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Abstract We use bounded cohomology to define a notion of volume of an SO(n, 1 )­
valued representation of a lattice r < SO(n, 1) and, using this tool, we give a 
complete proof of the volume rigidity theorem of Francaviglia and Klaff (Geom. 
Dedicata 117, 111-124 (2006)) in this setting. Our approach gives in particular a 
proof of Thurston's version of Gromov·s proof of Mostow Rigidity (also in the non­
cocompact case), which is dual to the Gromov-Thurston proof using the simplicial 
volume invariant. 
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1 Introduction 

Strong rigidity of lattices was proved in 1965 by Mostow [28] who, while searching 
for a geometric explanation of the deformation rigidity results obtained by Selberg 
[32], Calabi-Vesentini [14, 15] and Weil [35, 36], showed the remarkable fact that, 
under some conditions, topological data of a manifold determine its metric. Namely, 
he proved that if Mi = n \lHI11

' i = 1. 2 are compact quotients of real hyperbolic n­
space and n ~ 3, then any homotopy equivalence cp : M1 --+ M2. is, up to homotopy, 
induced by an isometry. Shortly thereafter, this was extended to the finite volume 
case by G. Prasad [29]. 
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The methods introduced by Mostow emphasized the role of the quasi-isometries 
of Mi = lHin' their quasi-conformal extension to aJHI11

' ergodicity phenomena of the 
n -action on alHI11

' as well as almost evetywhere differentiability results ala Egorov. 
In the 1970's, a new approach for rigidity in the real hyperbolic case was devel­

oped by Gromov. In this context he introduced f. 1-homology and the simplicial vol­
ume: techniques like smearing and straightening became important. This approach 
was then further developed by Thurston [33, Chap. 6] and one of its consequences 
is an extension to hyperbolic manifolds of Kneser's theorem for surfaces [25] . To 
wit, the computation of the simplicial volume II M II = Vol (M) j v11 implies, for a 
continuous map f : M 1 ---+ M2 between compact real hyperbolic manifolds, that 

Vol(M2) 
deg f ::;; Vol(MI). 

If dim Mi ~ 3, Thurston proved that equality holds if and only if f is homo­
topic to an isometric covering while the topological assertion in the case in which 
dim Mi = 2 is Kneser's theorem [25]. 

The next step, in the spirit of Goldman's theorem [20]-what now goes under 
the theory of maximal representations-is to associate an invariant Vol(p) to an 
arbitrary representation 

p : rr1 (M) ---+ Isom(lHI11
) 

of the fundan1ental group of M, satisfying a Milnor-Wood type inequality 

Vol(p)::;; Vol(i). 

The equality should be characterized as given by the "unique" lattice embedding i 
of rr1 (M), of course provided dimM ~ 3. This was caiTied out in dimM = 3 by 
Dunfield [17], following Toledo's modification of the Gromov-Thurston approach 
to rigidity [34]. 

If M is only of finite volume, a technical difficulty is the definition of the volume 
Vol(p) of a representation. Dunfield introduced for this purpose the notion of pseu­
dodeveloping map and Francaviglia proved that the definition is independent of the 
choice of the pseudodeveloping map [ 18]. Then Francaviglia and Klaff [ 19] proved 
a "volume rigidity theorem" for representations 

p: rr1 (M)---+ Isom(lHik), 

where now k is not necessarily equal to dim M. In their paper, the authors actually 
succeed in applying the technology developed by Besson-Courtois-Gallot in their 
seminal work on entropy rigidity [2]. An extension to representations of rr1 (M) 
into Isom(lHI11

) for an arbitrary compact manifold M has been given by Besson­
Courtois-Gallet [3]. 

Finally. Bader, Furman and Sauer proved a generalization of Mostow Rigidity 
for cocycles in the case of real hyperbolic lattices with some integrability condition, 
using, among others, bounded cohomology techniques, [1]. 
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The aim of this paper is to give a complete proof of volume rigidity from the 
point of view of bounded cohomology, implementing a strategy first described in 
[24] and used in the work on maximal representations of surface groups [12, 13], as 
well as in the proof of Mostow Rigidity in dimension 3 in [11]. 

Our main contribution consists on the one hand in identifying the top dimensional 
bounded equivariant cohomology of the full group of isometries Isom(lHI11

), and on 
the other in giving a new definition of the volume of a representation of .rr1 (M), 
when M is not compact; this definition, that uses bounded relative cohomology, 
generalizes the one introduced in [13] for surfaces. 

In an attempt to be pedagogical, throughout the paper we try to describe, in vary­
ing details, the proof of all results. 

Let Vol11 (xo .... , x 11 ) denote the signed volume of the convex huH of the points 
xo, .... x 11 E lHI". Then Vol 11 is a o+ := Isom+ (JHI" )-invariant cocycle on lHI11 and 
hence defines a top dimensional cohomology class Wn E H2 (G+' R). Let i : r ~ 
o+ be an embedding of r as a lattice in the group of orientation preserving isome­
tries of JHI" and let p : r ~ o+ be an arbitrary representation of r. Suppose first 
that r is torsion free. Recall that the cohomology of r is canonically isomorphic to 
the cohomology of then-dimensional quotient manifold M := i (r) \lHI'1 • 

If M is compact, by Poincare duality the cohomology groups H 11 (r, R) "' 
H 11 (M, R) in top dimension are canonically isomorphic toR, with the isomorphism 
given by the evaluation on the fundamental class [M]. We define the volume Vol(p) 
of p by 

Vol(p) = (p*(w11 ), [MJ}, 

where p* : H2 (G+, R) ~ H 11 (r, R) denotes the pull-back via p. In particular the 
absolute value of the volume of the lattice embedding i is equal to the volume of the 
hyperbolic manifold M, Voi(M) = (i*(w11 ), [M]). 

If M is not compact, the above definition fails since H 11 
( r, R) "' H 11 (M, R) = 0. 

Thus we propose the following approach: since Vol,1 is in fact a bounded cocycle, it 
defines a bounded class wf: E Hb'.c ( G+, R) in the bounded cohomology of G+ with 

trivial R-coefficients. Thus associated to a homomorphism p: r ~ o+ we obtain 
p*(wf;> E HJ; (r. R); since M = lHI11 is contractible, it follows easily that Hb' (r, R) 
is canonically isomorphic to the bounded singular cohomology Hf) (M, R) of the 
manifold M (this is true in much greater generality [5, 21], but it will not be used 
here). To proceed further, let N c M be a compact core of M, that is the complement 
in M of a disjoint union of finitely many horocyclic neighborhoods E;, i = 1, ... , k, 
of cusps. Those have amenable fundamental groups and thus the map (N, aN) ~ 
(M, 0) induces an isomorphism in cohomology, Hk1(N, aN, R) "J H/)(M, R), by 

means of which we can consider p* (wf;) as a bounded relative class. Finally, the 
image of p*(cv~) via the comparison map c: Hf}1(N, aN, R) ~ H 11 (N, aN. R) is an 
ordinary relative class whose evaluation on the relative fundamental class [N. a Nl 
gives the definition of the volume of p, 

Vol(p) :=((co p*)(w:;). [N, aN]), 
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which turns out to be independent of the choice of the compact core N. When M 
is compact, we recover of course the invariant previously defined. We complete the 
definition in the case in which r has torsion by setting 

Vol( ) := Vol(PIA) 
P [r: AJ 

where A < r is a torsion free subgroup of finite index. 

Theorem 1.1 Let n ~ 3. Let i : r ~ lsom+(JHI17
) be a lattice embedding and let 

p : r ---+ Isom+ (lHI") be any representation. Then 

I Vol(p)l ~I Vol(i)l = Vol(M), (1) 

lvith equality if and only if p is conjugated to i by an isometry. 

An analogous theorem, in the more general case of a representation p : r ---+ 

Isom+(lHim) with m ;?:: n, has been proven by Francaviglia and Klaff [19] with a 
different definition of volume. 

Taking in particular p to be another lattice embedding of r, we recover Mostow­
Prasad Rigidity theorem for hyperbolic lattices: 

Corollary 1.2 [28, 29] Let n, r2 be two isomorphic lattices in Isom+ (lliin). Then 
there exists an isometry g E lsom(lHI17

) conjugating n to r2. 

As a consequence of Theorem 1.1, we also reprove Thurston's strict version of 
Gromov's degree inequality for hyperbolic manifolds. Note that this strict version 
generalizes Mostow Rigidity [33, Theorem 6.4]: 

Corollary 1.3 [33, Theorem 6.4] Let f : M1 ---+ M2 be a continuous proper map 
between two n-dimensional complete finite volume hyperbolic manifolds M, and 
M2 with n ;?:: 3. Then 

Vol(M2) 
deg(f) ~ Vol(M!)' 

'rvith equality ifand only ~f f is homotopic to a local isomet1y. 

Our proof of Theorem 1.1 follows closely the steps in the proof of Mostow Rigid­
ity. In particular, the following result is the dual to the use of measure homology 
and smearing in [33]. We denote by e : G ---+ { -1, 1} the homomorphism defined by 
e (g) = 1 if g is orientation preserving and e(g) = -1 if g is orientation reversing. 

Theorem 1.4 Let M = r\llii11 be a .finite volume real hyperbolic manifold. Let p: 
r ---+ Isom(llii11

) be a representation with non-elementary image and let cp : 8llii11 ---+ 
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aiHI11 be the corresponding equivariant measurable map. Tltell.for every (n + 1)-tup/e 
(~{points ~0 •... , ~~~ E 8JHI11

, 

!, ( . -I) ( . . ) . Vol( p) 
e g Voln cp(g~o), ... ,cp(g~n) dp,(g)= Voln(~O·····~n), 

r\Isom(IHinl Vol(M) 
(2) 

where p, is the invariant probability measure on r \ Isom(IHI11
). 

This allows us to deduce strong rigidity properties of the boundary map cp from 
the cohomoJogical information about the boundary that in turn, are sufficient to 
show the existence of an element g E Isom+ (IHI11

) conjugating p and i. 
To establish the theorem, we first prove the almost everywhere validity of the 

formula in Theorem 1.4. Ideally, we would need to know that Hh'.c(a+, R) is !­
dimensional and has no coboundaries in degree 1l in the appropriate cocomplex. 
However in general we do not know how to compute HfL(a+, R), except when 

a+= Isom+(JHI2) or Isom+(JHI3 ) and hence there is no direct way to prove the 
formula in (2). To circumvent this problem, we borrow from [7] (see also [9]) the 
essential observation that Vol11 is in fact a cocycle equivariant with respect to the 
full group of isometries a= Isom(IHI11

), that is, 

Vol11 (gx1, ... , gx11 ) = e(g) Voln (XI, ... , X11 ). 

This leads to consider R as a non-trivial coefficient module Re for a and in this 
context we prove that the comparison map 

is an isomorphism. By a slight abuse of notation, we denote again by wf; E 

H g. c (a, Re) and by w11 E H:,1 (a, Re) the generator defined by Vo 111 • 

Using this identification and standard tools from the homological algebra ap­
proach to bounded cohomology, we obtain the almost everywhere validity of the 
formula in Theorem 1.4. Additional arguments involving Lusin 's theorem are re­
quired to establish the formula pointwise. This is essential because one step of the 
proof (see the beginning of Sect. 4) consists in showing that, if there is the equal­
ity in (1), the map cp maps the vertices of almost every positively oriented maximal 
ideal simplex to vertices of positively (or negatively-one or the other, not both) 
oriented maximal ideal simplices. Since such vertices form a set of measure zero in 
the boundary, an almost everywhere statement would not be sufficient. 

2 The Continuous Bounded Cohomology of G = Isom(1HI") 

Denote by a = Isom(IHI11
) the full isometry group of hyperbolic n-space, and by 

a+ = Isom+ (IHI11
) its subgroup of index 2 consisting of orientation preserving 

isometries. As remarked in the introduction there are two natural a-module struc-
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tures on R: the trivial one, which we denote by R, and the one given by multiplica­
tion with the homomorphism c : G --+ G I c+ '"V { + 1' -1}' which we denote by Re. 

Recall that if q EN, the continuous cohomology groups H% (G, R), respectively 
H% (G, R 6 )-or in short H;(G, R(e)) for both-of G with coefficient in R(e)• is by 
definition given as the cohomology of the cocomplex 

C c ( Gq+ 1, R(e)) G = { f : GlJ+ 1 --+ R(e) I f is continuous and 

c(g) · f(go, ... , gq) = f(ggo, ... , ggq)} 

endowed with its usual homogeneous coboundary operator 

defined by 

q+l 

8f(go, ... , gq+I) := I:C-1)j f(go, ... , gj-1, gj+I· ... , gq+d· 
j=O 

This operator clearly restricts to the bounded cochains 

Cc,b( Gq+l, R(c.))G = { f E Cc( Gq+l, R(e))G I 

llflloo = sup IJCgo, ... , gq)l < +oo} 
go, .... gqEG 

and the continuous bounded cohomology H%,b(G, R(e)) of G with coefficients in 
R(e) is the cohomology of this cocomplex. The inclusion 

induces a comparison map 

We call cochains in Cc,(b)(GlJ+I, R)G invariant and cochains in Cc,(b)(Gq+I, 
R6 )G equivariant and apply this terminology to the cohomology classes as well. 
The sup norm on the complex of cochains induces a serninorm in cohomology 

for f3 E H~(b) (G, R(e))· 
The same definition gives the continuous (bounded) cohomology of any topologi­

cal group acting either trivially on R or via a homomorphism into the multiplicative 
group {+1, -1}. A continuous representation p: H--+ G naturally induces pull­
backs 
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where Rp is the H -module .lR with the H -action given by the composition of p : 
H---+ G with c: G---+ {+ l, -1}. Note that llp*(,B)II:::;; 11.81\. 

Since the restriction to c+ of the G-action on R(r) is trivial, there is a restriction 
map in cohomology 

(3) 

In fact, both the continuous and the continuous bounded cohomology groups can be 
computed isometrically on the hyperbolic n-space IHI11

, as this space is isomorphic 
to the quotient of G or c+ by a maximal compact subgroup. More precisely, set 

Cc.(b)((IHI")q+I, R(e))G = {f: {IHI"t+I---+ R If is continuous (and bounded) and 

c(g) · .f(xo, ... , xq) = f(gxo, ... , gxq)} 

and endow it with its homogeneous coboundary operator. Then the cohomology 
of this cocomplex is isometrically isomorphic to the conesponding cohomology 
groups ([22, Chap. III, Prop. 2.3] and [27, Cor. 7.4.10] respectively). 

It is now easy to describe the left inverses to the restriction map (3) induced by 
the inclusion. Indeed, at the cochain level, they are given by maps 

and 

- C ((IHin)CJ+l R)a+ C ((IHI11 )q+l R )G p: c,(b) , ~ c.(h) , c 

defined for xo •... , Xq E IHI11 and f E Cc.(/J)((IHI11 )q+l, R)a+ by 

1 
p(.f)(xo, ... , x4 ) = 2 (.f(xo •... , xq) + .f(rxo, .... rxq) ), 

p(f)(xo, .... xq) = ~ (.f(xo, ... , xq)- f(rxo, ... , rxq) ), 

where r E G " G+ is any orientation reversing isometry. In fact, it easily follows 
from the c+ -invariance of .f that p(.f) is invariant, fi(.f) .is equivariant. and both 
p(.f) and j)(f) are independent of r in G " G+. The following proposition is im­
mediate: 

Proposition 2.1 The cvchain map (p, fi) induces an isometric isomorphism 

The continuous cohomology group a;cc+. R) is well understood since it can, 
via the van Est isomorphism [22, Corollary 7.2], be identified with the de Rham 
cohomology of the compact dual to IHI", which is the n-sphere S". Thus it is gen­
erated by two cohomology classes: the constant class in degree 0, and the volume 
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form in degree n. Recall that the volume form w11 can be represented by the cocycle 
Vol11 E Cc,b((llii11

)'
1+1, R8 )G (respectively Vol11 E L00 ((Bllii11

)'
1+1, R8 )G) given by 

Vol11 (xo, ... , x 11 ) =signed volume of the convex hull of xo, ... , Xn, 

for xo, ... 'XII E llii11
' respectively allii". Since the constant class in degree 0 is invari­

ant, and the volume form is equivariant, using Proposition 2.1 we summarize this as 
follows: 

All other continuous cohomology groups are 0. On the bounded side, the coho­
mology groups are still widely unknown, though they are conjectured to be iso­
morphic to their unbounded counterparts. The comparison maps for G and c+ are 
easily seen to be isomorphisms in degrees 2 and 3 [11]. We show that the com­
parison map for the equivariant cohomology of G is indeed an isometric isomor­
phism up to degree n, based on the simple Lemma 2.2. Before we prove it, it will 
be convenient to have yet two more cochain complexes to compute the continuous 
bounded cohomology groups. If X = llii11 or X = Bllii11

, consider the cochain space 
L 00 (Xq+l, R(e))G of G-invatiant, resp. G-equivariant, essentially bounded mea­
surable function classes endowed with its homogeneous coboundary operator. It is 
proven in [27, Cor. 7.5.9] that the cohomology of this cocomplex is isometrically 
isomorphic to the continuous bounded cohomology groups. Note that the volume 
cocycle Vol11 represents the same cohomology class viewed as continuous bounded 
or L 00 -cocycle on llii11

' as an L 00 -cocyle on amrn or, by evaluation on X E llii" or 
X E Bllii11

' as a continuous bounded or L 00 -cocycle on G. 

Lemma 2.2 For q < n we have 

C-((llii")q+t, R8 )G = 0, 

L 00 {(llii")q+t, R 8 )G = 0, 

L 00 
( ( Bllii11 )q+l, Rc) G = 0. 

Proof Let f: (llii11 )q+t --+ Rt: or f: (Bllii11 )q+t --+ R8 be G-equivariant. The lemma 
relies on the simple observation that any q + 1 ~ n points xo, ... , xq either in llii11 

or in allii" lie either on a hyperplane P c llii11 or on the boundary of a hyperplane. 
Thus there exists an orientation reversing isometry r E G " c+ fixing (xo, ... , xq) 
pointwise. Using the G-equivariance off we conclude that 

f(xo, ... , xq) = -f(rxo, ... , rxq) =- f(xo, ... , xq), 

which implies f = 0. D 

It follows from the lemma that H:b(G, R8 )"' H% (G, Re) = 0 for q < n. Fur­
thermore, we can conclude that the comparison map for the equivariant cohomology 
of G is injective: 
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Proposition 2.3 The comparison map induces an isometric isomOI]Jhism 

~ 

H~~b(G. Rf)~H2(G, R8 ). 

Proof Since there are no cochains in degree 11 - 1, there are no coboundaries in 
degree 11 and the cohomology groups H:\ ( G, R8 ) and H~1 

( G, R8 ) are equal to the 
corresponding spaces of cocycles. Thus. we have a commutative diagram 

1 

The proposition follows from the fact that the lower right kernel is generated by the 
volume form w11 which is represented by the bounded cocycle Vol11 , hence is in the 
image of the vertical right inclusion. D 

Since there are no coboundaries in degree n in Cc: ( (lHI11 y1+ 1, RP) G, it follows that 
the cohomology norm of Wn is equal to the norm of the unique cocycle representing 
it. In view of [23]. its norm is equal to the volume v11 of an ideal regular simplex 
in lHI11

• 

Corollary 2.4 The norm II wnll of the volume form w11 E H2 (a+, R) is equal to the 
volume v11 of a regular ideal simplex in lHI11

• 

As the cohomology norm llw11 II is the proportionality constant between sim Jli­
cial and Riemannian volume for closed hyperbolic manifolds [6, Theorem 2], the 
corollary gives a simple proof of the proportionality principle JIM II= Voi(M)fvn 
for closed hyperbolic manifolds, originally due to Gromov and Thurston. 

3 Relative Cohomology 

3.1 Notation and Definitions 

As mentioned in the introduction, we consider a compact core N of the complete 
hyperbolic manifold M, that is a subset of M whose complement M " N in M is 
a disjoint union of finitely many geodesically convex cusps of M. If q ~ 0 and a : 
.1q ~ M denotes a singular simplex, where .1q ={(to, ... , tq) E Rq+I : L.:~=O fj = 
1. fj ~ 0 for all j} is a standard q-simplex, we recall that the (singular) cohomology 
Hq (M, M " N) of M relative to M " N is the cohomology of the cocomplex 

ClJ(M, M "N) = {f E C 1(M) I f(a) =Oiflm(a) c M" N} 
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endowed with its usual coboundary operator. (Here, C'l (M) denotes the space of 
singular q-cochains on M .) We emphasize that all cohomology groups, singular or 
relative, are with R coefficients. The bounded relative cochains cz (M, M" N) are 
those for which f is further assumed to be bounded, meaning that sup{lf(a)ll a : 
t1.q ---+ M} is finite. The coboundary restricts to bounded cochains and the cohomol­
ogy of that cocomplex is the bounded cohomology of M relative to M " N, which 
we denote by Hb(M, M" N). The inclusion of cocomplexes induces a compar­
ison map c: Hb(M, M" N)---+ H•(M, M "N). Similarly, we could define the 
cohomology of N relative to its boundary aN and it is clear, by homotopy invari­
ance, that H(bl (N, aN)"' H(h) (M, M" N). We can identify the relative cochains 

on (M, M" N) with the r -invariant relative cochains Cq (IHin, U)r on the univer­
sal cover IHI11 relative to the preimage U = rr -l (M " N) under the covering map 
rr : IHin ---+ M of the finite union of horocyclic neighborhoods of cusps. We will 
identify H(b) (N, aN) with the latter cohomology group. Note that U is a countable 
union of disjoint horoballs. 

The inclusion (M, 0) ~ (M, M" N) induces a long exact sequence on both the 
unbounded and bounded cohomology groups 

· · · ~ Hci,) 1(M,N) ~ H(b)(M, M"'-N) ~ H(b)(M) ~ Hcj,)(M,N) ~ · · · 

Each connected component E j of M " N, 1 ~ j ~ k, is a horocyclic neighbor­
hood of a cusp, hence homeomorphic to the product of R with an (n- I)-manifold 
admitting a Euclidean metric; thus its universal covering is contractible and its fun­
damental group is virtually abelian (hence amenable). It follows that (see the intro­
duction or [5, 2l]) Hb(Ej) "'H1~(7ri (Ej)) = 0 and hence H1~(M" N) = 0, proving 
that the inclusion (M, 0) ~ (M, M "N) induces an isomorphism on the bounded 
cohomology groups. Note that based on some techniques developed in [8] we can 
show that this isomorphism is isometric-a fact that we will not need in this note. 

3.2 Transfer Maps 

In the following we identify r with its image i (r) < a+ under the lattice embed­
ding i : r---+ a+. There exist natural transfer maps 

!dR -
whose classical constructions we briefly recall here. The aim of this section will then 
be to establish the commutativity of the diagram (6) in Proposition 3.1. The proof is 
similar to that in [8], except that we replace the compact support cohomology by the 
relative cohomology, which leads to some simplifications. In fact, the same proof as 
in [13] (from where the use of relative bounded cohomology is bon-owed) would 
have worked verbatim in this case, but we chose the other (and simpler) approach, 
to provide a "measure homology-free" proof. 
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3.2.1 The Transfer Map transr: n:(r)--+ n:,b(G, Re) 

We can define the transfer map at the cochain level either as a map 

trans r : v; ---7 v(~ , 

57 

where Vq is one of C&((ll-lln)q+l, R), L00 ((ll-llnyJ+1, R) or L00 ((an-nnyJ+ 1, R). The 
definition is the same in all cases. Let thus c be a r -invariant cochain in vc{. Set 

transr (c)(xo, ... , X 11 ) := [ s(g- 1) • c(gxo, ... , gxn) d~-t(g ), (4) 
lr\G 

where f.1 is the invariant probability measure on r\G normalized so that 
~-t(r\G) = 1. Recall that r < c+, so that s(g) is well defined. It is easy to check 
that the resulting cochain transr(c) is G-equivariant. Fmthermore, the transfer map 
clearly commutes with the coboundary operator, and hence induces a cohomology 
map 

Note that if the cochain c is already G-equivariant, then trans r (c) = c, showing that 
transr is a left inverse of i*: Ht~b(G, Rc.) ~ H;(r). 

3.2.2 The Transfer Map TdR: n•(N' aN) .... Hc•(G, Re) 

The relative de Rham cohomology Hd_ R (M, M " N) is the cohomology of the 
cocomplex of differential forms Qq (M, M " N) which vanish when restricted to 
M " N. Then, as for usual cohomology, there is a de Rham Theorem 

for relative cohomology. The isomorphism is given at the cochain level by integra­
tion. In order to integrate, we could either replace the singular cohomology by its 
smooth variant (i.e. take smooth singular simplices), or we prefer here to integrate 
the differential form on the straightened simplices. (The geodesic straightening of a 
continuous simplex is always smooth.) Thus, at the cochain level, the isomorphism 
is induced by the map 

(5) 

sending a differential form w E Qq (M, M " N) '"'"' Qq (ll-ll11
, U) r to the singular 

cochain tP(w) given by 

(J f-+ [ w. 
Ire* straight(x0 , .. . . x11 ) 

where rr : ll-ll11 
---7 M is the canonical projection, the Xi E n-nn are the vertices of a lift 

of a to ll-ll11
, and straight(xo, ... , x 11 ) : i1 q ~ n-nn is the geodesic straightening. Ob-
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serve that if a is in U, then the straightened simplex is as well, since all components 
of U are geodesically convex. 

The transfer map transdR : HdR(M, M ""- N)---+ H;(G, :IRe) is defined through 
the relative de Rham cohomology and the van Est isomorphism. At the cochain 
level the transfer 

transd R : Qq (IHin, U) r ---+ Qq (IHin, Re) G 

is defined by sending the differential q-form a E Qq (lHI11 )r to the form 

transc~R(a) := f e(g- 1) • (g*a) df.l(g ), 
lr\G 

where 11 is chosen as in (4). It is easy to check that the resulting differential form 
transdR(a) is G-equivariant. Furthermore, the transfer map clearly commutes with 
the differential operator, and hence induces a cohomology map 

~r~ 
HdR(M, M ""- N) ~ H•(.a•(JHin, Re)G) .a•(JHIII R )G 

' E ' 

where the vertical arrow on the right is the van Est isomorphism and the horizontal 
arrow on the right follows from Cartan's lemma to the extent that any G-invariant 
differential form on lHI11 (or more generally on a symmetric space) is closed. 

Let WN,aN E H 11 (M, M ""N) be the unique class with (wN.aN, [N, aN]) = 
Vol(M). It is easy to check that 

transdR(WN,aN) = Wn E .an (IHin, lRe)G,...., H~(G, R8 ). 

3.2.3 Commutativity of the Transfer Maps 

Proposition 3.1 The diagram 

H~(r) 

H1; (N, aN) H~b(G, Re) (6) 

!' cl 
Hq(N, aN) 

TtfR H% (G, R8 ) 

commutes (here TdR = transc1R o I[J- 1 ). 
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Proof The idea of the proof is to subdivide the diagram (6) in smaller parts, by 
defining transfer maps directly on the bounded and unbounded relative singular co­
homology of M and show that each of the following subdiagrams commute. 

t' cl (7) 

Hlf(N, aN) 
trans 

H2 (G, Rc) 
___ ,.. 

~[· ~r~ 
Hq (N oN) 

transc1u 
QCJ (IHin' Rc )G . 

dR ' -
3.2.4 Definition of the Transfer Map for Relative Cohomology 

In order to define a transfer map, we need to be able to integrate our cochain on 
translates of a singular simplex by elements of r\ G. This is only possible if the 
cochain is regular enough. 

For l ~ i ~ k, pick a point bi E Ei in each horocyclic neighborhood of a cusp in 
M and bo E N in the compact core. Let {3' : M---+ {bo. b1, ... , bk} be the measurable 
map sending N to bo and each cusp Ei to bi. Lift {3' to a r -equivariant measurable 
map 

{3 : IHI11 -----+ rr -I ({b0 , b1, .... bk}) c IHI" 

defined as follows. Choose lifts bo, .... bk of bo, .... bk; for each j = 1, ... , k 
choose a Borel fundamental domain !»j 3 b j for the r -action on JT -I ( E j) and 

choose a fundamental domain !»o 3 bo for the r-action on n- 1(N). Now de­
fine f3 ( y !?2j) := y b j. In particular f3 maps each horoball into itself. Given c E 

C£1 (1HI11
, U)r, define 

by 

f3*(c)(xo, . ..• xq) = c(straight(f3(xo), .. . , f3(xq)) ). (8) 

Remark that {3* (c) is r -invariant, vanishes on tuples of points that lie in the same 
horoball in the disjoint union ofhoroballs rr- 1 (Ei ), and is independent of the chosen 
lift of f3' (but not of the points bo, ... , bk ). Thus, {3* (c) is a cochain in Clf (IHI", U) r 
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which is now measurable, so that we can integrate it on translates of a given (q +I)­
tuple of point. We define 

by 

where 1.1 is as in (4). It is easy to show that the integral is finite. Indeed, let D 
be the maximum of the distances between xo and Xi, for i = 1, ... , q. Then for 
g E r\G such that gxo lies outside aD-neighborhood of the compact core N, each 
gxi clearly lies outside Nand hence f3*(c)(gxo, ... , gxq) vanishes for such g. It 
follows that the integrand vanishes outside a compact set, within which it takes only 
finitely many values. Furthermore, it follows from the r -invariance of c and f3 (c) 
that trans,B(c) is G-invariant. 

Since trans.B commutes with the coboundary operator, it induces a cohomology 
map 

trans: Hq (N, aN)-----+ H% (G, Re). 

As the transfer map trans.B restricts to a cochain map between the corresponding 
bounded cocomplexes, it also induces a map on the bounded cohomology groups 

and the commutativity of the middle diagram in (7) is now obvious. 

3.2.5 Commutativity of the Lower Square 

Denote by C/> : gq (lHin, Re) -----+ VXl((lHI11 )q+I, Re) the map (analogous to the map 
l.jl defined in (5)) sending the differential form a to the cochain C/>(a) mapping a 
(q + 1)-tuple of points (xo, ... , xq) E (lHiu)q+I to 

1 a. 
straight(xo, ... ,xq) 

The de Rham isomorphism is realized at the cochain level by precomposing C/> with 
the map sending a singular simplex in lHin to its vertices. To check the commutativity 
of the lower square, observe that 

tranS,B o C/>(a)(xo, ... , Xq) = f t:(g-l) · ( r . . . a) d1.1(g), 
T\G lstrmght(f3(gxo), ... ,,B(gxq )) 
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while 

<PotransdR(a)(xo, ... ,xq)= [ .s(g- 1)·(1. . . a)dp,(~). 
j r\G strmght(gxo, .... gx,1) 

If da = 0. the coboundary of the G-invariant cochain 

q-1 

(xo, ... , Xq-d ~ 2:) -l)i f .s(g-1) 

i=O lr\G 

· (1 a) dp,(g) 
straight(gxo, ... ,gx; ,{J(gx; ) ..... fJ(kr,1-t)) 

is equal to the difference of the two given cocycles. 

3.2.6 Commutativity of the Upper Triangle 

Observe that the isomorphism H1;(M, M" N) "'Hl~(r) can be induced at the 
cochain level by the map fJ* : cz (IH!", U)r -+ UX)((lHI")q+l, R)r defined in (8) 

(and for which we allow ourselves a slight abuse of notation). It is immediate that 
we now have commutativity of the upper triangle already at the cochain level, 

U>"((IHI11 )q+l, R)r 

rl ~ 
L oo ( (IH!") q +I , Rt:) G. 

This finishes the proof of the proposition. D 

3.3 Properties of Vol(p) 

Lemma 3.2 Let i : r <-+ G be a lattice embedding. Then 

Vol(i) = Vol(M). 

Proof Both sides are multiplicative with respect to finite index subgroups. We can 
hence without loss of generality suppose that r is torsion free. By definition, we 
have 

Vol(M) = (wN,iJN, [N, CJN]), 

Vol(i) =((co i*)(w:;). [N. aN]). 
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The desired equality would thus clearly follow from WN,aN =(co i*)(w~). As the 
transfer map TdR : H"(N, aN)---+ H~1 (G) is an isomorphism in top degree and 
sends WN.aN to w11 , tllis is equivalent to 

Wn = Td R (wN,aN) = TdR o co i* ( w~) =co transr o i* (w:;) = c(w~) = W11 , .._,_, 
cotransr 

where we have used the commutativity of the diagram (6) in Proposition 3.1 and the 
fact that trans r o i * = Id. D 

Proposition 3.3 Let p : r ---+ G be a representation. The composition 

is equal to A · Id, where 

lA I= I Vol(p)l ~ 1. 
Vol(M) 

Proof As the quotient is left invariant by passing to fhlite index subgroups, we can 
without loss of generality suppose that r is torsion free. Let A E R be defined by 

transr o p*(w~) =A· w~. (9) 

We apply the comparison map c to this equality and obtain 

co transr o p* (w:;) =A · c( w:;) =A · W11 =A · TdR (wN.aN ). 

The first expression of this line of equalities is equal to rd R o c o p* (w~) by the 
commutativity of the diagram (6). Since TdR is injective in top degree it follows that 
(co p*)(w~) =A· WN,aN. Evaluating on the fundamental class, we obtain 

Vol(p) =((co p*)(w~), [N, aN])= A· (wN,oN, [N, aN])= A· Vol(i) =A· Vol(M). 

For the inequality, we take the sup norms on both sides of (9), and get 

II transr op*(w~)ll 
IAI = llw!:ll ~ 1' 

where the inequality follows from the fact that all maps involved do not increase the 
norm. This finishes the proof of the proposition. D 

4 On the Proof of Theorem 1.1 

The simple inequality I Vol(p)l ~I VoJ(i)l = Voi(M) follows from Proposition 3.3 
and Lemma 3.2. 
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The proof is divided into three steps. The first step, which follows essentially 
Furstenberg's footsteps [37, Chap. 4], consists in exhibiting a p-equivariant mea­
surable boundary map q; : aJHI11 ---+ alHI". In the second step we wiJl establish that cp 
maps the vertices of almost every positively oriented ideal simplex to vertices of 
positively (or negatively-one or the other, not both) oriented ideal simplices. In the 
third and last step we show that q; has to be the extension of an isometry, which will 
provide the conjugation between p and i. The fact that n ~ 3 will only be used in 
the third step. 

4.1 Step 1: The Equivariant Boundary Map 

We need to define a measurable map q;: BlHI11 ---+ 3lHI" such that 

q;(i(y). ~) = p(y). cp(~). (10) 

for every ~ E aJHI" and every y E r. 
The construction of such boundary map is the sore point of many rigidity ques­

tions. In the rank one situation in which we are, the construction is well known and 
much easier, and is recalled here for completeness. 

Since aJHIIl can be identified with Isom+ (lHI11 ) I p' where p < Isom+ (lHI") is a 
minimal parabolic, the action of r on aJHI" is amenable. Thus there exists a r­
equivariant measurable map cp : aJHI" ---+ jf1 (BlHI11 ), where . .Jt 1 (8lHI11 ) denotes the 
probability measures on aiHI11

, [37]. We recall the proof here for the sake of the 
reader familiar with the notion of amenable group but not conversant with that of 
amenable action, although the result is by now classical. 

Lemma 4.1 Let G be a locally compact group, r < G a lattice and Pan amenable 
subgroup. Let X be a compact metrizable space with a r -action by homeomor­
phisms. Then there exists a r -equivariallf boundary map q;: G I P ---+ .Aft1 (X). 

Proqf' Let C (X) be the space of continuous functions on X. The space 

L ~ ( G, C (X)) := { f : G ---+ C (X) I f is measurable, r -equivariant and 

r IIJ<k)ILX>df-L(k> < ooj. lnc 
is a separable Banach space whose dual is the space Lp(G, ..,./{(X)) of measur­
able r -equivariant essentially bounded maps from G into .. lf(X), where .,/{(X)= 
C(X)* is the dual of C(X). (Notice that since C(X) is a separable Banach space, 
the concept of measurability of a function G---+ C(X)* is the same as to whether 
C(X)* is endowed with the weak-* or the norm topology.) Then Lcp?(G, .11 1 (X)) is 
a convex compact subset of the unit ball of Lp( G,. It (X)) that is right P-invariant. 
Since P is amenable, there exists a P-fixed point, that is nothing but the map 
q;: G I P---+ .//{ 1 (X) we were looking for. 0 
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We are going to associate to every 1.1 E At 1 (a IHin) (in the image of q;) a point 
in 8IHI11

• 

If the measure 1.1 has only one atom of mass ~ -!, then we associate to 1.1 this 
atom. We will see that all other possibilities result in a contradiction. 

If the measure f.L has no atoms of mass greater than or equal to -!, we can apply 
Douady and Earle's barycenter construction [1 6, Sect. 2] that to such a measure as­
sociates equivariantly a point bjl E IHin. By ergodicity of the r -action on aiHin X aiHin' 
the distanced:= d(brp(x)• brp(x')) between any two of these points is essentially con­
stant. It follows that for a generic x E 8IHI11

, there is a bounded orbit, contradicting 
the fact that the action is not elementary. 

If on the other hand there is more than one atom whose mass is at least ~, then 
the support of the measure must consist of two points (with an equally distributed 
measure). Denote by gx the geodesic between the two points in the support of the 
measure q;(x) E A 1(aiHin). By ergodicity of the r-action on aiHI" x 8IHI11

, the car­
dinality of the intersection supp(q;(x)) n supp(q;(x')) must be almost everywhere 
constant and hence almost everywhere either equal to 0, 1 or 2. 

If I supp(q;(x)) n supp(q;(x'))l = 2 for almost all X, x' E aiHin' then the geodesic 
gx is r -invariant and hence the action is elementary. 

If 1 supp(q;(x)) n supp(q;(x'))l = 1, then we have to distinguish two cases: ei­
ther for almost every X E 8JHI11 there is a point ~ E 8JHI11 such that supp(q;(x)) n 
supp(q;(x')) ={~}for almost all x' E aiHin, in which case again~ would be r­
invariant and the action elementary, or supp(q;(x)) U supp(q;(x')) Usupp(q;(x")) con­
sists of exactly three points for almost every x', x" E 8IHI11

• In this case the barycen­
ter of the geodesic triangle with vertices in these three points is r -invariant and the 
action is, again, elementary. 

Finally, if I supp(q;(x)) n supp(q;(x'))l = 0, let D := d(gx, gx'). By ergodicity 
on 8IHI11 x 8IHI11

, d is essentially constant. Let y E p(r) be a hyperbolic element 
whose fixed points are not the endpoints of gx or &.:'. Then iterates of y send a 
geodesic gx' into an arbitrarily small neighborhood of the attractive fixed point of y, 
contradicting that g, is at fixed distance from gx'. 

4.2 Step 2: Mapping Regular Simplices to Regular Simplices 

The next step is to prove Theorem 1.4. Then ifVol(p) = Vol(M), it will follow that 
the map q; in Step 1 sends almost all regular simplices to regular simplices. 

From Proposition 3.3 we obtain that the composition of the induced map p* and 
the transfer with respect to the lattice embedding i is equal to ± the identity on 
H~1.b(G+, R8 ). In dimension 3, it follows from [4] that H;,b(Isom+(JHI3), R) "'R 
and the proof can be formulated using trivial coefficients; this has been done in [1 1], 
which is the starting point of this paper. In higher dimension it is conjectured, but 
not known, that H~~b(G+, R) "'R. 

We can without loss of generality suppose that transr o p* is equal to + Id. In­
deed, otherwise, we conjugate p by an orientation reversing isometry. We will now 



Mostow Rigidity and Volume Rigidity for Hyperbolic Lattices 65 

show that the isomorphism realized at the cochain level leads to the equality (11 ), 
which is only an almost everywhere equality. Up to this point, the proof is elemen­
tary. The only difficulty in our proof is to show that the almost everywhere equality 
is a true equality, which we prove in Proposition 4.2. Note however that there are 
two cases in which Proposition 4.2 is immediate, namely 1) if cp is a homeomor­
phism, which is the case if r is cocompact and pis also a lattice embedding (which 
is the case of the classical Mostow Rigidity Theorem), and 2) if the dimension 11 

equals 3. We give the alternative simple arguments below. 
The bounded cohomology groups H1~:b ( G, Rf) and Hg (r, R) can both be com­

puted from the corresponding L 00 equivariant cochains on aiHI11
• The induced map 

p*: H:\(G,Re)---+ Hf:(r,R) is represented by the pullback by cp, although it 
should be noted that the pullback in bounded cohomology cannot be implemented 
with respect to boundary maps in general, unless the class to pull back can be 
represented by a strict invariant Borel cocycle. This is our case for Vol11 and 
as a consequence, cp*(Vol11 ) is also a measurable r -invariant cocycle. It hence 
determines a cohomology class in HJ: (r) which, by [10, Corollary 3.7]. repre­
sents p*(w11 ). 

The composition of maps transr o p* is thus realized at the cochain level by 

L oo ( ( aiHinr+I, Re) r ---+ VX) ( ( aJHiny+I, Re) G 

v ~ {C;o, ... , ;n) ~ fr\G s(g- 1 )v(cp(g~u .... , g;")) df-L(g)}. 

Since the composition transr o p* is the multiplication by ~~~(~~)) at the cohomology 
level and there are no coboundaries in degree n (Lemma 2.2), the above map sends 

the cocycle Vol11 to ~~~~(~~}) Vol11 • Thus, for almost every ;o, ... , ~11 E aiHI11 we have 

Let (aiHin)(n+I> be the G-invariant open subset of (aiHI") 11+1 consisting of (n +I)­
tuples of points (;o .... , ;") such that ;i # ~.i for all i # j. Observe that the vol­
ume cocycle Vol11 is continuous when restricted to (a1HI11 )(n+ I) and vanishes on 
(81HI11

)
11 +1 " (aiHI")(n+l). Observe moreover that the volume of ideal simplices is 

a continuous extension of the volume of simplices with vertices in the interior B 11 

of the sphere sn-l = aiHI". 

Proposition 4.2 Let i : r---+ G he a lattice embedding, p : r ---+ G a representation 
and cp : 8JHI11 ---+ aJHI" a r -equivariant measurable map. fdenti;fying r '1-Vfth its image 
i (r) < G via the lattice embedding, if 

for almost eve!)' (;o, ... , ; 11 ) E (aJHI11
)

11 +l, then tile equality holds everywhere. 
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Before we proceed with the proof, let us observe that it immediately follows from 
the proposition that if p has maximal volume, then cp maps the vertices of almost 
every regular simplex to the vertices of a regular simplex of the same orientation, 
which is the conclusion of Step 2. 

Proof if cp is a Homeomorphism Since cp is injective, both sides of the almost ev­
erywhere equality are continuous on (aiHI")(n+L>. Since they agree on a full measure 
subset of (aiHI'1)(11 +L), the equality holds on the whole of (aiHin)(n+L). As for its com­
plement, it is clear that if ~i = ~j fori =I= j then both sides of the equality vanish. D 

Pro(~{ (f n = 3 Both sides of the almost equality are defined on the whole of 
(aiHI3)4, are cocycles on the whole of (aiHI3)4, vanish on (aiHI3) 4 " (aiHI3)<4> and 
are Isom+(JHI3)-invariant. Let a, b: (aiHI3)4 ---+ R be two such functions and suppose 
that a= bon a set of full measure. This means that for almost every (~o •... , ~3) E 

(aiHI3)4, we have a(~o •... , ~3) = b(~o .... , ~3). Since Isom+(JHI3) acts transitively 
on 3-tuples of distinct points in IHI3 and both a and b are Isom+ (IHI3)-invruiant, this 
means that for every (~o, ~~, ~2) E (aiHI3)(3> and almost every 17 E aiHI3 the equality 

a(~o. ~~, ~2· 17) = b(~o. ~~, ~2. 17) 

holds. Let ~o •.... ~3 E aiHI3 be arbitrary. If ~i = ~j fori =/= j, we have a(~o, .... ~3) = 
b(~o •... , ~3) by assumption. Suppose ~i =I= ~j whenever i =I= j. By the above, for ev­
ery i E 0, ... , 3 the equality 

a(~o •... , f;, ... , ~3, 17) = b(~o •... , f;, ... , ~3, 17) 

holds for 17 in a subset of full measure in aiHI3 . Let 17 be in the (non empty) intersec­
tion of these four full measure subsets of aiHI3 . We then have 

3 

a(~o •... • ~3) = l:C-l)ia(~o •... , f;, ... , ~3, 17) 
i=O 

3 

= 2:< -l)i b(~o •... , €;, ... , ~3. 17) = b(~o •... , ~3), 
i=O 

where we have used the cocycle relations for a and b in the first and last equality 
respectively. D 

Proof in the General Case Observe first of all that for all (~o •... , ~n) E (aiHI11 )11 + 1 " 

(aiHI11)<11+I) the equality holds trivialJy. 
using the fact that aiHI" ,....., sil-l c R11

' let us consider the function ifJ : a IHI11 ---+ 

aiHI11 as a function cp : aiHin ---+ R" and for j = 1, ... , n denote by cp j its coordi­
nates. Since aiHI" ,....., G I p' where p is a minimal parabolic, let v be the quasi­
invariant measure on aiHI" obtained from the decomposition of the Haar measure 
Jl c with respect to the Haar measure ll p on P, as in (17). According to Lusin 's 
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theorem applied to the C{Jj for j = 1. ... , n (see for example [31, Theorem 2.24]), 
for every 8 > 0 there exist a measurable set B8 ,i c Biill" with measure v(B; .8) ~ 8 
and a continuous function f/.s : oiill" ---+ R such that cp j = f}, 8 on Biill" " B j,8. 

Set .f£ := (fu, ... , };1.8)---+ R" and consider the composition f8 := r o J;; with 
the retraction r : R" ---+ B 11 to the closed unit ball fFl c R'1

• Then, by setting 
B0 := UJ=I B j.o. we see that cp coincides on aiill" "Bo with the continuous function 

f8: oiill"---+ fFl and v(Bs) ~ n8. 
Let ~ c G be a fundamental domain for the action of r on G. For every 

measurable subset E c ~. any measurable map 1/1 : 8Iill" ---+ B11 and any point 
(~o, ... , ~11 ) E (oiill")(n+I), we use the notation 

f ( 1/1, E, (~o •... , ~11 )) := i e (g -I) Voln ( 1/J(g~o), ... , 1/1 (g~11 )) dtt c (g), 

so that we need to show that if 

u;. Vol(p) 
f(cp, '2J. (~o •... , ~n)) = Vol(M) Vol~~(~o •... , ~~~) (12) 

for almost every (~o .... , ~11 ) E (8Iill")(n+I), then the equality holds everywhere. 
Fix E > 0 and let KE C ~ be a compact set such that f.LG (~ " KE) < E. The 

proof is broken up in several lemmas, that we state and use here, but whose proof 
we postpone. 

Lemma 4.3 With the above notations, 

(13) 

where CTE (8) does not depend on ~ E 8Iill11 and CTE (8) ---+ 0 when 8 ---+ 0. 

Replacing cp with .fo results in the following estimate for the integral. 

Lemma 4.4 With the notation as above, there exists ajim.ction ME (8) with the prop­
erty that lims-o ME(8) = 0, such that 

for all (~o •... , ~n+I) E ((1Iill11
)

11 + 1. 

Observe that. although 

for all (~o .... , ~11 +1) E (Biill11 )<n+I l, the estimate 

I 
. Vol(p) . I 

Yf(cp, K(:, (~o •... • ~n))- Yoi(M) Voln(~o •... ·~n) 
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~ lf((fl, Ke, (~o, · · ·, ~n))- f((fl, ~. (~o, · · ·, ~n))l 

I 
Vol(p) I 

+ f((fl,~,(~o, ... ,~n))-Vol(M) Voln(~o, ... ,~n) ~EIIVolniL (15) 

holds only for almost every (~o, ... , ~11 ) E (8lliP1)(n+l), since this is the case for (12). 
From (15) and Lemma 4.4, it follows that 

I ~~ I .f (Jo, Ke, (~o, ... , ~n)) - Vol(M) Voln (~o, ... , ~n) 

~ lf(Jo, Ke, (~o, · · ·, ~n))- f((fl, Ke, (~o, · · ·, ~n))l 

I 
Vol(p) I 

+ f((fl, Ke, (~o •... , ~n))- Vol(M) Voln(~o, ... , ~n) 

< Me(8) +Ell Voln II, (16) 

for almost every (~o •... , ~11 ) E (8IHI11 )C11+1>. 
The following lemma uses the continuity of fo to deduce that all of the almost 

everywhere equality that propagated from the use of (12) in (15), can indeed be 
observed to hold everywhere because of the use of Lusin theorem. 

Lemma 4.5 There exist a function L(E, 8) such that lime--+0 limo--+0 L(E, 8) = 0 and 

I 
Vol(p) I f(Jo , Ke, (~o, ... , ~~~))- Vol(M) Voln(~o, ... , ~11 ) ~ L(E, 8) 

for all (~o •... , ~11 ) E (8IHI")Cn+I). 

From this, and from Lemma 4.4, and using once again (14 ), now all everywhere 
statements, we conclude that 

I 
Vol(p) I 

f((fl, ~. (~o, ...• ~~~))- Vol(M) Voln(~o, ... , ~~~) 

~ If ( (fl, ~' ( ~0, · · · , ~ n)) - .f ( (fl, K E, ( ~0, · · · , ~~~)) I 

+ If ((fl, Ke, (~o, ... , ~n)) - f (Jo, Ke, (~o, ... , ~~~))I 

I 
Vol(p) I 

+ f(Jo, Ke, (~o, ... , ~,z))- Vol(M) Voln(~o, ... , ~~~) 

< Me(8) + L(E, 8) +Ell Vol" II, 

for all (~o, ... , ~11 +1) E (81HI11 )n+I. This concludes the proof of Proposition 4.2, as­
suming the unproven lemmas. D 

We now proceed to the proof of Lemmas 4.3, 4.4 and 4.5. 
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ProofofLemma 4.3 Recall that BJH[" = Gl P, where P < G is a minimal parabolic 
and let 17 : G I P -+ G be a Borel section of the projec~on G -+ G I P such that F := 
17(GI P) is relatively compact [26, Lemma 1.1]. Let 8 0 := 1J(B.s) and, if~ E B.s, set 
~ := 1J(~) E i{~. On the other hand, if g E Kr: and g~ E 8 0, there exists p E P such 
that g~ p E Bo and, in fact, the p can be chosen to be in P n F- 1 (Kr:) -I F =: Cr:. 
Thus we have 

{g E Kr:: g~ E B.s} = {g E Kr:: there exists p E CE with g~ p E B.s} 

= {g E Kr: n Bsp-l~-l for some p E Cr:} c Kr: n B8C; 1 ~ - l. 

and hence 

To estimate the measure, recall that there is a strictly positive continuous function 
q : G -+ R+ and a positive measure v on BJH[" such that 

1 f(g)q(g)dJ.lc(g) = [ ( [ f(g~)dJJ-p(~)) dv(g), (17) 
c hw }p 

for all continuous functions f on G with compact support, [30, Sect. 8.1]. 
We may assume that JJ-c(B0C; 1) =I= 0 (otherwise we are done). Then, since q is 

continuous and strictly positive and the integral is on a relatively compact set, there 
exists a constant 0 < a < oo such that 

But, by construction, if g E B.s, then g~ E B0C; 1 if and only if~ E c; 1, so that 

and hence 

CXJ.Lc(B.sC; 1
) = v(Bo)J.Lp(C; 1

). 

Since v(Bs) < 8, the inequality (13) is proven with ar:(8) = ~JJ-p(C; 1 )8. 0 

Proof of Lemma 4.4 Let us fix (~o .... , g11 ) E (BJH[" )11+1. Then we have 

lf(fP, Kr:, (~o, ... , gn))- f(/8, Kr:, (go, ... , ~n))l 

:::; lf(fP, Kr:.o, (~o •... , ~n))- f(.f8, Kr:.o, (~o •.... ~n))l 

+ j,Jf (f/J. Kr:, 1, (~o, ... , ~n))- f(Jo, Kr:.l, (~o. · ·., ~")) 1. 
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where 

11 

K€.0 := n {g E K€: g~j E aiHin-..... B8} and KE,l := K€-..... K€,0· 
j=O 

But q;(g) = fB(g) for all g E KE,O, hence the difference of the integrals on K€,0 
vanishes. Since 

/1-c(K€,!) = /1-G (K€ n 0{g EKE: g~j E B8}) ~ (n + 1)oA8), 
J=O 

we obtain the assertion with M€(8) := 2(n + 1)11 Voln llrr€(8). D 

Proof of Lemma 4.5 If the volume were continuous on (aiHI11
)'

1+ 1 or if the function 
f8 were injective, the assertion would be obvious. 

Observe that q; is almost everywhere injective: in fact, by double ergodicity, the 
SUbset of aiH!n X aiHI11 consisting Of pairs (X,)') for which cp(x) = cp(y) is a set Of 
either zero or full measure and the latter would contradict non-elementarity of the 
action. Then on a set of full measure in aiHI'1 

-..... B8 the function /8 is injective and 
hence Vol11 (/8(g~o), ... , /8(g~11 )) is continuous provided the /8(g~o), ... , .f8(g~11 ) 
are pairwise distinct. 

So, for any (~o, ... , ~11 ) E (aiHI11 )(n+l) we define 

g(~o, ... , ~n) := {g EKE: /8(g~o), ... , /8(g~n) are pairwise distinct}. 

Let F c (Bf x B8)(2) be the set of distinct pairs (x, y) E (Bf x B%)(2) such that 
/8(x) = fB(y). Then F is of measure zero, and given any (~o, ~I) E aiHI11 x aiHI11 

distinct, the set {g E G: g(~o, ~~) E F} is of Me-measure zero. This, together with 
Lemma 4.3, implies that 

Mc(K€ ....... 8'C~o •... , ~~~)) ~ J.Lc (u{g EKE: g~j E B8}) ~en+ 1)rrE(8). (18) 
J=O 

Let Y c (aiHI11 )C11+ 1> be the set of full measure where the inequality (16) holds 
and let (~o •... , ~n) E (aiHI11 )(n+I). Since v11 +1 ((aiHI11 )(n+I) -..... Y;) = 0, there exists a 

· ( (k) (k) C£1 • (k) (k) sequence of pomts ~0 , ... , ~n ) E J w1th (~0 , ... , ~~~ ) --+ (~o, ... , ~~~ ). Then 
for every g E 8'(~) 

lim Vol11 (/8(g~Jk>), ... , /8(g~~k))) = Vol11 (/8(g~o), ... , /8(g~11 )), 
k--'1-00 

and, by the dominated convergence theorem applied to the sequence hk(g) := 

Vol11 (/8 (g~Jk)), ... , .f8 (g~,~k))), we deduce that 

k
lim yr (/8, 8'(~o, ... , ~n ), (~Jk), ... , ~~k>)) = yr (.!8, 8'(~o, ... , ~n ), (~o .... , ~~~) ). 
_,. 00 

(19) 
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But then 

I 
. Vol(p) I .f(fo. KE, (~o •... , ~~~>)- Vol(M) Vol~~(~o •... , ~~~) 

~ IJ-(fs. KE, (~o •... , ~~~))- y1(.f8, l&'(~o •... , ~~~), (~o. ···,~~~))I 

+ IY:(.ts, 8'(~o. · · · '~~~).(~o. · · ·, ~n)) -y1(!fl, l&'(~o •.. . , ~~~),(~cik), .... ~~~kl))l 

+ l.f (/8' 0"(~o ..... ~~~ ). (~Jk), ... , ~~~k))) - f' (!o, KE, ( ~Jk), ... , ~~~k))) I 

I 
·( ( (k) <kl)) Vol(p) ( (k) (k))l + J h, K E, ~0 , ... , ~11 - Vol17 ~0 , ... , ~~~ 

Vol(M) 

I 
Vol(p) ( (k) (k)) Vol(p) I 

+ Vol(M) Voln ~o , ... ,~" - Vol(M) Voln(~o .... ,~n)' 

for all (~o, ... , ~11 ) E (BIHI")<11+l). 
The first and third lines after the inequality sign are each ~ (n + 1) II Vol11 llaE (8) 

because of (18); the second line after the equality is less than 8 if k is large 
enough because of ( 19); the fourth line is ~ ME (8) + E II Vol11 II by (16) since 

(~Jk), ... , ~~~k)) E ..9; and finally the last line is also Jess than o if k if large enough. 

All of the estimate hold for all (~0 , ... , ~~~) E (aiHI")<n+t), and hence the assertion is 
proven with L(E, 8) := 28 + 2(n + 1)11 Vol 11 llaE(8) + ME(8) +Ell Vol17 11· D 

4.3 Step 3: The Boundary Map is an Isometry 

Suppose now that the equality I Vol(p) I = I Vol(i) I holds. Then cp maps enough reg­
ular simplices to regular simplices. In this last step of the proof, we want to show 
that then cp is essentially an isometry, and this isometry will realize the conjugation 
between p and i. 

In the case of a cocompact lattice r < lsom(IHI") and a lattice embedding p : 
r ---7 Is om+ (IHI"), the limit map cp is continuous and the proof is very simple based 
on Lemma 4.6. This is the original setting ofGromov's proof ofMostow rigidity for 
compact hyperbolic manifolds. 

If either the representation p is not assumed to be a lattice embedding, or if r is 
not cocompact, then the limit map cp is only measurable and one needs a measurable 
variant of Lemma 4.6 presented in Proposition 4.7 for n ~ 4. The case n = 3 was 
first proven by Thurston for his generalization (Corollary 1.3 here) of Gromov's 
proof of Mostow rigidity. It is largely admitted that the case n = 3 easily generalizes 
to n ~ 4, although we wish to point out that the proof is very much simpler for 
n ~ 4 based on the fact that the reflection group of a regular simplex is dense in 
the isometry group. For the proof of Proposition 4.7, we will omit the case n = 3 
which is nicely written down in all necessary details by Dunfield [17, pp. 654-656], 
following the original [33, two last paragraphs of Sect. 6.4]. 
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Let T denote the set of (n + I)-tuples of points in aJHI11 which are vertices of a 
regular simplex, 

T = H:. = (~o .... , ~11 ) E (aiHI"t+l I£ are the vertices of an ideal regular simplex}. 

We shall call an (n + I)-tuple in T a regular simplex. Note that the order of the 
vertices ~o •... , ~11 induces an orientation on the simplex£. For£ E T, denote by 
A~ < lsom(IHI11

) the reflection group generated by the reflections in the faces of the 
sin1plex t 

Lemma 4.6 Let n ~ 3. Let ~ = (~o •... , ~11 ) E T. Suppose that cp : aJHin ~ aJHin is 
a map such that for eve1y y-EA~, the simplex with vertices (cp(y~o), ... , cp(y~11 )) 
is regular and of the same orientation as (y~o •... , y~11 ) E T. Then there exists a 
unique isomefly h E Isom(lHI11

) such that h(~) = cp(~) for eve1y ~ E U7=o At~i. 

Note that this lemma and its subsequent proposition are the only places in the 
proof where the assumption n ~ 3 is needed. The lemma is wrong for 1l = 2 since cp 
could be any orientation preserving homeomorphism of aJHI2 . 

Proof If£= (~o •... , ~11 ) and (cp(~o), ... , cp(~11 )) belong to T, then there exists a 
unique isometry h E Isom+ (lHI11

) such that h~i = cp(~i) for i = 0, ... , n. It remains 
to check that 

(20) 

for every y E A5. Every y E A; is a product y = rk · ... · r1, where rj is a re­
flection in a face of the regular-simplex rj-J · ... · r1 (£). We prove the equal­
ity (20) by induction on k, the case k = 0 being true by assumption. Set 1]; = 
rk-1 · ... · I'J (~i ). By induction, we know that h(rJi) = cp(rJi). We need to show that 
h(rkrJ;) = cp(rkrJ;). The simplex (rJo, ... , 1]11 ) is regular and rk is a reflection in one 
of its faces, say the face containing YJI, ••. , 1]11 • Since rkrJi = rJi fori= 1, ... , n, it 
just remains to show that h(rkrJo) = cp(rkrJo). The simplex (rkrJo, rkrJ1, ... , rkrJn) = 
(rk7Jo, 7JJ, •.• , 1]11 ) is regular with opposite orientation to (rJo, rJJ, ... , TJ 11 ). This 
implies on the one hand that the simplex (h(rkrJo), h(rJt), ... , h(ry11 )) is regular 
with opposite orientation to (h(ryo), h(YJJ ), ... , h(ry11 )), and on the other hand that 
the simplex (cp(rkrJo), cp(ryt), ... , cp(rJ11 )) is regular with opposite orientation to 
( cp( 7Jo), ... , cp( 1]11 )). Since (h(ryo), h (171), ... , h (ry11 )) = (cp(1Jo), ... , cp (1711 )) and there 
is in dimension n ~ 3 only one regular simplex with face h(rJt), ... , h(ry11 ) and op­
posite orientation to (h(rJo), h(YJI ), ... , h(ry11 )) it follows that h(rk7Jo) = cp(rk7Jo). D 

If cp were continuous, sending the vertices of all positively (respectively nega­
tively) oriented ideal regular simplices to vertices of positively (resp. neg.) oriented 
ideal regular simplices, then it would immediately follow from the lemma that cp is 
equal to an isometry h on the orbits u~I=O At~i of the vertices of one regular simplex 

under its reflection group. Since the set U7=o A~~; is dense in aiHI", the continuity 
of cp would imply that cp is equal to the isometry h on the whole aJHI". 
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In the setting of the next proposition, we first need to show that there exist enough 
regular simplices for which <p maps every simplex of its orbit under reflections to a 
regular simplex. Second, we apply the lemma to obtain that <p is equal to an isometry 
on these orbits. Finally, we use ergodicity of the reflection groups to conclude that 
it is the same isometry for almost all regular simplices. As mentioned earlier, the 
proposition also holds for n = 3 (see [17, pp. 654-656] and [33, two last paragraphs 
of Sect. 6.4]), but in that case the proof is quite harder, since the reflection group of 
a regular simplex is discrete in Isom(lHF') (indeed, one can tile IHI3 by regular ideal 
simplices) and in particular does not act ergodically on Isom(IHI"). 

Proposition 4.7 Let n ~ 4. Let <p : 3IHI11 ~ 3IHI11 be a measurable map sending the 
vertices of almost eve I)' positively, respectively negatively oriented regular ideal sim­
plex to the vertices of a positively, resp. negatively, oriented regular ideal simplex. 
Then <p is equal almost evei)'}Vflere to an isometl)1. 

Proof Let Tf/J C T denote the following subset of the set T of regular simplices: 

Tq; = {_t = (~o •... , ~11 ) E T I (<p(~o), .... <p(~11 )) belongs to Tand has the same 

orientation as (~o, . . . , ~~~)}. 

By assumption, Tf/J has full measure in T. Let TX c Tf/J be the subset consisting 
of those regular simplices for which all reflections by the reflection group A~ are 
. Tf/J -
m . ' 

TX = {t E T I Yf E Tcp 'Vy EAt}. 

We claim that TX has full measure in T. 
To prove the claim, we do the following identification. Since G = Isom(IHI11

) acts 
simply transitively on the set T of (oriented) regular simplices, given a base point 
ry = (170 • ••• , 1711 ) E T we can identify G with T via the evaluation map 

Ev,1 : G -----+ T 
g t--7 g(77). 

The subset T'P is mapped to a subset G'P := (Ev17 )- 1 (T'P) c G via this correspon­
dence. A regular simplex _t = g(!]_) belongs to TX if and only if, by definition, 

y_t = yg!]_ belongs to Tf/J for every y EAt. Since At= gA1g- 1, the latter con­

dition is equivalent to gyo!]_ E T'P for every Yo E A 1, or in other words, g E G'Py0-
1

. 

The subset TX is thus mapped to 

Gq; = Ev!i. 1 (TX) = n Gf/Jy() 1 c G 
YoEJl!!. 

via the above correspondence. Since a countable intersection of full measure subsets 
has full measure, the claim is proved. 
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For every~ E T~ and hence almost every~ E T there exists by Lemma 4.6 a 

unique isomeh-y h~ such that h~(~) = q;(~) on the orbit points~ E U~1=o A~~i· By 
the uniqueness of the isometry~ it is immediate that hy~ = h~ for every y- E A~. 
We have thus a map h : T --+ lsom(lHin) given by ~ ~----* ht;-defined on a full measure 
subset ofT. Precomposing h by Ev.,, it is straightfutward that the left A~-invariance 
of h on A~~ naturally translates to a-global right invariance of h o E v11 on G. Indeed, 
let g E G and Yo E A!I: We compute -

h o Ev1(g ·yo)= hgy01 = hgyog-IgT/ = hg1 = h o Ev1(g), 

where we have used the left Ag1-invariance of h on the reflections of gry in the third 

equality. (Recall, gyog-1 E gA.,g- 1 = Ag11 .) Thus, h o Ev,1 : G--+ G is invariant 
under the right action of A,1• Since the latter group is dense in G, it acts ergodically 
on G and h o Ev11 is essentially constant. This means that also h is essentially con­
stant. Thus, for afinost every regular simplex ~ E T, the evaluation of q; on any orbit 
point of the vertices of~ under the reflectiongroup A~ is equal to h. In particular, 
for almost every~ = (~0 .... , ~11 ) E T and also for almost every ~o E lHin, we have 
q;(~o) = h(~o), which finishes the proof of the proposition. D 

We have now established that q; is essentially equal to the isometry h E Isom(lHI11
) 

on aJHI11
• It remains to see that h realizes the conjugation between p and i. Indeed, 

replacing q; by h in ( 1 0) we have 

(h. i(y))(~) = (p(y). h)(~). 

for every~ E aJHI11 and y E r. Since all maps involved (h, i (y) and p (y)) are isome­
tries of lHI11 and two isometries induce the same map on aiHin if and only if they are 
equal it follows that 

h. i(y). h-1 = p(y) 

for every y E r, which finishes the proof of the theorem. 
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