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Lecture 1. Count of simple closed geodesics on Riemann surfa ces
(after Maryam Mirzakhani)

Anton Zorich

(Reference: M. Mirzakhani, “Growth of the number of simple closed geodesics
on hyperbolic surfaces”, Annals of Math. (2) 168 (2008), no. 1, 97–125.)
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Hyperbolic surfaces

4 / 33

Any smooth orientable surface of genus g ≥ 2 admits a metric of constant

negative curvature (usually chosen to be −1), called hyperbolic metric.

Allowing to metric to have several singularities (cusps), one can construct a

hyperbolic metric also on a sphere and on a torus.



Simple closed curves and simple closed geodesics
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A smooth closed curve on a surface is called simple if it does not have

self-intersections.

Suppose that we have a simple closed curve γ on a hyperbolic surface
(possibly with cusps). Suppose that the curve is essential, that is not

contractible to a small curve encircling some disc or some cusp.

Interpreting our curve as an elastic loop, let it slide along the surface to contract
to the shortest shape in our hyperbolic metric. We get a closed geodesic, which

remains to be smooth non self-intersecting curve.
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Consider a configuration of four distinct points on the Riemann sphere CP1.

Using appropriate holomorphic automorphism of CP1 we can send three out of

four points to 0, 1 and ∞. There is no more freedom: any further holomorphic

automorphism of CP1 fixing 0, 1 and ∞ is already the identity transformation.

The remaining point serves as a complex parameter in the space M0,4 of
configurations of four distinct points on CP1 (up to a holomorphic diffeomorphism).
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points are in natural bijection with hyperbolic metrics of curvature −1 with

cusps at the marked points, so the moduli space M0,4 can be also seen as the

family of hyperbolic spheres with four cusps. Deforming the configuration of

points we change the shape of the corresponding hyperbolic surface.
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Similarly, we can consider the moduli space M0,n of spheres with n cusps.

The space Mg,n of configurations of n distinct points on a smooth closed
orientable Riemann surface of genus g > 0 is even richer. While the sphere

admits only one complex structure, a surface of genus g ≥ 2 admits complex

(3g − 3)-dimensional family of complex structures. As in the case of the

Riemann sphere, complex structures on a smooth surface with marked points

are in natural bijection with hyperbolic metrics of constant negative curvature
with cusps at the marked points. For genus g ≥ 2 one can let n = 0 and

consider the space Mg = Mg,0 of hyperbolic surfaces without cusps.
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Topological types of simple closed curves
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Let us say that two simple closed curves on a smooth surface have the same

topological type if there is a diffeomorphism of the surface sending one curve to

another.

It immediately follows from the classification theorem of surfaces that there is a

finite number of topological types of simple closed curves. For example, if the

surface does not have punctures, all simple closed curves which do not
separate the surface into two pieces, belong to the same class.

One can consider more general primitive multicurves: collections of pairwise
disjoint non-homotopic simple closed curves. For any fixed pair (g, n) the

number of topological types of primitive multicurves on a surface of genus g
with n punctures is also finite.
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The picture below illustrates all possible types of primitive multicurves on a

surface of genus two without punctures.

Note that contracting all components of a multicurve we get a “stable curve” —
a Riemann surface degenerated in one of the several regular ways. In this way

the “topological types of primitive multicurves” on a smooth surface Sg,n of

genus g with n punctures are in the natural bijective correspondence with

boundary classes of the Deligne–Mumford compactification Mg,n of the

moduli space of pointed complex curves.
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The group of all diffeomorphisms of a closed smooth orientable surface of

genus g quotient over diffeomorphisms homotopic to identity is called the

mapping class group and is denoted by Modg.

When the surface has n marked points (punctures) we require that

diffeomorphism sends marked points to marked points; the corresponding

mapping class group is denoted Modg,n.
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Simple closed multicurve, its topological type and underly ing
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The first homology H1(M
2;Z) of the surface is great to study closed curves,

but it ignores some interesting curves. The fundamental group π1(M
2) is also

wonderful, but it is mainly designed to work with self-intersecting cycles.

Thurston invented yet another structure to work with simple closed multicurves;

in many aspects it resembles the first homology, but there is no group structure.

A general multicurve ρ:

the canonical representative γ = 3γ1 + γ2 + 2γ3 in its orbit Mod2 · ρ under

the action of the mapping class group and the associated reduced multicurve.

γ = 3γ1 + γ2 + 2γ3 γreduced = γ1 + γ2 + γ3

γ1

γ2

γ3



Space of multicurves
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In certain natural piecewise-linear coordinates, integral multic-

urves are represented by integer points of a conical polytope

(like integral homology cycles are represented by lattice points
in a vector space). Colors illustrate distinct orbits of the

mapping class group. The homothety action on the

polytope allows to define a natural

Thurston measure.



Space of measured laminations MLg,n. Ergodicity of the
Thurston measure
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In the presence of a hyperbolic metric the integral multicurves take the shape of

simple closed geodesic multicurves. Moreover, every (not necessary integral)

point of the conical polytope defines a measured geodesic lamination. The

“natural coordiantes” are, for example, the train tracks coordinates.

Integral points in MLg,n are in a one-to-one correspondence with the set of

integral multi-curves, so the piecewise-linear action of Modg,n on MLg,n

preserves the “integral lattice” MLg,n(Z), and, hence, preserves the Thurston

measure µTh.

Theorem (H. Masur, 1985). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just

Thurston measure rescaled by some constant factor.
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Picture by François Labourie taken at CIRM
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Consider now several pairwise nonintersecting essential simple closed curves

γ1, . . . , γk on a smooth surface Sg,n of genus g with n punctures. We have

seen that in the presence of a hyperbolic metric X on Sg,n the simple closed

curves become simple closed geodesics.

Fact. For any hyperbolic metric X the simple closed geodesics representing

γ1, . . . , γk do not have pairwise intersections.
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We can consider formal linear combinations γ :=
∑k

i=1 aiγi of such simple

closed curves with positive coefficients. When all coefficients ai are integer

(respectively rational), we call such γ integral (respectively rational) multicurve.

In the presence of a hyperbolic metric X we define the hyperbolic length of a
multicurve γ as ℓγ(X) :=

∑k
i=1 aiℓX(γi), where ℓX(γi) is the hyperbolic

length of the simple closed geodesic in the free homotopy class of γi.

Denote by sX(L, γ) the number of simple closed geodesic multicurves on X
of topological type [γ] and of hyperbolic length at most L.
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Theorem (M. Mirzakhani, 2008). For any rational multi-curve γ and any

hyperbolic surface X in Mg,n one has

sX(L, γ) ∼ µTh(BX) ·
c(γ)

bg,n
· L6g−6+2n as L→ +∞ .

Here the quantity µTh(BX) depends only on the hyperbolic metric X (it is the

Thurstom measure of the unit ball BX in the metric X); bg,n is a global

constant depending only on g and n (which is the average value of B(X) over

Mg,n); c(γ) depends only on the topological type of γ (expressed in terms of

the Witten–Kontsevich correlators).
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Corollary (M. Mirzakhani, 2008). For any hyperbolic surface X in Mg,n, and

any two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to

the action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=
c(γ1)

c(γ2)
.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example. (M. Mirzakhani, 2008); confirmed experimentally in 2017 by M. Bell;

confirmed in 2017 by more implicit computer experiment of V. Delecroix and by

other means.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.



Idea of the proof and a notion of a “random multicurve”
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Changing the hyperbolic metricX we change the length

function ℓγ(X) and the domain ℓγ(X) ≤ L, but we do

not change the densities of different orbits:

they are defined topologically!
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Recall that sX(L, γ) denotes the number of simple closed geodesic multicurves

on X of topological type [γ] and of hyperbolic length at most L. Applying the

definition of µγ to the “unit ball” BX associated to hyperbolic metric X (instead

of an abstract set B) and using proportionality of measures µγ = kγ · µTh we get

lim
L→+∞

sX(L, γ)

L6g−6+2n
= lim

L→+∞

card{L ·BX ∩Modg,n ·γ}

L6g−6+2n
= µγ(BX) = kγ ·µTh(BX) .

Finally, Mirzakhani computes the scaling factor kγ as follows:

kγ · bg,n =

∫

Mg,n

kγ · µTh(BX) dX =

∫

Mg,n

µγ(BX) dX =

=

∫

Mg,n

lim
L→+∞

card{L ·BX ∩Modg,n·γ}

L6g−6+2n
dX =

∫

Mg,n

lim
L→+∞

sX(L, γ)

L6g−6+2n
dX =

= lim
L→+∞

1

L6g−6+2n

∫

Mg,n

sX(L, γ) dX = lim
L→+∞

P (L, γ)

L6g−6+2n
dX = c(γ) ,

so kγ = c(γ)/bg,n. Interchanging the integral and the limit we used the

estimate of Mirzahani sX (L,γ)
L6g−6+2n ≤ F (X), where F is integrable over Mg,n.
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on X of topological type [γ] and of hyperbolic length at most L. Applying the

definition of µγ to the “unit ball” BX associated to hyperbolic metric X (instead

of an abstract set B) and using proportionality of measures µγ = kγ · µTh we get

lim
L→+∞

sX(L, γ)

L6g−6+2n
= lim

L→+∞

card{L ·BX ∩Modg,n ·γ}

L6g−6+2n
= µγ(BX) = kγ ·µTh(BX) .

Finally, Mirzakhani computes the scaling factor kγ as follows:

kγ · bg,n =

∫

Mg,n

kγ · µTh(BX) dX =

∫

Mg,n

µγ(BX) dX =

=

∫

Mg,n

lim
L→+∞

card{L ·BX ∩Modg,n·γ}

L6g−6+2n
dX =

∫

Mg,n

lim
L→+∞

sX(L, γ)

L6g−6+2n
dX =

= lim
L→+∞

1

L6g−6+2n

∫

Mg,n

sX(L, γ) dX = lim
L→+∞

P (L, γ)

L6g−6+2n
dX = c(γ) ,

so kγ = c(γ)/bg,n. Interchanging the integral and the limit we used the

estimate of Mirzahani sX (L,γ)
L6g−6+2n ≤ F (X), where F is integrable over Mg,n.
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Intersection numbers (correlators)
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The Deligne–Mumford compactification Mg,n of the moduli space of smooth
complex curves of genus g with n labeled marked points P1, . . . , Pn ∈ C is a

complex orbifold of complex dimension 3g − 3 + n.

Choose index i in {1, . . . , n}. The family of complex lines cotangent to C at

the point Pi forms a holomorphic line bundle Li over Mg,n which extends to Mg,n.

The first Chern class of this tautological bundle is denoted by ψi = c1(Li).

Any collection of nonnegative integers satisfying d1 + · · ·+ dn = 3g − 3 + n
determines a positive rational “intersection number ” (or the “correlator ” in the

physical context):

〈τd1 . . . τdn〉g :=

∫

Mg,n

ψd1
1 . . . ψdn

n .

The famous Witten’s conjecture claims that these numbers satisfy certain

recurrence relations which are equivalent to certain differential equations on

the associated generating function (“partition function in 2-dimensional

quantum gravity ”). Witten’s conjecture was proved by M. Kontsevich; one of

alternative proofs belongs to M. Mirzakhani.
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n
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Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Up to a numerical factor, the polynomial Ng,n(b1, . . . , bn) coincides with the

top homogeneous part of the Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn)
providing the Weil–Petersson volume of the moduli space of bordered Riemann

surfaces:

V top
g,n (b) = 22g−3+n ·Ng,n(b) .
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Consider the moduli space Mg,n of Riemann surfaces of genus g with n
marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Define the formal operation Z on monomials as

Z :
n
∏

i=1

bmi

i 7−→
n
∏

i=1

(

mi! · ζ(mi + 1)
)

,

and extend it to symmetric polynomials in bi by linearity.
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b1
1
2 · 1 · b1 ·N1,2(b1, b1)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·

·N1,1(b2)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·

·N0,3(b2, b3, b3)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·

·N0,3(b1, b2, b3)
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) = 1

2 · b1
(

1
384(2b

2
1)(2b

2
1)
)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) = 1
4 · b1

(

1
48b

2
1

) (

1
48b

2
1

)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2) = 1

8 · b1b2 ·
(

1
4(2b

2
1 + 2b22)

)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·

·N1,1(b2) = 1
4 · b1b2 ·

(

1
)

·
(

1
48b

2
2

)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·

·N0,3(b2, b3, b3) = 1
16 · b1b2b3 · (1) · (1)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·

·N0,3(b1, b2, b3) = 1
24 · b1b2b3 · (1) · (1)



Computation of Mirzakhani’s frequencies
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b1
1

192 · b51
Z
7−→ 1

192 ·
(

5! · ζ(6)
)

= 1
1512 · π

6

b1

1
9216 · b

5
1

Z
7−→ 1

9216 ·
(

5! · ζ(6)
)

= 1
72576 · π

6

b1 b2
1
16(b

3
1b2+

+b1b
3
2)

Z
7−→ 1

16 · 2
(

1! · ζ(2)
)

·
(

3! · ζ(4)
)

= 1
720 · π

6

b1
b2

1
192 · b1b

3
2

Z
7−→ 1

192 ·
(

1! · ζ(2)
)

·
(

3! · ζ(4)
)

= 1
17280 · π

6

b1
b2

b3
1
16b1b2b3

Z
7−→ 1

16 ·
(

1! · ζ(2)
)3

= 1
3456 · π

6

b1
b2

b3
1
24b1b2b3

Z
7−→ 1

24 ·
(

1! · ζ(2)
)3

= 1
5184 · π

6

The resulting numbers are proportional to frequencies of corresponding multicurves.
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B. Farb and D. Margalit “A Primer
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correlators

29 / 33



Train tracks carrying simple closed curves
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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.

1

2

2

4 6

3

We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.
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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.
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We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.

Note that the two weights in red uniquely determine all other weights.



Four basic train tracks on S0,4
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.

Conclusion: there are four types of simple closed curves in S0,4, depending on

which of each of the two pairs of arcs they use in the middle square. This is the

same as saying that any simple closed curve in is carried by one of the

following four train tracks:



Space of multicurves
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x
y

x
y

xy x y

The four train tracks τ1, τ2, τ3, τ4 give four coordinate charts on the set of

isotopy classes of simple closed curves in S0,4. Each coordinate patch

corresponding to a train track τi is given by the weights (x, y) of two chosen

edges of τi. If we allow the coordinates x and y to be arbitrary nonnegative

real numbers, then we obtain for each τi a closed quadrant in R
2. Arbitrary

points in this quadrant are measured train tracks.
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0
y

0
y

xy x y

Weight zero on an edge of a train track tells that such edge can be deleted.
This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. The integral points in this R2

correspond to isotopy classes of multicurves in S0,4.
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Weight zero on an edge of a train track tells that such edge can be deleted.

This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. The integral points in this R2

correspond to isotopy classes of multicurves in S0,4.
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