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Definition [Circle-Valued Morse Function]

A circle-valued Morse function on M is a smooth map f: M — S! with
finitely many critical points, all of non degenerate type.

A circle-valued Morse function is a fibration if it has zero critical points.
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If f: M — Sl is a perfect circle-valued Morse function, then
xX(M) =Y (1)
For a 4-dimensional hyperbolic manifold

x(M) >0,

hence we cannot have fibrations in dimension 4.
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A circle-valued Morse function on M is perfect if it has exactly |x(M)]
critical points.
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Perfect Circle Valued Morse Functions Theorem and consequences

Theorem [B. - Martelli]

There exist 4-dimensional hyperbolic manifolds that admit a perfect
circle-valued Morse function.

There are infinitely many hyperbolic 4-manifolds with bounded b . I

This is not true if we replace by with bs.

There exist geometrically infinite hyperbolic 4-manifolds that are
infinitesimally rigid; in particular, their hyperbolic structure cannot be
deformed.

Examples are the cyclic coverings associated with the perfect circle
valued Morse functions we found.
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Methods Right-angled polytopes

We want to build

a Hyperbolic a Perfect
yp. with Circle-Valued Morse
manifold .
Function.

We will use a hyperbolic right-angled polytope and provide it with some
structure.
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Methods Right-angled polytopes

We start with a hyperbolic right-angled polytope P.
We associate to it

colouring and state (nice)

and we obtain

Circle-Valued

Hyperbolic with Function

manifold

(Morse and perfect)
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Conclusions Further developments

Further developments:

How far can we get using these techniques?

Theorem [ltaliano - Martelli - Migliorini]

There exists a 5-dimensional hyperbolic manifold that admits a fibration
over S1.

Are there conditions that the fiber F must respect?

What about the infinitesimal deformations of the cyclic coverings?




Thank you for your attention!
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