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Abstract

We study representations of compact surface groups on Hermitian symmetric spaces and characterize those with maxima
Toledo invariantTo citethisarticle: M. Burger et al., C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Nous étudions les représentations d’un groupe de surface compacte sur un espace symeétrique hermitien et caractérisons cell

avec invariant de Toledo maximdour citer cet article: M. Burger et al., C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

Let I' = n1(¥,) be the fundamental group of a compact oriented surfageof genusg > 2, andX a
Hermitian symmetric space of noncompact type, equipped with its Bergman metric. The Toledo inyaoant
arepresentatiop: I" — Is(X)° is the integral ovel, of the pullback of the Kahler formvx of X by any smooth
equivariant mapENg — X. Then|t,| < 2|x(X,)|nrx, rx being the rank ofX [8,7]. The classical problem of
characterizing representations with maximal Toledo invariant has been solvedXviseof rank 1 [9,15] and
partial results are available when X is associated to;54) [10,2].

Theorem 1.1. Let p: 1 (X,) — Is(X)° be a representation with maximal Toledo invariant. Then

(a) the Zariski closurd. of the image op is reductive
(b) the symmetric subspadec X associated td. is isometric to a tube type domain

E-mail addresseshurger@math.ethz.ch (M. Burger), iozzi@math.ethz.ch (A. lozzi), wienhard@math.uni-bonn.de (A. Wienhard).

1631-073X/03/$ — see front mattér 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.
doi:10.1016/S1631-073X(03)00065-7



388 M. Burger et al. / C. R. Acad. Sci. Paris, Ser. | 336 (2003) 387-390

(c) the groupm1(X,) acts onY properly discontinuously without fixed points.

We give in Section 5 examples wherds not holomorphically embedded info. The theorem is optimal also
in the following sense:

Proposition 1.2. For any Hermitian symmetric spacé of tube type and any > 2 there exist representations
p:m(Xg) — 1s°(X) with maximal Toledo invariant and Zariski dense image.

Surface group representations with maximal Toledo invariant provide therefore a class of geometrically
meaningful Kleinian groups acting on higher rank Hermitian symmetric spaces.

The proof of the theorem relies heavily on [4,7,12,5] and [3]. For a comprehensive treatment of continuous
bounded cohomology, we refer to [13].

2. Maximal representationswith Zariski denseimage

The Toledo invariant of a representation is the evaluation of a linear form on an appropriate bounded
cohomology class. Namely, if:71(X,) — G is any homomorphism and e H p(G), we definer(p, k) :=
(p*(x), [ Y1), where(-, -) is the natural pairing. Ther), = 7 (p, KX) Where;cX € sz(G) is the bounded Kahler
class. Sincér (p, k)| < 2/ x (Z)p* )N < 2| x (Z)lllx ||, wherex (X,) is the Euler characteristic &, and||«||
is the Gromov norm of the clagse Hgb(G), we say thap is k-maximalif (o, x) =2|x (X« |.

A totally geodesic embedding:D — X is tight if *(wx) = [I«21l/llkdllwp. If ¢ is holomorphic this is
equivalent to saying thdd is mapped diagonally into a maximal polydiscin

The main point in the proof of the theorem is the following

Proposition 2.1. Let X be an irreducible Hermitian symmetric space andl” — Is(X)° a representation with
maximal Toledo invariant and Zariski dense image. Tleis a symmetric space of tube type, on whigli") acts
properly discontinuously without fixed points.

We outline the main steps of the proof using results of [7] and following the methods developed in [4]
and [12]. LetD c C" be the Harish-Chandra realization fas a bounded symmetric domain with normalized
Bergman kernek. We havek(x, y) = h(x, y)~2, where# is a polynomial inx, 3. Following [7] and [4] we say
thatx, y € D are transverse ifi(x, y) # 0; then there is a unique continuous determination of the argument of
k(x, y) on the set of pairwise transverse pointslin Denotmg byS® the set of triples of pairwise transverse
points in the Shilov boundary’ c dD, the fUﬂCtIOI’],BD(x v,z) := —(argk(x, y) + argk(y, z) + argk(z, x))
is a well defined continuous alternatirig-invariant cocycle orS®, whereG = Is(X)°. Define as in [4, §5],

Zy ={(x1,x2,...,x,) € S: x;, x; are transverse for all# j} and Iet(BaIt(Z ), d,) be the complex of bounded
alternating Borel functions off,,, endowed with the supremum norm. Using the formula for the symplectic area
of a geodesic triangle i given in [8,7], and arguing as in [4, Lemmas 5.1 and 5.2], the ¢l&s$ corresponds
to Kf} under the canonical map*kiBZi(Z, \6y H2p(G). Next, realizel” as a cocompact lattice in P$U 1);
by using thatp(I") is Zariski dense and that transversalitydris given by a polynomial condition, we deduce
as in [4, Proposition 6.2] the existence of aequivariant measurable map S — S such that for almost every
x,y € St the pointsp(x), ¢(y) € S are transverse. As a consequenrees (x, y, z) := An (@), ¢(y), ¢(2)) is
a well defined measurable alternatifginvariant bounded cocycle aist)2, which corresponds [4, §7] t,of“(/cg)
under the isomorphism}r, R) ~ 2L ((SH3) 1.
Asin [12, §3], we get that for almost every y, z € St

B (p(hx), 9(hy), p(hz)) dh = —ﬁm(x ¥, 2). 1)
21x(Zy)]
'\PSU1,1)
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If p is maximal,z, = 2|x (Z,)|l«2l, which together with| S |l = II«2 | and (1) implies that for almost every
x,y,2€ 81 Bo(p(x), 9(»), 9(2)) = [I21I/ 1131l An(x, v, 2). To conclude the proof of Proposition 2.1, fixandy:

by Fubini’s theorem, for almost every Bg; (p(x), p(y), 9(z)) = £mrx, hence by [7, Proof of Theorem 4.7] the
essential image Ess lgof ¢ lies in the Shilov boundary of the tube type domairof X determined byp(x)
andg(y). Since any two transverse points in Esgdrdetermine a tube type subdomain, which hence coincides
with Y, it follows thatY is p (I'")-invariant and, by Zariski density, al€® = Is(X)°-invariant. HenceX =Y.

The imageo(I') is discrete: fory = 1 this follows from [9] (or by [12]); forrx > 2, G has at least three open
orbits in $3 sinceX is of tube type [6, Theorem 4.3, Lemma 5.3], while Esggf is contained in the closure of
two open orbits ins3, namely{(x, y, z) € S@: fp(x, y, z) = 7rx}. Hence Ess Iiw?®) # $3, which implies that
p(I) is not dense, and thus discrete.

The cocyclefp can be used to equip the essential grapbf ¢ with a cyclic ordering. Arguing as in [12,
Lemma 5.6] we conclude that k1, n), (x2, n) € F thenx1 = x2, hencep is faithful.

3. Proof of Theorem 1.1

Let L := p(I")%4(R) be the real points of the Zariski closure pfI"). By passing to a finite index subgroup
of I' we may assume that is connected. Since the radical 6fis amenable, the projectiop: L — M of
L to its semisimple part¥ induces a canonical isometric isomorphism in bounded cohomolo@(,LH:
H2,(M) (see [5, Corollary 4.2.4]), with respect to which the cla§se H2 (L) defines a clasg € HZ,(M).
Let M' = M1 x --- x M, be the product of the simple factors #f such thatk; := k|, # 0 and letp; :=
pr;opop:I" = M;, where pf:M — M; is the projection,; = 1,...,£. From 2x(Z )|kl = t(p,k) =
S T k) < 2x(Z)I Yh_q kil and [Ikl = F_, Ik I, it follows that for alli, the representations are
k;-maximal. Hence Proposition 2.1 implies that the Hermitian symmetric spassociated td/’ is of tube type.

Let H < L be a connected semisimple subgroup which is isogenout’twia p, and letZ c X be a
subsymmetric space associatedHo such that the induced equivariant mgpY — Z satisfies¢*(x§| 7) =
> k;. For any triple of points in the Shilov boundary &f for which By is defined and maximal, we get
by [7, Theorem 4.7] a holomorphic tight embeddingDd — Y. The mapT = ¢ ot:ID — X associated to a
homomorphismr : SU(1, 1) — G satisfiesT*(wx|z) = ||/<§ ||/||K[g|| wp. Since up to scaling’ is an isometry and
the Euclidean metric o as a bounded symmetric domain is dominated by the Riemannian metrit iartajht,
the mapl’ extends to ar-equivariant map of the boundafy. dD — dD with T (0D) C S. Let C be the centralizer
of 7(SU(, 1)) in G.

Lemma3.1. Lety be a geodesic ifff (ID) connecting two points, y € T (dD) C S. Then for allg € C the geodesic
gy connects the same pointsy.

Proof. One canrealize the Shilov boundary, which is representéty @s as the equivalence classes of asymptotic
maximal singular Weyl chamber walls of tyg2. There are natural projectiors/ Q' — G/ Q for all parabolic
subgroupg)’ c Q c G, whereG/Q’ can also be realized as the equivalence classes of asymptotic Weyl chamber
(walls) of typeQ’. The geodesig connects, y € S and hence lies in a Weyl chamber (wall) of ty@éfor some

Q' C Q. The geodesigy lies in a Weyl chamber (wall) of the same type. Sigce C, the distance between

andgy is uniformly bounded, it follows that they determine the same poidt/iiQ’, hence inG/Q = S. o

By the above lemma, any three distinct pointy, z € T (9D) are fixed byC, henceC fixes the barycenter of
x,y,z and is therefore compact.

If L were not reductive, by [1] it would be contained in a proper parabolic subgPoop G. But then the
center of an appropriate Levi component®fvould be contained il and noncompact, which is a contradiction
sinceC is compact. Thereforg is reductive and hence(I") acts onY. By Proposition 2.1 the action is properly
discontinuous without fixed points.
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4. Maximal Zariski denserepresentationsinto a tube type domain

For the construction of a representation as in Proposition 1.2, realize the fundamental group as an amalgamate
product over a separating geodedit= A *(,,y B. Choose a hyperbolization éf, 7 : I' — PSU{, 1) and use the
diagonal embeddingt : PSU1, 1) - PSU1, 1)" to define hyperbolizations; :=pr; o Aom|4:A — PSU1, 1)
andw; :=pr; o Aom|p: B — PSUL,1). Let t4,t5:PSUL,1)" — G be two different embeddings, which
coincide onA(PSU1, 1)). Choose now two one-parameter families of deformatlogr;&)l’., such that thepl.”s,
i=1,...,r, respectively thev!'s, are pairwise not conjugated for albind o/ (y) = pi (y), respectivelyw!(y) =
w;(y), for all . The representations of, respectivelyB, given by p’(a) = t4(pj(a), ..., pL(a)), respectively
o' =tp(wi(a),...,»l(a)), have Zariski dense image in(PSU1, 1)"), respectively s (PSU1, 1)"), and define
a representation’ : I' — G by the universal property of amalgamated products. By construgfidras maximal
Toledo invariant, hence the Zariski closure of its image is reductive and of maximal rank, since it contains the image
of t4. The symmetric space corresponding to its semisimple part is of tube type and holomorphically embedded
into X. Using the characterizations of holomorphic embeddings in [14,11], one can choagein such a way
that the group generated by its images coincides with

5. Nonholomorphic tight embeddings

The complex irreducible representatiop of SU(1, 1) of dimension 2 admits an invariant hermitian form
unique up to scaling, which is of signatuig, p). The corresponding homomorphisry : SU(1, 1) — SU(p, p)
gives rise to a tight embeddiiy — X, , into the Hermitian symmetric space associated tq5), which is
holomorphic if and only ifp = 1. For p > 2 this gives rise to representations of surface groupXpp with
maximal Toledo invariant, and preserving a nonholomorphically tight embedded disc.
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