Hyperbolic 4-Manifolds with Perfect Circle-Valued Morse Function

Ludovico Battista joint with Bruno Martelli University of Pisa

ludovico.battista@phd.unipi.it

We want to generalise fibrations in dimension 3 to dimension 4.

à

Idea

We want to generalise fibrations in dimension 3 to dimension 4.

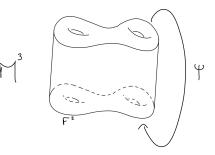
 $f: M \to S^1$ a fibration

ò

Idea

We want to generalise fibrations in dimension 3 to dimension 4.

 $f: M \to S^1$ a fibration



Let M be a (complete) hyperbolic compact manifold without boundary.

à

Let M be a (complete) hyperbolic compact manifold without boundary.

Definition [Circle-Valued Morse Function]

A *circle-valued Morse function* on M is a smooth map $f: M \to S^1$ with finitely many critical points, all of non degenerate type.

Let M be a (complete) hyperbolic compact manifold without boundary.

Definition [Circle-Valued Morse Function]

A *circle-valued Morse function* on M is a smooth map $f: M \to S^1$ with finitely many critical points, all of non degenerate type.

Fibrations

A circle-valued Morse function is a fibration if it has zero critical points.

If $f: M \to S^1$ is a perfect circle-valued Morse function, then

$$\chi(M)=\sum(-1)^i c_i.$$

ò

If $f: M \to S^1$ is a perfect circle-valued Morse function, then

$$\chi(M)=\sum(-1)^i c_i.$$

For a 4-dimensional hyperbolic manifold

 $\chi(M) > 0$,

(generalized Gauss-Bonnet)

If $f: M \to S^1$ is a perfect circle-valued Morse function, then

$$\chi(M)=\sum(-1)^ic_i.$$

For a 4-dimensional hyperbolic manifold

 $\chi(M) > 0$,

(generalized Gauss-Bonnet)

hence we cannot have fibrations in dimension 4.

We search for a circle-valued Morse function with the least possible number of critical points, that is $|\chi(M)|$.

ò

We search for a circle-valued Morse function with the least possible number of critical points, that is $|\chi(M)|$.

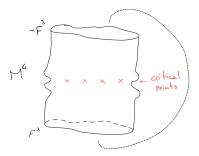
Definition [Perfect Function]

A circle-valued Morse function on M is *perfect* if it has exactly $|\chi(M)|$ critical points.

We search for a circle-valued Morse function with the least possible number of critical points, that is $|\chi(M)|$.

Definition [Perfect Function]

A circle-valued Morse function on M is *perfect* if it has exactly $|\chi(M)|$ critical points.



There exist 4-dimensional hyperbolic manifolds that admit a perfect circle-valued Morse function.

There exist 4-dimensional hyperbolic manifolds that admit a perfect circle-valued Morse function.

Corollary

There are infinitely many hyperbolic 4-manifolds with bounded b_1 .

There exist 4-dimensional hyperbolic manifolds that admit a perfect circle-valued Morse function.

Corollary

There are infinitely many hyperbolic 4-manifolds with bounded b_1 .

This is not true if we replace b_1 with b_2 .

There exist 4-dimensional hyperbolic manifolds that admit a perfect circle-valued Morse function.

Corollary

There are infinitely many hyperbolic 4-manifolds with bounded b_1 .

This is not true if we replace b_1 with b_2 .

Corollary

There exist geometrically infinite hyperbolic 4-manifolds that are infinitesimally rigid; in particular, their hyperbolic structure cannot be deformed.

There exist 4-dimensional hyperbolic manifolds that admit a perfect circle-valued Morse function.

Corollary

There are infinitely many hyperbolic 4-manifolds with bounded b_1 .

This is not true if we replace b_1 with b_2 .

Corollary

There exist geometrically infinite hyperbolic 4-manifolds that are infinitesimally rigid; in particular, their hyperbolic structure cannot be deformed.

Examples are the cyclic coverings associated with the perfect circle valued Morse functions we found.

We want to build

We want to build a Hyperbolic manifold

We want to build a Hyperbolic manifold

with

We want to build a Hyperbolic manifold

with

a Perfect Circle-Valued Morse Function.

è

We want to build		
a Hyperbolic manifold		a Perfect
	with	Circle-Valued Morse
		Function.

We will use a hyperbolic right-angled polytope and provide it with some structure.

ð

We start with a hyperbolic right-angled polytope P.

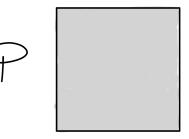
We start with a hyperbolic right-angled polytope P. We associate to it

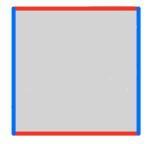
colouring and state (nice)

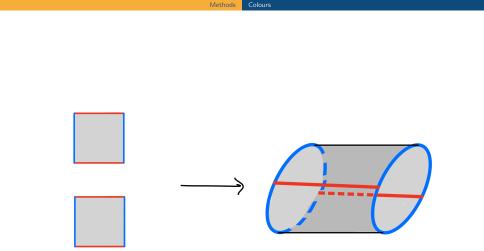
è

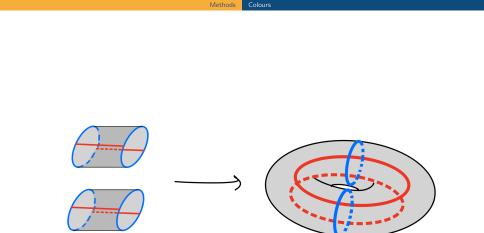
We start with a hyperbolic right-angled polytope P. We associate to it

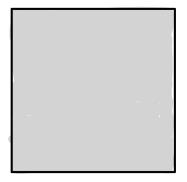
colouring	and	state (nice)
and we obtain		
Hyperbolic manifold	with	Circle-Valued Function
		(Morse and perfect)



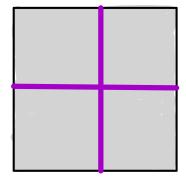


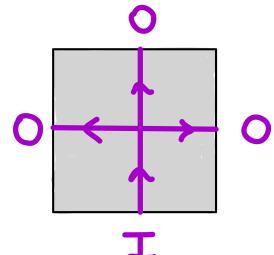


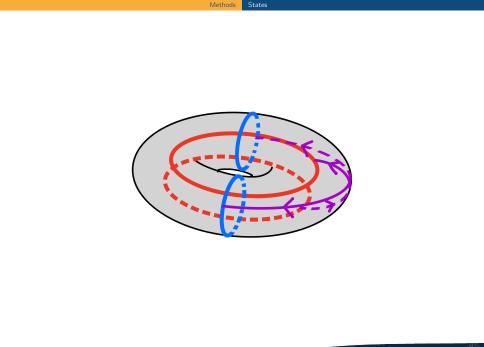


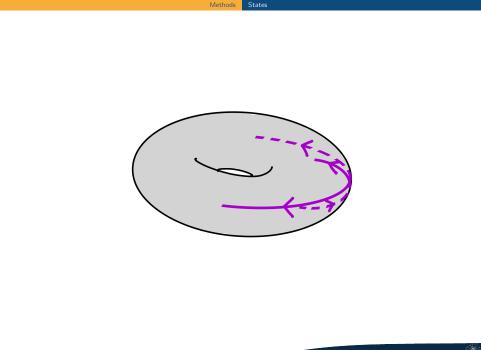


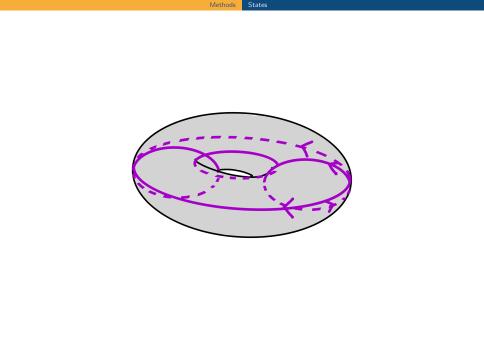
Methods	States

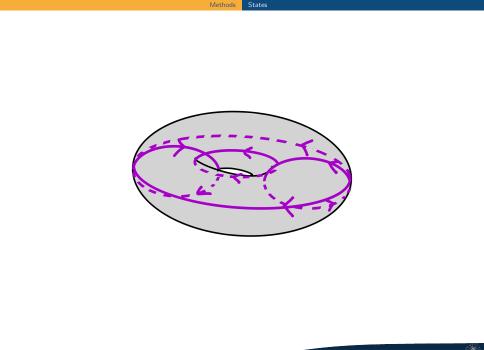












How far can we get using these techniques?

How far can we get using these techniques?

Theorem [Italiano - Martelli - Migliorini]

There exists a 5-dimensional hyperbolic manifold that admits a fibration over S^1 .

How far can we get using these techniques?

Theorem [Italiano - Martelli - Migliorini]

There exists a 5-dimensional hyperbolic manifold that admits a fibration over S^1 .

Are there conditions that the fiber F must respect?

How far can we get using these techniques?

Theorem [Italiano - Martelli - Migliorini]

There exists a 5-dimensional hyperbolic manifold that admits a fibration over S^1 .

Are there conditions that the fiber *F* must respect?

What about the infinitesimal deformations of the cyclic coverings?

Thank you for your attention!

Ludovico Battista University of Pisa Iudovico.battista@phd.unipi.it

