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Perfect Circle Valued Morse Functions Dimension 3

Idea
We want to generalise fibrations in dimension 3 to dimension 4.

f : M → S1 a fibration
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Perfect Circle Valued Morse Functions Dimension 4

Let M be a (complete) hyperbolic compact manifold without boundary.

Definition [Circle-Valued Morse Function]
A circle-valued Morse function on M is a smooth map f : M → S1 with
finitely many critical points, all of non degenerate type.

Fibrations
A circle-valued Morse function is a fibration if it has zero critical points.
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Perfect Circle Valued Morse Functions Dimension 4

If f : M → S1 is a perfect circle-valued Morse function, then

χ(M) =
∑

(−1)ici .

For a 4-dimensional hyperbolic manifold

χ(M) > 0,

(generalized Gauss-Bonnet)

hence we cannot have fibrations in dimension 4.
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Perfect Circle Valued Morse Functions Dimension 4

We search for a circle-valued Morse function with the least possible
number of critical points, that is |χ(M)|.

Definition [Perfect Function]
A circle-valued Morse function on M is perfect if it has exactly |χ(M)|
critical points.
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Perfect Circle Valued Morse Functions Theorem and consequences

Theorem [B. - Martelli]
There exist 4-dimensional hyperbolic manifolds that admit a perfect
circle-valued Morse function.

Corollary
There are infinitely many hyperbolic 4-manifolds with bounded b1.

This is not true if we replace b1 with b2.

Corollary
There exist geometrically infinite hyperbolic 4-manifolds that are
infinitesimally rigid; in particular, their hyperbolic structure cannot be
deformed.

Examples are the cyclic coverings associated with the perfect circle
valued Morse functions we found.
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Methods Right-angled polytopes

We want to build

a Hyperbolic
manifold

with
a Perfect

Circle-Valued Morse
Function.

We will use a hyperbolic right-angled polytope and provide it with some
structure.
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Methods Right-angled polytopes

We start with a hyperbolic right-angled polytope P.

We associate to it

colouring and state (nice)

and we obtain

Hyperbolic
manifold

with

Circle-Valued
Function

(Morse and perfect)
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Methods Colours
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Methods States
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Methods States
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Conclusions Further developments

Further developments:

How far can we get using these techniques?

Theorem [Italiano - Martelli - Migliorini]
There exists a 5-dimensional hyperbolic manifold that admits a fibration
over S1.

Are there conditions that the fiber F must respect?

What about the infinitesimal deformations of the cyclic coverings?
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Conclusions Further developments

Thank you for your attention!

Ludovico Battista
University of Pisa
ludovico.battista@phd.unipi.it
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