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Chapter 1

Introduction

Spatial statistics deals with data where the location where the data were ob-
tained is important. It is thus the analogue of time series analysis where the
time is important. The most important distinction between time series and
spatial statistics comes from the fact that time is linearly ordered, but space
has no natural order. This makes the specification of models in spatial statistics
more difficult.

Typically, in spatial statistics time is fixed to one instant or a given time interval.
Space-time models combine spatial statistics with time series analysis.

The following examples show some typical research questions and data for which
the methods of spatial statistics were developed.

Soil pollution At many places, the soil is polluted with metals, often due to
industrial sources. An unpublished study by Andreas Papritz (Institute
for Terrestrial Ecology, ETHZ) analyzes the copper content of the top 20
cm of soil at 775 points around a factory near Basel. The content varies
spatially, generally decreasing with distance from the pollution source.
The goal is to develop a model which describes the copper content as a
function of explanatory variables and the spatial variability which remains
unexplained, to identify unusual spots and to predict values at unobserved
sites.

Estimating rainfall For hydrological models one needs to know as precisely
as possible the rainfall intensity at all places in the catchment of a river.
There are only a few stations where measurements are made, but less
precise (and most likely biased) radar measurements are available in con-
tinuous space. Hence one would like to combine these two sources of
data to obtain better prediction of rainfall intensity. See e.g. R. Erdin,
Scientific Report MeteoSwiss No. 92, 2013.

Spatial distribution of diseases Data on the occurence of various types of
cancer or other diseases are typically available by district, together with
the age-standardized population of each district. The estimated cancer
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rates vary considerably from district to district, and spatial patterns in
the rates can give important information about possible other covariates
that are missing. However, for the analysis, the random variability of
estimated rates due to the Poisson nature of counts has to be taken into
account. An example is in Chapter 4 of the book H. Rue and L. Held,
Gaussian Markov Random Fields, Chapman & Hall, 2005, where lung
cancer data from Germany are analyzed.

Agricultural field trials Crop yields depend not only on the variety and the
treatement, but also on soil variability which is unobserved, but clearly
has spatial structure. Examples are in J. Besag and D. Higdon, J. Royal
Statist. Soc. B 61, (1999), 691-746.

Blurred images (low level vision) Here the goal is to get rid of the blur
without smoothing out sharp edges and other true features of an image.

Object recognition (high level vision) In high level vision, the goal is to
identify objects in an image with the goal to understand what the image
shows. An example is Fleuret and Geman, Intern. J. of Computer Vision
41 (2001), 85-107.

Surfaces and textures The pore space in soil has a complicated structure
which influences how water or other liquids are transported through the
soil. It would be interesting to have simple stochastic models which pro-
duce realizations comparable to real soils. It would allow to study how
both geometric features and transport properties change as we change
parameters. See for instance, P. Lehmann et al., Adv. Water Resources
31 (2008). In two dimensions, textures are another example where geo-
metrical structure is combined with random variations. Typical tasks are
segmentation of images according to different textures or the reproduc-
tion of textures by stochastic models. See e.g. T. Hofmann et al., IEEE
Transactions Pattern Analysis and Machine Intelligence, 1998, 20.

Position of trees The location of trees in a part of a forest generates a pattern
of points. One expects that such a pattern differs in several aspects from a
purely random distribution of points because trees compete for ressource
(moisture, light, nutritions). There are statistical methods which describe
how strongly and in which respect an observed point pattern differs from
a pattern where points are distributed at random.

Epicenters of earthquakes Models for the space-time distribution of earth-
quake epicenters have been studied for instance by Ogata in a series of
papers, see e.g. JASA 97 (2002), 369-380.



Chapter 2

Gaussian Processes and
Geostatistics

2.1 Basic concepts

We discuss in this chapter statistical models, where observations are possible
in principle at any point on R? (or some open subset D of it). For this, we
need the concept of a stochastic process. The simplest examples of stochastic
processes are Gaussian processes which we define and discuss in some detail.

2.1.1 Definitions

Definition 2.1 A stochastic process on a domain D is a collection of random
variables (Z(x);x € D) indezxed by D and defined on a common probability space
(Q,F,P).

Because random variables are mappings from 2 to R, a stochastic process is
therefore a mapping Z : D x Q = R, (z,w) — Z(z,w). For fixed x € D, Z(x,.)
is a random variable, and for fixed w, Z(.,w) is a function from D to R. In most
cases, D C R?, and for d = 1 z is usually interpreted as time whereas for d > 1,
x has the interpretation of space or the combination of space and time. In the
spatial interpretation, often the term random field is used instead of stochastic
process.

In Bayesian nonparametric regression, stochastic processes arise if one defines
a prior on the space of all regression functions: x then denotes the vector of
explanatory variables, and D the domain of these explanatory variables.

Mathematically, the construction of a stochastic process is complicated and
involves measure theory: One has to construct a probability space (2, F, P) and
the measurable mappings Z(x,.). We skip here over these subtle points. The
only thing which we will use (with a few exceptions) are the finite dimensional

3
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distributions of the process, that is the joint distribution of (Z(x1), ..., Z(zy))
for any n and any values z1 € D,...,z, € D.

The simplest class of stochastic processes are Gaussian processes

Definition 2.2 A stochastic process is called Gaussian, if all finite-dimensional
distributions are Gaussian.

Because Gaussian distributions are determined by their first two moments, a
Gaussian process is determined by its mean function m : D — R,z +— m(z) =
E(Z(z)) and its covariance function C' : D x D — R, (z,2') — C(z,2') =
Cov (Z(z), Z(x")). Whereas there are no restrictions on the mean function m,
the covariance function must be symmetric C(z,2") = C(a/,2) and positive
definite in the following sense:

Y Clai,x)BiBi =0 (neN,xz; € D,B; €R).

i=1 j=1

In time series and in spatial statistics, we usually have observations from only
one realization of the underlying random function. (Situations where one has
several independent realizations are typically discussed under functional data
analysis). It is clear that from one realization it is not possible to find out some-
thing about the underlying finite dimensional distributions without additional
assumptions. We need some redundancy for doing statistics. The simplest
assumption which provides redundacy in the case D = R? is stationarity.

Definition 2.3 A stochastic process on R? is called stationary, if the finite-
dimensional distributions do not change when the points x; are shifted by a
common vector h, that is (Z(x1),...,Z(xy,)) and (Z(x1 + h),..., Z(xy + h))
have the same distribution.

It is easy to see that a Gaussian stochastic process on RY is stationary iff the
mean function is constant: m(xz) = m and the covariance function depends only
on the relative position C(z,2’) = C(x — 2’). Such invariance of the first two
moments is called weak stationarity in the case of non-Gaussian processes.

The simplest form of non-stationarity has a non-constant mean whereas the
covariance is still stationary

Z(x) = o+ Y _ Bifile) + Z(x)

=1

where fi,..., f, are some known functions (e.g. longitude or latitude or alti-
tude), the (3; are parameters which can be used to fit the model to data and Z
is a stationary Gaussian process with mean zero.

The first step to relax the stationarity condition for the covariances is given by
the concept of an intrinsic process where only increments are assumed to be
stationary:
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Definition 2.4 A Gaussian random process on R is called intrinsic if the
mean function is constant, that is m(z) = m, and if Var (Z(x) — Z(2')) de-
pends only on the difference x — x’. For an intrinsic process, we call y(h) =
3 Var (Z(z + h) — Z(x)) the semivariogram.

A stationary Gaussian process is also intrinsic, and the semivariogram can be
expressed with the covariance function

1
7(h) = 5(Cz +h,z +h) =2C(z + h,z) + C(z,2)) = C(0) = C(h).
Processes which are intrinsic, but not stationary, are a generalization of ARIMA
processes in time series analysis. The simplest example of a process on R which
is intrinsic, but not stationary is Brownian motion. It has mean zero and the
following covariance

o[ min(al,]2)) (a2 > 0)
The semivariogram is then v(h) = %|h|, and non-overlapping increments are

independent.

The next simple lemma will be used repeatedly in the following

Lemma 2.1  a) If (Z(x)) is a stationary process, then
Cov [ > "B Z(x;), > BiZ(xy) | = > BiBuClak — x;). (2.1)
j=1 j=1 Jk=1
for any n € N, any x; € R? and any Bi, B € R
b) If (Z(x)) is an intrinsic process, then
Cov | D N Z(wy), Yy NiZ(wy) | = =d ANv(aw —x5)  (2:2)
= =1 7k

for anyn € N, any z; € R? and any \;, \; € R such that Zj Aj = Zj )\; =
0.

Proof:

Claim a) follows from basic properties of covariances. For claim b) we use
Y NZ(y) = Y Ni(Z(x)) — Z(x))
j=1 3=1

and analogously for the second linear combination. Therefore

Cov (ZAjZ(xj),ZA;Z(xj)) = S NN Cov (Z(x) — Z(w1), Z(xy) — Z(x1)) -
7.k
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In particular, if \; = )\; =1, Ay = A, = —1 and all other values are zero, then
29(xj —xp) = 2v(xj —x1) + 2v(zr —21) — 2Cov (Z(z) — Z(21), Z(xk) — Z(21)) -

We thus can express the covariance of two increments with the help of the
semivariogram. Plugging this into the equality above, we obtain

Cov (Z )\jZ(ﬂfj%Z)\;-Z(fj)) = > ANy — ) + (@ — 21) — (25— 2p))
ik

= 04+0-> NNy(zp — ).
ik
O

By the second part of this lemma, a semivariogram must be “conditionally neg-
ative definite” (conditionally because the inequality only holds for coefficients
Aj which sum to zero).

Besides invariance under translations, one can also consider invariance under
rotations:

Definition 2.5 A stationary or intrinsic Gaussian process on R? is called
isotropic if C'(h) = C(||h]|) or v(h) = ~(||k||), respectively.

For an isotropic process, the dependence is the same in all directions. If Z is an
isotropic stationary process and B is any invertible d X d matrix which is not
a multiple of the identity, then the process Z(z) = Z(Bz) is again stationary
but no longer isotropic:

E(Z(z)) =m, Cov (Z(ac + ), Z(:c)) — O(|B(z + h) — Bz||) = C(| Bhl).

Therefore the shape of the covariance function is the same in all directions, but
the scaling of the distance depends on the direction. An example is given in
Section 2.1.4 below.

2.1.2 Positive definite functions

We start with a list of the most important parametric models for a stationary
covariance functions or a semivariogram.

“White noise”, “nugget-model” This model assumes that values at differ-
ent positions are independent, no matter how close they are:

o2, ifh=
- {5 11! e

“General exponential model”

e = oo (- (1)) (2.0
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For positive definiteness we must have 0 < v < 2. The two most popular
models have v = 1 and v = 2, respectively, and are known as ‘exponential
model” and “Gaussian model”.

“Spherical model”

[B(0,1) N B(h/p,1)|
C(h) =o°- BO.1) (2.5)

where B(z,r) is the sphere in R? with center x and radius r, and the
absolute value of a set in R? denotes the volume (or the area in case
d = 2) of this set.

“Matérn-Modell”

Clh) = o2 - 2_11F(1/) <\/§”’;”)VKV (@”ﬁ’) . (26)

where K, (-) is the so-called modified Bessel function of order v and I'(+)

the Gamma function. For v = 1/2, we obtain C'(h) = o2 exp(—||R||/p), i.e.

the exponential model, and for v — oo we obtain C'(h) = o2 exp(—||h||?/(2p?)),
i.e. the Gaussian model. There are different parametrizations of this
model in the literature. The reason for not absorbing the factor v/2v in

p is that models with different values of v differ mainly with respect to
their smoothness near zero whereas the distance where the covariance is
close to zero is similar for all v.

The modified Bessel function seems complicated, see Abramowitz and
Stegun, Chapter 9.6-9.8, but it is coded in R. Therefore we need not to
know much about it for applying the model. In Section 2.1.4 we show
how to evaluate the covariance function and how to generate a plot for
different shape parameters v.

“Power model”
v(h) = o - |[n|” (2.7)

where 0 < v < 2. For v = 1 and d = 1, it is the semivariogram of
Brownian motion.

The unknown parameters are o2, p and v. The parameter o scales the obser-
vations Z (Z — const - Z), p scales the distance between points (x — const - )
and v is a shape parameter which decides how smooth C' or 7 are at the origin.

Proving that the functions in the list above are positive definite is complicated.
A powerful tool for doing this is Fourier analysis. A function C' : R4 — R which
has the representation

C(h) = /Rd cos(ATh)s(\)dA



8 CHAPTER 2. GEOSTATISTICS

where s : R* — R, is integrable is always positive definite, and this condition
is close to being necessary: If C' is a stationary covariance function which is
continuous at the origin and satisfies

/ C(h)|dh < o
R4

(that is the covariance decays to zero fast enough as the distance increases),
then

s(\) = (27)~ / C(h) cos(ATh)dh > 0

for all A € R? and
C(h) = / cos(ATh)s(A)dA.
Rd

The function s is called the spectral density of the covariance function. For
d = 1, these results are usually discussed in time series analysis.

In this course, we do not use spectral methods much, so I will not go into this
topic in more detail. But I would like to mention that the spectral density of
the Matérn model is

8()\) = o-2const,(1/7 P) (2u/p2 + /\Q)fufd/Q‘

Since this is much simpler than the covariance function, it adds plausibility to
the claim that the Matérn model is a very fundamental class of models.

2.1.3 Smoothness properties of Gaussian processes

How smooth the realization of an intrinsic Gaussian process are, depends on
the smoothness of the semivariogram at the origin. In order to make precise
statements, we recall different convergence concepts of random variables first.
A sequence of random variables X1, Xs,... (on a common probability space)
converges to X in probability or stochastically if for all € > 0

P(|X,—X|>¢)—0 (n— o0).

By Chebyshev’s inequality, convergence of probability holds if E((X,, — X)?) —
0 which is called mean-square convergence or Lo-convergence. There is a
stronger convergence concept, almost sure convergence, where X, (w) — X (w)
for all values w from a set with probability one.

A stochastic process on R? is called mean-square continuous if Z(x + hy) con-
verges in mean-square to Z(x) for any x and any sequence h,, — 0. An intrinsic
process is obviously mean-square continuous iff v is continuous at the origin. It
can be shown that ~ is then continous everywhere. Unfortunately, realizations
Z(.,w) of a mean-square continuous process are not necessarily continuous func-
tions with probability one (convergence in probability does not imply almost
sure convergence, and even if realizations are almost surely continuous for any
fixed x, they can still be discontinuous for some x because the exceptional set
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may depend on x). A Gaussian intrinsic process has almost surely continuous
realisations if for some § > 0

y(h) = O(| log(||I))[**)  (h— 0),

see e.g. Theorem 1.4.4 in Adler and Taylor (2007). This covers all continuous
semivariograms which are used in practice.

The semivariogram of the white noise model is not continuous at the origin.
In fact, the realizations of the corresponding process are so irregular that the
Riemann integral over any compact domain D C R? has a constant value:
If we partition D as D = UV; and approximate the integral f p Z(x)dr by a
Riemann sum Y Z(x;)|V;| where z; € V;, then this approx1mat10n converges
to m = E(Z(x)) in mean square as sup, |V;| — oo. However for any fixed
x, Z(x) # m. Hence, white noise is not a reasonable model if taken literally.
Usually it is considered as an approximation of a process whose semivariogram
is continuous, but is constant for ||h|| > ho where hg is much smaller than the
distance between any pair of points where the process is observed.

Mathematically, there is a rigorous theory for a slightly different white noise
model. For this model, heuristically 02 = co and thus the values at any point
are not defined. Only the integrals [ Z(x)f(z)dz exist for any f:R? —> R With
[ f(z)?dz < oo, and the random variables ([ Z(z)fi(x o Z(x dx)
have a multivariate Gaussian distribution with means m f fZ )dx and covari-
ances o2 [ fi(x)f;(z)dz. We will use this version of white noise at a few places
later.

Higher order smoothness of v is related to higher smoothness of the process.
We say that a stochastic process is differentiable in quadratic mean if for any
x € R? and any direction h € R?

Dy Z(x) = lim Z(x +th) — Z(x)
t—0 t

exists in the mean-square sense. An intrinsic process is mean-square differen-
tiable if the semivariogram is twice differentiable at the origin. Moreover the
semi variogram is then everywhere twice differentiable and we have

Cov(DyZ(z), DpZ(x'")) = KT D*~(x — 2)h

where D?~ is the matrix of partial second derivatives of the semi variogram. For
Gaussian processes, a slightly stronger condition implies continuous differentia-
bility of almost all realizations Z(.,w). This can be extended to conditions for
the existence of higher derivatives. There is also a theory of smoothness of frac-
tional order of the process which is related to smoothness of the semivariogram
of twice the same order. We do not go into the details.

The main conclusion of this section is that in the Matérn model, the realiza-
tions will be almost surely n times continuously differentiable if v > n. The
Gaussian covariance function is obtained as the limit ¥ — oo, and its realiza-
tions are almost surely infinitely often differentiable. The possibility to have
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the whole range of differentiability propoerties for the realizations makes the
Matérn model suitable for many applications. The next Section shows simulated
realizations of the Matérn model for different values of the shape parameter.

2.1.4 Simulation of Gaussian random fields with R

In this section we begin to illustrate the use of R for spatial statistics. We will
use the packages RandomFields, geoR and spatstat in this course.

The package RandomFields has the largest list of parametric models for the co-
variance function and the most advanced methods for simulation. The package
geoR offers more choices for the analysis of spatial data.

We begin by showing how one can compute covariance functions with Random-
Fields for some specified models.

## Evaluation of covariance functions with the package RandomFields:
library(RandomFields)
C <- CovarianceFct(x= 1,model="matern",
param=c (mean=0, variance=1,
nugget=0, scale=1, nu=0.5))

In figure 2.1, the covariance function for the Matérn model with various smooth-
ness parameter and two different intervals for the distance is plotted.

global zoomed

1.0
1.0

0.8
1

Cov
0.6
0.8

02 04
1 1

0.0
1
0.6

T T T T T T T T T T T T
0 1 2 3 4 0.00 0.05 0.10 0.15 0.20 0.25 0.30

h

Figure 2.1: Covariance function of the Matérn model with various smoothness
parameters.

Next we demonstrate how to simulate a Gaussian random field with the Matérn
model and different shape parameters.

First we load the package RandomFields, lattice for plotting and foreach for
convenient wrapping of simulation:

## Simulation of Gaussian random field with a given
## covariance function with the package RandomFields:
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library(RandomFields)
library(lattice)
library(foreach) #not compulsory but useful to combine results

#PrintModelList () ## the complete list of implemented models

Then we create a grid on the 4x4 square with 10,000 points on which to simulate:

nside <- 100 ## nside * nside = number of cells in the grid
grid <- expand.grid(seq(0, 4, length.out=nside),
seq(0, 4, length.out=nside))
x <- grid[,1]
y <- grid[,QJ

Set the parameters of the model:

cov.model <- "matern"

mean <- 0 # no trend

variance <- 1 # sigma"2

nugget <- 0 # no nugget added

scale <- 1

nu.vec <- ¢(0.25, 0.5, 1, 10) # control the smoothness

We then simulate a realization of the field for each of the smoothness parame-
ters.

## Simulate:

set.seed(13) ## for reprocudibility

## foreach loops through values of i and combines each

## output with .combine, here rbind

sim <- foreach (i = 1:length(nu.vec), .combine="rbind") JdoJ, {
nu <- nu.vec[i]
z <- GaussRF(x=x, y=y, model=cov.model,

param=c (mean, variance, nugget, scale, nu))

data.frame(z, x, y, nu)

}

Finally we format the data and plot them nicely with lattice (Figure 2.2)

## for nice labels:

sim$nu <- factor (sim$nu)

facnames <- c(expression(paste(nu, "=0.25")),
expression(paste(nu, "=0.5 (Exponential)")),
expression(paste (nu, "=1")),
expression(paste(nu, "=10 (->Gaussian)")))

# Conditional plot:
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levelplot(z ~ x*y | nu, data=sim,
col.regions = terrain.colors(100),
asp=1, index.cond=1ist(c(3,4,1,2)), #to change order

strip=strip.custom(factor.levels=facnames))

1 2 3

1 1
v=0.5 (Exponential)

> V=10 (->Gaussian)

Figure 2.2: Realization of random fields with the Matérn model and various
smoothness parameter.

Isotropy vs. anisotropy Often spatial patterns occur in an asymmetric way
for various reason (e.g. because of the orientation of the topography in Switzer-
land). Here we demonstrate by simulation the qualitative difference between
an isotropic and an anisotropic random field.

First we load the package geoR and set the parameters:

library(geoR)

cov.model <- "matern"

mean <- 0 # no trend

variance <- 1 # sigma”2

nugget <- 0 # no nugget added

nu <- .5

rho <- .2/sqrt(2*nu)

aniso <- c(pi/4, 3) # (angle, amplitude)



2.1. BASIC CONCEPTS 13

Then we proceed to the simulation on a regular grid of 10,000 points on the
unit square:

set.seed(12)
## Simulation of isotropic field:
## grid is 100x100 on unit square
sim.iso <- grf(nx=100, ny=100, grid="reg",
cov.model="matern",
cov.pars = c(variance, scale),
nugget=nugget,
kappa=nu)
## Simulation of anisotropic field:
## grid is 100x100 on unit square
sim.anis <- grf(nx=100, ny=100, grid="reg",
cov.model="matern",
cov.pars = c(variance, scale),
nugget=nugget,
kappa=nu,
aniso.pars= aniso) # anistropy

Finally we put the simulations together and plot them with lattice (Figure 2.3)

## put together for plotting:
outputl <- data.frame(z= sim.iso$data, x, y, iso="isotropic")
output2 <- data.frame(z= sim.anis$data, x, y, iso="anisotropic")
data.iso <- rbind(outputl, output2)
## Conditional plot:
levelplot(z ~ x*y | iso, data=data.iso,
col.regions = terrain.colors(100),
index.cond=1ist (c(1,2)), ## to change order...
xlab='"', ylab='', useRaster=T, asp=1)

2.1.5 Convolution models

This is an alternative way to define a Gaussian process directly. It uses a kernel
K and a Gaussian white noise process £ (the version with infinite variance) and
sets

Z(z) = y K(z —2")¢(2")d'.

This is a generalization of the moving average process to continuous time and
higher dimensions.

By the formulae in the previous subsection,

B(Z()) = me / K(z)dz, Cov(Z(x+h), Z(z)) = o2 / K(' + h)K(2)da.
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1 2 3

1
isotropic

Figure 2.3: An isotropic and an anisotropic simulated random field.

Hence the model is stationary. In particular, if we take as K the indicator
function of a sphere centered at the origin, we see that the spherical model
belongs to the class of convolution models.

For simulation and for other purposes, one has to approximate the integral by
a Riemann sum. Doing this, one obtains the model

oo

Z(x) = Kz — ;).

Jj=1

where the §; are independent N (15, 0]2-) variables. This means that the process
is a linear combination of a fixed function K shifted by deterministic vectors x;
and scaled by random amplitudes §;. This discrete convolution model is usually
no longer stationary. It will be approximately stationary if the centers z; form
a regular grid and m; and 032- are constant.

One can also move further away from stationarity and replace K(x — z;) by
arbitrary basis functions K;(x) (subject to some condition which guarantees
that the sum is well defined). Such a representation holds for many Gaussian
processes.

Theorem 2.1 Let Z be a Gaussian mean zero process on a compact set T C R?
with continuous covariance function C(x,z'). Then there erists a sequence of
orthnormal continuous eigenfunctions K, and eigenvalues \1 > X > ... > 0,
2 )\? < 00 with

/ Cla, ) K (2)da! = N K(a),
T
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Moreover, if we set & = [ Z(x)Kj(x)dz, then the &’s are independent stan-
dard normal random variables, and

o0

Z(x) =) Ki(@)\/Ng

J=1

where the series converges in quadratic mean.

The first part is Mercer’s theorem, and the second part is called the Karhunen-
Loéve expansion. The results are generalizations of the diagonalisation of sym-
metric matrices with orthogonal matrices in linear algebra and principle com-
ponent analysis in statistics. Explicit computation of the eigenfunctions and
eigenvalues is however possible only in exceptional cases.

One such exception is Brownian motion restricted to D = [0,1]. Then the
eigenfunctions and eigenvalues are

1

Kj(x) = V2sin((j — 0.5)mx), A = 72(j —0.5)2

G=1,2,..).

We show the approximation for different truncations of the infinite sum in
Figure 2.4.

Brownian motion
0.0 0.5 1.0
| |

-0.5
1

-1.0

0.0 0.2 0.4 0.6 0.8 1.0

time

Figure 2.4: Karhunen-Loeve expansion of Brownian motion with 11 (red), 51
(blue), 101 (purple) and 1001 (black) terms

psi <- function(i,t) sqrt(2)*sin((i-0.5)*pi*t) #Eigenfunctions K_j
time <- seq(0,1,length=1001)

n <- 1001

set.seed(14)

xi <- rnorm(n) #random coefficients

lambda <- 1/(pi*((1:n)-0.5)) #square root of eigenvalues
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bm <- (xi*lambda)j*jjouter(1:n,time,FUN="psi") #Approximation with n terms

plot(time,bm,type="1",ylab="Brownian motion")

bm.11 <- (xi[1:11]*lambda[1:11])7%*}outer(1:11,time,FUN="psi")
#Approximation with 11 terms

lines(time,bm.11,col=2)

bm.51 <- (xi[1:51]+*lambdal[1:51])7*Jouter(1:51,time,FUN="psi")
#Approximation with 51 terms

lines(time,bm.51,col=4)

bm.101 <- (xi[1:101]*lambda[1:101])7%*jouter(1:101,time,FUN="psi")
#Approximation with 101 terms

lines(time,bm.101,col=6)

2.2 Estimation of Gaussian process models

2.2.1 Nonparametric estimation

Here we consider estimation of the semivariogram ~ of an intrinsic process,
based on observations (Z(x1),...,Z(x,)). The assumption of Gaussianity is
not needed.

The idea is simple: If the semivariogram is isotropic, we average squared incre-
ments of the process for pairs of observation points which have approximately
the same distance:

W0 =gy L (2 - ()

|lws =] |~=h

where N (h) denotes the number of terms in the sum on the right-hand side. The
simplest way to implement this, is to partition the pairwise distances x; — z;
into mutually disjoint classes like for a histogram and then to estimate the
semivariogram at each class center by averaging over the class. A slighlty more
sophisticated method uses a kernel estimator:

Y (Z(wi) — Z(x))* - K (||l — ;] — [|hl])
2% K(llwi — a4l = h)

If one does not want to assume isotropy, then one has to consider pairs of points
with approximately the same distance and orientation.

V(h) =

If 4(h) does not reach a sill for large h, one concludes that the observations do
not come from a stationary process. If a sill is reached, then the stationarity
assumption is accepted, the sill is considered as an estimate of C(0) and one
estimates the autocovariance as C'(0) —7(h). As an alternative one can also
proceed like in time series and estimate first the mean m by the average of all
observations and the autocovariance by

C(h) = —— 3" (Z(w:) — ) (Z(a;) — 7).
N
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The method based on the semivariogram is usually prefered because the effect
of subtracting m instead of the true mean is in some cases not negligible.

These methods are simple and give some basic information about the depen-
dence in the data, but the statistical errors can be large and difficult to quantify
and the fitted semivariogram need not be a valid model (that is it is not guar-
anteed to be conditionally negative definite).

2.2.2 Parametric estimation

We consider here the following model

Z(x)=PBo+ > _Bifi(x)+Y(x)+e()

Jj=1

where f1, ..., fp are known functions, (Y (x)) is a mean zero Gaussian stationary
process with covariance function

C(h) = a*r([[hll /p:v)

and (e(z)) is a nugget model with variance 72. The unknown parameters are

B = (Bo,...,0p) and O = (12,02, p,v). We want to estimate these parameters
based on observations Z(z;) for i = 1,2,...,n. Written in vector/matrix form
the model for the observations is

Z=FA+Y +¢

where F), is the n x (p + 1) matrix of the fixed effects and the errors Y + ¢
have covariance matrix K,,(8) = Cp(6) + 721,,. (The matrix C,, has elements

C(llzi = 2;l0))-

The simplest method is based on the nonparametric estimate of the covariance
or the semivariogram (If p > 0, we estimate by ordinary least-squares and
use residuals). The parameters of the semivariogram are then estimated by
matching the nonparametric semivariogram, either “by eye” or by minimizing a
weighted sum of squared deviations:

k
S wi - (Rhy) — 7 = 021 — r(hy/p; )
j=1

The weights w; are for instance the number of pairs used to estimate J(h;).

A more systematic method is Maximum-Likelihood (ML). By the Gaussian
assumption for (Y') and (¢), the log likelihood is given by

QIOgLn(ﬁv 9) == logdet(Kn(G)) - (Z - Fnﬁ)TKn(e)_l(Z - Fn/B)

The parameters /3 (#) which maximize the likelihood for fixed value of 0 are the
so-called generalized least squares (GLS) estimators

B(0) = (FT K, (0) ' F,) ' FI'K,(6) 'z
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If we plug this into the formula for the likelihood we obtain the so-called profile
likelihood which is a function of 6 alone.

Although we have an explicit expression for the likelihood, finding the MLE
can be difficult for several reasons. First, the computational effort to compute
the inverse or the determinant of K, can be huge because it is of the order
O(n3) (even if we solve linear equations instead of inverting K,,). Second, there
is the possibility of multiple local maxima. Third, the presence of regression
parameters 3; can bias the estimated 6 substantially. This can be seen already
in ordinary regression where the MLE for the error variance is biased, and with
correlated errors this effect is typically more pronounced.

Several methods have been proposed to deal with the first problem. One is the
use of reduced rank models where C), is replaced by a matrix of rank r < n:

C,=K,D,Kl', K,cR"™, D,=diag(d3,...,d?).

This means that the original model is replaced by a convolution model: Z(x;) =
E;zl K;;d;&; with & i.i.d. standard normal. There are formulae in linear alge-
bra which allow one to compute the inverse or the determinant of a matrix which
is the identity plus a low rank perturbation (Sherman-Morrison-Woodbury for-
mula and matrix determinant lemma). If the model for C is already in con-
volution form, a reduced rank is achieved by truncating the sum. We will see
later a different approach that can be used for any model and is based on krig-
ing. Another method to avoid the computation of inverses and determinants of
large matrices is to replace the likelihood by the so-called pseudo-likelihood. For
this, one chooses any number of small size subsets V; C {x1,...,x,}, usually
overlapping, and maximizes

112 (5.0)

where Ly, is the likelihood based on (2(z;);z; € Vi). A third method is based
on sparse matrix techniques and will be discussed in Chapter 3 when we discuss
lattice models.

The second problem is not specific to spatial statistics. It emphasizes the im-
portance of having good starting values. The third problem can be avoided by
the use of so-called Restricted Maximum Likelihood Estimation (REML). The
idea is to transform the observations Z linearly to a n —p— 1-dimensional vector
Z' = AZ which has mean zero for any value of 8 and to use Maximum Likeli-
hood for Z’. One can show that the resulting estimator does not depend on the
choice of A (as long as A has rank n — p — 1) and is obtained by minimizing

log det (K, (8)) + log det(FL K, (6) ' F) + (z — FuB(0)) K, (0) ' (z — F.3(0)).

Hence the difference to the profile likelihood is the additional term
log det(FI K, (0)"1F,).
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2.2.3 Bayesian estimation

In Bayesian statistics, the unknown parameters 8 and 6 are assigned prior
distributions p(3)p(6) and inference is based on the posterior distribution

p(B,0 | z) < Ln(5,0)p(B)p(0).

Exploration of this posterior distribution is done by Markov chain Monte Carlo
(MCMC) sampling: A dependent sample (30) 00):j = 1,2,... N) which is
approximately distributed according to the posterior is generated. With this
sample it is then straightforward to compute point estimators as means or me-
dians of each component or credible intervals via a pair of symmetric quantiles.

The construction of good Markov Chain Monte Carlo estimators is however not
trivial, and we do not discuss this problem here.

2.2.4 Fitting models with R

We show variogram fitting using the package gstat. First we simulate 200
points data at random locations with a Matérn model (v = 0.25).

npoints <- 200
## Set parameters of the model:
cov.model <- "matern"; mean <- 0 ;variance <- 1; nugget <- 0
scale <- 1; nu <- 0.25
set.seed(13) ## for reprocudibility
sim <- grf(a=npoints, xlims=c(0,10), ylim=c(0,10),
cov.model="matern",
cov.pars = c(variance, scale),
nugget=nugget,
kappa=nu)

Nonparametric estimation Then we can use the function variog to com-
pute the empirical variogram of the simulated data. The option cloud calculate
the raw value for each pair versus their distance. In a second time the distance
is binned. The last way is to calculate only the mean value at binned distances.
Another option is to give a smooth estimate of the variogram.

In figure 2.5, first the simulated data points are plotted, then the variogram
cloud, then the boxplot version. In the last plot, the mean values at binned dis-
tance are plotted together with the smooth estimate in blue and the theoretical
variogram (known because the data are simulated) in dashed black.

library(geoR)

# variogram cloud

vario.c <- variog(sim, max.dist=3, op="cloud")
#binned variogram with storing the cloud
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vario.bc <- variog(sim, max.dist=3, bin.cloud=TRUE)
# binned variogram
vario.b <- variog(sim, max.dist=3)
# smoothed variogram
vario.s <- variog(sim, max.dist=3, op="sm", band=0.2)
### plotting:
par (mfrow=c(2,2))
# plot the data:
zz <- cut(sim$data, 20)
mycol <- terrain.colors(20)
plot(sim[[1]], col=mycol[zz], pch=19, main="simulated points")
# cloud
plot(vario.c, main="variogram cloud")
# cloud + bin
plot(vario.bc, bin.cloud=TRUE);title(main="clouds for binned variogram")
# bin + smooth + theoretical variogram
plot(vario.b, main="binned variogram")
points(vario.s$u, vario.s$v, main="smoothed variogram", type="1", col="blue")
curve (variance-CovarianceFct (x=x,model="matern",
param=c (mean, variance, nugget, scale, nu)),
0, 3, add=TRUE, col="black", lty=2, lwd=2)

Isotropy vs. anisotropy It is possible to study anisotropy through direc-
tional variograms. Separate variograms are computed for a given angle and
tolerance. If they appear to be the same in all directions, one can say that
there is no obvious anisotropic pattern. In the following we show a simulation
of an anisotropic pattern and the corresponding directional variogram. On fig-
ure 2.6 it can be seen that the variogram for direction 45° reaches the sill much
later than for other directions, as should be expected when looking at the point
pattern.

aniso <- c(pi/4, 4) # (angle, amplitude)

set.seed(136)

## simulate an anisotropic pattern:

sim.anis <- grf(n=1000, xlims=c(0,10), ylim=c(0,10),
cov.model="matern",
cov.pars = c(variance, scale=2), #sigma~2
nugget=nugget,
kappa=0.5,
aniso.pars= aniso) # anistropy

## plot the points:

zz <- cut(sim.anis$data, 20) # binning (for colors)

mycol <- terrain.colors(20) # color palette

par (mfrow=c(1,2))

plot(sim.anis[[1]], col=mycol[zz], pch=19, main="simulated points")
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Figure 2.5: 200 simulated data points with the Matérn model and various var-
iogram fitting displays.

## compute and plot variogram in 4 directions (0, 45, 90 and 135 degree):
vario.4 <- variog4(sim.anis, max.dist=6, tol=pi/8)

plot(vario.4)
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Figure 2.6: Simulated data for an anisotropic model and the respective direc-
tional variograms.
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Parametric estimation Now we will show how to estimate parametrically
the variogram on the same dataset simulated earlier and displayed in figure 2.5.
The first method is weighted least square (WLS) and the second maximul like-
lihood (ML). For the WLS the weights are simply proportional to the number
of pairs in the bin used to calculate the variogram. In both cases, we try to
impose a nugget of 0 and see how it influences the solution. The results are
displayed in figure 2.7.

# first we have to change the class of the simulated data:
simdat <- as.geodata(sim)
# vario.b is the empirical variogram computed above
# ini.cov.pars are a set of initial values to try from
# kappa is the initial value bounded between 0.1 and 10
# WLS
wls <- variofit(vario.b, cov.model='matern',
ini.cov.pars=
expand.grid(seq(0,2,by=0.3), seq(0,2, by=0.3)),
fix.kappa=FALSE, kappa=1,
limits=pars.limits (kappa=c(lower=0.1, upper=10)))
# impose nugget =0
wlsO <- variofit(vario.b, cov.model='matern',
ini.cov.pars=
expand.grid(seq(0,2,by=0.3), seq(0,2, by=0.3)),
fix.kappa=FALSE, kappa=1,
limits=pars.limits (kappa=c(lower=0.1, upper=10)),
fix.nugget=TRUE, nugget=0)
## REML estimate:
## we use the WLS estimates as starting values:

ml <- likfit(simdat, cov.model='matern',
ini.cov.pars=wls$cov.pars,
fix.kappa=FALSE, kappa=1,
limits=pars.limits(kappa=c(lower=0.1, upper=10)),
lik.method="REML")
# impose nugget =0
ml0 <- likfit(simdat, cov.model='matern',
ini.cov.pars=wlsO$cov.pars,
fix.kappa=FALSE, kappa=1,
limits=pars.limits (kappa=c(lower=0.1, upper=10)),
fix.nugget=TRUE, nugget=0, lik.method="REML")
## plot the results:
col.vec <- c('red', 'blue', 'green', 'orange', 'black')
lty.vec <- ¢(2,1,2,1, 2)
plot(vario.b)
lines(wlsO, col=col.vec[1], lty=lty.vec[1], lwd=2)
lines(wls, col=col.vec[2], 1lty=lty.vec[2], 1wd=2)
lines(ml0, col=col.vec[3], lty=lty.vec[3], lwd=2)
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lines(ml, col=col.vec[4], lty=1ty.vec[4], lwd=2)
# with the true variogram:
curve (nugget + variance -
cov.spatial (x, cov.model="matern",
cov.pars= c(variance, scale), kappa=nu),
0, 3, add=TRUE, col=col.vec[5], 1lty=1ty.vec[5], lwd=2)
legend ("bottomright",

c("WLS (nugget=0)","WLS","REML (nugget=0)", "REML", "truth"),

col=col.vec, lty=Ilty.vec, lwd=2)

15

1.0

semivariance

0.5

- = WLS (nugget=0)
’ — WLS

’ REML (nugget=0)

’ REML

- = truth

T T T T T T
0.0 0.5 1.0 15 2.0 25

distance

Figure 2.7: Parametric estimation of the variogram.

2.3 Kriging

We consider here the problem how to predict the value of a stochastic process
(Z(x)) at new sites if we have observed Z(x;) for i = 1,2,...,n, and how to
quantify the uncertainty of such a prediction. We will restrict ourselves to the
case of Gaussian processes, or to the special class of predictors which are linear
in the observed values Z(x;). We will see that both approaches lead to the same
solution.
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2.3.1 Simple Kriging

First we assume that the mean function m and the covariance function C' of
the process is known. If we also assume that the process is Gaussian, we can
compute the conditional distribution Z(z) given Z(x1), ..., Z(x,) which quan-
tifies (via expectation, standard deviation, quantiles etc.) the knowledge and
the uncertainty about Z(x). We can even compute the joint distribution at any
number of new sites.

Theorem 2.2 If (Z(x)) is a Gaussian process with arbitrary mean function m
and covariance function C, then conditionally on Z(x1),...,Z(xy) (Z(x)) is
again a Gaussian process with mean function

mn(z) = m(z) + () K, Y (Z(x1) — m(x1), ..., Z(x,) — m(z,))T
and covariance function
Co(z,2') = C(z,2') — c(z)T K Ye(z))

where c(x) = (C(z,z1),...,C(x,2,))" and K, is the n xn matriz with elements
C(zi,z5). In particular the conditional mean is linear in the observed values
and the conditional covariance is independent of the observed values.

Proof: We need to show that for any number of new sites x,y1,...,Tn4p
the conditional distribution of Zyey = (Z(Tn+1),. .., Z(Tntp)) given Zyg =
(Z(x1),...,Z(xy)) is Gaussian with means my,(z,+,;) and and covariances

Cr(%n4i, Tntj). To simplify the notation, we assume that m = 0 (for the general
case, we simply replace Z(x) by Z(x) —m(x) in all formulae below). We use the
result that the conditional density of Zj.., given Z,;4 is obtained by multiplying
the joint density by a function of z,;4 so that it becomes a density in Z,e, if we
fix the value of z,4. The joint density is equal to a constant times

1 1
T T T T
exp <_2zglonld,oleold - iznernew,newznew - ZoldQnewﬁalenew .

Here Qold.oid, @new,old and Qnew new are the submatrices that we obtain if we
partition the inverse of K, the joint covariance matrix of (Zyq, Zneyw) in the
obvious way

(Kn+p)_1 _ ( Kold,old (Knew,old)T >_1 _ < Qold,old (Qnew,old)T ) )

Knew,old Knew,ne’w Qnew,old Qnew,new

For later use, we state a result from linear algebra:

-1 T -1
Qnew,new - (Knew,new - Knew,oldKoldpldKnew,old)
-1
Qnew,old = _Qnew,newKnew,oldKold,old
_ -1 -1 T
Qold,old - Kold,old - KoldpldKnew,oldQnew,old

which can be verified by blockwise matrix multiplication.
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Figure 2.8: Reduction of uncertainty about a Gaussian random function by
observing the values at an increasing number of points

We obtain the conditional density by collecting all terms in the exponent that
contain z,e, and normalizing. That is

L r

T HT
f(znew | Zold) X exp (_anernew,newZnew - ZoldQnew’oldznew>

where the proportionality sign oc means “up to a function of z,;;”. The formula
for completing a square,

2z’ Az +2blz = (z+ A7) T A(z+ A7'b) — bT A7 1b,

shows that f(Zpew | Zota) is the Gaussian density with covariance Q2 ., and
mean —Qﬁelw,nernew,oleolw The proof is now completed by using the formulae
above for Qnew,new and Qnew,old- O

Figure 2.8 illustrates how observations of the random function Z at points more
and more points reduces the uncertainty about this function at other points.
In each plot, the conditional mean given the observed values is shown together
with two realizations from the conditional distribution of the process and a
pointwise 95% prediction interval of the form mean + 1.96 times the standard
deviation.
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Without assuming Gaussian distributions, we look for the optimal predictor in
the class of linear predictors which have the form

n

Z(z) = ao(z) + Y ei(2)(Z(w:) — m(x;)).

i=1

The functions «; are determined such that the mean square error E((Z(z) —
Z(x))?) is minimal. By the rules for the variance we obtain

E((Z(x) - Z(2))?) = (B(Z(x)) ~ E(Z(x)))* + Var (Z(2) - Z(x))

= (m(z) — ap(2))* + C(z,2) = 2) (@), ) + > al@)oy(z)C (i, ;).

i=1 ij=1

Thus clearly ag(z) = m(z), and setting the partial derivatives with respect to
the other «;(z) equal to zero leads to the equation

Knp(aq(z), ..., an(@)T = c(z)

where c¢(z) and K, have the same meaning as in the Theorem above. The
solution Z(z) is also characterized by the following orthogonality conditions

E(Z(x) - Z() =0, E((Z(x) = Z(x))Z(x;)) = 0.
In particular
Cov (Z(:U) ~ Z(), Z(a") — Z(x’)) = E((Z(2)—Z(2))Z(2")) = Oz, 2")—c(x)T KL e(a).

Therefore the covariance of the prediction errors at two sites is the same as the
conditional covariance under Gaussian assumptions.

2.3.2 Universal and ordinary Kriging

The assumption of knowing the mean and the covariance functions is hardly
ever satisfied. A more realistic approach is based on a parametric model for the
mean function and a stationary or intrinsic covariance function. One can then
estimate the mean and covariance function also from Z by one of the methods
discussed before and use the estimated instead of the true quantities in the
formulae for simple kriging. This plug-in approach will typically underestimate
the uncertainty of the predictions because the uncertainty about the mean and
the covariance is neglected. Moreover, it is not clear whether the resulting
predictor still has some optimality property.

It turns out that one can find easily a procedure which deals correctly with
the unknown mean function. For the unknown covariance the situation is more
complicated, and the best solution seems to be a Bayesian approach.

We assume that the mean has the form

m(z) = Bo+ Y Bifi(x) =: f(=)"B

J=1
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where f; are known functions and the 3; are unknown parameters whereas the
covariance function is assumed to be known. If we estimate the vector 8 by
generalized least squares

B = (FIK,'F,) 'FI K ',

and use it instead of the true § in the formula for simple kriging, we have the
predictor R R R
Z(z) = f(2)T B+ c(x)T K Yz — F,j).

This is called the universal kriging predictor, or —in the case p = 0 — the ordinary
kriging predictor. It is a linear homogeneous function of the observations

M)t = (@) = ela) Ky Fo) (B Ky Fo) TR + e(2) T K
It follows therefore that for any 3
E(Z(x) = E(Z(2)) & Ax)TFy = f(2)",
that is the universal kriging predictor is unbiased. Moreover, one obtains

E((Z(z) - Z())*) = C(z,2) - c)" Kne(z) +
(f(@) = Fu o) (B K ) T (f () — oK e(w)).

The first two terms give the mean square prediction error in case 3 is known.
The third term thus represents the additional uncertainty due to estimating 5.
Under Gaussian assumptions Z () is again Gaussian, and we can immediately
compute for instance prediction quantiles.

If instead of the generalized least squares estimator one uses any other linear
unbiased estimator of 3, one obtains another homogeneous linear unbiased pre-
dictor, that is a predictor of the form A(z)”z with A(z)TF, = f(x)T. Using
Lagrange multiplicators one can show that among all such predictors the one
obtained from generalized least squares has the smallest mean square prediction
error.

As said before, we still assume that the covariance function is known. However
if the centered process (Z(z) — m(x)) is intrinsic, then the optimal coefficient
vector A(x) depends only on the semivariogram. This follows from Lemma 2.1
because the first column of F), is (1,...,1)” and therefore 1 — > -1 Aj(x) = 0.

2.3.3 Bayesian Kriging

In Bayesian statistics the unknown parameters S and 6 are conceptually the
same as the unobserved value Z(z) and we have

p(2(2), 8,0 | 2) = p(2(z) | B,0,2)p(5,0 | 2),
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and therefore
p(=(z) | z) = / p(=(2) | 8.0, 2)p(B, 0]2)d5do.

The first term in the integrand on the right is Gaussian with mean and variance
as given by Theorem 2.2. In the Bayesian approach one therefore averages the
unknown parameters according to the posterior distribution instead of plug-
ing in a point estimator. In particular, this takes uncertainty with respect to
unknown parameters into account in a coherent way. The drawback of this ap-
proach is that the integral with respect to the posterior cannot be computed in
closed form. If one can simulate from the posterior, the integral can be approx-
imated by an average and the prediction density p(z(x) | z) is approximated by
a mixture of Gaussian densities.

If only B is unknown and if one chooses a Gaussian prior for 5, then both
the posterior p(8 | z) and the prediction density p(z(z) | z) can be computed
and they are again Gaussian. If one chooses an improper prior p(3) = 1, then
p(z(z) | z) is Gaussian with mean equal to the universal kriging predictor and
variance equal to its mean square prediction error.



Chapter 3

Models on a lattice

The specification of non-Gaussian processes is more difficult since mean and
covariance are not enough. To simplify things one often discretizes space and
considers only locations z which belong to a finite set L € R%. Often L is
defined by the data one considers: When analyzing images, L is a regular lattice
of pixels, or when analyzing epidemiological data, L is the lattice of districts
which were used to aggregate the data. In other cases, one chooses a grid with a
certain spatial resolution and then uses some deterministic interpolation scheme
for values at points not belonging to this lattice.

Some notation: For models on a lattice, we denote the value at the site =
by Z, instead of Z(z). We use bold-face Z for the random vector (Z;;z €
L) and for A C L Z4 for the vector (Zy;x € A). Finally Z_, denotes the
random vector (Z,; 2’ # x). We use p as the generic symbol of any (conditional
or unconditional) density or probability mass function. The arguments of p
indicate in each case the density of which random vector we are considering.
If we want to emphasize the spatial character of the model, we speak about
random fields instead of random vectors.

3.1 Hierarchical models

Once we have decided on the grid L, one can define directly the joint distribution
of the random vector Z which we assume generated the data we have. In many
applications, this joint distribution is however specified indirectly by assuming
that Z depends on some other unobserved random vector Y and we specify the
marginal distribution of Y together with the conditional distribution of Z given
Y. Assuming that densities exist, we then have

p(y.2z) = p(y)p(z | y), plz) = / p(y)p(z | y)dy.

29
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Examples

e Binary fields: One way to obtain a field with Z, € {0,1} is to assume a
binary regression model with a spatially correlated random effect:

P(Z:Z‘Y): H (I)(60+ya:) H (1_(1)(60+yx))7

T;zp=1 ;2. =0

where Y is a Gaussian field with mean zero. The product formula means
that given Y the variables Z, are assumed to be independent. This can
be written equivalently as

7 1 60+Y$—€1~>0
o 0 ﬂO"‘Yx_sxSO

where the €, are i.i.d. standard normal. We can include explanatory
variables, or take other distributions for ,. For instance, the cumulative
distribution function G(u) = e*/(14€*) leads to spatial logistic regression.

e Disease maps: Here Z, denotes the number of cases with some disease in
district = during a given period. One assumes that the Z, are condition-
ally independent given Y with

Zy | y ~ Poisson(N, exp(ﬁfo +yz)).

Here N, is the (age-adjusted) population in district =, exp(87 fo + yz) is
the excess risk, f, is the vector of covariates at « and the spatial random
effect Y is usually assumed to be a Gaussian field.

e Precipitation: In order to take into account the possibility of no rain and
the skewness of the distribution of the amount of rain given that it rains,
we can take

7 { YA v, >0
0 Y,<0

where again Y is a Gaussian field which can be interpreted as the “po-
tential rainfall”.

e Blurred images: Here Z, are the grey values in an observed image, and one
assumes that they result from the “clean image” Y by taking a weighted
average of values at nearby pixels and adding noise:

Zy = H(x,2" )Yy +e,

l'/

Hence ¢, is Gaussian white noise and H describes how much the value at
a pixel ' contributes to the observed value at pixel . The probability
distribution for Y is often chosen to reflect some basic properties of images
like that sudden changes between neighboring pixels are rare. But since
images can have (a few) sharp edges, non-Gaussian models for Y are
preferable.



3.2. SPATIAL MARKOV PROPERTY 31

The basic tasks that we would like to solve are to infer what the observations Z
tell us about the unobserved field Y, and to estimate unknown parameters in the
marginal distribution of Y or the conditional distribution of Z given Y. This
is similar to what we have discussed in the chapter about kriging: Instead of an
unobserved field Y we had the values of Z at sites without observations. Before
we discuss methods for these basic tasks, we introduce the class of Markov
random field models which are often used as a prior for Y.

3.2 Spatial Markov property

In order to have some compromise between a realistic and a tractable model,
one is looking for dependence which is essentially local. By this we mean that
the value at one site is independent of the rest if we know the values at sites
close-by:

P2z | 2-2) = p(22 | ZN(:B))

where N (z) denotes the set of “neighbors” of . The implicit assumption is that
N(x) consists only of a small number of sites. In order to check this property,
one computes p(z; | Z—,) and then one sees whether it depends only on zy(,).

If the above equation holds for all z € L, then we call Z a Markov random field
with respect to the underlying neighborhoods N(z). In a hierarchical model
as described in the previous section, a Markov random field is typically used
for the unobserved field Y and not the observed field Z, but in this section the
distinction between Y and Z does not matter.

3.2.1 Gaussian Markov random fields

If Z ~ N(m, K), then we can easily compute the conditional density p(z; | z_z)
(compare the derivation of Theorem 2.2)

1, _
Pz 2a) o exp | —5(K Daa(ze — M) = (20 = ma) D (K)o (20 — mar)
' Fx
2
Kil Kil /
X exp _ K s Zyp — My + Z %(zx/—mf) :
2 (K~ Y)an

' #x

This is the density of the Gaussian distribution with mean value

(2gr — mygr)

B(Zy | Zoa) =ma— )

z'#x

and variance 1/(K~!),,. A Gaussian field is therefore Markovian iff the inverse
of the covariance matrix is sparse:

2 & N(w) = (K V) = 0.
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In the following we denote the inverse of the covariance matrix K, the so-called
precision matrix, by Q.

A Gaussian Markov random field can also be written in an autoregressive form
Ly =mg + Z w(:z;, x/)(Zm/ - m:):’) +ex
' #x

where w(z,2') = —Quu/Qu- Because the regression part is the conditional
mean, a Gaussian Markov random field is also called a conditional autoregres-
ston. However, in contrast to the usual regression model, the errors ¢, are
spatially correlated.

Lemma 3.1 Assume that Z ~ N (0,K), Q = K=, w(z,2") = —Que/Que and
set €p = Zy — Dy py W(T,2") Zyr. Then

/
Cov(ey, Zy) = { 0 TFE

1/@1‘1} r=2a
_w(z'x) /
Cov(eg, ) = { 1/%@ T # l’/
zx L=

Proof: The first claim is nothing else than the orthogonality condition that
we already found when we discussed simple kriging. The second claim follows
from the first by a simple computation. O

If we set w(z,z) = 0 and V = diag(Q.), then the above formulae can be
summarized by

Q=V{I-W), e=I-W)Z

Thus instead of specifying the distribution by giving K or @), we can also give the
diagonal matrix V containing the conditional precisions and W containing the
coefficients of the conditional autoregression. The meaning of these coefficients
is easier to understand than that of some elements of K or (). However, one
then has the restriction that VW must be symmetric and V — VW must be
positive definite.

Example: Consider the regular lattice L = {1,2,...,n}? and assume that each
site in the interior has 4 neighbors and that Q.. = 72, W, = « for horizontal
nearest neighbors and W,,» = 8 for vertical nearest neighbors. How to define
@ and W for boundary sites is not so clear. Two simple solutions are periodic
boundary conditions where we put the lattice on a torus, or free boundary
conditions where the four corner sites have two and the other boundary sites
three neighbors, but the values of () and W are the same everywhere. I — W is
then positive definite if ||+ |3| < & because the matrix is diagonally dominant.
We will see later the full admissible range of the parameters («, #) when we give
the eigenvalues of I — W. Clearly, we can add more neighbors as long as they
are symmetric: With 2k neighbors, W has k parameters.
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Because the deviations €, in a conditional autoregression are dependent, the
joint density is not equal to the product of the conditional densities:

p(z) # [ p(z | 2-0).

zel

One sees immediately that in the product on the right hand side the mixed
terms Quq (22 — my)(2 — Mmyr) appear twice as often than on the left hand
side. Note the difference to the temporal Markov property used in time series
where the product formula holds

p(z1, 22, ..., 27) = p(21)p(22 | 21)p(23 | 22) - - - p(2r | 27-1)-

This is not a contradiction because in the temporal Markov property, one con-
ditions only on the past and not on past and future.

In the literature, also so-called simultaneous autoregressions are discussed. They
have the same form Z = WZ + ¢, but with independent deviations e,. There-
fore W Z is different from the vector of conditional means, and &, is correlated
with some Z,/, ' # x. If V is again the diagonal matrix containing the inverse
variances of the ¢,, then we obtain

K=I-W)y'W1li-whHleQ=0-whHvi-w).

If W is sparse, then the same is true for @ (with a neighborhood of double
size). Therefore, simultaneous autoregressions are a subclass of conditional
autoregressions.

3.2.2 Gibbs representation

For a Gaussian Markov random field, we have seen that we can specify the joint
distribution by specifying the conditional distributions of Z, given its neighbors,
but the connection is more complicated than a simple product formula. We
show here that the same result holds true in general. This is useful because it
is usually easier to choose a plausible form of the conditional distribution.

In order to formulate our main result, we need a concept from graph theory.
We assume that the neighborhood relation is symmetric

¥’ € N(z) & x € N(z').

Then a set of sites C C L is called a clique if x € N(a') for any two points
z,7’ € C with 2/ # x. Note that by definition, the empty set and every
singleton {z} is a clique. With nearest neighbors on the regular lattice, the
only other cliques are the sets which consists of two adjacent sites. With more
neighbors, there are also cliques which contain more than two sites.
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Theorem 3.1 (Hammersley-Clifford ~ 1970) If a random field Z has a strictly
positive and continuous density p(z) (or a strictly positive probability mass func-
tion), then it is a Markov random field iff p(z) can be factored as a product of
functions which depend only on the restriction of z to cliques:

p)= [l 9clze)

Cliques C

The functions gc can be obtained from the conditional densities p(2: | Zn(z))
and they are unique under the additional standardization go(zc) =1 if 2z, =0
for some x € C' (or any other fixed value instead of 0).

Proof: Sufficiency of the factorization for the Markov property is easy, because
p(2z | Z—z) is equal to p(z) times a function which depends only on z_,, and this
function can be obtained from the normalization condition [ p(z; | z_g)dz; = 1.
Therefore

Pz | 22) <[] ge(zo). (3.1)
C; zeC

The converse is the difficult part. For A C L and for any z, we set t4(z), equal
to z; for x € A and equal to zero for x ¢ A (so t4 truncates the values outside
A to zero). We then define

Ua(za) = —logp(ta(z)).
Note that for z ¢ A and B = AU {z},

- za) =10 M: o (0 | ta(2)-x)
Yalon) = Watoa) =1 gp(tB(Z)) ! gp(zx | ta(z)_ o)

because t4(z) and tp(z) agree everywhere except at z. Therefore U is deter-
mined by the conditional densities.
Next we introduce the Moebius transform of ¥, denoted by ®

®p(zp) = Y (—1)PAW,(24).

ACB
If z, = 0 for some = € B, then ®(zp) = 0 because we can write
Op(zp) = Y (—DP(T4(2a) = Vaugy(Zangay))

ACB\{z}

and each term in the sum is equal to zero.

The Moebius transform has an inverse which is given by
= Z (I)B(ZB)7

see e.g. Lauritzen, Graphical Models (1996), Lemma A.2. Therefore

p(z) = exp (¥ (2) < > ®p(zp ) =[] 98(z5)

BCL
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where gp(zp) = exp (—Pp(zp)). Moreover, the functions gp are standardized
as defined in the theorem.

So far we have used only the positivity of p(z). It remains to show that the

Markov property implies that gg = 1 or &5 = 0 unless B is a clique. If B is

not a clique, there are two points x and 2’ in B which are not neighbors. For

AcC B\{z,2'} weset Ay = AUx, Ay = AUz" and A3 = AU {x,2'}. Then as
we have seen above

p(0z | ta(2)—s)

\IIAI (ZAI) - lIIA(ZA) = log p(zx ‘ tA(Z —a:)

POz [ t4,(2)—s)

P2 [ ta,(2)—2)

W g, (ZAfs) —Ua, (ZAQ) = log

Because t 4(z) and t 4, (z) differ only at 2’ and 2’ is not a neighbor of z, it follows
from the Markov property that

\I[A?, (ZAS) - \IJA2 (ZA2) - \IJA1 (ZAI) + \I/A(ZA) = 0.

Therefore
Op(zp) = »_(—1)FAW4(24)
ACB
= Y ()P (WA(za) = Ta, (24,) = Vay(24,) + Vay(za,)) = 0.
ACB\{z,z'}

To prove uniqueness, we assume that we have a factorization with standardized
gc’s. If we set ®c(zc) = —logge(z.) if C is a clique and ®p(zp) = 0 if B is
not a clique, then
—logp(za) = Y ®p(zp).
BCA
Applying the Moebius transform once again, we see that ®p is determined by

p(2). O

A few comments and corollaries of this theorem:

e If the factors are standardized, &y = ¥y = —logp(0) is a constant, and
we can write
pz)oc [ ge(zo).
C Clique, C#£0
However, there is in general no closed form expression of the normalization
®y if the other ®¢’s are given. (It is a sum over an exponential number
of terms, or a high-dimensional integral).

e Models of the form given in the theorem arise naturally in statistical
physics and are called Gibbs-distributions. There Z describes the mi-
croscopical state of a system of particles on the lattice L. By physical
principles, the distribution of such a system is given by

p(z) o exp (—;, Z (I)C(ZC)>
C
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where T is the temperature and ®¢ is the interaction potential of the sub-
system within C. Then )~ ®c(z.) is the total energy of the system, and
the system prefers states with small energy. The lower the temperature
the stronger this preference is.

e The Gaussian case is special because we have a so-called pair potential,
® is identically zero for cliques with more than two elements.

e As in the Gaussian case, the joint density factorizes, but not as a product
of the conditional densities of the value at one site given the rest:

p(z) # [ [ Pz | 2n0))-

zeL

On the right, each g appears |C| times, and because of the normalization
of the conditional densities there are factors g4 where A is not a clique.

e For any A C L it holds that

pzalza) <[] go(ze),
C; CNA£D

that is p(z4 | z4<) depends only on z, for z in a clique C which intersects
A. In other words, z must be a neighbor of some 2’ € A. We call the set
of such x the boundary of A and denote it by 0A. Therefore we have the
“global Markov property”

P(za | zac) = p(za | 2oa)-

Example: If Z, can take only the values 0 or 1, then for a standardized
potential ®(z¢) = 0 unless z, = 1 for all x € C'. Therefore we can write

(I)C(ZC) = 90 H Zy-

zeC

with one free parameter f¢c for each clique C. If L C Z% and we also assume
that the potentials do not change if we shift a clique, then the number of free
parameters is equal to the number of cliques which contain a fixed site x. For
instance, for d = 2 and 4 nearest neighbors, we have for an interior site

]P(Z 1 ’ z ) _ eXp(*gl - 02(21+e1 + foel) - 03(zx+eg + ZI*&Q))
; M) 1+ exp(—91 - ‘92(Zx+e1 + Zx—el) - 03(Zx+eg + Z:c—eg)) ‘

where e; = (1,0) and ez = (0,1). Because this is like a logistic regression with
the sum of horizontal and vertical neighbors as explanatory variables, the model
is also called the auto-logistic model. In particular, the formula shows that we
cannot specify P(Z, = 1 | zy(,)) arbitrarily for all 24 boundary conditions
V4 N(z)-
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For a pair potential (still in the binary case), we can obtain a more intuitive
parametrization as follows. We write 2z ~ 2’ if 2’ € N(z) and use that 22129 =
21 + 22 — (21 — 29)? for binary z1, 20. Then

Z@ 2z + Z Gmxfzxz = sz 0, + Z Orr) — % Z 0o (20 — Z$,)2.

zeL r~z! zeLl ’€N(x z~x!

(Note that 0,7 = 0,4, but in the sum ), we take each pair twice). The
second term is a weighted sum of conflicts between neighboring values and it
is invariant if we exchange 0 and 1. The first term therefore regulates the
preference of one value over the other.

This has motivated the use of models of the form

p(z) ocexp( Z@zac Z\If v — Zg )

x~x!

with U symmetric also for cases where Z, takes arbitrary values in R. If ¥(z)
increases for positive z, this distribution favors realizations z which are locally
constant. If both ®(z) and W(z) are proportional to 22, we are back in the
Gaussian case, but if ¥ increases less steeply for |z| — oo, then there is a higher
chance for occasional large jumps between neighboring values. This feature is
important in image reconstruction which keeps sharp edges. If the range of Z,
is unbounded, then ® must increase fast enough to make the right hand side
integrable, otherwise there is no probability density proportional to the right
hand side. This excludes in particular the choice ® = 0. However, when we
specify the prior distribution of a latent field Y often the posterior

p(y | z) ccp(y)p(z |y)

is a proper density even if p(y) has infinite total mass. Hence in such cases we
can take ® = 0 and we obtain then what is called an intrinsic prior. Intrinsic
Gaussian priors are discussed in detail e.g. in Rue and Held, Gaussian Markov
Random Fields, 2005.

3.3 Inference for (latent) Markov fields

We study now more closely methods for the following problems:

1. Simulate realizations of a Markov random field.

2. Estimate unknown parameters 6 in the potential of a Markov random field
from one realization.

3. Estimate a latent Markov random field Y from observations Z if both
the prior p(y) and the conditional distribution p(z | y) are completely
specified.
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4. Estimate a latent Markov random field Y from observations Z together
with unknown parameters in the prior p(y) and/or the conditional distri-
bution p(z | y).

As we will see, 2. and 4. are very difficult in general, but for Gaussian Markov
random fields there are efficient methods.

3.3.1 The general case

Assume we are given a Markov random field
p(z) x exp(— Z Do (z.))
C

and we would like to simulate realizations from this distribution. Direct simu-
lation is usually not possible, and one uses iterative methods instead, so-called
Markov chain Monte Carlo (MCMC). The Gibbs sampler is the following algo-
rithm

1. Start with an arbitrary z(©).

2. For t = 1,2,..., choose a site x € L either at random or according to
) _ =1 (¢

a deterministic visiting schedule, set z), = 2z, and draw 2" from

p(zz | zg\t/)(w)).

By the definition of conditional densities, it is clear that if z(=1) is a realization
from p(z) then the same is true for z®. From the general theory of Markov
chains it follows that asymptotically for large ¢ z() is a draw from p(z) and for
any function f we can estimate the mean

by the average

Here r is a burn-in period which allows the simulations to reach the distribution
p(z). Sampling from p(z; | zg\tf)(w)) is a one-dimensional problem for which there
are good general methods, and if N(z) is small the computation of the condi-
tional densities is fast. Still the Gibbs sampler is a computationally intensive
method because it typically needs large T" and r, and their choice is not always
easy.

For inference about Y based on Z when there are no unknown parameters, we
use the posterior distribution

p(y)p(z | y)

FORS p(y)p(z | y).

p(y|z) =
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If we are interested in a point estimate, we can use the posterior mean or the
posterior mode

y = argmaxp(y | z) = argmax p(y)p(z | y) = arg max (log p(y) +logp(z | y)) -

Posterior quantiles or posterior standard deviations can be used to quantify
uncertainty. There are usually no closed form expressions of these estimates.
If the prior p(y) is Markov and if observations at a site  depend only on the
latent field at the same site, i.e.

p(z|y) =[] p(zzlya),

zel

then p(y | z) is again Markov with the same neighborhood:

P(Ya | Y-2,2) X P(Yz | Y—2)P(22 | Y2) = P(Ya | YN(z))p(Z:(:‘ya:)~

Thus only the single site potentials are affected by z, and one can use the Gibbs
sampler to approximate posterior means, standard deviations and quantiles.

For the posterior mode, one can use iterative componentwise maximization
(called iterated conditional mode). One iterates

Uy = arg n;ax (10gp(1/a: | YN(2)) T logp(zs | yl"))

until the changes become negligible. In general, one can however get stuck at
local maxima, and the result depends on both the starting value and the visiting

schedule of the sites. An algorithm which is in principle able to find the global
() (t-1)
=Y

maximum is simulated annealing which at iteration ¢ sets y*/, =y, ~ and

draws ygf) from the density proportional to p(y, | yg\tf)(m), 2g)P. If By = 1, this
is just the Gibbs sampler, and for 5; large it is close to the iterated conditional
mode algorithm. The idea of simulated annealing is to let §; increase to oo

sufficiently slowly so that the randomness allows to escape from local maxima.

If the potentials depend on unknown parameters 6, we have to estimate them.
This is difficult even if the Markov random field is fully observed because the
normalizing constant in py(z) depends on 6:

exp(— > czp Po(2ze; 0))
[ exp(— Yo Po(zg;0))dz

but there is no closed form expression for it. This makes both maximum likeli-
hood and Bayesian estimation difficult. A simple alternative is the pseudo-MLE

exp 2091 @C(ZC; 0))
exp(— Y s, Po(zp; 0))dzl,

po(z) =

0= arg max 1_[109(,%j | ZN () = = arg max H f
z€eL

This involves again normalizing constants, but this time we have one-dimensional
integrals which are easier. In particular, if the Markov field is discrete, the
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integral becomes a sum over a few terms. There are methods to estimate nor-
malizing constants and to approximate the MLE, but these are computationally
intensive, see Chapter 5 in Chen, Shao and Ibrahim, Monte Carlo Methods in
Bayesian Computation, Springer 2000.

If we have a latent field y and unknown parameters #, then the joint estimation
of y and 6 is again difficult because most methods require to evaluate py(y)
for given # and y. Simple alternatives are based on calibration or on cross
validation. Calibration means to choose 6 such that 7 has the desired properties
for a class of simple, but somehow typical y’s. Cross validation means to choose
6 such that logp(z; | y = ¥(2z—2)) is maximal where y(z_,) is the estimate of
y based on z_, (that is we take z, as missing for estimating y and compare the
observed value z, with its distribution assuming that the estimate is correct).
There is also a Bayesian version of cross validation, see Gelfand and Dey, JRSS
B 56 (1994), 501-514.

A few examples for this chapter are the paper of Tjelmeland and Besag (Scand.
J. Statistics 25, 1998, 415-433) for choosing the potential so that the realiza-
tions of the associated binary Markov random field have desired features, and
the paper by Geman and Reynolds (IEEE Transactions Pattern Analysis and
Machine Intelligence 14, 1992, 367-383) on restoration of blurred images where
p(y) is not log concave.

3.3.2 The Gaussian case

In the Gaussian case, the situation is much better, due to the work of Havard
Rue and collaborators.

To begin, we discuss how to simulate a Gaussian Markov random field Z spec-
ified by a sparse precision matrix () and how to estimate parameters in Q) if Z
is fully observed. In simple cases, the eigenvalues \; and eigenvectors u® of the
precision matrix () are available in closed form. In that case, we can compute
the normalizing constant

det(Q)_1/2 _ H )\;1/2

and we can simulate Z ~ A(0,Q1) by simulating & i.i.d. standard normal
and setting

(@)
z=3" M&/@.

Example: Consider the regular lattice L = {1,...,n1} x{1,...,no} with near-
est neighbors, free boundary conditions and shift invariant parameters. This
means Qu, = 72 for all z, Qup = —ar? for horizontal nearest neighbors z, z’
and Qg = —B72 for vertical nearest neighbors x,z’. Then the eigenvalues are
(without proof)

T Ti9 . .
A=72(1-2 ) 1<ip <ny,1<iy<ny),
T < o cos <n1+1) 3 cos <n2+1>> (1 <i1 <ny,1<ig <ngy)
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with corresponding eigenvectors

. 1T . Ti9Xo
U = sin sin .
1,22 ni+1 ng + 1

In particular, we see that the eigenvalues are positive iff

1
|| cos T + |B] cos T <z
ni+1 ng + 1 2

For ny = ny = 10, this means for example |a| + |F| < 0.5211. Unfortunately, it
turns out that in order to have a nearest neighbor correlation of say greater than
0.9, one has to go extremely close to the boundary of the allowed parameter
space.

If one cannot obtain eigenvalues and eigenvectors in closed form, then one uses
the Cholesky decomposition @ = FFT in order to compute det(Q)~ %2 (i.e.
the normalizing constant) and to simulate from A(0,Q~!). It turns out that
the Cholesky decomposition depends on the ordering of the sites in L, and one
can try to choose an ordering such that the elements of ' have many zeroes at
places known in advance. Then there is no need to compute these elements and
the computation becomes efficient. Finding sparse Cholesky factorizations has
been studied extensively in numerical linear algebra. Because the results can
be understood in probabilistic terms, we go into some detail.

First we have to understand the probabilistic meaning of the Cholesky decom-
position. We set U = FT = D(I — A) where D is diagonal and A is upper
diagonal with zeroes in the diagonal. Then Q = UTU and therefore (with N
equal the number of sites in L)

N N
2'Qz=||Uz|’ = [|IDU — A2)|P = ) d¥(z0, — D Aijzs,)*.
i=1 j=i+1
Because also det(Q) = [, d?, this implies

2

p(z) = H — exp —5’ 2z, — Z Aijza,
' j=i+1

On the other hand, we can always write

1
p(Z) - H p(z$i ‘ Rxig1s ZIn)a
i=N
that is the Cholesky decomposition gives explicit expressions for the conditional
mean and variance of Z,, given Z, V4

i+1r YN

The global Markov property gives us now information about elements in the
Cholesky factor F' which have to be zero. Denote by Li = {z;;j > i} and
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L; = {z;,j < i} the “future” and “present plus past” of z; with respect to the
chosen ordering in the Cholesky decomposition. By the global Markov property

p(zL; | ZLj) ZP(ZL; | zaL;)-

Integrating both sides over all z,, for j < i shows that p(zs, | z;+) = p(2s; |
2z, -) and therefore

(j>iandxj¢8Li_) = Aij:O = Fji:().

Hence we obtain many zeroes in F' if we take an ordering where the boundaries
between past and future values are small. In the one-dimensional case L =
{1,...,n} with k-nearest neighbors, the usual order gives a Cholesky factor
which is as sparse as the precision ). In higher dimensions, things are less
fortunate. If L = {1,...,n}? with nearest neighbors, the lexicographic order
leads to a Cholesky factor with F;; = 0if j < i—n. A general algorithm to obtain
a good ordering of any lattice is “nested dissection” where you successively split
the set of sites into two approximate halves with a small boundary in between.
For more details, see the book by Rue and Held.

Next, we turn to the case where we want to estimate both, a latent Gaussian
Markov random field y and parameters @, from observations z:

v 10) xexp (~357 QO ). ol |v.0) = [[pler [12.0).

2
zeL
Here Q(0) is sparse, and the non-zero elements are the same for all 6.

We discuss two methods: One simulates from p(,y | z) and is described in the
book of H. Rue and L. Held, Section 4.4. The other uses analytical approxi-
mations of p(f | z) and p(y | z), called Laplace approximations. It is due to
H. Rue, S. Martino and N. Chopin, JRSS B 71 (2009), 319-392. Both methods
use a Gaussian approximation p(y | z,6) of

p(z |y, 0)p(y | 0)
p(z | 0)

We start with an approximation of the right hand side around a value y* =

v*(0,2) to be determined later:

p(y|z0) = xp(z|y,0)p(y|0).

p(z |y, 0)p(y | 0) ~plz|y*, 0)p(y* | 0)exp ((y —y)a* - %(y —y)7TQ*(y — y*))

where both @* and a* can depend on 6 and z. By completing the square, the
exponential term on the right hand side is equal to

1 * * — * 1 * * — * * * * — *
eXp<2aT 1a>exp<—2(y—y ~ Q)T (y -y - Q 1a)>-

Therefore we can approximate p(y | z,6) by the normal density with mean the
y* + Q* 'a* and precision Q*. Moreover, because

Pz 0) = / Pz | y.0)p(y | 0)dy.
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we also obtain

p(z | 0) = p(z | 0) = (27)

NP ] Y5 0y 10) (1 7
det(Q*)1/2 2 '

That is, we have found an explicit approximation of the intractable likelihood
of 0 given the observations z. For later use we also note that for y close to y*

p(y |0)p(z|y,0) plyl|0)p(z]|y,0)

PEl) = e by | %.0)

~p(z|0).

(For y = y* the last ~ becomes an equality).

How do we choose y*, a* and @Q* 7 One possibility is to choose
y* =y (6,2) = argmax (logp(z | y, 0) +logp(y | 6)),

the posterior mode of p(y | z,0), and to determine ¢* and Q* through a second
order Taylor approximation at y*. This gives
yacy;;>

Because Q* and () have zero entries at the same positions, the same ordering of
sites can be used for any 6 to compute the determinant of @* (the normalizing
constant) and to simulate from p. This choice of y* is likely to give a good
approximation of p(z | ) because the integrand is well approximated where
it is large and where its contribution to the integral is therefore biggest. A
disadvantage is that y* usually has to be computed iteratively and this has to
be done for many values of 6 . Typically computing y* is easier if we take the
maximum likelihood estimator

a = 07 Q = Q(G) + dla’g (ByQIng(zI | yfbae)

y; = arg Il'?lJaX 1ng(za: ‘ Yz, 9)

For instance, in the case of disease mapping without explanatory variables,
there are no unknown parameters in p(z, | yz):

logp(zx | yx) =—N, eXp(yx) + 22Ye + 2o log Ny — Iog(zx!)

and the arg max is equal to y} = log(z;/N,). To determine a* and Q*, one can
use again a second order Taylor approximation at y*. Then as before, * and
Q differ only on the diagonal, but ax = —Q(0)y™* # 0.

The analytical method works directly with the above approximation for p(z | 6),
choosing y* as the mode of the posterior p(y | z,0). If 0 is low-dimensional (say
it has at most 6 components), one can then numerically find the posterior mode
6 = argmaxp(0)p(z | ), a set of points 8) around # and weights w® such
that

M
/f(e)ﬁ(e | 2)d0 ~ > F(0D)w?.
i=1
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In order to estimate the latent field, one can use

M . .
oy | 2) = [ by | 2000060 | 210 ~ >y 2.0,

i=1

or — because formulae for high-dimensional densities are not very useful — its

marginalization
M

p(ye | 2) =Y By | 2,00)w.
i=1
It turns out that further improvements are possible by modifying the approxi-
mation p. Details are in the paper by Rue, Martino and Chopin.

The simulation method uses a Markov chain Monte Carlo method which updates
simultaneously 6 and y and is thus different from a Gibbs sampler. It belongs to
the class of so-called Metropolis-Hastings algorithms which combine a proposal
step with an acceptance step to obtain convergence to the target distribution
(if you have never heard of this algorithm, please skip this paragraph!). In our
case it proceeds iteratively from an arbitrary starting value 89, y(©) as follows

1. Propose new values 8* ~ N (=D %), and y* ~ p(y | z,0%).

2. Generate U uniform on (0,1) and set §() = g% y() = y* if

oo PO 0)p(z] ¥t 060y Y | 2,0¢7D)
< p<9(t—1))p(y(t—1) | a(t—l))p(z , y(t—1)79(t—1))25<y* | Z,G*)'

Otherwise set ) = (=1 and y(t) = y(t—l)_

Note that if the approximation p has no error, then the acceptance condition

becomes
p(0*)p(z|0")  p(0*|z)

= (0 D)p(z [ 00D)  p(6t=Y) | z)
This is the standard Metropolis algorithm for sampling from the target dis-
tribution p(@ | z) if the latter were available in closed form. If p is a good
approximation, the acceptance probabilities should not change much compared
with such an idealized algorithm.

Which of the two methods should be prefered ? The simulation method con-
verges in principle to the true joint posterior as the number of iterations goes
to infinity, whereas the analytical method has a fixed error coming from p(z |
0) # p(z | 0). In practical situations, typically this error is small and one needs
a huge number of simulation iterations to detect it. However, the analytical
method is much faster.



Chapter 4

Point patterns

4.1 Basic concepts

Definition 4.1 A point pattern, also called a point process, on a set B C R¢
is a random, locally finite subset Z = Z(w) = {x1(w), z2(w),...} of B. Here,
locally finite means that every compact (i.e. closed and bounded) set A C B
contains only a finite number of points. Note that the enumeration of the points
of Z is arbitrary, and points with different indices are assumed to be different
(in accordance with the notion of a set).

Basic examples are the location of plants of some species, or the epicenters of
earthquakes. In some applications, the points of Z carry additional information,
a so-called mark, which may be categorical (plants of different species in a
region) or continuous (the magnitude of an earthquake). We will not discuss
marked point processes here.

The number of points in A, A C B, is denoted by
NA) =1ANZ| =) 1a(x)
i=1

It takes values in {0,1,2,...,00}. Clearly, N is a measure on B with the Borel
o-algebra B(B). In this whole chapter, |A| denotes the number of elements of
A if A is finite, and the area or volume of A if A has non-empty interior.

In order to define precisely what is meant by a random set (a generalization
of a random variable), some measure theory would be needed. We omit these
technical parts. The distribution of a point pattern Z is defined to be the
collection of joint distributions of (N(A1),..., N(Ag)) for all £ and all bounded
Aq,... A, in B. A model for a point pattern specifies all these joint distributions
in a coherent way. If B itself is compact, this can be done by specifying a
distribution for N(B) and, for any n € N, a density f, for putting n points
T1,...%T, in B. Because the enumeration of the points is arbitrary, f, must be
symmetric, that is its value is the same for any permutation of the arguments.

45
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Example 4.1 (Poisson point pattern) For a bounded set B, a Poisson point
pattern has N(B) ~ Poisson(\) and for any n the points x1,...,x, are i.i.d.
~ f(z)dz where f is a probability density on B. The distribution of a Poisson
point pattern is given in the following lemma.

Lemma 4.1 If Z is a Poisson point pattern as defined above, then for any
number of pairwise disjoint subsets Ay, ..., Ag ofB the random variables N (A;)
for 1 <1i <k are independent and Pozsson A fA x)dx)-distributed.

Proof: We first prove the result for k = 1.

P(N(A) =j) = ZP A)=j | N(B)=mn)-P(N(B) =n)

E0) (o) - o)y

_eX_(/\fo)joo n]_ )"
= exp(—A) , Z(n_j))\ 1 /f Yda)

4!

= exp( /f ) (L S j, )].

The first equality is the law of total probability. The second equality holds by
the definition of the Poisson point pattern because if there are n points in total,
the number of points in A has a binomial distribution. The last equality follows
from the Taylor series of the exponential function.

The proof for k > 1 is similar, instead of the binomial one has the multinomial
distribution. O

Because for a Poisson point pattern the points are independent, it is mot an
interesting model by itself, but it is often used as a null model and one wants
to describe in which sense the observed pattern differs from a Poisson point
pattern.

Although observations are always restricted to some bounded domain W, it
would be difficult to justify an assumption that there are no points outside W.
One therefore needs a model with a B that is substantially larger than W. For
the concept of stationarity, one even has to consider point patterns which are
defined on the whole of RY,

Definition 4.2 A point pattern Z on R? is called stationary if the distribution
is the same everywhere, that is (N(A1),...,N(Ag)) has the same distribution

s (N(Ay + h),...,N(Ag + R)) for all h € R, all k and all Aq,..., Ap. A
stationary point pattern is called isotropic if the distribution is the same in all
directions, that is (N(A;),1 < i < k) and (N(R(A4;)),1 <i < k) has the same
distribution for any rotation R about the origin.
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As in the case of stochastic processes, stationarity and isotropy justify spatial
averaging for estimation purposes and make it possible to infer the distribution
of a point pattern from one single realization.

Poisson point patterns exists also for unbounded domains B. They are speci-
fied by a function A : B — Ry such that for all bounded sets A [, A(x) < oo,
and their distribution is such that for any number of bounded, pairwise disjoint
subsets Aq,..., A of B, the random variables (N(4;),1 < i < k) are indepen-
dent and Poisson( [ A, A(@)dz)-distributed. We omit the proof that such a point
pattern exists for any A. The function A is called the intensity. In our previous
notation, the intensity is Af(x). A Poisson point pattern is stationary iff the
intensity is constant, and then it is automatically isotropic.

4.2 Moments and other characteristics

We start with the intuitive definition of the first and second moment.

The first moment is called the intensity function. It is defined

P(N(dz)=1) _ . B(N(U)=1)

o)==, o o

assuming that the limit exists. The intensity tells us how likely it is that a
point x belongs to the random set Z. In the case of the Poisson process, this
definition of intensity coincides with the one given above. If a point process is
stationary, then A\(z) = A(0) for any x, that is the intensity is constant.

The second-order product density is defined for z #

e x,)_IP’(N(dJ:)zl,N(dx’)zl) B lim P(N(U)=1,NU")=1)
A dxdx’ Ul U '} |U|U’|

It quantifies how likely it is to find points of Z at two locations. By definition,
Ao(x,2") = Aa(2’,x). For a Poisson process, \a(z,z") = A(x)A(z') because the
number of points in two disjoint subsets are independent. If a point process
is stationary, then Ao(z,z’) = Ao(z — 2/,0), that is the second-order product
density is a function of relative position # — z’. In the isotropic case, it is a
function of the distance ||z — 2||.

The second-order product density appears in the conditional intensity given
that there is a point of Z at x:

P(N(dz) =1,N(dz') = 1) _ Xo(x,2")

P(N(dz) = 1) o) &

P(N(dz') =1| N(dz) =1) =

22T p(N () = 1) (o #2),

whereas for z = ', obviously P(N(dz’) =1 | N(dz) = 1) = 1. The ratio

no_ )‘2(1'7$/)
) e
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is called the pair correlation function. If it is greater than one, the presence of
a point at x increases the likelihood that another point is present at 2’ which is
also called attraction. If the pair correlation is less than one, there is repulstion.

Mathematically, one avoids the problem of the existence of limits by defining
integrated moments:

A(A) =E(N(A4)), Ag(A1 x A2) = E(N(A1)N(Az)).

It is not difficult to show that A and Ag are o-additive measures on (B, B(B))
and (B?, B(B?)), respectively, and that for all positive functions ¢ : B — R

E g xi)) = x)A(dx
and for all positive 1 : B2 = R

B Y dalwi,xg) = Po(x, ") Az (dx, dz').

i=1 j=1 BxB

We then obtain the intuitive interpretation of A\(x) if we assume that A has a
density A and that P(N(A) > 2) = o(|A|) as |A] — 0. The second assumption
is needed in order that E(N(A)) ~ P(N(A) = 1) as |A| — 0. Conditions for
these two assumptions are complicated, and we ignore this difficulty.

Similarly A is obtained as the density of the measure Ag(A; X Ag) — A(A1NAsg)
(we have to subtract the part of Ao which is concentrated on the diagonal z = 2/,
otherwise the density does not exist).

The integrated conditional intensity is — by the formulae above for P(N(dz') =
1| N(dzx) =1) — given by

AA|2) = E(N(A)|zez)= /AIP(N(da:’) — 1| N(dz) = 1)

/

= 1a(x) —|—/ de' = 14(x) —i—/ g(@', )\ (2")d'.
A A@) A

(The first term comes from 2’ = z, the second from 2’/ # x). Mathematically,

it can be defined by a factorization

A2(A1 X AQ) = ) A(Al ’ .’L’)A(dSU)

In the stationary case, A(A | z) = A(A — x| 0). If the point pattern is also
isotropic, it is sufficient to consider A(A | 0) for A = B(0,7) = {z;||z|| < r},
the ball with center at the origin and radius r. The so-called K -function is

defined as

) = SEECRRED 2 & [ el = [ oleli
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For the Poisson process, we have K (r) = r¢|B(0,1)|. Knowing K, we can obtain
the pair correlation function g by differentiating. For instance for d = 2 we have

The pair correlation function describes the character of dependence in a point
pattern. It gives however not a full characterization, and there are examples
of stationary point patterns with ¢ = 1, but the realizations are visually quite
different from a Poisson pattern, see Baddeley und Silverman, Biometrics 40,
1984.

This led to the consideration of other characteristics of point patterns. The two
most important are the “empty space function” F' and the “nearest neighbor
function” G. The empty space function is the cumulative distribution function
of the distance from a fixed position z € B to the nearest point in Z. Because
this distance is less than r if the ball B(x,r) = {2/;||2' — z|| < r} contains at
least one point of Z, we have

E.(r) =P(N(B(z,r)) > 0).

For a stationary point pattern, this does not depend on x and we drop the
subscript.

The nearest neighbor function is the cumulative distribution function of the dis-
tance from a point in Z to the nearest other point in Z. Assuming stationarity,
this means that

G(r) =P(N(B(0,r)) >1|0¢€ Z).
We look at the event of having more than one point in B(0,7) because the
origin is by conditioning always a point of Z.

For the stationary Poisson pattern F' = G, and in dimension 2 we have
F(r) = G(r) =1 — exp(=\1r?).

Comparing F' and G with the values for a Poisson pattern reveals which type
of dependence is present: F' indicates whether there are gaps in the pattern,
whereas G describes the clustering of points at small distances.

4.3 Estimation of moments and other characteristics

We consider the situation where we have observed a realization of the point
pattern in some observation window W, that is the set Z N W consisting of all
points x; € Z which also belong to W. We want to account for the possibility
that there are unobserved points of Z outside W, that is the domain B of the
point pattern is (much) larger than WW.



50 CHAPTER 4. POINT PATTERNS

4.3.1 Estimation of the intensity

In the stationary case, the intensity is constant and has the simple estimator
~ NW
5= YW),

W]

Its variance is

<\ A (W x W) — A(W)?
Var (A) =2 e

Nonparametric estimation of the intensity in the non-stationary case is possible
if it varies slowly. We can choose a kernel k, i.e. a probability density k on R,
which has mean zero, support in B(0,1) and its maximum at the origin. We
then estimate A(z) by

~ 1
)\(x):fwk‘ (x — ') /h)dz’ Z k(@ —@:)/h)

i, €W

where h is a bandwidth. For a point z with distance at least h from the
boundary, it holds that

E(A(z)) = h* / k(x — o) /A ) = / k()M — hu)du.

If \ is twice differentiable, the bias is therefore of the order h2. The variance of
X can be expressed with the second moment product density As. For points near
the boundary, the bias of \ is of the order h, and one has to use asymmetric
kernels to reduce it.

In a Bayesian approach, one would put a prior distribution on the set of inten-
sities which then acts as a regularizer. We will come back to this idea briefly
when we discuss Cox point processes.

4.3.2 Estimation of the second moment

We consider here only the stationary and isotropic case where A\o(z,2') =
Xo(|Jxz — 2']]). We first discuss estimation of the K-function. The following
estimator replaces the mean in the definition by an average.

R L N N(W)
K(T):/):N(W) ; (N(B(zi,r) N W) — oy

Because of the unobserved points outside W this estimator is severely biased.
A simple alternative uses a reduced window and takes the average only over
those z; where B(x;,r) C W. This makes however not full use of the available
observations. A better way is to compensate for unobserved points by giving
weights greater or equal to one to observed pairs (z;, z;):

i—xj || <r]Wij
i=1 j#i
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where for d = 2

I 2m - ||xj — il
Y Length of ({z] [l — 3] = [laj — i} N W)

is the inverse of the probability that a random point with distance ||z; — ;|
from z; falls into W. One can show that this estimator is ratio unbiased.

Theorem 4.1 If the point pattern is stationary and isotropic, then

EA2K(r)) = \2K(r)

We omit the proof.

In principle, we can estimate Ao by taking the derivative of K. In contrast to
K, the estimate K is typically not smooth and thus one has to smooth it before
taking the derivative. This is essentially the same as using the following kernel
estimator:

. B 1 k(”-%'i_xj"_r)
Ao(r) = o Z Z Wn (W —(x; —xi))|

x, €W z;eWixj#x;

4.3.3 Estimation of F' and GG

We restrict ourselves to the stationary and isotropic case in d = 2 dimensions.
The obvious estimators of F' and G,

LN
G(T’) = W ; 1[N(B(x¢,r)ﬂW)>1}
~ 1 ‘ Ui B(mz,r)ﬁW]
F(ir)y = —|{zeW|NB(zx,m)N"W) >0} =
() = gy e € WIN(B@.) A W) > 0} e

are again severly biased because of the unobserved points outside W.

A better method to estimate GG uses an analogy to censored observations in
survival analysis. We define for x; € ZNW

T; = min ||z; — z;||, C; = min(|lz — x;]).
J z¢W

Because points outside W are unknown, we cannot observe T;, only U; =
min(T;, C;) together with the indicator A; = li1,<c;) whether T; has been ob-
served. The same situation arises in survival analysis where T; is the survival
time of patient ¢ and Cj; is the censoring time, the time when the study fin-
ishes or patient ¢ drops out of the study. The Kaplan-Meier estimate estimates
the distribution function of the survival time 7T; based on censored observa-
tions U; = min(7;, C;). Using it in the situation of point patterns, it gives the

estimator ) N .
Gr)=1- H <1_ Hisuj =ti,Aj = }|> .

AL sy = Y]
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Similar ideas can be used for the empty space function F. There, we have for
any © € W the “censored” observation U(z) = min(7'(x),C(x)) together with
the “censoring indicator” A(r) = 1jp(z)<c(2)) Where T'(x) = ming ez (||z—x;||) is
the distance to the nearest point of the pattern and C'(x) = miny gy (||2" — z||)
is the distance to the boundary of W. Then the product in G becomes the
exponential of an integral

Bt 1o [ [ HEEW [ulz) =5 Alw) =1}
F(r)=1 p(/o (e e W [u(z) > 5] d)'

4.4 Models with dependence

4.4.1 Cox point patterns

This is a hierarchical model where the point pattern is an inhomogeneous Pois-
son point pattern with an unobserved random intensity Y (z). For instance, if
Z is the point pattern of positions of plants of a certain species, Y (z) can be
interpreted as the environmental condition (light, humidity, nutrients) at z. In
the Bayesian setting, we obtain a Cox model as the marginal distribution of Z
if we put a prior on the intensity.

The distribution of Z for a Cox model is obtained by averaging the conditional
distribution of Z given Y with respect to the distribution of Y. In particular

Az) = E(P(N(d::il: 1Y) _ E(Y((;))dx _EY(@)

" N(dx) =1,N(da') =1]Y)) _

E(P
Ao(z, ') = L dxdx’

This implies that the pair correlation function is

., Cov(Y(2), Y (&)
EY@EY @) | EY@)EY ()

One can also show that Z is stationary (and isotropic) iff YV is stationary (and
isotropic). This is somewhat counter-intuitive because a single realization of Z
looks exactly like a realization of a non-stationary Poisson pattern. However,
if Y is stationary, then deviations of Y from the mean occur randomly and are
statistically the same everywhere.

For a concrete model, we can choose a stationary Gaussian process model
for (logY (z)) with one of the covariance functions discussed in Chapter 2,
or Y(z) = >, k(z,x}), where {z,25,...} is a stationary Poisson pattern and
k > 0 satisfies [ k(z,2’)dz’ < oo for all z. In both cases, we can compute the
mean and covariance function of Y and thus also of Z.
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4.4.2 Neyman-Scott models (Cluster models)

This model explains clusters of close-by points in Z by the existence of some
unobserved common parents or cluster centers from where the observed points
originated. The parents form a stationary Poisson point process Z' = {a, 25, ...}
with constant intensity Ao. Each parent z has M; children which are located
at positions z;; = x, + D;; (j =1,2,...M;) where both M; and D;; are i.i.d..
We then observe the positions of all children, but not those of the parents

M;
Z =UZ, Uiz {zij}-

The information which points of Z have a common parent is also lost.

Although the intuitive idea is quite different from Cox models, the two classes
have a non-empty intersection: If the number M; of children is Poisson, then
the Neyman-Scott model has the same distribution as a Poisson process with
the random intensity

V(@)=Y flz—a))

where f is the density of the D;;. This can be seen as follows: For each 7
the points z;; form an inhomogeneous point pattern with intensity Ao f(z — )
(compare Lemma 4.1). Moreover the superposition of independent Poisson
point patterns is again a Poisson point pattern (because the sum of independent
Poisson variables is again Poisson).

The Neyman-Scott model is stationary, and one can compute first and second
moments. One obtains

A = ME(M;)

and

Ao (z) = A2+ NE(M;(M; — 1)) / flz —u)f(—u)du.

See for instance Section 5.3 in Stoyan et al.

4.4.3 Models with inhibition

Such models aim to have a minimal distance ry between any two points of Z.
This can be done in different ways.

Sequential inhibition assumes a bounded domain B: The first point is dis-
tributed uniformly on B and the n-th point is distributed uniformly on {z;z €
B,||lx — z1|| > 70,...,||x — zp—1]| > 70}. The procedure stops when it is not
possible to position more points.

Another model starts from a stationary Poisson point pattern {z},z},z5,...}
with intensity Ao and eliminates one of the two points of any pair with ||z} —
x;H < rp. In order to have a unique definition, we attach to every z} an
independent uniform random number U; on (0,1) and we eliminate all points
; for which there is an 2, with ||z} — 2%[| < 7o and U; > U;. It is easy to
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see that this procedure eliminates in some cases more points than necessary to
keep the minimal distance.

The second model is stationary, and one can compute the first and second
moments, see Stoyan et al. p. 164. The intensity A is monotone increasing in
the intensity Ag of the Poisson pattern that one starts with, and in the limit
Ao — oo one obtains A = 1/|B(0,79)|. If we place at each point of Z a ball with
radius r¢/2, we obtain a random arrangement of nonoverlapping balls in R?,
The coverage is however not very dense. Because a large set A contains about
A|A| balls, the fraction of A covered by the balls is about A|B(0,70/2)| = 2~

4.4.4 Gibbs models

We assume again that the domain B is bounded. As remarked earlier, a point
pattern can then be specified by the probabilities p, = P(N(B) = n) and by
the densities f,, for putting n points z1,...,x, in B. A Gibbs model assumes a
special form of p, and f,. For simplicity, we only discuss models with pairwise
interactions. This means that for some potentials &1 : B - R, &3 : Bx B — R,
®y symmetric, f, and p, take the following form

fn(ml, Ce ,l’n) = Miexp —Zq)l(l‘i) — Z@g(xi,xj) y

i<j

where

Mn = exp —Z(I)l(xi) —Z@g(a:i,xj) d$1 da:n
B i i<j
and

M,
Dn = const.—'" (n>0), po= const..
n!

For a valid model we must therefore have

1 = M,
=1 — < 00.
const. +7; n!

The simplest example of such a model is the Strauss process where
(I)l($) = 91, @2($,I‘/) = 921[||xfz’||§m]‘

For 65 > 0, the more pairs of points with distance less than rg, the smaller is f,,
that is we have a model with repulsion. For 65 = co we obtain another model
with inhibition. For 65 < 0 it seems that we have a model with attraction.
However, it is not difficult to see that in this case the sum which defines const.
is infinite: The attraction is so strong that the model would like to put infinitely
many points in the domain B.
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One possible solution is to introduce a repulsion at very small distances

6o >0 [z—yl <o
@2(.’L’,$,) == 93 <0 ) S ||CC - y” <7
0 I = yll = 7o

Another possibility is to define p,, independently of f,, so that they sum to one.

The reason behind the above definition of p, in Gibbs models is that it implies
the following formula for the “probability that Z = {x1,...,z,}™

prn! fn(z1,. .., oy) = const.exp | — Z Dy (z;) — Z Oy (4, )

i i<y
(Note that M, cancels, and n! arises on the left because the indexing of points
in Z is arbitrary). This form is consistent with the physical argument that
the probability of a configuration is proportional to the exponential of mi-
nus the energy of the configuration divided by the temperature (compare the
same argument for lattice models). Mathematically, the “probability that Z =
{z1,...,2,}" has to be understood as the Radon-Nikodym density with respect
to the Poisson pattern with constant intensity 1 where this “probability” is
constant for all n and all x1, ..., z,.

If ®y(x,2") =0 for ||z — 2'|| > ro, then the point pattern has a spatial Markov
property. The so-called Papangelou conditional intensity is the conditional
probability that a point x belongs to Z given that Z = {x1,...,z,} everywhere
on BNdx®:
P(N(dx) =1]| Z = {x1,...,x,} outside dx)
dx

Pr1(n 4+ D fppi(z, 21, ... 2y)

prn! fr (1, ..o )
In this conditional intensity, the whole pattern outside x is given whereas the
conditional intensity that we defined through the second-order product density
is based only on the information that another point of the pattern is at some
point 2’ # z. For a pairwise interaction potential, we obtain

Mz |z, 2n) =

Mz | x1,...,2,) = exp —q)l(x)—Zq)g(x,xj) ,
J

all other terms cancel. This intensity depends only on those points x; of the
pattern which are “rg-close to x” which is the spatial Markov property.

4.5 Estimation for parametric models

For a Poisson point pattern with a parametric intensity Ag(z), the likelihood
based on an observation ZNW = {z1,...,z,} in a window W is equal to

exp (— /W )\g(x)dx> H Ao ().
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Heuristically, we multiply the probabilities Pyp(N(dx) = 0) = 1 — Ng(z)dz =
exp(—Ag(z)dz) over all z # x; with the probabilities Pg(N (dz;) = 1) = \g(z;)dx;.
We can therefore use maximum likelihood or Bayesian methods to estimate 6.

In practically all other cases, the likelihood is not available explicitely. This
makes inference for point pattern by maximum likelihood or Bayesian methods
difficult. The method of moments is simpler. If we have a closed form expression
of the K-function in dependence of the parameter 6, then we can match this
function to the nonparametric estimate K from Section 4.3.2:

T2
= arg min/
0 Jr

Here, the range [r1, r2], the exponent « and the weight function w can be chosen
freely. Often, one takes av = 1/2 because this stabilizes the variance of K (r).

)

K(r)®* — Ko(r)*| w(r)dr.

Finally, for Gibbs models we can maximize the following analogue of the pseudo-
likelihood function from Section 3.3.1

n
exp (—/ Ao(z | xl,...,azn)dw> H)\g(xi | Z1, .o T 1, i1y - vy Ty
w

i=1

where A\(z | z1,...,2,) is the Papangelou conditional intensity defined in the
previous Section. Because this formula assumes implicitly that there are no
points outside W, the estimated will be biased. If ®9(x,2’) = 0 for ||z—2'|| > 7o,
one should presumably use the reduced window of points with distance at least
ro from the boundary.
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