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Sum of three squares

Let q ≥ 1 be an integer. Then q = x2 + y2 + z2, (x , y , z) ∈ Z3

(Legendre 1798; Gauss 1801) iff q is not of the form 4k(8`− 1).
Denote Rq := {(x , y , z) ∈ Z3 : x2 + y2 + z2 = q}, the set of
representations.
Gauss showed that

#R∗q =

{
12h(−q) if q ≡ 1, 2 mod 4

8h(−q) if q ≡ 3 mod 8,

where h(−q) is the class number of Q(
√
−q).

Gauss plus Dirichlet’s class number formula
h(−q) = w

2πL(1, χ−q)q1/2 implies

#R∗q =
12

π
L(1, χ−q)q1/2 � q1/2+o(1)

by appealing to Siegel’s theorem: L(1, χ−q) � qo(1).
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Equidistribution of representations

Deeper question: distribution of representations.
Recall Rq = {(x , y , z) ∈ Z3 : x2 + y2 + z2 = q}. Then

Rq√
q

=
{( x
√
q
,
y
√
q
,
z
√
q

)
: (x , y , z) ∈ Rq

}
⊂ S2 = {x21+x22+x23 = 1}.

Question: How does ~v ∈ Rq√
q distribute on S2 as q →∞?

Conjecture (Equidistribution of lattice points on the 2-sphere)

Let q be such that q � 0, 4, 7 mod 8. Let

µq :=
1

#Rq

∑
~v∈Rq√

q

δ~v .

Then µq weak ? converges to µS2 , as q →∞. Equivalently, for
“nice” Ω ⊂ S2, µq(Ω)→ µS2(Ω).
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Integer points on S2

Examples of Equidistribution of integer points on the 2-sphere:



Equidistribution of integer points on S2

Linnik (1950’s-60’s): Equidistribution holds if q satisfies an extra
congruence condition.

Theorem (Duke (1988); Golubeva–Fomenko (1990))

Let q →∞ be such that q � 0, 4, 7 mod 8. Then

1

#Rq

∑
~v∈Rq√

q

ϕ
(
~v
)
→
∫
S2
ϕ(y)dµS2 ,

for every ϕ ∈ C (S2).

One such proof can be reduced to a nontrivial bound of
L-functions.
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From equidistribution to subconvexity

Idea of proof:
Assume

∫
S2 ϕ(y)dµS2 = 0. Want to show

1

#Rq

∑
~v∈Rq√

q

ϕ
(
~v
)
→
∫
S2
ϕ(y)dµS2 = 0.

Since #Rq � q1/2+o(1), by approximating ϕ ∈ C (S2) by spherical
harmonics, suffices to show

Wϕ(q) :=
∑
~v∈Rq√

q

ϕ
(
~v
)
�ϕ q1/2−η,

for ϕ homogenegous polynomial of degree ν. By Waldspurger’s
formula,

|Wϕ(q)|2  L(1/2, f .χ−q)

for f a (fixed) holomorphic modular form of weight 2 + 2ν and
quadratic character χ−q. The required bound follows from

L(1/2, f .χ−q)�f q1/2−η
′
.



A new proof of subconvexity

Let χ mod q be Dirichlet characters and
L(s, f .χ) =

∑
n≥1

λf (n)χ(n)
ns be the twisted L-functions.

Theorem (Aggarwal–Holowinsky–L.–Sun, 2020)

Let f be fixed GL2 automorphic forms. Then

L(1/2, f .χ)�f (q2)1/4−δ+ε, for δ = 1/16.

The saving δ = 1/16 represents the Burgess-type subconvex
bounds for L-functions:

L(1/2,F )� Q(F )1/4−1/16+ε;

such are proving ground for new methods: Bykovskĭı,
Blomer–Harcos, Munshi, etc.

Best known exponent δ = 1/12 (Weyl-type): Conrey–Iwaniec
(2000, χ quadratic) and Petrow–Young (2020, general χ).
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Blomer–Harcos, Munshi, etc.

Best known exponent δ = 1/12 (Weyl-type): Conrey–Iwaniec
(2000, χ quadratic) and Petrow–Young (2020, general χ).



References:

J. Ellenberg, Ph. Michel, A. Venkatesh, “Linnik’s ergodic
method and the distribution of integer points on spheres” in
Automorphic Representations and L-Functions, Tata Inst.
Fundam. Res. Stud. Math. 22, Tata Inst. Fund. Res.,
Mumbai, 2013, 119–185.

H. Iwaniec, Topics in classical automorphic forms, Graduate
Studies in Mathematics, vol. 17, American Mathematical
Society, Providence, RI, 1997.

Ph. Michel, “Analytic number theory and families of
automorphic L-functions” in Automorphic Forms and
Applications, IAS/Park City Math. Ser. 12, Amer. Math.
Soc., Providence, 2007, 181–295


