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CONTINUOUS BOUNDED COHOMOLOGY AND
APPLICATIONS TO RIGIDITY THEORY

MARC BURGER AND NICOLAS MONOD

INTRODUCTION AND STATEMENT OF THE RESULTS

We present a theory of continuous bounded cohomology of locally
compact groups with coefficients in Banach modules. A central role
is played by amenable actions, as they give rise to relatively injective
resolutions.

Further, we propose a substitute for the Mautner property, based
on the virtual subgroup viewpoint, and we show (Theorem 6) that all
compactly generated locally compact groups, e.g. finitely generated
groups, satisfy it. This, together with the cohomological characteriza-
tion of amenable actions, leads to a refined version of a higher degree
Lyndon-Hochschild-Serre exact sequence (Theorem 13), which entails
a stronger Kiinneth type formula for continuous bounded cohomology
in degree two.

We apply this theory to general irreducible lattices in products of
locally compact groups : we obtain notably super-rigidity results for
bounded cocycles (Theorem 16 and Corollary 23), rigidity results for
actions by diffeomorphisms on the circle (Corollary 22) and vanishing
of the stable commutator length (Corollary 32). More applications will
be published elsewhere.

* kX

In the spirit of relative homological algebra, we give for a locally
compact second countable group G a functorial characterization of the
continuous bounded cohomology of G with coefficients.

The resolutions and the notion of relatively injective objects (Defini-
tion 1.4.2) are set up in the category of continuous Banach G-modules,
while the coefficients are mainly duals of separable continuous Banach
G-modules (henceforth called coefficient modules), including notably
separable continuous unitary representations, L>° spaces and trivial
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coefficients. We emphasize that on all Banach G-modules, the G-ac-
tion is isometric. If E is a coefficient module and S a regular measure
G-space (see Definition 1.3.1), let L (S, E) be the space of weak-*
measurable essentially bounded maps ; we consider the resolution

0—E 2> LX(S,E) 4. L (S% E) 4 L2(S% E) S
where d is the standard homogeneous coboundary operator. If S = G,
we call this the standard resolution and define the continuous bounded
cohomology HS, (G, E) to be the cohomology of the associated non-
augmented complex of invariants, endowed with the quotient semi-
norm. In the functorial approach, we show that this standard resolution
is indeed relatively injective. However, for an actual computation of
the bounded cohomology, it is desirable to size down the G-space S,
while keeping the above resolution relatively injective. Our first result
is a necessary and sufficient condition on the G-space S for this to
happen :

THEOREM 1. Let G be a locally compact second countable group and
S a regular G-space. The following assertions are equivalent :

(i) The G-action on S is amenable in the sense of Zimmer [79].
(ii) The Banach G-module L*(S) is relatively injective.

(iii) The Banach G-module L, (S"!, E) is relatively injective for
all n > 0 and every coefficient G-module F.

Recall that examples of amenable G-spaces are Poisson boundaries
of étalées measures on locally compact groups [78, Corollary 5.3] and
homogeneous spaces GG/P, where P < G is a closed amenable sub-
group [79, Proposition 4.3.2].

With this cohomological characterization at hand, we establish the
following result, which is indeed the starting point of our applications ;
we insist on the fact that the claimed isomorphisms between cohomol-
ogy groups are isometries of semi-normed spaces.

THEOREM 2. Let G be a locally compact second countable group, S
an amenable regular G-space and E a coefficient G-module. There
is a canonical isometric isomorphism between the continuous bounded
cohomology H?, (G, E) and the cohomology of the complex

0— LSVO*(S* E)G - LSVO*(S27E)G - LSVO*(SgaE)G —

of bounded measurable invariant cochains on S. The same holds for
the subcomplex of alternating bounded measurable invariant cochains.
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ExAMpPLE 3. If G is an amenable group, we may take S to be a one
point space and deduce H% (G, E) = 0 for all n > 1 and every co-
efficient module E. This is but a new approach to an old result of
B.E. Johnson [50].

EXAMPLE 4. Let G be a connected semi-simple Lie group, I' < G a
lattice and P < G a minimal parabolic subgroup. Using Theorem 2 we
obtain for real coefficients a canonical isometric identification

Hy(I) 2 ZL5((G/P)*),

where the right hand side is the space of I'-invariant alternating mea-
surable bounded cocycles on (G/P)3.

In Example 4, the concrete realization of HZ(T) in terms of bounded
cocycles on a flag manifold turns out to be essential for our applications
to rigidity questions (see also [47]). This realization is a consequence of
the ergodicity of the diagonal T'-action on G/P x G/P, which is itself
a consequence of the Mautner property. Recall that for a connected
semi-simple Lie group without compact factors the Mautner property
states that in a continuous unitary representation of G, any vector
invariant under a maximal split torus is G-invariant. We now proceed
to generalize this Mautner property to all compactly generated locally
compact groups, thereby obtaining an extension of Example 4 to a
much wider framework. For this, the following ergodicity property will
turn out to be a flexible tool :

DEFINITION 5. Let X be any class of coefficient Banach modules, G a
locally compact group and S a regular G-space (see 1.3.1). We say that
the G-action on S is doubly X-ergodic if for every coefficient G-module
F in X, any weak-* measurable function

f: 9xS—F

which is G-equivariant for the diagonal action is essentially constant.

We synonymously say that S is a doubly X-ergodic G-space and
simply write “doubly F-ergodic” if X is reduced to a single coefficient
module F'.

One of the virtues of this strong ergodicity property is its persistence
by passing to closed subgroups H < G of finite invariant co-volume for
suitable classes X, notably the class of unitary representations (Propo-
sition 3.2.4).

In this language, the two classical instances of this generalized Maut-
ner property are the following : let G be a semi-simple connected group
or the automorphism group Aut(7") of a regular tree, and let Q < G
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be a parabolic subgroup in the first case, the stabilizer of a point in the
boundary 0,7 at infinity in the second case. Then the G-space G/Q
with its canonical class of quasi-invariant measures is doubly X“"-er-
godic, where X" is the class of all continuous coefficient modules.

Restricting () to be minimal parabolic in the first case, we have
moreover that in both cases the G-action on G/@ is amenable in the
sense of Zimmer [79].

These two classes of examples, together with the solution to Hilbert’s
fiftth problem, are used to establish the following

THEOREM 6. Let G be a compactly generated locally compact group.
There exists a canonical topologically characteristic finite index open
subgroup G* <1 G and a regular G*-space S such that

(i) The G*-action on S is amenable.
(ii) The G*-action on S is doubly X*P-ergodic, where X* is the
class of all separable coefficient modules.

Moreover, if GG is either connected or totally diconnected (e.g. discrete),
then G* = G.

As we shall see (Proposition 1.1.4), a separable coefficient module is
necessarily continuous.

REMARK 7. Theorem 6 implies that the commensurator super-rigidity
results [23, Theorem 0.1] and [17, Theorem 2] hold unconditionally for
all lattices I' in any locally compact second countable group, general-
izing Margulis’ commensurator super-rigidity.

REMARK 8. It will follow from the proof of Theorem 6 and from a
result of V. Kaimanovich [51] that we can take S to be the Poisson
boundary of (the random walk associated to) an étalée measure on
G™ ; see Remark 3.5.1 below.

As a rather direct consequence of Theorems 6 and 2, we obtain the

COROLLARY 9. Let G be a compactly generated locally compact second
countable group and o : ' — [F an injective adjoint morphism of
coefficient modules. Assume F' is separable. Then

() HL, (G, B) = 0.
(ii) The induced map H% (G, E) — H% (G, F) is injective and both

spaces are Banach spaces.

In particular, if F is a separable coefficient module, then H, (G, F') =
0 and H?, (G, F) is a Banach space.
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REMARKS 10.

(a) The first statement is well known for reflexive coefficients since in
this case it follows from the Ryll-Nardzewski fixed point theorem [11,
IV, Appendice, N° 3|. The second statement was previously only known
if simultaneously G is discrete and F' = R.

(b) The first statement has the following consequence. Let ' be
any group acting by isometries on a separable dual Banach space F.
If T has a bounded orbit in F', then there is a I'-fixed point in F' (a
compactness argument reduces the problem to the case of T' finitely
generated). However, this latter statement follows from N. Bourbaki’s
general version of Ryll-Nardzewski’s theorem, see Lemme 3 in [11, IV,
Appendice, N° 3| under the assumption ¢) given therein.

(¢) We point out that if £ is not separable, both conclusions of Corol-
lary 9 may fail, as one can see e.g. with the identity (Corollary 1.6.6)

& (G, L2(G)/C) = HyH(G), (Vn>1)

recalling that H% (G) is non zero (in fact infinite dimensional) for
any non elementary Gromov-hyperbolic group [32] and that for a non
amenable surface group H, (G) is not Hausdorff [71, 72]. The assump-
tion that F' be a coefficient module is also crucial : indeed, let I' be
any finitely generated group. Consider the separable coefficient module
(4(T) and its codimension one Banach submodule F' consisting of the
functions of total sum zero ; F' is not a coefficient module, and indeed
the reader may check that H} (I', F') vanishes (if and) only if I is finite.

* Kk K

A powerful tool in the study of the ordinary cohomology of, say co-
compact, lattices I' < G is provided by the Blanc-Eckmann-Shapiro
lemma [7], which gives an isomorphism between the cohomology of
[' and the continuous cohomology of G with coefficients in the uni-
tary G-module L*(I'\G). In specific situations, a good knowledge of
the decomposition of L?(T'\G) into irreducible representations gives
in return information about the cohomology of I'. In the context of
bounded cohomology, one checks readily that there is an analogous
isomorphism between H2 (H) and H? (G, L>*(H\G)) for any closed
subgroup H < G ; the drawback however is that very little is known
about the G-module L>*(H\G). Nonetheless, in degree two, Theo-
rem 6 allows us to fight our way back to unitary representations in
degree two :
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COROLLARY 11. Let G be a compactly generated locally compact sec-
ond countable group and H < GG a closed subgroup of finite invariant
co-volume. Let E be a separable coefficient H-module. Then the L?
induction

i: H2(H,E) — H2 (G, L’Ind$E)
is injective.
ExXAMPLE 12. The fundamental group I' = m ¥ of a surface ¥ of genus
g > 2 is Gromov-hyperbolic and hence H(T) is an infinite dimensional
Banach space (in this case, the result goes back to [15] and [59]). But
by Corollary 11, any hyperbolization I' — G = PSLy(R) of ¥ yields
an injection

Hi(I) — HE, (G, LX(T\G)).

This suggests the question of how this infinite dimensional space gets
distributed over the spectral decomposition of L?(I'\G) into irreducible
representations. We show in [22] that dimH? (G, $) = 1 for all spheri-
cal representations § of G, while H2 (G, ) = 0 for all representations
of the discrete series.

* kX

We consider now the behaviour of continuous bounded cohomology
under group extensions. In view of the vanishing result given by Corol-
lary 9, we are going to establish a higher degree Lyndon-Hochschild-
Serre exact sequence, special cases of which were established for discrete
groups by G.A. Noskov [65] and A. Bouarich [10]. Taking advantage of
Theorem 6, we will then obtain the following refinement in which the
new feature is the term H2 (N, FZ¢(N)@ where Zg(N) is the central-
izer of N in G :

THEOREM 13. Let 1 — N — G — @ — 1 be an exact sequence of
locally compact second countable groups, with N compactly generated.
Let (m, F') be a separable coefficient G-module. Then we have an exact
sequence

0 — H2,(Q. FY) =0 H2, (G, F) === HE (N, P22 —,
inf
— H2(Q, FY) 2 H3,(G, F).
Our main application of Theorem 13 is to a Kiinneth type formula

for continuous bounded cohomology in degree two, with separable co-
efficient modules. More precisely, let G = G; x ---G,, be a product
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of compactly generated locally compact second countable groups G
and F' a separable coefficient G-module, e.g. a continuous unitary rep-
resentation in a separable Hilbert space. Write G} = []; 4;Gi ;5 then

> F i is closed and even weak-* closed in F' (Lemma 4.4.2), hence
is a coefficient G-module. In this setting, we have

THEOREM 14. There is a natural isomorphism of topological vector
spaces

H2,(G,F) = H3 (G, Y0 F9) = @H 3 F%)

Let now (M, u) be a regular G-space, where p is a G-invariant prob-
ability measure ; assume the number n of factors of G is at least two.
We say that G acts irreducibly on M if G acts ergodically for every
1 < j < n. As a consequence of Corollary 9 and Theorem 14, we obtain

COROLLARY 15. In this setting, the inclusion of constants C — L> (M)
induces an isomorphism H% (G) — H2, (G, L>(M)).

* Kk K

Let I' < G =Gy x - - -G, be a lattice. Here and in the sequel we will
say that I' is irreducible if the projection pr;(I') is dense in G; for all
1 < j < n; thisis easily seen to be equivalent to the irreducibility of the
G-action on the probability space I'\G. Therefore, Corollary 15 applied
to the induction module L>*(I'\G) alluded to above would already yield
an isomorphism of Banach spaces HZ(I") = H? (G). The latter space
decomposes as @7_; H3,(G;) by Theorem 14.

Using now > inductlon, we bring in once again the double ergodic-
ity and proceed to generalize this isomorphism to continuous bounded
cohomology with coefficients in separable coefficient modules. Let
thus F' be a separable coefficient I'-module and let Fj be the maxi-
mal I'-submodule of F" such that the restriction 7|p, extends continu-
ously to G, factoring through G — G; ; this is well defined because
pr; pr,(T) = G;. Thus we have a G-action on the sum > i— Iy 5 we shall

see (Lemma 5.1.2) that the latter space is again a coefﬁment G-module.
In this setting we have

THEOREM 16. There are canonical topological isomorphisms

HX(T, F) = @H (G, Fy) = HE (G, Y0 1)),
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REMARK 17. At first sight, there is a striking analogy between the
above statement and Y. Shalom’s super-rigidity for irreducible lat-
tices [69]. However, it turns out that both the actual contents and the
methods of proof are completely different. For applications to rigidity
theory, the interplay of Shalom’s results with ours appears to be very
fruitful — some instances of this are shown below.

REMARK 18. Theorem 16, applied to a cohomology class constructed
by Y. Shalom and the second named author, yields a super-rigidity
statement for action of irreducible lattices on negatively curved metric
spaces. This generalization of a result known [23] in the arithmetic
case will appear elsewhere [62].

REMARK 19. We shall actually prove the Theorem 16 for any closed
subgroup H < G such that G/H has finite invariant measure and

with pr;(H) = G;. We also point out that the isomorphism from the
rightmost to the leftmost term is realized by the restriction map.

In Theorem 16, the special case where F' is a unitary representation
of I' and all GG; are algebraic groups generalizes the main results that
we established in [20, 21] for co-compact lattices :

THEOREM 20. Let I' < G = [],cx Galks) be an irreducible’ lattice,
where (ko )aca is a finite family of local fields and the G,, are connected
simply connected k,-almost simple groups of positive k,-rank. Then
the comparison map

H%(F, ﬁ) - Hg(Fﬂ ﬁ)
is injective for any non degenerate unitary representation (7, %)) of I'.

Here, non degenerate refers to the (necessary) condition that the in-
duced representation Indffw does not contain a subrepresentation fac-
toring non trivially through a rank one factor of G (if any such).

The result given in [20] for co-compact lattices in a single algebraic
group of higher rank can also be generalized to non-uniform lattices :

THEOREM 21. Let T be a lattice in G(k), where G is a connected,
simply connected, almost simple k-isotropic group and k a local field.

If G has k-rank at least two, then the natural map
HE (I, ) — HY(T,9)
is injective for any unitary representation (m,$)) of I'.

fIn accordance with the above definition, this implies that A contains at least
two elements. Otherwise we are in the almost simple case, see Theorem 21.
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In order to dispose of the co-compactness assumption, we use notably
the results of Lubotzky, Mozes and Raghunathan [53] on the word
metrics of such lattices.

* Kk K

We turn now to applications to actions by homeomorphisms on
the circle S'. Recall that if 7 : I' — Homeo™(S!) is an action by
orientation-preserving homeomorphisms, then the Euler class e, €
HZ (T, Z) is a complete invariant of semi-conjugacy [38]. Denoting by
exr its image in H(I',R), we record the following consequence of
E. Ghys’ result [38] :

The bounded cohomology class e, r vanishes if and only if 7 is semi-
conjugated to a [-action by rotations.

We obtain thus

COROLLARY 22. Let I' < G = G x -++ x (G, be an irreducible lattice
and assume H2 (G;) =0 for 1 < j < n.

Then any I'-action by orientation-preserving homeomorphisms of S*
is semi-conjugated to a I'-action by rotations.

If in addition the Abelianization I'a}, is finite, which happens for in-
stance if I is co-compact and Home,y, (G;) = 0 for all j (see Y. Shalom [69]),
then the corollary can be strengthened to

(i) Any -action by orientation preserving homeomorphisms of the
circle has a finite orbit.

(ii) Any I'-action by orientation preserving C* diffeomorphisms of
the circle factors through a finite group.
The fact that (i) implies (ii) uses W.P. Thurston’s stability theo-

rem [73] and has been observed by several authors independently, see
e.g. [75].

Next we turn to an application to extension properties for quasi-
morphisms ; recall that a quasimorphism of a group H is a func-
tion f : H — C such that the map 0f : H x H — C defined by
df(z,y) = f(z) + f(y) — f(zy) is bounded. Combining now Theo-
rem 16 with a result of Y. Shalom [69, Theorem 0.8], we obtain

COROLLARY 23. Assume that the irreducible lattice I' < G is co-
compact. Then any quasimorphism f : ' — C extends to a continuous
quasimorphism fe; : G — C.
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In view of the above results, it is clearly desirable to gain an un-
derstanding of H? (G) for natural classes of locally compact groups.
For semi-simple Lie groups over local fields and for certain groups of
tree automorphisms, the second continuous bounded cohomology can
be explicitly determined (see the proof of Corollaries 24 and 26 in Sec-
tion 5.3). This together with Theorem 16 leads to the following two
Corollaries.

COROLLARY 24. Let I' < G = [],cs Ga(ka) be an irreducible lattice,
where (k,) is a finite set of local fields and the G, are connected simply
connected k,-almost simple groups of positive k,-rank. Assume |A| >
2.

Then the comparison map from bounded to ordinary cohomology
induces an isomorphism

Hy () — H(I)™,
where the latter is the image in H*(T') under restriction of the continu-

ous cohomology H?(G). Both spaces have the dimension of the number
of Hermitian factors of G.

REMARK 25. Let I' < G = SLy(R) x SLa(R) be a co-compact torsion
free irreducible lattice. Then HZ(I') = H?(T')™ has dimension two
while

dim H*(T") = c¢Vol(I'\G) — 2,
wherein c¢ is an absolute constant. This is in contrast with the case of
Gromov-hyperbolic groups, where the comparison map in degree two
(and higher) is known to be surjective [57, 58].

The next corollary concerns lattices in the product of automorphisms
groups of locally finite regular (or bi-regular) trees. Such lattices are
never irreducible in the sense of our definition (see [26]), therefore it is

necessary to consider the closures pr;(I") of the canonical projections.

COROLLARY 26. Let I' < Aut(7y) x --- x Aut(7,) be a lattice such
that the closure pr;(T') acts transitively on 0,7; for all j. Then we
have

Hi (') = 0.
REMARK 27. In the above corollary, the assumptions on I depend only
on its commensurability class (see [25]). In contrast to the vanishing
of H{ (") = 0, one has
dim H*(T') > c¢Vol(I'\G) — 1
for co-compact lattices I' < G = Aut(7y) x Aut(77), where ¢ > 0 is
some absolute constant.
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A classical set of examples for Corollary 26 is provided by co-compact
lattices I' < G = [[,ea Ga(ka), where all G, have k,-rank one and
all k, are non-Archimedean ; indeed G,(k,) sits (modulo its centre)
in the automorphism group of the associated Bruhat-Tits tree. Those
lattices are linear and hence in particular residually finite.

In contrast to this class of linear examples, the following was shown
in [24, 26] :

For every n > 109, m > 150, there exists a torsion free co-compact
lattice I' < Aut(7;) x Aut(73), where 7; and 75 are regular of degree
2n respectively 2m, such that

(i) The closures pr;(T") act transitively on 0,7;.

(ii) T has a subgroup of finite index which is simple.

In particular, the latter simple groups provide also examples for
Corollary 26 as well as for Corollary 22 and its strengthening.

We observe incidentally that adélization techniques provide us with
a special class of lattices, which are irreducible in the sense introduced
above because of the Strong Approximation Theorem for almost simple
groups [54, 11.6.8]. The situation differs slightly from the setting of
Theorem 16 because we have to exhaust the infinite family of factors
associated to all places of K :

THEOREM 28. Let K be a global field and G a simply connected semi-
simple linear algebraic group over K. Denote by V., the collection of
Archimedean places of K.

There are canonical topological isomorphisms

H (G(K)) = D HA(G(K,)) = D HE(G(K,)).
vE€Vso v€ Voo

REMARK 29. In ordinary cohomology, A. Borel and J. Yang [9] prove
the analogous statement for any positive degree. In particular, the
rightmost term in the above statement is in return isomorphic to H?(G(K))
and thus the natural map

H (G(K)) — H¥(G(K))
is injective.

ExAMPLES 30. (i) If d € N is not a square, then H?(SLy(Q[V/d])) has
dimension two.
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(ii) Let G be a simply connected semi-simple linear group defined
over Q. Then the restriction map

H, (G(R)) — Hy(G(Q))

is an isomorphism. Thus the dimension of HZ(G(Q)) is exactly the
number of factors of Hermitian type in G(R). We observe however
that the G(Q)-action on the Furstenberg boundary of G(R) is not
amenable [80].

Notice further that since V,, = @ when K has positive characteristic,
the Theorem 28 implies immediately

COROLLARY 31. Let K be a global field of positive characteristic and
G a simply connected semi-simple linear algebraic group over K. Then

H2 (G(K)) = 0. A

* k%

Recall that for a group I' the stable length of an element v € [I',T]
is £(y) = lim,_ ||[7"||/n, where || is the word metric associated
to the set of commutators. Ch. Bavard has given in [6] the following
characterization :

THEOREM (Bavard [6]). For a discrete group I, the following assertions
are equivalent :

(i) The natural map H3(T") — H?(T') is injective.

(1i) The stable length function ¢ of the commutator subgroup [I',T|
vanishes.

Thus we may apply our above results and deduce :

COROLLARY 32. Let I' be either
(i) a lattice as in Theorem 21 or any of the Corollaries 22, 24, 26,
or
(ii) I' = G(K) as in Theorem 28.

Then the stable length on the commutator subgroup [I', '] vanishes.
O

Finally, concerning the relation between the complex and integral
bounded cohomology, we observe that for any group I' the following
properties are equivalent (see the proof of Corollary 33) :

(a) The comparison map HZ(T', Z) — H?(T', Z) is injective.
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(b) The comparison map HZ(I") — H?(I") is injective and the Abelian-
ization I'py is a torsion group.

With this at hand, we conclude :

COROLLARY 33. Let I' be either
(i) a lattice as in Theorem 21 or Corollary 24,
or
(ii) a lattice as in Corollary 26 but being moreover co-compact,
or

(iii) T' = G(K) as in Theorem 28.
Then the comparison map HZ(T',Z) — H*(T', Z) is injective.

Location of the proofs. Theorem 1 is proved in Section 2.2, The-
orem 2 is completed in Section 2.3. Theorem 6 and Corollary 9 are
established in Section 3.5, while Corollary 11 is deduced in Section 3.6.
The proof of Theorem 13 is completed in Section 4.3, the proofs of
Theorem 14 and Corollary 15 in Section 4.4. For Theorem 16 see Sec-
tion 5.1, for Theorems 20 and 21 Section 5.2. Theorem 28 is handled
in Section 5.4. The Corollaries 22, 23, 24, 26 and 33 are all proved in
Section 5.3.

1. ON CONTINUOUS BOUNDED COHOMOLOGY

(A more detailed and general discussion of this theory can be found
in the second named author’s thesis, available [60] in Springer’s Lecture
Notes.)

1.1. Banach modules. Let G be a locally compact group (e.g. dis-
crete). We shall work within the category of Banach G-modules, which
are Banach spaces endowed with an isometric G-action. For the sake of
simplicity, we leave aside the study of non-isometric uniformly bounded
actions.

DEFINITIONS 1.1.1. A Banach G-module is a pair (7, E) where F is
a Banach space over R or C and 7 is a (not necessarily continuous)
homomorphism from G to the group of isometric automorphisms of F.
Thus modules are always left modules, right modules being understood
as left modules over GG°P, the opposite group.

A map a : F — F between Banach G-modules is a G-morphism
provided it is linear, continuous and G-equivariant ; ||« is its operator
norm. Mind that the category we just defined is not Abelian.

The Banach G-module (7, F) is continuous if the action map G x £ — E
is continuous ; equivalently, if for all v € F the map G — F, g — 7(g)v
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is continuous. When no confusion can arise, we simply write E for the
module and gv for 7(g)v.

A dual Banach G-module is the dual Banach space of a continuous
Banach G°P-module endowed with dual structure ; in particular, the
action map is weak-* continuous but in general not norm continuous.
The contragredient Banach G-module (7, E*) to a continuous Banach
G-module (7, F) is the dual Banach G-module obtained via the topo-
logical isomorphism G — G°P, g + g~% (thus E* = E* as spaces, the
notation emphasizing the action).

In order to avoid heavy terminology, we introduce the following con-
cept, which will be basic in this paper.

DEFINITION 1.1.2. A coefficient G-module is a Banach G-module (7, £)
contragredient to some separable continuous Banach G-module denoted
(7°, E”). The choice of E’ is part of the data. A morphism or G-mor-
phism of Banach modules a : £ — F between coefficient modules is
called adjoint if it is the adjoint of a morphism o : F* — E°. or equiv-
alently if it is weak-* continuous. We say synonymously that « is a
morphism (or G-morphism) of coefficient modules.

REMARK 1.1.3. We insist that a coefficient module includes by defini-
tion the choice of a pre-dual ; for it may happen that (7°, E”) is not
uniquely determined by its contragredient. All the same, the above
definition entitles us to speak of the weak-* topology of a coefficient
module.

The projective product EQF of two Banach G-modules E, F' is the
Schatten-Grothendieck projective tensor product endowed with the di-
agonal tensor action. We refer to [49] III 15 (or [41] I §1.1) for the
virtues and flaws of this product. The projective product of contin-
uous Banach G-modules is again continuous. The canonical linear
form on E'*®F is G-invariant : the corresponding pairing will always
be denoted (-]-). We recall that the Banach space (EQF)* identifies
canonically isometrically with the space L(FE, F'*) of linear continuous
operators endowed with the operator norm ([28], Corollary VIII.2.2) ;
endowing the latter with the obvious action, this yields an identification
(EQF)t = L(E, FY).

For any Banach G-module E we define the maximal continuous sub-
module by

CE={veV:G— E, g gvis continuous }.

One checks that CE is closed in E, hence is a continuous Banach G-
module. If a : F— F' is a G-morphism, one has a(CFE) C CF because
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of the equivariance, so that C is a retract functor on the full subcategory
of continuous Banach G-modules.
Whenever a confusion on the group is possible, we write Cq F.

Basic examples include C or R with the trivial action, unitary repre-
sentations and the various Lebesgue spaces LP(G) (for 1 < p < oo and
a left Haar measure) with translation action. The latter is in general
not continuous for p = oo, but is a coefficient module if G is second
countable.

We record the following observation :

PROPOSITION 1.1.4. Let G be a Baire topological group, e.g. a locally
compact group. Then every separable coefficient GG-module is continu-
ous.

Proof. A standard argument using Baire’s category theorem shows that
a representation of a Baire group by isometries of a separable Banach
space with Borel orbital maps is continuous (for the norm topology).
On the other hand, the representation in a coefficient module is by
definition weak-* continuous. However, the Banach-Alaoglu theorem
implies that the weak-* and normic Borel structures coincide for sep-
arable Banach spaces : indeed norm-open sets are countable unions of
open balls, and the latter are countable unions of closed balls ; these
are weak-* compact hence weak-* closed. O

1.2. Integration matters.

Bochner’s integral. Let (m, E) be a continuous Banach G-module and
suppose either F separable or G second countable. Given a left Haar
measure m on G, one can turn F into a L'(G)-module by the formula

1) = /G b(g)m(g) (€ L'(G).v € E),

the above integral being well defined in the sense of Bochner because of
Pettis’ theorem, see [28] Theorem I1.1.2. The action map L'(G)x E —
F is continuous and compatible with G in the sense that 7(g)7(¢) =
7)) and ()r(g) — m(o(g~")), where (A(g)¥)(h) = (g~ ')
and (0(g)Y)(h) = A(g)1¥(hg) are the two isometric translation actions
(A is the modular function).

An important feature of the Bochner integral is that it commutes
with continuous linear operators ; in particular, for any G-morphism
a: E — F one has arg(v) = mp(¢)a.

The canonical inversion isomorphism G — G°P induces an isomor-

phism L1(G) — L}(GP) = (L*(@G))™, where 4~(g) = Alg (g ™).
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Therefore, £ has a natural L'(G)-module structure defined by 7#(¢)) =
((x»™))*. Thus the action map L*(G) x E¥ — E* is continuous -- mind
however that in general G x E* — E* is not continuous, nor measurable,
nor even weakly measurable ; it is only weak-* continuous.

The Gelfand-Dunford integral. One can also define the contragredient
LY(G)-module structure on E* by a formula analogous to (1) above, but
now the integral must be taken in the Gelfand-Dunford sense. Since
we shall need Gelfand-Dunford integration, we recall a few facts.

Let (S, 1) be a measure space and f : S — E* a weak-* integrable
map -- that is, (f|v) € L'(u) for all v € E. The formula

</Sf(8) dp(s)|z) = /S<f(8)|x> dp(s)

defines an element [ f(s) du(s) of the algebraic dual of E ; the Gelfand-
Dunford theorem (see [12], chap. VI §1.4 Théoréme 1) precisely states
that fs f(s)du(s) belongs to the topological dual E*. Provided this,
the following are simple verifications :

LEMMA 1.2.1.
(i) IfT is a weak-* continuous linear operator, then [T f(s) dp(s) =
T [ f(s) du(s).
(ii) If f is bounded and v € L*(p), then

/S ()£ (s) dus)|| < 1900 - 1f e A

A major drawback of the Gelfand-Dunford integral is that it does
usually not commute with continuous linear operators. This is a source
of complications for us, since the operators appearing in amenability
issues are precisely not weak-* continuous. Another difficulty is that
there is no general principle of the kind || [ || < [q| - || generalizing
(ii). The maximal continuous submodule will be of help :

PROPOSITION 1.2.2. Let (7, V) be a continuous Banach G-module with
either F separable or GG second countable.

(i) CE* coincides with the image L*(G)E* of E* under %,
(ii) CE* is weak-* dense in E*.

As to (ii), recall that CE* is norm closed. Point (i) implies that CE*
is the essential part of E* in the sense of [30].

Proof of Proposition 1.2.2. For point (i), fix w € E*, p € L'(G) and a
net (x) converging to e € G. Let’s check that 7#(z)7*(p)w converges
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to m¥(¢)w in norm :

|F@riow - | = s [(@M@)e) - 7He)wlu)

Bl p=1

= sup_|(wlr((M@)e - ¢))u)

lull z=1
< sw ([le:-In(O@e — 9 7)ulls)

< lwllez - (A=) — @)~ a
= [[wl[ge - [M=z)p = @l

which converges to zero since L'(G) is a continuous Banach G-mod-
ule (the second inequality is justified because it concerns a Bochner
integral, see [28] Theorem 11.2.4 (ii)).

Thus we have already L*(G)E* C CE®. Fix a bounded approximate
identity* (¢). Since CE* is continuous, 7%(¢))w converges to w for all
w € CE*, hence L*(G)CE* is dense in CE*. But Cohen’s factorization
theorem, as stated in [30] Theorem 16.1, implies that L'(G)CE* is norm
closed in CE*. Therefore L}(G)CE* = CE*, which completes the proof
of (i).

Point(ii) : let (¢)) be a bounded approximate identity for L!(G).
Since 7(1))u converges to u in norm for all u € E, we see that 7* (™) w,
which is in CE* by (i), weak-* converges to w for all w € E*, whence
(ii). O

1.3. L* spaces. Let S be a standard measure space, I a dual Banach
space with separable pre-dual. We denote by L2%(S, F) the space of
classes of weak-* measurable essentially bounded maps S — FE endowed
with the essential supremum norm. The separability of the pre-dual
implies that ||s — f(s)||g € L>®(S) for f € L.(S, E). Suppose now
G acts on S ; in order to yield a well defined translation action on
LY (S, F), the action must preserve the measure class on S ; hence the
Radon-Nikodym derivatives are in L!(S). If moreover we are given a
isometric representation m on FE, we define a G-representation A, on

L. (S, E) by

(Ax(9)f)(s) = 7(g)f(g™"s) (s-a.e.)
(in case 7 is trivial, we simply write \). In view of the nature of this
action, we shall sometimes term an invariant element as equivariant.

tby which we mean a two-sided positive continuous approximate identity
bounded by one, considered as a (generally uncountable) net. This exists for any
locally compact group, see e.g. [30] Theorem 13.4.



20 MARC BURGER AND NICOLAS MONOD

DEFINITION 1.3.1. A reqular G-space is a standard Borel G-space en-
dowed with a G-invariant class with the following property :

the class contains a probability measure p such that the isometric
G-action X\ :

(¥ (g)¢)(s) = @@,13)%(5), (p € L), s € 9)

is continuous®.

Examples : a locally compact second countable group G endowed
with the class of a Haar measure is a regular GG-space, a finite product
of regular G-spaces with the diagonal action is again a regular G-space,
Poisson and Furstenberg boundaries are regular G-spaces. A compact
polish space with continuous action of a second countable group G, en-
dowed with a radon measure p with continuous Radon-Nikodym deriva-
tives dgu/du is a regular G-space. A consequence of the requirement
that (S, p) be a standard measure space is the separability of L'(u).

The following amounts to well known functional analysis based on
the Dunford-Pettis theorem, see [31] VL.8, [41] I §2.2 and [49] III 17.6.

PRrROPOSITION 1.3.2. Let G be a locally compact second countable
group, let (S;)j_, be regular G-spaces and (7, ) a coefficient GG-mod-
ule. Then

L2 (S x -+ xSy, E) endowed with A\,
is a coefficient GG-module, canonically contragredient to
LYp)® - SL (1) OB

for any (u;)j—; as in Definition 1.3.1. In particular, one has the canon-
ical coefficient GG-module identification

L (S1 X oo X Sp, B) 22 L (S1, L (S2 X +++ X Sy, E)).
O

REMARK 1.3.3. In the setting of Proposition 1.3.2, one has also a
canonical isomorphism between L'(1,,)®E’ and the Bochner-Lebesgue
space L'(G, E°), which induces on the latter a G-action to which A is
contragredient.

The notation hints to the fact that X is contragredient to A”.
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1.4. Relative injectivity. We turn to the interplay between the cat-
egories of Banach spaces and Banach G-modules :

DEFINITION 1.4.1. A G-morphism 7 : A — B of Banach G-modules is
admissible if there is a continuous linear map o : B — A with |lo|| <1
and non = n.

In particular, an injective G-morphism is admissible if and only if it
has a left inverse {e}-morphism of norm at most one.

In the non-topological case, an analogue of the following definition
has been considered by Ivanov [48].

DEFINITION 1.4.2. A Banach G-module F is relatively injective (with
respect to () if for every injective admissible G-morphism ¢ : A — B of
continuous Banach G-modules A, B and every G-morphism o : A — E
there is a G-morphism 3 : B — F satisfying St = a and ||5]| < [|«]|.

o
e T
A

x 5

E

REMARK 1.4.3. A purist would restrict the above definition to con-
tinuous Banach G-modules F to stay in the same category as A, B ;
but anyways, with our definition, one checks easily that E' is relatively
injective if and only if CE is so (recall a(A) C CE).

As an immediate consequence of the definition, we have the

LEMMA 1.4.4. Let v : E — F be a norm one G-morphism of Banach
GG-modules admitting a left inverse G-morphism of norm one.
If F' is relatively injective, then so is E. O

For practical purposes, the fundamental property of relatively injec-
tive modules is the following.

LEMMA 1.4.5. Let n: A — B be an admissible G-morphism of contin-
uous Banach G-modules and let E be a relatively injective Banach G-
module. Then for any G-morphism o« : A — E with Ker(a) D Ker(n)
there is a G-morphism 3 : B — E with fn =« and ||5]| < ||| O

The next proposition provides us with the first example of relatively
injective modules.

PROPOSITION 1.4.6. Let G be a locally compact second countable
group, (m, E) a dual coefficient G-module. Then L,(G, F) is rela-
tively injective.
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Proof. We contend that CL, (G, F) is contained in the space of classes
of weak-* continuous E-valued maps on G.

Indeed, let f : G — FE represent a class in CLY, (G, F) and fix a
bounded approximate identity (1) on GG. For every v in the fixed pre-
dual E’ of E, {f(-)|v) is in L>=(G) and hence the net 9 * (f(-)|v) is
equicontinuous. Therefore, Ascoli’s theorem (in the generality of [14],
X § 2 No. 5) implies uniform convergence of ¢’ ( f(-)|v) to a continuous
function for some subnet (¢'). Appealing to Tychonoff’s theorem, we
may fix another subnet (¢”) for which convergence takes place for all
v € E°. On the other hand, for allv € E”, the net ¥+ (f(-)|v) converges
pointwise almost everywhere to (f(-)|v). Restricting this to a countable
dense subset of elements v € £, we conclude that f coincides a.e. with
a weak-* continuous map, establishing the claim.

Consider now

o Q B?
v

CLy.(G, E)

as in Definition 1.4.2. For b € B and g € G, the continuity claim above
allows us to define an element of F by

B(b)(g) = m(g)(ac(g "b)(e)).

Since g — ao(g~'b)(e) is norm continuous (B is continuous), B(b) is
weak-* continuous ; moreover, [|G(0)(9)|l~ < |la] - ||bl|z, so that we
have a map 3 from B to L, (G, E). It is straightforward to check that
B is equivariant (hence ranges in the maximal continuous submodule),
18] < ||e|| and Be = c. This completes the proof. O

We deduce immediately the following Corollary, which will notably
apply to the case S = G" :

COROLLARY 1.4.7. Let GG be a locally compact second countable group,
S a regular G-space and (7, F) a coefficient G-module. Then L, (G X
S, F) is relatively injective.

Proof. Using Proposition 1.3.2, we may identify L (G x S, E) with
L (G, LE(S, E)). Now apply the Proposition 1.4.6 with L,(S, E)
instead of E. O

1.5. Functorial definition of bounded cohomology. In this sec-
tion we introduce a functorial definition of the continuous bounded
cohomology of a locally compact second countable group GG, with coeffi-
cients. The defining machinery bears certain analogies with Hochschild’s
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relative homological algebra [46]. We point out that the functorial char-
acterization of continuous bounded cohomology extends to all topolog-
ical groups (not necessarily locally compact), but this extension is not
necessary for the present paper and is not suited to the study of L>
spaces.

REMARK 1.5.1. For discrete groups, Johnson already alluded in [50]
to the possibility of such a theory ; the task has been completed by
Ivanov [48] (and Noskov [64]). However, it remained unclear whether
anything of this kind was possible for topological groups, even for trivial
coefficients (compare with the remark p.37 in [50]).

A resolution F, of a Banach G-module F is an acyclic sequence

Ev: 0— E—2 By~ B -2+,
of G-morphisms of Banach G-modules. It is said relatively injective,
continuous, etc. if all F, (n > 0) are so (disregarding F). We de-
fine G-morphisms of resolutions and G-homotopies of such morphisms
in the obvious way. One associates as usual to any resolution F, the
cohomology of the corresponding (non-augmented) subcomplex of in-
variants

ES - O—>E'0G—>E1G—>E2G—>
and endows these cohomology spaces with the quotient semi-norm. The

resolution F, is admissible if there is also a sequence (h,,) of continuous
linear maps of norm at most one

do d ds
Ee: 0 E——=Fk—=Fkh—=E_—
ho h ha

satisfying h,d,, + d,—1h,—1 = ldg, , for all n > 0 (with the convention
d_1,h_y = 0). In particular, d,, is an admissible G-morphism. We call
the sequence (h,) a contracting homotopy. A resolution is strong if
the subcomplex CF, : 0 — CF — CEy — --- of maximal continuous
submodules is an admissible resolution.

The definitions of relative injectivity and strong resolutions are ad-
justed to each other so that the following proposition becomes a stan-
dard verification using Lemma 1.4.5 and the obvious observation that
for any resolution E, one has ES = (CFE,)C.

PROPOSITION 1.5.2. Let E, be a strong resolution of a Banach G-
module FE and F, a relatively injective resolution of a Banach G-module
F'. Then any G-morphism o« : CE — F extends to a G-morphism
of resolutions CE, — F, which is unique up to G-homotopy ; hence
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a induces functorially a sequence of continuous linear maps on the
corresponding cohomology spaces.

In particular, if E = F and both resolutions are strong and relatively
injective, then any G-morphism of resolutions which is the identity on
E induces a canonical isomorphism of topological vector spaces between
the corresponding cohomology spaces. ([

We shall now deduce :

COROLLARY 1.5.3. Let E be a coefficient G-module, and let E, be any
strong relatively injective resolution of K. Then the cohomology of E¢
is canonically isomorphic to HY (G, E).

More precisely, there is a G-morphism CE, — L (G**!, E) extend-
ing the inclusion CE C FE, any two such are G-homotopic and they
induce a topological isomorphism in cohomology.

REMARK 1.5.4. In certain cases, one can show that the induced map
in cohomology is isometric for the quotient semi-norm, but this does
not follow from the above ; see Section 2.3 below.

Proof of Corollary 1.5.3. The maximal continuous submodules CL, (G**T, E)
constitute a subcomplex of the standard resolution, and obviously

(crz.m)” = (L. )’

Thus the cohomology associated to the continuous subcomplex coin-
cides canonically with H%, (G, E) (notice also that any G-morphism has
to range in the continuous subcomplex). Since CL,(G**! E) are all
injective by the Corollary 1.4.7, it remains only to see that this con-
tinuous subcomplex admits a contracting homotopy and is hence an
admissible resolution. This is taken care of by Lemma 1.5.6 below, so
one can apply Proposition 1.5.2. U

COROLLARY 1.5.5. Let G be a locally compact second countable group
and E a relatively injective coefficient G-module. Then HY (G, E) =0
for alln > 1.

Proof. Apply Corollary 1.5.3 to the resolution
0—F 2 F —50—0—--.
which is indeed strong. ([l

The standard resolution (defined in the Introduction) is the simplest

example of a large family of resolutions : let S be a regular G-space and
(7, E) a coefficient G-module. Endow the spaces L, (S""! E) (n > 0)

Wk

with the action(s) A;. Define coboundary maps d, : L. (S", E) —
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n

L (ST E) by d, = Y.(—1)d,;, where d,,; omits the i*" variable
i=0

and (dov)(g) = v ; it is standard to verify d,11d,, = 0. The map d, is

also called the co-augmentation.

LEMMA 1.5.6. There exists a contracting homotopy h, turning

ho hi ha
into an admissible resolution of CE (so the resolution with L, (S™*1 E)
is strong).

Proof. Fix a probability measure p on S as in Definition 1.3.1. For any
coefficient G-module (v, F) define

he:CLE(S.F) — F,  hp(f) = / f(s)duls), feCLE(S,F)

(Gelfand-Dunford integral). We claim that hr ranges in CF.

To this end, notice first that since v(g) (¢ € G) is an adjoint opera-
tor, we may apply Lemma 1.2.1 (i) and commute it with the Gelfand-
Dunford integral :

(g)hef) /S 2(9) (F(5)) duls) = /3 ij—:@)wg)f)(s) du(s)

(recalling that the Radon-Nikodym derivative dgu/dp is in L*(p)). Us-
ing this, if (g) is a net converging to e € G,

M(@he(f) = he())] - <
/Sf(S) dp(s) —/S()\,y(g)f)(g) du(s)

_|_

S ‘
F

J @) duts) = [ LR (@) duts)

S F
Using Lemma 1.2.1 (ii), we bound the first term by || f — A, (9) [,
which converges to zero because f is in CL, (S, F). The second term
can be bounded by

i

Flloo - |15 — 22
Il |1 =G|

The fact that the right hand side factor converges to zero is part of
Definition 1.3.1. The claim is proved.
Now we can define h,, via the identification

LE(S™, B) = L (S, LS. B))

‘ dgp
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by letting F' = L (S", E) (and F = E for hy). We have ||h,|] <1
because of Lemma 1.2.1 (ii). Moreover, for all 0 < ¢ < n, we have
dp,ihn = hpy1dni1,i41 @ indeed, the linear map d,, ; is weak-* continuous
because it is induced by one of the canonical projections S"** — 8™ :
thus we may commute it with h,,, which gives d, 1141 via the above
identification, whence the relation d, ;h, = hyt1dy4141. This, to-
gether with the analogous h,41d,4+10 = Id, implies immediately that
he is a contracting homotopy. O

The natural map. Let (7, E) be a dual Banach G-module. The usual
continuous cohomology H2 (G, F) is defined with resolutions by modules
satisfying an appropriate injectivity condition ; call it c-injectivity. It
is shown in [7] that the standard resolution by locally p-summable
functions is c-injective for all 1 < p < co. Now if E is separable, then
we have

LG E) = L¥(G™LE) C Ly, (G" E),

loc

determining a cochain complex inclusion, and therefore a map
c®: H (G,E) — H(G,E).

We call the above map the natural map for the following reason : if
E, is a strong relatively injective resolution of E and F, is a c-injective
resolution of E, then there is a G-complex morphism F, — F, extend-
ing the identity Id g and every such extension induces the above map at
the cohomological level. This follows indeed immediately from Propo-
sition 1.5.2 and its analogue in continuous cohomology. The kernel of
the natural map is written EHY (G, E).

Contravariance. Let ¢ : G — H be a morphism of locally compact
second countable groups, that is a continuous group homomorphism.
Any Banach H-module F' becomes a G-module by pull-back, and we
observe that in this way both CqF and CyF' are Banach G-modules,
the latter being contained in the former.

Let now (7, E') be a coefficient H-module. If E, is a strong relatively
injective resolution for the H-module (7, F), then Cy E, is in particular
a strong resolution for the G-module CxFE by the above observation.
Applying Proposition 1.5.2, one gets a natural map

zb(¢’E) : ::b(Hv E) - H;b(Gv E)

The particular case of the restriction is considered again in Section 2.4.
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1.6. Coefficient sequence. Continuous bounded cohomology admits
also long exact coefficient sequences :

PROPOSITION 1.6.1. Let G be a locally compact second countable

group and let 0 — A % B 5. ¢ = 0 be an adjoint exact sequence of
coefficient G-modules. Then there is a family of continuous maps (7™)
so that the infinite sequence
n n 1
- —— 13, (G, A) — H, (G, B) — HE,(G, C) 7, H?Jl(G,A) -
is exact. Moreover, if a (or equivalently [3) has a left (respectively
right) inverse G-morphism, then 7" = () for all n. > 0.

REMARKS 1.6.2.

(i) In the second statement, the left (or right) inverse is not sup-
posed adjoint.
(ii) The long exact sequence depends naturally on the short exact
sequence and on G.
(iii) It is possible to use E. Michael’s selection theorem in order to
establish a long exact sequence for more general Banach mod-
ules, see [60, 8.2].

Proof of Proposition 1.6.1. The proof is a straightforward adaptation
of the classical argument based on the “snake lemma” (here, the latter
is a consequence of the open mapping theorem), with one caveat : in
order to apply the snake lemma, one needs the Lemma 1.6.3 below. [
LEMMA 1.6.3. Let G be a locally compact second countable group and

let 0 = A% B2 ¢ = 0 bean adjoint short exact sequence of
G-morphisms of coefficient G-modules. Then the induced sequence

(2)

0— LSVO*(GTL+17 A>G L LSVO*(GTL+17 B)G L L\(;/o*(Gn+17 C)G —0
is also exact for all n > 0.

REMARK 1.6.4. We point out that the closed range theorem implies
that an adjoint sequence of Banach spaces is exact if and only if its
pre-dual is exact.

Proof of Lemma 1.6.3. For any coefficient G-module (g, D) the Fubini-
Lebesgue theorem implies that the map

U": LS(G", D) — L2,(G™, D)¢
defined almost everywhere by

(Unf)(g()v ce 7gn) = Q(g())f(g()_lgla ce 797:E1.gn)
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is an isomorphism. Since U™ is natural in D with respect to G-mor-
phisms, it intertwines (2) with

(3) 00— L(G"A) 2 L2(G", B) 25 L25(G",C) — 0,

in particular the case n = 0 is clear. For n > 0, the exactness in the
middle follows from the open mapping theorem and hence the only non-
trivial point is the surjectivity of 8, in (3). Denoting 3° : C* — B’ the
map of pre-duals to which ( is adjoint, this amounts to the injectivity
of the map of Bochner L! spaces

ﬂb . Ll(Gn,Cb) N Ll(Gn,Bb),

*

where we recall that it is the Dunford-Pettis theorem [31, VL.8] that
yields the duality between L'(G™,C*) and L=, (G™, C). O

REMARK 1.6.5. The property of the predual L! spaces that we used in
the proof of Lemma 1.6.3 actually characterizes such spaces [42].

Applying Proposition 1.6.1 and Corollary 1.5.5 to the sequence
0— F —>L3V°*(G,F) - LS\?*(GaF)/F—>O:
we deduce the dimension shifting statement

COROLLARY 1.6.6. There is for alln > 1 an isomorphism H (G, F) =

1.7. Alternating and continuous cochains. Let S be a regular G-
space, E a coefficient G-module, and consider the complex

0— EF— L (S,E) %Lx?vo*,alt(S{E) — L, (SgﬂE) -

w,alt w,alt

of alternating bounded measurable cochains ; the contracting homotopy
of Lemma 1.5.6 preserves this subcomplex. The inclusions

tn Lo ai(S"E) C LE.(S™,E)

w,alt

determine isometric isomorphisms at the level of cohomology because
the usual alternation operators

1 . * w1 — ~1
Alt, = CE] Z sign(m)m*, (7*(-) =-om )

TESn+1

where the symmetric group S,,1 acts by permutation of the coordi-
nates, are norm one G-homotopy inverses for the inclusions.

When the module F is a separable Banach space, the usual reg-
ularization procedure establishes a G-homotopy equivalence between



BOUNDED COHOMOLOGY & RIGIDITY 29

the standard resolution and the subcomplex of (norm-) continuous
cochains. That is, the complex

0 — Cy(G, E)® — CL(G* E)Y — Cy(G3, B)Y — - -
of G-invariant continuous bounded cochains realizes the continuous
bounded cohomology H?, (G, E) in the sense that the inclusions
Cb(Gn_H, E) C Loo(Gn+1, E)
induce isometric isomorphisms at the level of cohomology. The proof
can be taken verbatim from our Proposition 2.4 in [20].

Since Alt,, preserves continuity, one can also use the the subcomplex
of alternating G-invariant continuous bounded cochains.

1.8. Cup product. A pairing of Banach G-modules is a triple (A, B, C)
of Banach G-modules together with a G-morphism

ARB — C

of norm one. Echoing the usual Alexander-Whitney construction, we
get a graded bilinear map

(4) A HY (G, A) x HY (G, B) — HY (G, C)

for all coefficient Banach G-modules A, B, C'. Indeed, the coefficient
pairing induces a pairing (symmetric cochain cup product)

x : L2(G™ ARLE(G™H, B) — L2(G™™ )
defined almost everywhere by

o X B (30, Tntm) = (@0, 2B, )

and which restricts to the respective maximal continuous submodules.
The symbol A denotes both the antisymmetrized version of x on the
graded group of alternating cochains and the quotient structure (4).
The same construction is retained for non-topological groups.

According to these definitions, the natural map intertwines the bounded
cup product with the usual one. In particular, for trivial coefficients,
the natural map Hy — H® (or HY — H?) determines a natural trans-
formation of contravariant functors from the category of groups (re-
spectively locally compact second countable groups) to the category of
graded algebras.

As an illustration, we present the following remark.

PROPOSITION 1.8.1. Let w € HZ(T') be the Euler class for Thompson’s

simple group T'. Then the n-fold cup product w A ... A w is non-trivial
in H"(T) for all n.
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Recall that
T = <a,b,c ‘ [ab™', a"'bal, [ab™', a"?ba®], ¢ ba" ch,
(a 'cba " ba) tba2eb?, a e Ha teb)?, %)

can be viewed as the group of all orientation preserving piecewise affine
transformations of R/Z which have dyadic breaking points and whose
slopes are integral powers of two. We refer to [27] for a careful intro-
duction to this group.

Proof of Proposition 1.8.1. Since the cup product preserves bounded-
ness and the natural map is an algebra morphism, the statement re-
duces to the corresponding assertion for the image of w in H**(T).
For rational coefficients, this is a result of E. Ghys and V. Sergiescu
([39], Théoreme D). One concludes with the dual universal coefficients
theorem. ([

1.9. Remarks on Banach algebra cohomology. Let GG be a locally
compact second countable group and F a separable continuous Banach
G-module. Then the continuous bounded cohomology H?, (G, E*) co-
incides with Johnson’s Banach algebra cohomology H*(L'(G), E*) (see
Proposition 2.3 in [50]), for which Johnson’s memoir does not give a
functorial characterization.

After the completion of the present paper, we became aware of
Helemskii’s monographs [44] and [45], where Johnson’s cohomology is
characterized by an analogue of the classical derived functors FExt®.

We have seen in Section 1.2 how E* can be given the structure of
a Banach L!'(G)-module ; E* is not neo-unital in general, but CE* is
so. Now if E* is relatively injective in the sense of Definition 1.4.2,
then one can check that it is an injective L'(G)-module in the sense
of Definition IIT 1.13 in [44]. Here L'(G), is the unitized algebra
L'(G) @ C (endowed with sum norm) and our claim relies on the fact
that the canonical morphism

(LYG)4)" — (LMG))

is a retraction over L'(@) since L'(G) admits a bounded approximate
identity.

The above gives a connection between continuous bounded cohomol-
ogy and Banach cohomology, although the latter does not carry with
it any isometric information of the kind of our Theorem 2.

WARNING. The interplay between Banach G-modules and L' (G)-mod-
ules is not as straightforward as is sometimes assumed in the literature :
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of basic importance in Banach algebra cohomology are L'(G)-mor-
phisms defined on the L'(G)-module L*°(G), in particular morphisms
which are not weak-* continuous. The (generally non-continuous) cor-
responding G-module L>(G) admits G-morphisms that are not L'(G)-
morphisms. An example of this situation is given by W. Rudin in [66],
Theorem 4.1. Our Theorem 2.2.4 gives an instance where such phe-
nomena are ruled out.

2. AMENABLE ACTIONS

2.1. Amenability. To begin with, we remark that some amenability
issues already came in through the back door while we were discussing
relative injectivity.

To make this more precise, we consider for a while a discrete group
I, and recall that I" is said to be amenable if one of the following two
equivalent conditions holds :

(A1) Every non-empty convex compact I['-invariant subset of a Fréchet
space on which I' acts by continuous linear operators contains a fixed
point.

(A2) There is an invariant mean on £>°(I"), i.e. there is a I-invariant
left inverse of norm one to the natural inclusion R — ¢>°(I).

Let now E be a Banach I'-module ; the natural inclusion £ —
(>°(T', F) is an admissible embedding since the evaluation at any fixed
element of I" yields a (non-equivariant) left inverse of norm one. There-
fore, considering the diagram

E——(>(I",F)

E

we see that if F/ happens to be relatively injective, then we have indeed
an equivariant mean on (>=(I", F/), that is, a I'-equivariant left inverse
of norm one to the natural inclusion £ — ¢>°(I", E).

Conversely, since for discrete groups (I, E) is relatively injective
regardless of the nature of the Banach I'-module F (see [48] Lemma 3.2.2),
the presence of such an equivariant mean forces E to be relatively in-
jective by Lemma 1.4.4. Thus we have shown

ProprosIiTION 2.1.1. Let I' be a discrete group and E a Banach I'-
module. The following assertions are equivalent :

(i) E is relatively injective.

(ii) There is an equivariant mean on (*(I', ).
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In particular, the trivial module R (or C) is relatively injective if and
only if I' is amenable. 0

2.2. A characterization of amenable actions. The purpose of this
Section is twofold : generalize the above proposition to locally compact
groups (which draws us into the issues of Section 1.2), and give a con-
nection with amenable actions. With this in mind, we recall now how
R.J. Zimmer defined amenable group actions, generalizing the idea of
(A1) above :

DEFINITION 2.2.1 (Zimmer). Let G be a locally compact group and S a
standard Borel space with measure class preserving Borelian G-action.
The G-action on S is said to be amenable if for every separable Banach
space £ and every Borelian (right) cocycle a : S x G — Isom(F) the
following holds for the dual a*-twisted action on E* :

any a*-invariant Borelian field {A;}ses of non-empty convex weak-
* compact subsets A, of the unit ball in £* admits an a*-invariant
Borelian section.

For more details, see [79] ; it is important to us to have at our disposal
a criterion more in the spirit of (A2). Despite Zimmer’s early partial
result in [77], the task has been completed only quite recently :

THEOREM 2.2.2 (Zimmer, Adams-Elliott-Giordano). Let G be a lo-
cally compact separable group and S a regular G-space. The following
assertions are equivalent :

(i) G acts amenably on S.

(ii) The canonical inclusion L>(S) — L*(G x S) admits a left
inverse G-morphism of norm one.

Proof. (i)=-(ii) is Theorem 3.4 in [2], while for (ii)=-(i), according to [2],
the proof in [77] with G discrete holds without change in the continuous
case. 0

REMARKS 2.2.3.

(i) In the references given, the second condition above is expressed
in terms of conditional expectations ; both formulations are
easily seen to be equivalent.

(i) The above theorem is already contained in S. Adam’s unpub-
lished notes [1].

An important step in the proof of Theorem 1 is the following Theo-
rem 2.2.4, which can be considered as a generalization of both Propo-
sition 2.1.1 and of a classical result of Greenleaf to our Banach setting.
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However, difficulties arise from the lack of continuity of the coefficient
space ; we will tackle them with Proposition 1.2.2.

Analogously to the classical scalar case, we say that a mean on a
function space is a continuous linear left inverse of norm one to the
coefficient inclusion.

THEOREM 2.2.4. Let GG be a locally compact second countable group
and (m, ) a coefficient G-module.
The following assertions are equivalent :

(i) (m, F) is a relatively injective Banach G-module.

(ii) There is a G-equivariant mean m : L, (G, E) — E.

(iii) There is a G-equivariant mean m : CLY, (G, E) — CE.

(iv) There is an L'(G)-equivariant mean m : L% (G, E) — E.

(v) There is an L'(G)-equivariant mean m : CL%,(G, E) — CE.

Proof. Recall the notation (7°, E”) of Definition 1.1.2, so that A\, = Aib'
Among the equivalences of the conditions (ii) to (v), the crux is the
implication

(v)=(iv) : fix an L'(G)-equivariant mean m : CL,(G, F) — CF and
some bounded approximate identity (¢) on GG. The Proposition 1.2.2
applied to L, (G, E) allows us to consider the composition

(see Remark 1.3.3). Using the identification
ﬁ(LSVO*(G’ E)’ E) = (LSVO*(G* E)®Eb)*a

we apply the theorem of Bourbaki-Alaoglu and conclude to the ex-
istence of an (other) approximate identity () such that for all f €
L2.(G, E) the net mA,(¢)f weak-* converges in E to some element
that we denote by mf. It is straightforward that this yields a linear
operator m : L2 (G, F) — F with ||m|| < 1. If f has constant essential
value w € E, then A\ (¢)f is essentially constant of value 7w(¢)w ; ap-
plying now Proposition 1.2.2 to F, 7m(¢)w is in CE and hence mA () f
equals 7(¢)w, which weak-* converges to w.

Thus it remains only to show that m is L'(G)-equivariant. For ¢ €
LYG) and f € L=(G, E), we have that mA,(p)f is the weak-* limit
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of mA(¢ x @) f, whilst for all u € E°
(mAr (0 * ) flu) = (w(@)mA () flu)
= (WA () f|7’ (™))
— (@f|7° (¢ )u) = (n(@)TS|u),

where in the very first equality we used the Lemma 1.2.1 applied to
LX.(G, F) in order to commute m with A, () according to the hypoth-
esis (v).

This shows that mA,(¢)f — 7(@)mf is the weak-* limit of mA, () *
¢ —@x*1)f. On the other hand, since our approximate identity is two-
sided, v * ¢ — ¢ x 1 norm converges to zero in L'(G). The continuity
of the contragredient algebra-representation thus implies that A; (1 *
©—@x1)f, hence also mA, (¢ x o — @) f, converge to zero in norm.
Putting everything together, we conclude that mA,(¢)f = w(¢)mf,
completing the proof of (v)=(iv).

(iv)=(ii) : let m be an L'(G)-equivariant mean L=, (G, E) — E ; we
claim that m is actually G-equivariant. Indeed, let f € L2, (G, F) and
g € G and fix a bounded approximate identity (1). Now mA.(g)f is
the weak-* limit, of

T )mA(9).f = mA (Y 7)Ax(9) f = mA- (Mg~ )¥)™) f
= (Mg )¥) )mf = 7(™)(x(g)mf),

which converges weak-* to w(g)mf.

(ii)=-(iii) is obvious.

(ili)=(v) : let m be as in (iii). Since CL{, (G, E) is continuous and
G separable, Pettis’ theorem implies that the Gelfand-Dunford integral
is a Bochner integral, hence commutes with m. Thus conditions (ii) to
(v) are equivalent.

(i)=-(iii) : considering the diagram
CES —= CL3.(G. E)

CE

we see that it is enough to show that ¢ is admissible. But this is exactly
the content of the initial claim in the proof of Lemma 1.5.6 (with S = G
and F'= FE).

(ii)=(i) (or (iii)=-(i), see Remark 1.4.3) : combine Proposition 1.4.6
with Lemma 1.4.4. This completes the proof of the Theorem 2.2.4. [J
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Proof of Theorem 1.

(i)=-(iii) : by the Proposition 4.3.4 of [79], G acts amenably on S™*!
so that we may as well suppose n = 0. Using Theorem 2.2.2, we get a
left inverse G-morphism mg of norm one to the inclusion of L>(S) in
L>*(G x S). For every f € L, (G x S, F) we define a bilinear form mf
on L}(S) x E” by

mf (¥, v) = (mo(f(-)|v)[) (¥ € LY(S),v € E”).

The estimate [mf(v,v)| < || flloo - [|v]| 0 - [[#]]1 shows at once that the
bilinear form mf is continuous and that the corresponding linear map

~ f
m: L2 (G x S, E) — (L1(5)®Eb) ~ [ (S, E)

is continuous of norm at most one. Using the relation

Ae(9)FC)o) = M) (fC)T (g7 H)0),
one checks readily that m is G-equivariant. Recalling that the pairing
on L2,(S, E) x LY(S)®E" is obtained by Gelfand-Dunford integration
over S of the pairing on E x E”, one verifies that m is a left inverse
G-morphism to the inclusion of L, (S, E) in LY, (G x S, E). Now by
Corollary 1.4.7, L (G x S, FE) is relatively injective ; finally apply
Lemma 1.4.4.

(iii)=-(ii) is obvious.

(ii)=(i) : set E = L*(S) in Theorem 2.2.4 to deduce the existence of
an equivariant mean on L (G, E). Using the canonical identification
L2 (G, L>(S)) =2 L>®(G x S), this is the same as a left inverse G-
morphism of norm one to the canonical inclusion L>*(S) — L>(G x S).
Thus we may apply the Theorem 2.2.2. O

REMARK 2.2.5. The statement of Theorem 1 does not hold for arbi-
trary Banach G-modules in condition (iii). Indeed, G.A. Noskov con-
siders in [64] the Banach Z-module A% of 27-periodic functions that
are analytic in the strip |[im(z)] < p (p > 0) and continuous in the
closure of the strip, endowed with the translation by multiples of 27p
(# € R) and sup-norm. He shows that results of Arnold of imply
dimHy (Z, A%) = oo for 2% many u € R (we read Arnold’s relevant re-
sults in the translation [3|, chap. 3 §12 ; there is an English version [4]).

Now Z acts amenably on S = one point, so that if L>(S™ "1, AL) were
injective, the general principles of Section 1.5 would imply Hy(Z, A%) =
0.

REMARK 2.2.6. Suppose S is an amenable G-space and N <1G' a normal
closed subgroup. Let T be the point realization of L>(S)". By Theo-
rem 1, L>(S) is G-relatively injective. This implies immediately that
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L>(S)N is G/N-relatively injective, and so applying again Theorem 1
we conclude that 7" is an amenable G /N-space.

2.3. Relatively injective resolutions and the semi-norm. Let G
be a locally compact second countable group and F a coefficient G-
module. The outcome of the functorial constructions of Section 1.5
is that for any strong relatively injective resolution F, there is a nat-
ural isomorphism of topological vector spaces between the associated
cohomology of invariants

E¢: 0—Ef — E¢ — Ef — ...

and H? (G, E) ; however, this isomorphism is in general not isomet-
ric — we recall that the semi-normed spaces H, (G, E) are defined via
the standard resolution. The point is that the G-morphisms of com-
plexes granted by Corollary 1.5.3 need not preserve the norm since the
coboundary maps are in general not of norm one (the standard d,, is
of norm n + 1).

Since the semi-norm is an important cohomological invariant, we
shall show that the natural isomorphisms are isometric in the case of
resolutions on amenable regular G-spaces (Corollary 2.3.2 below). This
is due to the tensorial nature of the standard coboundary ; the technical
ingredient is the following proposition.

ProproOSITION 2.3.1. Let G be a locally compact second countable
group and S,T' regular GG-spaces. If there is a norm one G-morphism
mg : L>®°(S) — L*°(T) such that my(llg) = Ly, then for every coeffi-
cient G-module F there is a G-morphism of complexes

H mo,El/ ml,E\L mQ,El

0—F— LY (T,E) —= L2 (T%E) — L= (T3, E) — - - -
with all m,, p of norm at most one.

Proof. Choose measures p, v on S, T as in Definition 1.3.1 and consider
the corresponding canonical isometric G-equivariant isomorphisms

L(L2(S), L=(T)) = (L2(S)RLNT))* = L(LN(T), L=(S)).

Denote by m{ the invariant element of the closed unit ball in the right
hand side which corresponds to my. One can fix a directed set A such
that for each ¢ € LY(T) there is a net (M§(¢))aca in L*(S) converging
weak-* in its bi-dual L>®(S)* to m{(p). Moreover, we may suppose
w(Mg(p)) = v(p) since my(llg) = Lp. Let n > 0 and write C,, g for
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the closed unit ball of L, (S™"!, E) endowed with the weak-* topology
which is part of the data of the coefficient module E. The product

space
=11 T1 T[ s

n=0 ¢;eL(T) veE>
0<j<n

is compact by the theorems of Bourbaki-Alaoglu and Tychonoff. We
define a net (M )aca in C' by assigning to My p(po, .- -, ¢n,v) the
image of

Mg (o) @ -+ @ MG (p,) ®v € LHS" E)

under the canonical embedding into the bi-dual. By compactness of
C, there is an accumulation point (m;, 5)7, which must be linear in v
and the ;. Therefore, we view it as simultaneous weak-* accumulation
points m;, i of nets (M g)aca in

L(IMT)E - BIMT)BE, L3 (5™ E)).

We claim that the maps m,, g corresponding to m;L g under the identi-
fication of the latter space with

L(L3(S™" B), L1, E))

have all required properties. The only point that is not an immediate
consequence of the weak-* continuity of the G-module structures is
that the coboundaries intertwine m,, r with m,_; 5. We shall actually
show that each summand d,, ; of the coboundary d,, (see Section 1.5)
intertwines them. Under the above identification, this reduces to show
that for every ¢ € LYT), ¢ € LY(T", E’) and x € LZ(S™ E) the
relation

() m, 5 (e ®Y)(1s ® X) = (Lrlg)m,  p(¥)(X)

holds. Indeed, the standard coboundary map is but an alternating
sum of various tensorisations against I, and our definition of m,, g is
compatible with permutation of the factors. We conclude the proof
with the remark that (5) follows from

Mg'(0)(Ls) = p(Mg (¢)) = v(p) = (Lr|p).
O

COROLLARY 2.3.2. Let GG be a locally compact second countable group,
S an amenable regular G-space and F a coefficient GG-module. Then
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the canonical isomorphism between H®, (G, E') and the cohomology of
the complex

0— LS&(S, E)G - LSVO*(327E)G B LSVO*(S?)’E)G —

of bounded measurable invariant cochains is isometric. The same
holds for the subcomplex of alternating bounded measurable invari-
ant cochains.

Proof. Since the inclusions ¢, and alternation operators Alt, of Sec-
tion 1.7 are of norm one, it is sufficient to consider the non-alternating
complexes. In this case, an application of the Proposition 2.3.1 (with
T = G) provides us with a G-morphism of complexes of norm at most
one. By Corollary 1.5.3, the corresponding cohomology map is the
canonical isomorphism, which is thus of norm at most one. Interchang-
ing the role of S and T', we conclude that the canonical isomorphism
has an inverse of norm at most one and thus is isometric. 0

This completes the proof of Theorem 2 stated in the Introduction.

2.4. Restriction and inflation. Let H be a closed subgroup of a
locally compact second countable group G, and let £ be a coefficient
G-module ; the inclusion H — G induces a dual Banach H-module
structure on E. The corresponding natural cohomology map in the
sense of Section 1.5 is called the restriction

res: HY (G, E) — HY (H, E).

By Theorem 1 and Lemma 1.5.6, a strong relatively injective resolution
for the H-module E is given by the spaces L2 (G" ™, F) viewed as H-
modules because GG is an amenable regular H-space. Therefore the
restriction map is induced by the inclusions

L2 (G B)S — LG, ). (n>0)

Applying the Corollary 2.3.2, it is apparent on this realization that the
restriction map does not increase the semi-norm.

For usual cohomology (resp. continuous cohomology) of groups, it
is well known that the restriction is injective if H is of finite index
(resp. co-compact with invariant measure on the quotient). In bounded
cohomology, we have a stronger statement :

PRrROPOSITION 2.4.1. Let H be a closed subgroup of a locally compact
second countable group G. If there is a (right) invariant mean on
L>*(H\G), then the restriction

res: ;b(Ga E) - H(.:b(Ha E)

is isometrically injective for every coefficient G-module (m, E).
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Proof. Recall that an invariant mean m is an invariant norm one linear
form on L*(H\G) satisfying m(1l) = 1. We shall show that there is a
transfer map

trans,, : HY (H, E) — H3 (G, E)
such that trans,, ores = Id.

First we claim that for every coefficient G-module F' there is an
adjointly natural G-equivariant mean

mp: L2 (G/H,F) — F.

By adjointly natural, we mean that any adjoint G-morphism a : F' —
F" of coefficient G-modules induces a commutative diagram

L2 (G/H, F) 2

LX(G/H, F') 2 p

Mind that mp itself is not adjoint in general.

Indeed, if for f € L2 (G/H, F) and u in the chosen predual F” of
F we define f, € L>(G/H) almost everywhere by f.(-) = (f(:)|u), we
obtain the desired mp by (mg(f)|u) = m(f,) ; as F” is separable, it
is enough to consider countably many elements u, settling the “almost
everywhere” problem. If now a : ' — F' is as above, with predual
@ B F’, we check for v € F” the relation

(amp(f)|v) = (mp(f)la’v) = m(fo,) = m(a.fy) = (mp(a.f)[v),
where the third equality follows from (f(-)|a’v) = ((a.f)(:)|v). This
proves the claim.

Now the functoriality implies that the restriction HY} (G, £) — HJ (H, E)
is realized, together with its operator semi-norm, by the inclusion ¢* of
complexes

0—=L3(G, B) —= L3.(G? B)Y —= L3(G* E)Y — -
E k A
0—=L3(G. B)T —= LE(G? E) — L3 (GP E)T —— -
We set I = L (G"™!, E) and consider the corresponding maps mzgn.

We define for every f € (F™)H the element 7" f of L% (G/H,F™) by
7" f(gH) = A:(g)f. One checks that the norm one map

™ (FMY — LZ(G/H, F™)
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ranges actually in L,(G/H, F™) ; moreover one has 7" = e¢. Com-
posing 7" with mpn, we see that we have obtained a norm one left
inverse transj, = mp~7" to the inclusion (" realizing the restriction
since
trans;t" = mpa7"" = mpne = Id.

On the other hand, we have 7"d" = (d").7" ! so that the naturality
claim above ensures that mge7® is a morphism of complexes because
the differentials d® are adjoint maps. Therefore it induces a left inverse
of semi-norm at most one

trans,, : HY (H, E) — H3 (G, E)
to the restriction, finishing the proof. O

As an example, we remark that if I' < GG is a non-uniform lattice,
then H?, (G) — Hp(T') is injective, while H2(G) — H*(T") needs not be
SO.

For any closed normal subgroup N <1 G and coefficient G-module
E, the G/N-action on H, (N, E) is defined as follows. Let S be any
regular G-space on which the N-action is amenable ; for instance, one
can take for S any amenable G-space. Then the coefficient G-modules
L2, (S™+1 E) are N-relatively injective. The complex

computing H, (N, £) according to Theorem 2 inherits a G /N-action.
It follows from the functoriality that the corresponding isometric action
on cohomology does not depend upon the choice of S. Using a classical

argument, one moreover shows that the same action is induced by the
G-action R on L2, (N™™!, E) defined by

(6) R(9)f(zo. ... zx) = 7(9)f(9 'wog. . ... g 'x1g).

Therefore the functoriality implies that the restriction ranges always
in the space of G/N-invariant classes. However, even for co-compact
subgroups, it is not clear whether the range of the restriction is actually
the whole of the G/N-invariants : the difficulty here comes from the
fact that the continuous bounded cohomology might not be Hausdorff,
so that one cannot integrate over GG/N unless this quotient is discrete.
This latter case will nevertheless be of use later :

PROPOSITION 2.4.2. Let N < G be a finite index closed normal sub-
group of the locally compact second countable group GG, and let E be
a coefficient G-module. Then the restriction

res: Zb(Gv E) - H?b(Nv E)G/N
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is an isometric isomorphism onto H? (N, E)¢/N for all n > 0.

Proof. The transfer is now just the averaging over G/N, exactly as in
usual cohomology (see e.g. Proposition I11.10.4 in [16]), so the classical
proof goes through without changes. (Il

3. DOUBLE ERGODICITY
3.1.  We fix notations for the following important classes :

DEFINITION 3.1.1. We write X2 for the class of all unitary coefficient
modules (i.e. continuous unitary representations in separable Hilbert
spaces). Likewise, X™! is the class of all reflexive coefficient modules
and X®P the class of all separable coefficient modules. Finally, Xt
denotes the class of all continuous coefficient modules.

We observe
(7) %Hilb C %reﬂ C xsep C xcont.

The only non trivial inclusion is the last one, which follows from Propo-
sition 1.1.4.

3.2. Basics on double ergodicity. We observe first that if F' £ 0 is
a coefficient G-module with trivial G-action and S a regular G-space,
then the G-action is ergodic on S x S if and only if S is doubly F-
ergodic : indeed it is enough to evaluate functions S x S — F on a
countable dense subset of the pre-dual of F'.

Moreover, one checks readily the

LEMMA 3.2.1. (i) Let X be a class of coefficient modules, G1,Gy lo-
cally compact groups and Sy, Sy doubly X-ergodic G- respectively
G-spaces. Then S = S; x Sy is a doubly X-ergodic G-space for
G = G1 X GQ.

(ii) Suppose X is closed under taking weak-* closed submodules (e.g.
any of Xt xsep xrefl or XHb) - Let G be a locally compact group,
H < G a closed normal subgroup and S a regular GG/ H-space. Then
the G/H action on S is doubly X-ergodic if and only if the G-action
on S defined via G — G /H is also doubly X-ergodic. U

In connection with (i), we recall that if the G;-action on S; is amenable
for i = 1,2 then the G-action on S is amenable. Concerning (ii), recall
that if S is an amenable G/ H-space, then the corresponding G-action
on S is amenable if and only if H is amenable.

The basic instances motivating our definition of double ergodicity
are consequences of the Mautner property :
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PROPOSITION 3.2.2. Let GG be a connected semi-simple real Lie group
and P < G a parabolic subgroup. Then the G action on G/ P is doubly
X _ergodic.

PROPOSITION 3.2.3. Let 7 be a locally finite regular or bi-regular tree,

G its group of automorphisms and P the stabilizer of a point at infinity.
Then the G-action on G/ P is doubly X" -ergodic.

Proof of Propositions 3.2.2 and 3.2.3. In both cases, the ordinary er-
godicity on G/P x G/P is just a consequence of a Bruhat decomposi-
tion. It is then the classical Mautner lemma that comes in to imply the
double XH_ergodicity : see I1.3 in [54] for the Lie group case and [52]
for the tree case. The proof extends without changes to X", U

An important closure property is the following.

PROPOSITION 3.2.4. Suppose X is either X% Xl or X3¢0 Let (& be
a locally compact second countable group, S a doubly X-ergodic G-
space and H < G a closed subgroup. If H\G admits a finite invariant
measure, then the H-action on S is also doubly X-ergodic.

The proof of the above proposition involves induction :

Let (m, ) be any coefficient H-module and G, H, S as in Proposi-
tion 3.2.4. Since w is isometric, any H-equivariant map f : G — F
yields a well defined function || f||r : H\G — R which is measurable
since F' has separable pre-dual. Now define the L? induction module
LQIndgF to be the space of those H-equivariant elements f for which
| /]| is in L*(H\G), endowed with the right translation G-action.

LEMMA 3.2.5. Suppose X is either XM X or X%P. Then the norm
(I £l7)|l2 turns L2Ind§F into a coefficient G-module which belongs
to the class X.

Proof of the lemma. Consider the separable pre-dual £’ of F' and re-
call that by the inclusions (7), the module F' is continuous. At the
level of Banach spaces, we have an isometric isomorphism LQIndgF =
L*(H\G, F). In the cases considered for X, F' has the Radon-Nikodym
property (see [28, VII 7]). Therefore, there is a canonical isometric
isomorphism L2(H\G, F) = L*(H\G, F")* (Theorem 1 in [28, TV 1]).
It remains only to verify that the G-action on L*Ind$ F is continuous,
because the above identification shows then at once that L2Ind$ F is a
coefficient module and is in X. But the separability of F' entails that
elements of L?Ind$ F are Bochner measurable, hence normic limits of
uniformly continuous maps G — F', whence the continuity. U
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We pick now a weak-* measurable H-equivariant map f : SxS — F.
The idea is to associate to f an induced map if on S x S ranging in
the space of H-equivariant maps G — F, defined by the formula

(8) if(s,t)(g) = f(gs, gt). (s,t€85,9€q)
Then if is obviously G-equivariant with respect to right translations in
the image. However we have still to show that if ranges in LQIndgF .
To this end, it is sufficient to show that H is ergodic on S X S, since
then ||f||r is constant and thus if is bounded, hence in L2Ind% F.

LEMMA 3.2.6. The H-action on S x S is ergodic.

Proof of the lemma. To test ergodicity, it is enough to consider a bounded
H-invariant measurable function b : S xS — C. This time ib ranges in
[2Ind$C = L?(H\G) and the assumption on S implies that ib, hence
also b, is essentially constant. O

Now we can present the

End of proof of Proposition 3.2.4. For an H-equivariant weak-* mea-
surable map f : S x S — F, the induced map if : S x S — L*Ind$F
is weak-* measurable by Fubini-Lebesgue, so by Lemma 3.2.5 we may
apply the assumption on S and conclude that if is essentially constant.
In consequence, its essential value in LQIndgF is of the form vl g for
some v € F and hence f is essentially constant too. 0

3.3. The group G*. First some notations.

If G is a group and H < G a subgroup, Zg(H) denotes the central-
izer of H in G while Z(H) is the centre of H. If H < G is normal, we
denote by Kg(H) the kernel of the representation G — Out(H) of G
in the group of outer automorphisms of H. Thus Kg(H) = H.Zg(H) =
Zo(H).H and there are canonical quotient maps Kq(H) — Zg(H)/Z(H)
and Kg(H) — H/Z(H).

Let G be a locally compact group. The closure properties of the
class of amenable locally compact groups imply that there is a unique
maximal amenable closed normal subgroup A(G) < G containing all
amenable closed normal subgroups of G. For a topological group G,
the identity component is denoted by G°.

DEFINITION 3.3.1. Let G be a locally compact group. We define G* =
7Y (KL(L")), where L = G/A(G) and 7 : G — L is the quotient map.

In other words, G* <1 G is the kernel of the representation G —
Out(L%) defined through 7 : G — L. Therefore, if G is connected,
we have G* = @ because the map L — Out(L") is trivial in view
of L = L. On the other extreme, if G is totally disconnected (for
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instance if G is discrete), we have again G* = G : indeed, L is also
totally disconnected (by Corollaire 3 in [13, ITT §4 N° 6]) ; therefore L°
is trivial and G* = G.

LEMMA 3.3.2. Let M be a closed normal subgroup of L = G/A(G).
Then A(M) is trivial.

Proof. The map 7 : G — L yields a topological group extension
1 — AG) N7 (AM)) — 7 (AM)) — AM) — 1.

The two extreme terms are amenable, hence 7! (A(M )) is amenable.
Being further normal in G, it is contained in A(G). Therefore A(M) =
1. O

Using the solution to Hilbert’s fifth problem [63] and the finiteness
of the group of outer automorphisms of connected semi-simple adjoint
Lie groups without compact factors, we deduce :

THEOREM 3.3.3. Let GG be a locally compact group and define L, G*
as above.

(i) G* is a topologically characteristic finite index open subgroup

of (.

(ii) The group G*/A(G) = K1(L") is the topological direct product
L. ZL(LY), and L is a connected semi-simple adjoint real Lie
group without compact factors.

Proof. Since L° is a connected locally compact group, there is by [63,
Theorem 4.6] a compact normal subgroup K <1 L such that L°/K is
a connected real Lie group. Now A(L°) = 1 (Lemma 3.3.2) implies
K =1, hence L° is a connected real Lie group. The triviality of A(L°)
implies further that LY is semi-simple, adjoint and without compact
factors. In this situation, the group Out(LP) is finite, so G* is open of
finite index in G. Since L° has trivial centre, the product L°.Zy (L) is
direct. It is easy to see that G* is topologically characteristic. U

3.4. The totally disconnected case. Throughout this section, we
let G be a compactly generated totally disconnected locally compact
group.

Let U < G be a compact open subgroup (which exists by Corollaire 1
in [13, IIT §4 N° 6]). Fix a compact generating set C' of G such that
generality C' = UCU. Define the graph g = (V, F) as follows (we
use J.-P. Serre’s conventions [67] for graphs). The set of vertices is
V = G/U and the set of edges is £ = E, LIE,, where

E, = {(gU,ch) g€ G, ce C’}
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with obvious boundary maps. The graph g is connected and regular
of finite degree r = |C/U|. Let 7, be a r-regular tree and 7, — g a
simplicial universal covering projection. The kernel of the G-action on
gis K =) gec 9U g~ !, which is compact and normal. For the group
G1 = G/K, we have an exact sequence

1 —m(g) — G — G, — 1,

where G is co-compact in Aut(7,). Let 057, be the boundary at infinity
of the tree 7, with its Aut(7Z,)-action and let v, be the unique Stab(xg)-
invariant probability measure on 7, where Stab(xz,) is the stabilizer in
Aut(7,) of some vertex xy in 7Z,. We define now the probability G-
space (B,v) as the point realization of L®(9,7,)™®. Recall that B
is a regular GG1-space given with a canonical C *-algebra isomorphism
between L>®(B) and the weak-* closed sub- C *-algebra L>(04,7,)™(®
of L>®(0x7,), the isomorphism being induced by a measurable equi-
variant map 0,,7, — B. We consider B as a regular G-space via the
canonical map G — Gy.

PROPOSITION 3.4.1.

(i) The G-action on B is amenable.
(ii) The G-action on B is doubly X*P-ergodic.

(iii) The G-space B is the Poisson boundary of an étalée measure

on (.

Proof. The Aut(7,)-action on 0y7, is amenable, because 057, is a
homogeneous space with amenable stabilizers. Thus the G-action is
also amenable, and this implies that the G; = G/m;(g)-action on (B, v)
is amenable (we have pointed out in Remark 2.2.6 how this basic fact
can be re-interpreted). Therefore, the G-action is amenable since the
kernel K of G — (1 is compact hence amenable.

As for point (ii), it is enough (Lemma 3.2.1) to show that the G-
action on B is doubly X*P-ergodic. If f : Bx B — F'is a Gy-equivariant
weak-* measurable map to a separable coefficient Gi-module F', we pull
back through 0,7, — B and obtain a weak-* measurable G-equivariant
[ 0T, X 0T, — F. Applying successively Proposition 3.2.4 and
Proposition 3.2.3, we conclude that f’ is essentially constant. Hence f
is essentially constant.

For (iii), it is enough to show that B is the Poisson boundary of
an étalée measure on (G;. The space 0,7, is the Poisson boundary
of an étalée probability measure g on Aut(7.), and thus also of an

an étalée probability measure ji on the co-compact subgroup GG. The
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projection p : G — G, induces an étalée measure p«ft on G, and it is
straightforward to check that f € L>°(Gh) is p.fi-harmonic if and only

if p*f is a j-harmonic function in L*°(G). Thus, p* induces an iso-
morphism between the m(g)-invariant fi-harmonic function in L>®(G)
and the p,fi-harmonic functions in L>°(G1). By the Poisson transform
isomorphism of the latter with L>°(B), this realizes B as the Poisson

boundary of p,/i. O

3.5. The general case.

End of proof of Theorem 6. Let G be alocally compact compactly gen-
erated group and adopt the notations of Theorem 3.3.3. Since G*
is closed of finite index in G, it is also compactly generated. Hence
Kr(L°) = G*/A(G) is compactly generated. By the second point of
Theorem 3.3.3, Kz (L°) = L°.Z (L) is a direct product, which implies
that Zr(L°) = Kr(L°)/L° is a totally disconnected compactly gener-
ated locally compact group. Therefore there is an amenable doubly
XseP_ergodic regular Z,(L")-space B by Proposition 3.4.1.

On the other hand, we know that L° is a connected semi-simple
adjoint real Lie group without compact factors. Thus Proposition 3.2.2
provides us with an amenable regular L°-space which is doubly Xc¢®t-
ergodic (this space is of course nothing but the Furstenberg boundary
of LY).

Applying Lemma 3.2.1, we conclude that the direct product K (L°) =
L°.Z (L") admits an amenable regular K,(L°)-space S which is doubly
X*P-ergodic.

We view now S as a G*-space via the canonical map G* — G*/A(G) =
Kr(L°) and conclude by Lemma 3.2.1 that S is a doubly X**P-er-
godic G*-space. Moreover, the G*-action is amenable because A(G)
is amenable. O

REMARK 3.5.1. In the above proof, the L%-space provided by Proposi-
tion 3.2.2 is the Poisson boundary of an étalée measure since it is just
the classical Furstenberg boundary of a semi-simple Lie group. On
the other hand, the corresponding statement for the Zr(L")-space B
is point (iii) in Proposition 3.4.1. Passing to the product, the Ky (L°)-
space S is the Poisson boundary of an étalée measure on Kp(LY). Tt
is a result of Kaimanovich [51, Thm 2| that this statement passes to
amenable extensions ; since G* is by definition an amenable extension
of Kr(L°), we deduce that S is indeed the Poisson boundary of an
étalée measure on G*.

As a first application of Theorem 6, we give the
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Proof of Corollary 9. Retain the notation of Corollary 9 and let G* <G
and S be as in Theorem 6. By Theorem 2, the spaces HY (G*, E) and
H? (G*, F') together with the map induced by o : E — F are realized
on the complexes

0—>Lw*a1t(SvE)G*—> w>s<a1t(S2 ) *—> w>s<a1t(S3 ) A
0—>LW* alt(sv F) —>LW* alt(527F) “ —>Lw* alt(SS‘)F)G* -

where «, is post-composition by «, and thus is injective in all de-
grees. The double X*P-ergodicity 1mphes L 1 (S% )Y = 0 and

hence L, 1, (S, E)Y" is zero, too. As a first consequence, we have the
vanishing of HY, (G*, F) and of H}, (G*, E). A second consequence is
that H (G*, F ) is identified as a closed subspace of L3, (5% F)¢
and likewise H2 (G*, E) as closed subspace of L, (5% E)°". Thls,
together with the injectivity of a., proves the Corollary for G*. The
continuity and injectivity of the restriction from G to G* (Proposi-

tion 2.4.1 or 2.4.2) implies that the corollary holds also for G. O

wk,alt

3.6. Induction. We proceed now to establish Corollary 11, which is
an analogue of the Fckmann-Shapiro induction lemma (compare [7,
Théoreme 8.7]). The straightforward L> induction isomorphism in
(continuous) bounded cohomology would take us away from continu-
ous coefficient modules, therefore we have to use L? induction. This is
defined as follows. Let H < G be a closed subgroup of the locally com-
pact second countable group G such that H\G admits a finite invariant
measure, F' a separable coefficient H-module and S an amenable G-
space. Then we define a cochain map

i: L (S™ )Y — 12 (S™ [2IndG F)Y

by the formula (8) but for all n > 0. In general, one cannot expect any
isomorphism in this setting ; however, the double ergodicity implies :

PROPOSITION 3.6.1. Let G be a compactly generated locally compact
second countable group and H < G a closed subgroup such that G/H
has finite invariant measure. Let F' be a separable coefficient H-mod-
ule. Then the L? induction

i: H(H, F) — H% (G, L*Ind§ F)

is injective.
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Proof. Let G* < G and S be as in Theorem 6 and set H' = H N G*.
Since G* is open in G, there is a restriction morphism

r: LPIndS F — L*nd$% F
making the following diagram commutative

H2,(H, F) —— H2,(G, [*nd§; F)

lres lT*I‘eS

H2,(H', F) —— 12, (G*, L?Ind%, F)

Since H' is of finite index in H, the left restriction arrow is injec-
tive (Proposition 2.4.2). Therefore, it is enough to show the injec-
tivity of the lower induction map. An element of its kernel is repre-
sented by a map f in L2 (S F)# such that if = db for some b in
L2,(S?, LAnd$, F)¢". By Fubini-Lebesgue, there is an H'-equivariant
weak-* measurable map o : S? — F such that i’ = b holds almost
everywhere, and hence f = db/. It remains only to show that b is
essentially bounded. But H’ has finite invariant co-volume in G*, so
by Lemma 3.2.6 the diagonal H'-action on S x S is ergodic. Since the
map ||V/]|F : S? — R is measurable and H’-invariant, we conclude that
the norm of ¥’ is essentially constant, hence bounded. 0

4. A LYNDON-HOCHSCHILD-SERRE SEQUENCE

4.1. Setup. Since we deal with second countable and hence o-compact
groups, it is a well known consequence of Baire’s category theorem that
the sequence 1 - N - G — @Q — 1 is topologically isomorphic to
1 - (N) = G — G/u(N) — 1 (see e.g. the Corollary 3.11 in [29,
II1]). Thus we suppose from now on that N is a normal subgroup of G
and that @) is the quotient.

The Lemma 4.1.2 below will serve as pattern for the proof of the
following :

THEOREM 4.1.1. Let GG be a locally compact second countable group,
N <1 G a closed subgroup and @ = G /N the quotient. Let (m, F) be a
coefficient G-module.

If HY (N, F) = 0, then inflation and restriction fit into an exact
sequence

i’ Hgb(Gv F) i Hgb(N' F)Q -

— H3,(Q, FN) 25 HE, (G, F).
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Observe that we make no assumption as to whether the spaces H%
are Hausdorff.

We use standard notations for spectral sequences, see [36] Section I11.7.

Let S be an amenable regular G-space and 1" an amenable regular Q-
space. We consider also F as a coefficient N-module, FV as a coefficient
-module, S as an amenable N-space and T as a regular G-space. We
define a first quadrant double complex (L**, 1, d) as follows. For all
p,q > 0 set

LP = [2° (SPF s Tt [)C,
Define id : LP9 — [PTha by 14 = ?:é(—l)jdj, where d; simply
omits the jth variable, and similarly define #d : LP4 — [Pa+l by
g — STPHIT2(_1)id;. The total differential ' + d turns the graded

Jj=p+1
total space

T = @ L
p+q=n

into a cochain complex. The horizontal and vertical filtrations are
respectively

FrTLr= @ e, "FTTLY = 6 L
ptg=n ptg=n
p>m q>m
We get thus two first quadrant spectral sequences ‘EY* and "EJ® start-
ing respectively with

IEII)’q _ Hp7q(Lp,o’ Hd) HEIIW _ Hq’p(L°’p, Id)

’

and converging both (in the category of linear spaces) to the cohomol-
ogy of the total complex. Recall that for both spectral sequences the
differentials are of the form

. P4 p+r,q—r+1
d: EPT— FP ,

so that in particular on ‘E}* the differential is induced by d and on
IR by “d. We recall that any first quadrant spectral sequence E*
converges as follows : for any » > p+ 1,¢+ 2 one has E2? = EP¢ and
hence in particular for all s > 1 the differential E»>*~! — E2° fits into
the exact sequence

(9) 0 — Eg’os_l — Eg’s_l — EZ’O N Ei’oo — 0.

With the standard notation EZ = @p +g=n R, this implies immedi-
ately the
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LEMMA 4.1.2. Let E3** be a first quadrant spectral sequence with EI’l =
0. Then there is a canonical exact sequence

0— Ei’oo — Ego — Eg’2 — Eg’o — E‘;’O
Proof. The assumption implies EL! = 0, so that the canonical injection
E20 — E2_ fits into the exact sequence

0— E2 — E2 — E»? — 0.

Setting s = 3 in (9) we have

0— ng — Eg’2 — Eg,o — Egéo — 0.
Finally, we have the canonical inclusion 0 — E%? — E3 . Connecting
the three exact sequences yields the statement. 0

4.2. The first tableaux.

LEMMA 4.2.1. The first spectral sequence 'E.° collapses in the first
tableau and converges to the continuous bounded cohomology of G
with coefficients in F.

Proof. Since N acts trivially on T, we have the identification
[P e [ (Tq+1, L2 (S, F)N)Q.

Since the Q-action on 7' is amenable, this yields with “d a complex as
in Theorem 2. Hence there is a canonical isomorphism

LY = 1Y, (Q L (s )Y,

By Theorem 1, L, (ST F) is relatively injective for G and hence
L2 (SPHL )N is relatively injective for (. This implies by Corol-
lary 1.5.5 that ‘ED? = 0 unless ¢ = 0, proving that E}* collapses,
hence this spectral sequence is stationary from the second tableau on.
Thus it remains to identify ‘B = 'E"" = IE2°. To this end, observe
that

n Q
" 2 1Y (Qu L (8™ PP ) = (L™ P)Y) = Ln(sm, F)°
and that the differential E"" — E"’ is induced by d, yielding again
a complex as in Theorem 2. We conclude By He (G, F). O

PROPOSITION 4.2.2. Let T = Q.
(i) There are canonical isomorphisms

TEbl > g (Q, FN)  and  TEST = HY (N, F)@. (p,q > 0)
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(ii) If for some g the space H (N, F') is Hausdorff, then there is a
canonical isomorphism

T = 1Y, (Q.HE,(N. F)). (v > 0)

(iii) If HY, (N, F) = 0, then "EY" = 0 and there is a canonical iso-
morphism
’0 ~U
"By = HE,(Q. FY). (p>0)

LEMMA 4.2.3. Let A% B2 C bean adjoint sequence of ()-morphisms
of coefficient Q-modules with fa = 0. If a(A) is closed, then the
homology of

L2 Q™ A9 2= L Q™ B)? 2 L (@™, 0)%
is canonically isomorphic to L2 (Q™ Kerf3/a(A ))Q for all n > 0.

Proof of the lemma. By the closed range theorem, a(A) — Kerf —
Kerg3/a(A) is adjoint ; now use Lemma 1.6.3. O

Proof of Proposition 4.2.2. Point (i) : the case of HEII”0 is contained
in (ii) because HY, (N, F) = FY is Hausdorff. The term ZE{"? is defined
by
o) 00 +1 N Q Td,
RN 5 (QL (ST, ) ) .
which is intertwined with
LS9, F)Y = L (ST, F)Y =5 L (572, )Y,
by the isomorphism U defined in the proof of Lemma 1.6.3. Hence
(Theorem 2) we have ZE* & HY (N, F). The term ZES? is by defini-
tion the kernel of the differential d : “E>"" — “E}". Under the isomor-
phism UY, for a cochain f € L2, (S9, F)V the class of df in g g
represented by the map g — ¢f— f, so that indeed ZES? = HY (N, F)©.
Point (i) : the term 7E]? is defined by
R (A LN A R
so by Lemma 4.2.3 and Theorem 2 we have a canonical isomorphism
IEPT o 122 (QPH HY (N, F))Q This isomorphism intertwines
Q
. H_d> L, <Qp+legb(N7 F)> H_d>
with UEII’*l’q s D HEzl’H’q. Applying Theorem 2 once again we
conclude 7B =~ HY, (Q,HY, (N, F)).
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Point (iii) : assume now HY (N, F) = 0. The above consideration
gives “EP'' = 0 whence “EP" = 0. Since by definition HEg’O is the
(algebraic) cokernel of HEg_z’l — HEQ’O we have IIEg’O = HEg’O. O

We can now complete the

Proof of Theorem 4.1.1. Take T = () and apply Proposition 4.2.2.
Consider the exact sequence of Lemma 4.1.2 for 7E.®. We have 7E" =
IE" which is isomorphic to H? (G, F) by Lemma 4.2.1, so the terms
IE? and “E? are identified. Since 2B = ZE2° this term is given by
Proposition 4.2.2 point (iii). The same point identifies HEg’O. As for
the term “E3”, it is given as the cohomology of

(10) IIE;273 _ IIE272 _ IIE;’I.

The first term here vanishes. On the other hand, H (N, F) = 0 is
indeed Hausdorff, so Proposition 4.2.2 point (ii) identifies ZE>" as
H2 (Q,0) = 0. Thus (10) degencrates and “Eg” = ZE0? which is
now identified by the first point of Proposition 4.2.2. Thus we have an
exact sequence of the required type ; unravelling the identifications, we
see that except for HEg’2 — HEg’O, the maps come from inflation and
restriction. O

We point out a particular case :

COROLLARY 4.2.4. Suppose G = N x @ is a (topological) semi-direct
product of the locally compact second countable groups N,(Q. Let
(m, F') be a coefficient G-module.

IfHL (N, F') =0, then we have the exact sequence

0 — H%,(Q, FN) 2 H2 (G, F) = H% (N, F)? — 0.

Proof. There is a topological group homomorphism o : ) — G with
po = Id, where p is the canonical map G — (. The inflation is
precisely the map induced by p. Therefore, by contravariance, the map
induced by o is a left inverse for the inflation, so that the inflation is
injective. By exactness at H? (Q, ') in Theorem 4.1.1, we deduce that
the map H% (N, F)? — H3, (Q, FN) vanishes, whence the statement.

O

4.3. More on H% . An important consequence of double ergodicity is
the following.
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THEOREM 4.3.1. Let GG be a locally compact second countable group,
N < G a compactly generated closed normal subgroup and (m, F') a
separable coefficient G-module.

Then the inclusion F#¢™) — F induces a canonical isometric iden-
tification H2 (N, FZ¢(N)G =~ H2, (N, F)€.

The main step is :

PROPOSITION 4.3.2. Let G be a locally compact second countable
group, N < G a closed normal subgroup and (m, F') a coefficient G-
module.

If N admits an amenable doubly F'-ergodic regular space S, then
the inclusion F'%¢(N) — F induces a canonical isometric identification
H2, (N, FZ6() & 2, (N, F) o),

Proof of Proposition 4.3.2. We realize H? (N, F') on the complex L, (N®, F)".
The Zg(N)-action 7 on F is by N-morphisms and hence induces a
“coefficient” action on Hg (N, F'). On the other hand, the natural G-

action on H® (N, F') is given by the operator R of given in Section 2.4,
equation (6). Yet this operator coincides with 7 on Zg(N), so that it
induces also the coefficient action when restricted to Zg(N).

It remains thus to show that any class w € H2 (N, F') invariant
under the coefficient Zg(NV)-action is represented by a cocycle ranging
in FZeN) We realize H% (N, F') on the complex L2, (S®, F)N. Thus
w can be represented by a cocycle f € L(S3 F)V, and for each
2z € Zg(N) there is b, € L>=,(S?, )N with n(z) o f = f+db.. One can
take f and b, alternating, so that b, = 0 by double F-ergodicity and
hence f ranges in F'%¢(N), O

Proof of Theorem 4.3.1. We let N* < N be as in Theorem 6. We
have then the following natural diagram, where «, 3,7 are the maps
induced by the corresponding inclusions of coefficients (observe that
Za(N*) D Zg(N) implies FZ¢W") c pZeN)) The theorem is about
a.

H2, (I, F260)6 - HZ, (N, F)S

%lres resl%

Hgb(N*,FZG(N))G B Hgb(N*,FZG(N*))G ; sz(N*,F)G

The map n is an isomorphism by Proposition 4.3.2, and the restric-
tions are isomorphisms by Proposition 2.4.2. Since all maps above are
obtained either by covariance or contravariance, all possible commu-
tation relations hold. Thus it is enough to show that § is bijective.
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But res = By~ 'resa implies surjectivity, while n = resares™!f entails
injectivity. U

We can now give the

Proof of Theorem 13. By Corollary 9, we have HY, (N, F') = 0, so Theo-
rem 4.1.1 applies. The Theorem 4.3.1 yields H2 (N, F)¢ = H2 (N, F#¢(N))G,
finishing the proof. U

4.4. Product formulae. A first immediate application of the above
results is the following :

COROLLARY 4.4.1. Let Gy, ..., G,, be compactly generated locally com-
pact second countable groups and let G = H;'L:1 G;. Let (m,F) be a
separable coefficient G-module. Then the inflation and restriction maps
vield a canonical topological isomorphism

H% (G, F) @H Gy, F€),

where G = [[,,; Gi.

Proof. The case n = 1 is void. For n = 2, combine Corollary 4.2.4 with
Theorem 4.3.1 to obtain

(11) H2, (G x G, F) =2 HE,(Gh, FO2) @ HE, (G, FOY).

If n > 2, an induction over n reduces the statement to successive
applications of the formula (11). O

This statement implies a strong restriction on the range of cohomol-
ogy classes for a product. In order to formulate this (Corollary 4.4.3
below), we need the

LEMMA 4.4.2. Keep the notation of Corollary 4.4.1. Then Z?:o F%
is weak-* closed in F, so that it is again a coefficient G-module.

Proof. Pick v in the weak-* closure of Zn F% and take a sequence

(vF)ken of F% such that v* = PRI converges weak-* to v. For any
k_ ok

g € Gy, we have 7(g)v* —v* = 7(g)vF — v¥, which is in F and yet

converges to 7(g)v—v. Since F'C1 is weak-* closed, we conclude that for
every g € G the difference 7(g)v —v is in F1. This yields a 1-cocycle
for H, (G, F©1). This cohomology group vanishes by Corollary 9, so
that there is u; € F& with 7(g)v — v = 7(g)u; — u; for all g € Gy,
and therefore v — u; € FO.
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We may now repeat the argument with G, x --- x @, instead of
G, FC instead of F and v — u; replacing v. This way we obtain by
induction that there are u; € F% for j =1,...,n— 1 such that

V—Ul —Ug...— Up_] E FGlﬂFG2ﬂ...ﬂFG"—1:FGIn,
. G’
and hence v is in Y7 5. O

COROLLARY 4.4.3. Keep the notation of Corollary 4.4.1. There is a
canonical topological isomorphism

Hgb(Gv F) = Hgb (G Z?:l FG;) .
Proof. Apply Corollary 4.4.1 successively to the coefficient G-modules

Fand Y0 F%. O
Proof of Theorem 14. The Corollaries 4.4.1 and 4.4.3 yield topological
isomorphisms between the terms of Theorem 14. O

Proof of Corollary 15. The irreducibility of the G-action on M implies
that for all j one has L2(M)% = C1L,,. Therefore, considering the
diagram induced by Cll,; C L=(M) C L*(M), the Theorem 14 implies
that the upper arrow

HZ,(G) H2, (G, LA(M))

\/

HG, (G, L (M)

is an isomorphism. On the other hand, the inclusion L>(M) C L*(M)
is an adjoint map and L?*(M) is separable, so that by Corollary 9 the
right arrow is injective. Hence all arrows are isomorphisms. U

REMARK 4.4.4. In the statement of Theorems 14, the formula
(12) H% (G, F) @H (G, F9)

actually holds also if there is one non compactly generated factor in
the product

Gy %X x G,y

Indeed, the Lyndon-Hochschild-Serre sequence of Theorem 13 requires
only the kernel of the extension to be compactly generated. There-
fore, the induction used to prove (12) can be carried out by taking
successively all compactly generated groups as kernels, the only non
compactly generated one remaining as last quotient.
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5. REMAINING PROOFS

5.1. Proof of Theorem 16. We turn now to the proof of Theorem 16
in the generality of Remark 19. In other words, G, are compactly
generated locally compact second countable groups (j = 1,...,n) and
H <G =G x---G, is a closed subgroup such that G/H has finite
invariant measure and with pr;(H) = Gj for all j. Let (7, F) be a
separable coefficient H-module. The condition on pr;(H) implies that
there is a unique maximal H-submodule of I’ such that the restriction
7|p, extends continuously to a G-representation 7; factoring through

G — Gj. Recall the notation G = [[_; G:.
LEMMA 5.1.1. There is a natural isometric isomorphism of GG-modules
Fy = (L°Ind§ F) .

Proof. Define a map F; — L?Ind% F by v — f,, where f,(g) = 7;(g)v
is indeed H-equivariant. Since ; factors through G, the map f, is
G;-invariant under right translation. Moreover, the map v — f, is
G-equivariant and it preserves the norm since 7; is isometric and the
invariant measure on H\G is normalized. It remains thus to show
surjectivity onto the G-invariants. If f : G — F is in (LQIndgF )GQ,
then by Fubini-Lebesgue it is represented by a pr;(H )-equivariant map
G; — I, which has to be of the form f, for some v € F}; by the density
of pr;(H), since F is continuous by the inclusions (7). O

The Lemma 4.4.2 implies the following

LEMMA 5.1.2. The sum )7 Fj is weak-* closed in IV, so that it is
again a coeflicient G-module extending the H-action.

Proof. The weak-* continuous G-action on the Fj extends to Z?:o F;
and hence to its weak-* closure that we shall denote by Fl.. Applying
Lemma 4.4.2 to Fy, yields the statement since (Fi )% = F}. O

End of proof of Theorem 16. We consider the following diagram :

HZ,(H. F) i HZ, (G, L’Ind F)
o D HE (G, )

/

Hgb (Hv Z?:l FJ) ~— Hgb (G Z?:l FJ)
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On the right we have a commutative triangle of isomorphisms by Corol-
laries 4.4.1 and 4.4.3, with the identification provided by Lemma 5.1.1
inducing the map a. The left square is commutative because the for-
mula for a coincides with the composition of restriction and induction.
Thus i is surjective. On the other hand, it is injective by Proposi-
tion 3.6.1. Being continuous, it is thus a topological isomorphism be-
cause Corollary 9 allows us to apply the open mapping theorem. [

5.2. Higher rank lattices. In this section, we present the proof of
Theorems 20 and 21. The main additional ingredient is the following
proposition, based on results of Margulis and Lubotzky-Mozes-Raghu-
nathan in a way similar to Shalom’s [69].

PROPOSITION 5.2.1. Let I',G be as in Theorem 20 or Theorem 21
and let (m,$) be any unitary I'-representation. Then the induction
H2(T, ) — H2,(G, L*IndY$H) maps EHE (T, §) to EHZ (G, L’ Ind&$).

Proof. A class [w] in the kernel EH (T, $) is given by a I'-equivariant
map « : I'? — § such that w = da is bounded. We realize induction as
follows. Fix a Borelian fundamental domain F C G for the left ['-action
and denote by o : G — I the associated I'-equivariant retraction. Now
define

ia: G? — L, Indf9,  ia(go. 91)(9) = a(a(gg). 0(991)).

We know that dia ranges in L2Ind$ §) since it coincides with iw (defined
by the analogous formula), and since w is bounded. Therefore, what
we have to show is that ia actually ranges also in LQIndlgf), that is :

/}_HQ(U(QQO), 0(991))

for all gg, g1 (m a left Haar measure). Equivalently, setting ¥ (v) =
a(y,e) and k(g,¢") = o(g) to(gg’), we must show

[Iebo)fime) <. twea

By the conclusion of Section 1X.3 in Margulis’ book [54], T" is finitely
generated ; we fix a finite generating set S and denote by ¢ the corre-
sponding word length on I'. Since for all 7,7, € ' we have

[¥(v071) = ¥ (30) = 7(v0) ()| < llwe.
one can check by induction on the word length of v € I that

[b()Il < Clly)  for €= max [¢(s)]| + [|wl|oc-

2
dm(g) < o0
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Therefore the above integral is dominated by

C/jf(ff(% )" dm(g).

In [69] (cf. also [68]), Y. Shalom shows how to use the work [53] of
A. Lubotzky, S. Mozes and M.S. Raghunathan in order to deduce that
this last integral is finite for lattices as those considered here. ([l

Let us begin with the

Proof of Theorem 21. Retain the notation of Theorem 21. We denote
by L3 .Ind&$ the Fréchet space defined as L2Ind$$), except that the
maps are only required to be locally square-summable. The Blanc-
Borel-Wallach version of the Eckmann-Shapiro lemma (see [8]) states

that cochain induction yields an isomorphism from H*(T', $3) onto H? (G, L

Ind&$).

However, in general, the induction map does not factor through H? (G, L*Ind$$).

By contrast, the induction of a bounded cochain ranges in LQInd?ﬁ
since I' has finite co-volume. This situation accounts for the miss-
ing arrow in the following commutative diagram, in which the space
H% (G, L2 Ind%$) is only added for more symmetry ; we define it ad
hoc using cochains which are bounded for the canonical bornology of

the Fréchet space L2 IndS$.

loc

HZ(T, §) HZ (G, L2 Ind{$)

\ / |

HZ, (G, L*Ind{ )

|

H2(G, LTndS $)

T

H2(T, ) H2(G, L2 Ind&H)

loc

Our proof consists in showing that the diagonal path from HZ(T, §) to
H2(G, L2 Ind¥$) is injective. We have shown in [20] Proposition 4.2
that the induction from H(I', §) to H (G, L2Ind$ $) is injective (with-
out co-compactness assumption). The injectivity of the map from
H2, (G, L?Ind%$) to H2(G, L*Ind$H) is Proposition 6.2 in [20] ; no-
tice here that the co-compactness assumption is not used in the proof
of this Proposition 6.2.

Therefore, the Proposition 5.2.1 completes the proof that the diago-

nal path is injective. 0
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Proof of Theorem 20. Retain the notation of Theorem 20. In view of
Proposition 5.2.1, it remains to show that the comparison map

(13) H2 (G, L’IndS$) — H2(G, LndEH)
is injective. We split L*Ind&$) as (LQIndffﬁ)G @ £, where £ is the
orthogonal complement to the G-invariants, and handle the summands

separately. The G-invariant part is dealt with by our Lemma 6.1 in [20].
As for £, we write for all € A

£, = £llszaGalks)
According to Theorem 14, we have

H3,(G,8) = EHHZ(G, La).

a€A

Since $ is non degenerate, we have £, = 0 whenever the k,-rank of G,
is one. For the higher rank factors, one repeats exactly the arguments
of our Proposition 6.2 in [20] and concludes that the comparison map

Pz G. £.) — PHAG, L)

a€A a€A

is injective. Now the injectivity of (13) follows readily. O
5.3. Corollaries.

Proof of Corollary 22. In this situation, the Theorem 16 implies
H%(F) = @ sz(Gj) =0,
j=1

so that e, g vanishes in H% (I, R). Considering the coefficient exact
sequence pointed out by S. Gersten [37]

(14) oo — HY(T,8") — H}(I',Z) — H{(I,R) — - -

we see that e, must be in the image of H'(I',S'), so that by E. Ghys’
criterion the action is semi-conjugated to an action by rotations. [

Proof of Corollary 23. Consider the commutative diagram

Hy(I) === HE,(G)

N

H(I') <—HZ(G)

The upper restriction map is an isomorphism by Theorem 16. It is
well known that the lower restriction map is injective because I' is co-
compact. If now f: ' — C is a quasimorphism, it follows from this
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diagram that there is a continuous quasimorphism F' : G — C and
h € (>°(T") such that §(f +h) = 0 F|rxr. In particular, x = f+h—F is
in Hom(I", C). By Y. Shalom’s result (Theorem 0.8 in [69]), x extends
to a continuous homomorphism X : G — C. Pick now any H € C,(G)
with H|r = h. Then fe = F'— H + X is the desired extension. O

Proof of Corollary 24. We have shown in [20, Lemma 6.1] that the nat-
ural map H? (G, (ka)) — H2(Gu(k,)) is injective for any a. On the
other hand, the right hand side is known : it vanishes unless the as-
sociated symmetric space is Hermitian, in which case it is one dimen-
sional and generated by a bounded cocycle, see [43]. This determines
H? (G, (k,)), and hence, by Theorem 16, it determines also at once
H? (G) and H3(T). O

Proof of Corollary 26. Let G; = pr;(I'). Using a Cartan decomposi-
tion for GG;, we have shown in [20, Lemma 7.1] that the natural map
HZ (G;) — H%(G)) is injective. However, the right hand side vanishes
because (G; acts properly on the tree 7; (this vanishing is a particular
case of Lemma 1.12 in [8, chap. X]). Thus H2 (G;) = 0 for all j and we
conclude with Theorem 16. OJ

Proof of Corollary 33. Take first I' arbitrary. Denoting by EH} the
kernel of the maps H} — H®, the long exact sequence sketched at (14)
yields by a diagram chase the exact sequence

0 — HY(T,R)/H(I',Z) — EH;(I',Z) — EH}(I',R) — 0.

Since moreover EHY (I') =2 EHZ, (I', R)?, the equivalence of (a) and (b)
preceding Corollary 33 follows from the fact that 'y, is torsion if and
only if the map H'(I',Z) — H'(I',R) is surjective. Thus, turning
back to our particular I' and in view of Theorem 21, Corollary 24,
Corollary 26 and Theorem 28, it remains only to justify that T'ay, is
torsion. In the first and third settings, this is a result of Margulis,
while in the second the additional co-compactness assumption allow us
to apply Shalom’s result [69, Theorem 0.8] to the same end. (We have
taken Theorem 28 for granted since its proof below is independent of
Corollary 33.) O

5.4. Proof of Theorem 28. We may and do suppose that G is K-
almost simple by applying the product formula of Theorem 14.

We write V for the set of places of K and A for the ring of adeles.
We denote by V., the finite set of Archimedean places and by A the
finite set of places at which G is anisotropic ; we put Z = V\ A. For any
U C YV let Gy be the group of all elements of G(A ) which are trivial
outside Y. Thus for instance G4 is compact and G(Ag) = Gz X G 4.
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The main additional ingredient that we need for Theorem 28 is the
following exhaustion principle, which makes use of the Kolmogorov
zero-one law :

ProrPOsSITION 5.4.1. Let B C Z be a set of places with BN V,, = @.
Then H? (Gg) = 0.

The point here is of course that B needs not be finite.

Proof of the proposition. For every v € V, fix a minimal parabolic sub-
group P, of G(K,). Define for & C V the direct product

Su =[] G(K.)/P..
veU
where G(K,)/P, are considered as measure spaces and Sy is endowed
with the product measure. The Gg-action on Sy is transitive because
G5 contains the unrestricted product of a choice of maximal compact
subgroups in each of the G(K,) as v ranges over B. Thus Sz is a
homogeneous G-space with amenable isotropy groups, and hence the
action is amenable. A class [w] in H? (Gp) is therefore (Theorem 2)
given by an alternating measurable bounded Gg-invariant cocycle

w SBXSBXSB—>R.

For every finite subset F C B, we have H% (Gx) = 0. Indeed, by
Theorem 14 this space is the direct sum of the local terms H% (G(K,))
over v € F, and we have shown in [20, Lemma 7.1] that the latter space
injects into H2(G(K,)), which vanishes since v is non Archimedean by
the assumption on B.

We may realize the restriction map

Hgb(GB) - sz(Gf) =0
associated to G — G by the inclusion
L35(Sg)7" — LR(S8)7,
so that there is a bounded G z-invariant measurable function
ar . SB X SB — R

with dar = w. We claim that ar does not depend on the first factor
in the decomposition

Sg = S% X S p-
Indeed, the diagonal G z-action on S% is ergodic because each G(K,)
has an orbit, of full measure in (G(K,)/ PU)2. We conclude that when-
ever F C B is finite, w is independent of the factor S% of SE. In



62 MARC BURGER AND NICOLAS MONOD

other words, w is invariant under the cofinality equivalence relation.
The Kolmogorov zero-one law states that this equivalence relation is
ergodic ; therefore, the cocycle w must be constant and hence w = 0
by alternation. O

We can now complete the proof of Theorem 28. The diagonal em-
bedding K C A realizes G(K) as a lattice in G(Ag) (see e.g. Theo-
rem 3.2.1 in [54, chap. I]) and thus also in G7.

We recall that the Strong Approximation Theorem for simply con-
nected K-almost simple linear groups states that given U C V, the
image of G(K) in Gyy\y is dense as soon as U is not contained in A
(see Section I1.6.8 in [54]).

Therefore, according to the definition of irreducibility given in the
Introduction, we see that for any non empty finite set &« C Z, the group
G(K) is an irreducible lattice in the product

H G(Kv) X GI\Z/{ = GI.

veld

Now we would like to apply the Theorem 16 and deduce
(15) Hi(G(K)) = D HE, (G(K,)) @ HE(Grw).

veEU
except that Gz might not be compactly generated. However, as pointed
out in Remark 4.4.4, we may still apply the Theorem 14 and get as in
Section 5.1 the isomorphism

HE, (Gz. LA(G(K)\Gr)) = Hg,(Gr).

Since the restriction H2 (Gz) — HE(G(K)) is injective (Proposition 2.4.1),
it remains only to see that the L? induction

Hi (G(K)) — H2,(Gz, L*(G(K)\Gr))

is injective. As we see in the proof of Proposition 3.6.1, it is enough
to find a doubly ergodic (i.e. just doubly C-ergodic) amenable Gz-
space S. We claim that S = Sz is such a space. We have already
seen that it is amenable, and double ergodicity follows from the double
ergodicity of Gz on Sz for every finite Z' C Z, which is a consequence
of Proposition 3.2.2. Thus (15) is established (this corrects an omission
in [60]).

Take now U big enough to include Vo NZ ; then Proposition 5.4.1
shows that the last term in (15) vanishes. Moreover, as explained above
in the proof of Corollary 24, we have

H3, (G(K)) = H(G(KL))
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and the latter vanishes if v ¢ V.. This proves Theorem 28 up to terms
HZ, (G(Kv)) associated to places v € V,oNA. However, for such places,
G(K,) is compact and hence both H% and H? vanish.
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Appendiz to: Continuous bounded cohomology
and applications to rigidity theory
by: Marc Burger and Nicolas Monod

A. INTRODUCTION

In this appendix we show how, given a group homomorphism 7 :
GG1 — Gs, boundary maps can be used to implement contravariance in
bounded continuous cohomology

m* HE (Ga) — He (Gh).

To illustrate the issues involved, let us consider for example the typ-
ical situation of the study of a representation of a discrete group I’
into, say, a semisimple Lie group . On the one hand, associated
to every representation w : I' — (G, we have the natural pullback
7w : HYQ (G) — Hy(T') in bounded cohomology which leads to useful
invariant. On the other hand, the fundamental fact that bounded co-
homology can be realized as L>°-cocycles on a boundary (see § 1 of the
paper), suggests the following construction: if (B,r) is an amenable
['-space — for example a Poisson boundary of an étalée measure on
I' — following Furstenberg, we have an equivariant measurable map
¢ : B — MYG/P) into the space of probability measures on G/P,
where we can take P to be a minimal parabolic subgroup. For the sake
of the illustration we can even assume that ¢ : B — G/P. Now it is
natural to use the resolution L>((G/P)*®) by essentially bounded cocy-
cles on (G/P)* to represent the bounded cohomology of G, and to try to
implement the pullback 7* by precomposition with ¢* : B* — (G/P)".
However — because L spaces consist of equivalence classes of func-
tions rather than functions — this does not provide a well defined map
L>*((G/P)*) — L*>(B°®), unless the pushforward measure p.(v) on
G/ P is absolutely continuous with respect to the Lebesgue measure.
The proof of this last property however is one of the difficult points
in many rigidity questions, and therefore cannot be seriously used as
an assumption. To circumvent this problem, we are guided by the fact

Date: September 2000.
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that all bounded cohomology classes of “geometric” origin are repre-
sented by bounded Borel measurable strict invariant cocycles on flag
manifolds, which can therefore be precomposed with ¢°.

In this paper we formalize this situation in general, and we prove
that the resolution of bounded measurable functions on a measurable
space has the necessary properties which allows us to implement in a
very concrete way — via precomposition with * though in a canonical
way — the pullback of any class which can be represented by a bounded
Borel measurable strict invariant cocycle. This leads in particular to
geometrically meaningful formulae, representing bounded characteris-
tic classes. These general results are being applied to rigidity theory,
especially the study of group actions on complex hyperbolic spaces in
[18] and [19], and are also used in the recent work of Monod and Shalom
on orbit equivalence ([61] and [62]). We refer to [47] for an illustration
of these techniques in a new proof of Milnor—-Wood’s inequality ([56],
[76]) and Matsumoto’s theorem [55] on the Euler number rigidity of
actions of surface groups by homeomorphisms of the circle.

B. MORE ON CONTRAVARIANCE

Let G;, i = 1,2, be groups which are either discrete or locally com-
pact second countable. Some of the contravariance properties of the
continuous bounded cohomology with respect to a continuous homo-
morphism 7 : G; — G9 have already been mentioned in § 1.5 (and
§ 2.4); here we need to collect more results which we shall apply in § C
to specific situations of interest. For ease of reference, we start recall-
ing the definition of the pullback map 7* : H® (Ga, E) — H% (G1, E)
induced in cohomology. To avoid heavy notation, we use here 7* for
the map that in § 1.5 was denoted by H, (7, F), where (p, E) is a co-
efficient Gy-module. Analogously, the corresponding map in degree n
will be denoted by 7(™. We start recording the following obvious fact:

REMARK B.1. Let G any group and F, be a complex of G-modules.
For any subgroup H < G, the natural injection i* : EY — EF is a
morphism of complexes which induces a map in cohomology

i H*(EY) — H*(EH).

Recall now that if 7 : G; — G5 is any homomorphism as above, any
coefficient Go-module (p, £) can be viewed as a coefficient GGy-module
(m*p, E)) via m: as such, we have an inclusion ¢ : Cg, F — Cg, £, which
we can think of as an inclusion of GGi-modules. As the above observation
holds for Banach Gy-modules in general, we can say analogously that,
if Cy is any strong Gs-resolution for Cg, F, then Cg,Cy can be thought
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of as a strong (in fact, even admissible) G-resolution of the G-module
Co, E. Let now A, be a relatively injective resolution of the G1-module
Cq, E. By Proposition 1.5.2 applied to the inclusion of Gj-modules 9 :
Ca, ' — Cq, E, we obtain a GGi-morphism of resolutions Cg, Fae — As
which is unique up to homotopy and induces a map in cohomology
§* - H*(CT'Y) — H*(A%") (observe that obviously Cg,Ca'“) = C&).
However because C, is a Gy-resolution of Cgq, F, and as observed in
Remark B.1, we have a map in cohomology 7* : H*(CS?) — H'(C’f(Gl)).
Hence we can define a map 7® by composition

(1) H*(ASY) <2 o (07 (@)

Ny

H*(C7?) .

If now A, and C, had been chosen to be strong resolutions — of Cq, £
and Cg, F respectively — via relatively injective modules, we would
have the usual canonical isomorphisms H*(AS") ~ H$ (G1, E) and
H*(CS?) ~ H% (G, E), so that we could define the pullback 7* as
the composition

HE, (G, B) === HH(AQ) —— 12 (7))

: H*(C?)

Tz

He, (G2, E) .

ProrosiTiON B.2. Let m : Gy — (G5 be a continuous homomorphism
of either discrete or locally compact second countable groups, and let
(p, E) be a coefficient Go-module. Let Cy and D, be strong resolu-
tions of E by Ge-modules and let o®* : Cg,Dy — Cg,Cs be a Gs-
morphism. Then, for any resolution A, of (n*p, F) by relatively in-
jective GG1-modules, the diagram in cohomology

He(AS) <" H*(DE?)
N
HY(C)

is commutative, where ©* is the map induced in cohomology by the
homomorphism 7, and v* is the map induced in cohomology by any
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G1-morphism of complexes Cg, Dy — A, extending the inclusion of
G1-morphisms Cg, F — F.

REMARK B.3. Notice that it would have sufficed, in the statement of
Proposition B.2, to require that Cy and D, are strong resolutions of
Ca, E. Moreover, The existence in Proposition B.2 of the Gy-morphism
a® : Cg,De — Cg,C, is automatically verified if Cy is a resolution by
relatively injective modules (see also Remark 1.4.3).

Proof. We have observed already that both Cq,Cs and Cg,Ds can be
viewed as strong resolutions of the Gi-module (7*p, E'). Then, applying
again twice Proposition 1.5.2 with G = G4, F, = A, and with E, = C,
first, and then F, = D,, we obtain that there are Gi;-morphisms of
resolutions 0* : Cg,Ce — As and * : Cg,De — A, which extend
the inclusion Cg, K — E (of Gy-morphisms), are unique up to G-
homotopy and induce canonical maps in cohomology

He (TG =S e (4G
and
(2) H* (D3 <G1>)—>”' He (AS) .

But now the map a® : Cg,De — Cq,C, can be thought of as a G-
morphism of Gi-resolutions (via 7), hence giving a G-morphism of
(G1-complexes

Coy De—2Ce, Co—2> A,

which induces in cohomology the map 4} in (2). Hence we have a
diagram of Gi-morphisms

Ay <L Cg, D,

NS

Ce,Cl .

so that, by Proposition 1.5.2, the diagram in cohomology

3) HH(A") <" 1e(D)

commutes.
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Applying now Remark B.1 to H = n(G1) and G = G, we have that
the diagram

D:"(Gl ) <—)D?2

| |-

O3 07

commutes and hence induces a commutative diagram in cohomology.
Putting this together with (B), and recalling the definition of 7* given
in (1), we have the commutativity of the diagram

H*(C2?) .

from which the assertion follows with v* =~} 0 4°. U

C. RESOLUTIONS FROM MEASURABLE ACTIONS

Let X be a measurable space, that is a set with a o-algebra of subsets,
and let £ be the dual of a separable Banach space £ with ground field
K. We say that a map f : X" — FE is weak-s-measurable, if the
evaluation function =z — (f(z),v) from X" to K is measurable for
every v € £°. Define the vector space

B(X"E)={f:X"— E: fis weak-*-measurable } .
It is straightforward to verify that if || f|| := sup,ecxn || f(2)| £, then
B*(X", E) ={f € BIX", E) : |[f|| <oc}

is a Banach space.

Now let G be either a discrete or a locally compact second count-
able group acting measurably on the space X, that is assume that
the action a : G x X — X is measurable when G is equipped with
the o-algebra of the Haar measurable sets. We assume that F is a
coefficient G-module so that the space B>(X", E) is itself a Banach
G-module (see § 1.1). Let d, : B*(X", E) — B*(X"" F), n > 1
be the standard homogeneous coboundary operator d,, f(xo, ..., z,) =
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S o= f(xo, ... iy ), and let dy : E — B>*(X, E) be the
inclusion.

Our goal is to show that the complex B*(X*, F) is a strong resolu-
tion of E. In order to do this we need to define homotopy operators;
if u is a probability measure on X, and f € B*(X"*! E), for n > 0,
the map h, f : X™ — E defined by

(4) hnf i (x1,...,2,) — /X flxo, 21, .., z)dp(zo)

is weak-*-measurable and ||, f|| < ||f]|, so that h,, defines an operator
h, : BX(X" E) — B*(X" E). It is also straightforward to verify
that for n > 0, d,h, + hpy1dugy = Idgeo(xnt1 g). For an appropriate
choice of the measure p on X, we have the desired:

ProposITION C.1. The complex B>*(X*, F) is a strong resolution of
E with homotopy operators defined in (4) with respect to the measure
p = a.(v ®96,), where v € M'(G) is a probability measure which is
absolutely continuous with respect to the left Haar measure, 0, is the
Dirac mass of a base point p € X, and a denotes the pushforward of
measures via the action map a.

Proof. Let A denote, as usual, the action of G on B*(X", ), namely
M) f(@n, o xn) = p(9) fg7 21, .. g7 ay,) for f € BX(X™, E), see § 1.3.
It remains to be verified that, for n > 0, the homotopy operator

h,, sends continuous vectors in B>(X""! FE) to continuous vectors in
B>(X™ E). Let dv(h) = ¥ (h)dh, where dh is the left Haar measure

on G, ¥ € LYG), v > 0, and fG¢(h)dh = 1. Let f € CB®(X""1 F)

be a continuous vector. For every v € E’ we compute
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(Ap(g)_lhnf(:c17 cen @), 0y — (hyp f(z1, ... xy), 0)
= [ oy .o g oo

—/G(f(hp, T1y- s 2), V)Y (R)dh
= /G (m(9) " f(ghp, g1, . . ., gan), v)(gh)dh
_/G<f(hp, 1, @), 0)(h)dh
_ /G<71(g)1f(ghp,ga:1,...,ga:n) — f(hp,x1, ..., 2,),0)0(gh)dh

+ /G Flhp.z, .. ), 0) ((gh) — (b)) dh.
so that
|<)\p(g)’1hnf(:c1, cesp), 0y — (A f(x1, ..o ), 0)]
< o) F—£1 o] + 11 el / (gh) — w(h)\dh.
G
and hence
IA(9) S — B < IA0) 2 — F1] + [1£1 /G w(gh) — w(h)\dh.

Since f is a continuous vector and G acts continuously on L'(G), we
conclude that h,, f is a continuous vector. (Il

COROLLARY C.2. There is a canonical map
w®: H*(B*(X*, F)%)—=H? (G, E) .

That is, every bounded, measurable G-invariant cocycle ¢ : X" — E
determines canonically a class [c] € H% (G, E).

Proof. This follows from Proposition 1.5.2 with F = E, a : CE — FE
the inclusion, £, = B>*(X*, F), and F, any strong resolution of £ by
relatively injective G-modules. U

We draw one more consequence. Let X be a measurable space with a
measurable G-action and let @ # Z C X be a measurable G-invariant
subset; we consider Z endowed with the o-algebra of X restricted to
Z. The restriction map

R. :BOO(X.,E) — BOO(Z.’E)
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is a norm decreasing, G-morphism of complexes extending the identity.
Then Proposition B.2 with 7 = Id, Dy = B>*(X*, E)) and A, any strong
resolution of F by relatively injective modules, implies, together with
Proposition C.1 and Corollary C.2, the following:

COROLLARY C.3. The diagram in cohomology
HE, (G, E) <— H* (B> (X*, E))

R.
|

H.(BOO(Z., E)G)
is commutative. ]

We need to introduce now one more morphism of complexes, the
existence of which does requires some additional structure. Namely,
if Y is any topological space, Proposition C.1 implies that the com-
plex B><(Y*, FE) is a strong resolution of E, once Y is equipped with
its o-algebra of Borel sets. Let Y be a compact metrizable space on
which G acts continuously, and let M*(Y") be the space of probability
measures with the weak topology; then M(Y') is a compact metriz-
able space on which G acts continuously. Our next goal is to construct

a natural morphism of G-complexes B¥(Y*, E) — B*(M(Y)*, E)
extending the identity £ — FE. For this, the following lemma is crucial:

LEMMA C.4. Let Y be a compact metrizable space. Then, for every
f € B>(Y,K), the evaluation map

ev(f): MY(Y)— K
poo=plf),

is a Borel measurable function.

Proof. 1t is enough to consider the case in which K = R.. Let B>*(Y,R) =
Unsi B(Y, (=N, N)). Fix N € N and consider the class

By ={f € B(Y,(—N,N)) : ev(f) is Borel measurable} .

This class contains all continuous functions and, by the dominated con-
vergence theorem, is closed under pointwise convergence of sequences.
Hence By contains all Baire functions. Since (—N, N) is homeomorphic
to R and Y is metrizable, the Lebesgue-Hausdorff Theorem [70, The-
orem 3.1.36] implies that all Borel functions Y — (—N, N) are Baire
functions and hence By = B(Y, (=N, N)), which proves the lemma. [
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Let now f € B*(Y", E) and, for py, ..., pu, € M'(Y) define

en(F)(prs-o o) = [ fns o un)dp(in) - - dp(yn) -

YTL
Evaluating on vectors in E’, the preceding lemma implies that the

map e,(f) : MYY)" — E is weak-x-measurable. Observe also that
lea ()l = |l f]l- The following is then a straightforward verification.

LEMMA C.5. The map e, : B*(Y" E) — B*(MYY)", E) gives an
isometric morphism of G-complexes extending the identity which, in
particular, restricts to e, : CB®(Y"™, E) — CB*(MYY)" E). O

Now we apply the results in § B to the specific resolutions we just
studied. Let m : G1 — G5 be a continuous homomorphism as above,
(B,v) a Gi-measure space and X a (Gy-measurable space. We say
that a measurable map ¢ : B — X is a.e.-G1-equivariant if p(gz) =
w(g)p(x) for all g € G and v-almost every x € B. It is plain that
any such map induces a norm decreasing morphism of G;-complexes
by precomposition

L% (B*, E)<X—B>(X* E).
COROLLARY C.6. Let m,p, E and X be as above, and assume that
(B,v) is an amenable regular GGi-measure space. Then any a.e.-G1-

equivariant measurable map ¢ : B — X induces a commutative dia-
gram in cohomology

03, (G1, E) <"— H*(B®(X*, E)%?)

e

H(.:b(G27 E)

Proof. This is immediate from Proposition B.2 and Theorems 1 and 2
with Dy = B>®(X*, F), Ay = L, (B*, E) and C, any strong resolution
of (p, £) by relatively injective G'3-modules (see Remark B.3). O

Finally:

CoROLLARY C.7. Let m be a continuous homomorphism of discrete
or locally compact second countable groups, (p, E) a coefficient G-
module, Y a separable compact metrizable continuous Gy-space, (B, v)
an amenable regular G4-space, and ¢ : B — M'(Y) a measurable
a.e.-G1-equivariant map. Let ¢ : Y"' — E be a Borel measurable
Glo-invariant bounded cocycle, and [c] € HY, (Go, E) the associated co-
homology class. Then

(01, bug1) = (1) ® - @ (bpt1)(c)
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defines an element in L%, (B"*!, E) which represents the class 7™ ([c]) €

H?b(le E)
Proof. According to Corollary C.2, there is a canonical map
W HY(BX(Y*®, B)?) — Hy, (G, B).

The assertion will then follow from the commutativity of the following
diagram:

He,(G1, B) <2— Ho(B(M(Y)*, E)%2) <“— H*(B>(Y*, E)%?)

\ lld' /

H;b(G% E)

The commutativity of the diagram on the left follows from Corol-
lary C.6 with X = MY (Y). The commutativity of the diagram on
the right follows from Proposition B.2 with 7 = Id, G; = G,, Cy =
B>*(MYY)*, E), Dy = B>*(Y*, F) and, finally, a® = e, as defined in
Lemma C.5. O

REMARK C.8. Just like in § 1.7, one can replace the complex B> (X*, F)
with the subcomplex B, (X®, E) of alternating measurable bounded
cochains, and all of the above results hold true verbatim.

D. AN ILLUSTRATION

Let X be a proper CAT(—1)-space, G2 < Iso(X) a closed subgroup,
E a coefficient Go-module, and

c: X(0)? = B

a Borel measurable, alternating, bounded, G>-invariant cocycle. Let 7 :
(GG1 — G4 be a continuous homomorphism, where (G is locally compact
second countable or discrete. Our objective is to give some natural
sufficient conditions implying that the class 7 ([¢]) € H2, (G4, F) does
not vanish. Given any set S, we denote by C3(S) the subset of S?
consisting of distinct triples.

PROPOSITION D.1. Assume that E is separable, c is weak-x-continuous
on C3(X(00)), and let L,y C X(oo) be the limit set of 7(G).

(1) If |z, s, is not identically zero, then 7@ ([c]) # 0;
(2) Assume that G is compactly generated. Then, for the Gromov
norm of 7 ([c]) we have

Ir@ ([l = | max le(€, & &)l -

§1,62,63€Lx
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Proof. We first prove (2). We distinguish two cases.

(a) Assume that 7(Gy) is elementary. Set L := w(G). Either L is
compact, and hence H% (L, E) = 0, which implies in particular that
the restriction of ¢ to L vanishes in H? (L, E), so that 7@ ([¢]) = 0;
since Lrq,) = @, this proves the equality. Or ‘ﬁw(gl)} # @ and it
consists of at most two points; since ¢ is alternating, its restriction
to (Lx(q,))? is identically zero; Corollary C.3 applied to Z = Lya))
implies then that the restriction of ¢ to L vanishes, hence 7 ([c]) = 0,
which proves the equality.

(b) Assume that 7(Gy) is not elementary. Let GF < Gy be the finite
index subgroup given by Theorem 6, 7, the restriction of 7 to G7, and
L. (axy the limit set of m.(GT). Since G7 is of finite index in Gy, we
have EW(G;) = Lr,)- Moreover, since the restriction map gives an
isometric embedding H?, (G, E) — HY, (G5, E) (see Proposition 2.4.1),
we have that |72 ([c])]| = 7@ ([c])]|. Let now (B, ) be a doubly X5-
ergodic, regular, amenable Gj-space (see Theorem 6). Since 7,(GY)
is non-elementary, there is an equivariant measurable map ¢ : B —
L@ [23]; it follows from Corollary C.7 that the map (by, by, b3) —

c(p(br), p(ba), p(b3)) is a representative of 752)([0]) and, from double
X*P-ergodicity,

||7T§2)([c})||=esssumeg le(e(br, o(b2). o (bs)]
= €85 5UP¢, ¢ || (£1,62,8)|

where now (Lrc:))? is equipped with the measure ©,(v)? = ¢.(v) ®
©.(v) ® p.(v). Since by hypothesis ¢ is continuous on C3(Lr(qr)) and
vanishes on its complement, we have that

€SS SUDPg¢, e w(g* || (51,52753)|| < sup ||C(€17€2;§3)H — b,
(€1,62,€3)€Cs(Lr (1))

and we may assume that b > 0. On the other hand, let ¢ > 0 be
such that b — e > 0, and let (£§1,62,&3) € C3(Lrar)) and v € E” with
|lv|| = 1 be such that (c(&y, &2, &3),v) > b—e. Then the set S of triples
(m,m2,n3) with (c(n1,m2,m3),v) > b — ¢ is an open nonvoid set, and
hence of positive ¢, (v)*-measure, since supp(p,(v)®) = Lr(gr). Hence
we also have that [|c(n1,m2,73)|| > b — e on S., which implies that
esssup ||c(&1, &2, &3)|| > b — € and hence is equal to b.

We now prove (1). Since c is alternating, it vanishes on (Lxa))®
C3(‘C7r(G* ) hence the set V = {(51962753) € ( w(GY) ) (51) 52753 7é 0}
is open and, by hypothesis, nonvoid. Write G; as the union UQe Q.
where () ranges in the family F of all compactly generated subgroups
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of Gy. Tt is plain that the union (g, x Lr(q) of the limit sets of 7(Q) is
dense in L(gry and hence there is Q € F with (Lrg))° NV # @. Part
(2) of the Proposition allows us to conclude. O

In order to illustrate Proposition D.1, we present an immediate ap-
plication to groups acting non-elementarily on the real hyperbolic plane
H%. Recall that (see [22]) in degree two, if H is a continuous irreducible
unitary representation of PSL(2,R), we have

1 if H is spherical

dim Hgb(PSL(Q, R),H) = )
0 otherwise .

COROLLARY D.2. Let m : I' — PSL(2,R) be a homomorphism with
non-elementary image. Then for any spherical representation H, the
map

7T(2) : Hgb(PSL(Qa R‘)a H) - H%(F7 H)
is injective.
Proof. Tt is shown in [22] that a generator of H (PSL(2, R), H) can be
explicitly described by an alternating, weak-*-continuous PSL(2, R)-
invariant cocycle

w: Hg(c0)® = H,

such that for every distinct triple (z,y, 2) € C3(Hg(00)), w(z,y, 2) # 0.
Since by hypothesis the limit set of m(I') contains at least 3 points,
Proposition D.1 enables us to conclude. O
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