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Abstract

We study representations of compact surface groups on Hermitian symmetric spaces and characterize those with
Toledo invariant.To cite this article: M. Burger et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Nous étudions les représentations d’un groupe de surface compacte sur un espace symétrique hermitien et caractér
avec invariant de Toledo maximal.Pour citer cet article : M. Burger et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

Let Γ = π1(Σg) be the fundamental group of a compact oriented surfaceΣg of genusg � 2, and X a
Hermitian symmetric space of noncompact type, equipped with its Bergman metric. The Toledo invarianτρ of
a representationρ : Γ → Is(X)◦ is the integral overΣg of the pullback of the Kähler formωX of X by any smooth
equivariant map̃Σg → X. Then |τρ | � 2|χ(Σg)|πrX , rX being the rank ofX [8,7]. The classical problem o
characterizing representations with maximal Toledo invariant has been solved whenX is of rank 1 [9,15] and
partial results are available when X is associated to SU(p, q) [10,2].

Theorem 1.1. Let ρ : π1(Σg) → Is(X)◦ be a representation with maximal Toledo invariant. Then

(a) the Zariski closureL of the image ofρ is reductive;
(b) the symmetric subspaceY ⊂ X associated toL is isometric to a tube type domain;
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(c) the groupπ1(Σg) acts onY properly discontinuously without fixed points.

We give in Section 5 examples whereY is not holomorphically embedded intoX. The theorem is optimal als
in the following sense:

Proposition 1.2. For any Hermitian symmetric spaceX of tube type and anyg � 2 there exist representation
ρ : π1(Σg) → Is◦(X) with maximal Toledo invariant and Zariski dense image.

Surface group representations with maximal Toledo invariant provide therefore a class of geome
meaningful Kleinian groups acting on higher rank Hermitian symmetric spaces.

The proof of the theorem relies heavily on [4,7,12,5] and [3]. For a comprehensive treatment of con
bounded cohomology, we refer to [13].

2. Maximal representations with Zariski dense image

The Toledo invariant of a representation is the evaluation of a linear form on an appropriate bo
cohomology class. Namely, ifρ : π1(Σg) → G is any homomorphism andκ ∈ H2

cb(G), we defineτ (ρ, κ) :=
〈ρ∗(κ), [Σg]〉, where〈 ·, · 〉 is the natural pairing. Thenτρ = τ (ρ, κb

X), whereκb
X ∈ H2

cb(G) is the bounded Kähle
class. Since|τ (ρ, κ)| � 2|χ(Σg)|‖ρ∗(κ)‖ � 2|χ(Σg)|‖κ‖, whereχ(Σg) is the Euler characteristic ofΣg and‖κ‖
is the Gromov norm of the classκ ∈ H2

cb(G), we say thatρ is κ-maximalif τ (ρ, κ) = 2|χ(Σg)|‖κ‖.
A totally geodesic embeddingt :D → X is tight if t∗(ωX) = ‖κb

X‖/‖κb
D
‖ωD. If t is holomorphic this is

equivalent to saying thatD is mapped diagonally into a maximal polydisc inX.
The main point in the proof of the theorem is the following

Proposition 2.1. Let X be an irreducible Hermitian symmetric space andρ : Γ → Is(X)◦ a representation with
maximal Toledo invariant and Zariski dense image. ThenX is a symmetric space of tube type, on whichρ(Γ ) acts
properly discontinuously without fixed points.

We outline the main steps of the proof using results of [7] and following the methods developed
and [12]. LetD ⊂ Cn be the Harish-Chandra realization ofX as a bounded symmetric domain with normaliz
Bergman kernelk. We havek(x, y) = h(x, y)−2, whereh is a polynomial inx, ȳ. Following [7] and [4] we say
that x, y ∈ D are transverse ifh(x, y) �= 0; then there is a unique continuous determination of the argume
k(x, y) on the set of pairwise transverse points in�D. Denoting byŠ(3) the set of triples of pairwise transver
points in the Shilov boundary̌S ⊂ ∂D, the functionβ̌D(x, y, z) := −(argk(x, y) + argk(y, z) + argk(z, x))

is a well defined continuous alternatingG-invariant cocycle onŠ(3), whereG = Is(X)◦. Define as in [4, §5]
Zn := {(x1, x2, . . . , xn) ∈ Š: xi, xj are transverse for alli �= j } and let(B∞

alt(Zn), dn) be the complex of bounde
alternating Borel functions onZn, endowed with the supremum norm. Using the formula for the symplectic
of a geodesic triangle inD given in [8,7], and arguing as in [4, Lemmas 5.1 and 5.2], the class[β̌D] corresponds
to κb

X under the canonical map H•(B∞
alt(Z•)G) → H•

cb(G). Next, realizeΓ as a cocompact lattice in PSU(1, 1);

by using thatρ(Γ ) is Zariski dense and that transversality inŠ is given by a polynomial condition, we dedu
as in [4, Proposition 6.2] the existence of aΓ -equivariant measurable mapϕ : S1 → Š such that for almost ever
x, y ∈ S1, the pointsϕ(x), ϕ(y) ∈ Š are transverse. As a consequence,ϕ∗β̌D(x, y, z) := β̌D(ϕ(x), ϕ(y), ϕ(z)) is
a well defined measurable alternatingΓ -invariant bounded cocycle on(S1)3, which corresponds [4, §7] toρ∗(κb

X)

under the isomorphism H2b(Γ,R) � ZL∞
alt((S

1)3)Γ .
As in [12, §3], we get that for almost everyx, y, z ∈ S1∫

Γ \PSU(1,1)

β̌D

(
ϕ(hx), ϕ(hy), ϕ(hz)

)
dh = τρ

2|χ(Σg)| β̌D(x, y, z). (1)
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If ρ is maximal,τρ = 2|χ(Σg)|‖κb
X‖, which together with‖β̌D‖∞ = ‖κb

X‖ and (1) implies that for almost ever
x, y, z ∈ S1, β̌D(ϕ(x), ϕ(y), ϕ(z)) = ‖κb

X‖/‖κb
D
‖ β̌D(x, y, z). To conclude the proof of Proposition 2.1, fixx andy:

by Fubini’s theorem, for almost everyz, β̌D(ϕ(x), ϕ(y), ϕ(z)) = ±πrX , hence by [7, Proof of Theorem 4.7] th
essential image Ess Imϕ of ϕ lies in the Shilov boundary of the tube type domainY of X determined byϕ(x)

andϕ(y). Since any two transverse points in Ess Imϕ determine a tube type subdomain, which hence coinc
with Y , it follows thatY is ρ(Γ )-invariant and, by Zariski density, alsoG = Is(X)◦-invariant. HenceX = Y .

The imageρ(Γ ) is discrete: forrX = 1 this follows from [9] (or by [12]); forrX � 2, G has at least three ope
orbits in Š3 sinceX is of tube type [6, Theorem 4.3, Lemma 5.3], while Ess Im(ϕ3) is contained in the closure o
two open orbits inŠ3, namely{(x, y, z) ∈ Š(3): β̌D(x, y, z) = ±πrX}. Hence Ess Im(ϕ3) �= Š3, which implies that
ρ(Γ ) is not dense, and thus discrete.

The cocycleβ̌D can be used to equip the essential graphF of ϕ with a cyclic ordering. Arguing as in [12
Lemma 5.6] we conclude that if(x1, η), (x2, η) ∈ F thenx1 = x2, henceρ is faithful.

3. Proof of Theorem 1.1

Let L := ρ(Γ )Z(R) be the real points of the Zariski closure ofρ(Γ ). By passing to a finite index subgrou
of Γ we may assume thatL is connected. Since the radical ofL is amenable, the projectionp : L → M of
L to its semisimple partM induces a canonical isometric isomorphism in bounded cohomology, H2

cb(L) �
H2

cb(M) (see [5, Corollary 4.2.4]), with respect to which the classκb
X ∈ H2

cb(L) defines a classk ∈ H2
cb(M).

Let M ′ = M1 × · · · × M( be the product of the simple factors ofM such thatki := k|Mi �= 0 and letρi :=
pri ◦ p ◦ ρ : Γ → Mi , where pri : M → Mi is the projection,i = 1, . . . , (. From 2|χ(Σg)|‖k‖ = τ (ρ, k) =∑l

i=1 τ (ρi, ki ) � 2|χ(Σg)|∑l
i=1 ‖ki‖ and‖k‖ = ∑l

i=1 ‖ki‖, it follows that for all i, the representationsρi are
ki -maximal. Hence Proposition 2.1 implies that the Hermitian symmetric spaceY associated toM ′ is of tube type.

Let H < L be a connected semisimple subgroup which is isogenous toM ′ via p, and let Z ⊂ X be a
subsymmetric space associated toH , such that the induced equivariant mapψ : Y → Z satisfiesψ∗(κb

X|Z) =∑
ki . For any triple of points in the Shilov boundary ofY for which β̌Y is defined and maximal, we ge

by [7, Theorem 4.7] a holomorphic tight embeddingt :D → Y . The mapT = ψ ◦ t :D → X associated to a
homomorphismπ : SU(1, 1) → G satisfiesT ∗(ωX|Z) = ‖κb

X‖/‖κb
D
‖ωD. Since up to scalingT is an isometry and

the Euclidean metric onX as a bounded symmetric domain is dominated by the Riemannian metric andT is tight,
the mapT extends to aπ -equivariant map of the boundaryT : ∂D → ∂D with T (∂D) ⊂ Š. Let C be the centralize
of π(SU(1, 1)) in G.

Lemma 3.1. Letγ be a geodesic inT (D) connecting two pointsx, y ∈ T (∂D) ⊂ Š. Then for allg ∈ C the geodesic
gγ connects the same pointsx, y.

Proof. One can realize the Shilov boundary, which is represented asG/Q, as the equivalence classes of asympt
maximal singular Weyl chamber walls of typeQ. There are natural projectionsG/Q′ → G/Q for all parabolic
subgroupsQ′ ⊂ Q ⊂ G, whereG/Q′ can also be realized as the equivalence classes of asymptotic Weyl ch
(walls) of typeQ′. The geodesicγ connectsx, y ∈ Š and hence lies in a Weyl chamber (wall) of typeQ′ for some
Q′ ⊂ Q. The geodesicgγ lies in a Weyl chamber (wall) of the same type. Sinceg ∈ C, the distance betweenγ
andgγ is uniformly bounded, it follows that they determine the same point inG/Q′, hence inG/Q = Š. ✷

By the above lemma, any three distinct pointsx, y, z ∈ T (∂D) are fixed byC, henceC fixes the barycenter o
x, y, z and is therefore compact.

If L were not reductive, by [1] it would be contained in a proper parabolic subgroupP of G. But then the
center of an appropriate Levi component ofP would be contained inC and noncompact, which is a contradicti
sinceC is compact. ThereforeL is reductive and henceρ(Γ ) acts onY . By Proposition 2.1 the action is proper

discontinuous without fixed points.
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4. Maximal Zariski dense representations into a tube type domain

For the construction of a representation as in Proposition 1.2, realize the fundamental group as an ama
product over a separating geodesic,Γ = A ∗〈γ 〉 B. Choose a hyperbolization ofΓ , π : Γ → PSU(1, 1) and use the
diagonal embedding∆ : PSU(1, 1) → PSU(1, 1)r to define hyperbolizationsρi := pri ◦ ∆ ◦ π |A : A → PSU(1, 1)

and ωi := pri ◦ ∆ ◦ π |B : B → PSU(1, 1). Let tA, tB : PSU(1, 1)r → G be two different embeddings, whic
coincide on∆(PSU(1, 1)). Choose now two one-parameter families of deformationsρt

i , ωt
i , such that theρt

i ’s,
i = 1, . . . , r , respectively theωt

i ’s, are pairwise not conjugated for allt andρt
i (γ ) = ρi(γ ), respectivelyωt

i (γ ) =
ωi(γ ), for all t . The representations ofA, respectivelyB, given byρt (a) = tA(ρt

1(a), . . . , ρt
r (a)), respectively

ωt = tB(ωt
1(a), . . . , ωt

r (a)), have Zariski dense image intA(PSU(1, 1)r), respectivelytB(PSU(1, 1)r), and define
a representationπt : Γ → G by the universal property of amalgamated products. By constructionπt has maximal
Toledo invariant, hence the Zariski closure of its image is reductive and of maximal rank, since it contains th
of tA. The symmetric space corresponding to its semisimple part is of tube type and holomorphically em
into X. Using the characterizations of holomorphic embeddings in [14,11], one can choosetA, tB in such a way
that the group generated by its images coincides withG.

5. Nonholomorphic tight embeddings

The complex irreducible representationπp of SU(1, 1) of dimension 2p admits an invariant hermitian form
unique up to scaling, which is of signature(p, p). The corresponding homomorphismπp : SU(1, 1) → SU(p, p)

gives rise to a tight embeddingD → Xp,p into the Hermitian symmetric space associated to SU(p, p), which is
holomorphic if and only ifp = 1. For p � 2 this gives rise to representations of surface groups onXp,p with
maximal Toledo invariant, and preserving a nonholomorphically tight embedded disc.
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