time
series analysis). However,

∑N−1
k=−N+1 R̂(k) is not suitable as an estimator of σ2

∞ because

N−1∑
k=−N+1

R̂(k) =

(
N∑
i=1

(Yi − θ̂N )

)2

= 0.

A better estimator is

σ̂2
∞ =

m∑
k=−m

wkR̂(k), (4.10)

where wk are symmetric weights with w0 = 1 ≥ w1 ≥ . . . ≥ wm+1 = 0. We therefore
downweight the covariances with increasing distance. The choice of the point m, from
where on the estimated covariances have weight zero, is then crucial. In theory, m → ∞
and m = o(N), i.e. m grows, but slower than N , is sufficient. Empirically, m ≈ N1/3 is
often a sensible choice.

About 3.: There is a large literature on the problem of the validity of the central limit
theorem for stationary random variables. One of the simplest and most important result
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for Markov chain Monte Carlo is the following: If (Xi) is a Markov chain with P and π is
reversible, then 1

N

∑
h(Xi) is asymptotically normal if

∑
k |R(k)| <∞.

To conclude, we consider the construction of a confidence interval for θ: Based on what
has been said before, the following interval is obvious:

θ̂N ± Φ−1(1− α

2
)

1√
N

σ̂∞.

Another possibility is the so-called ”batch means” method. There one computes the means
of b consecutive Yi’s:

θ̂i,b =
1

b

ib∑
j=(i−1)b+1

Yj

These means θ̂i,b, i = 1, 2, ..., k = N/b are considered as independent and normally dis-
tributed, see the third statement of Lemma 4.4. The usual t-confidence interval is then

θ̂N ±
1√
k
tk−1,1−α

2

√√√√ 1

k − 1

k∑
i=1

(θ̂i,b − θ̂N )2

The advantage is that you one does not need to estimate σ∞. The choice of b is however
as difficult as the choice of m in (4.10).

4.3.3 Coupling from the Past

This is a rather recent idea to avoid the problem of bias in Markov Chain Monte Carlo. It
would be nice if we could reach the stationary distribution in a finite number of steps. For
this purpose we take up the concept of coupling that we have already introduced in the
proof of convergence to the stationary distribution. If the paths from all possible starting
values have coupled, then one also knows in particular the state of the stationary Markov
chain that starts with π. However, one can not conclude that after the coupling the joint
state distribution is equal to π. The time of the coupling is random, and at a random
point the distribution is different from π even in the stationary chain.

This is evident in the example of the random walk with reflection at the boundary. The

chains meet almost certain, but at the time T of the coupling all X
(i)
T ∈ {1, 5}, i.e. the

distribution is definitely not equal to π. So we cannot use forward coupling to generate
random variables which have exactly the distribution π.

The way out is to look at a fixed time t = 0, and introduce the coupling backwards (from
the past). This means the following: First we go back to t = −2 and consider the chains
with all starting values. If not all of these chains couple until time 0, we start at time
t = −4. If this still is not sufficient to achieve coupling of all chains with arbitrary starting
values, we go back to t = −16 etc. One can show that the value at time t = 0 generated
in this way has exactly the distribution π. It is essential that as we go back further, we
always use the same random numbers for the transitions at a fixed time.


