Simplicial volume of manifolds with amenable π_{1}^{∞}

Giuseppe Bargagnati

Università di Pisa

September 11th 2023

Simplicial volume of open manifolds

Setting: M oriented open connected n-manifold without boundary.

Simplicial volume of open manifolds

Setting: M oriented open connected n-manifold without boundary. Fact: $H_{n}^{l f}(M, \mathbb{Z}) \simeq \mathbb{Z}$.

Simplicial volume of open manifolds

Setting: M oriented open connected n-manifold without boundary. Fact: $H_{n}^{l f}(M, \mathbb{Z}) \simeq \mathbb{Z}$.

$$
\begin{aligned}
H_{n}^{l f}(M, \mathbb{Z}) & \longrightarrow H_{n}^{l f}(M, \mathbb{R}) \\
\quad[M]_{\mathbb{Z}} & \longrightarrow[M]_{\mathbb{R}}
\end{aligned}
$$

Simplicial volume of open manifolds

Setting: M oriented open connected n-manifold without boundary. Fact: $H_{n}^{l f}(M, \mathbb{Z}) \simeq \mathbb{Z}$.

$$
\begin{aligned}
H_{n}^{l f}(M, \mathbb{Z}) & \longrightarrow H_{n}^{l f}(M, \mathbb{R}) \\
\quad[M]_{\mathbb{Z}} & \longrightarrow[M]_{\mathbb{R}}
\end{aligned}
$$

We endow $C_{n}^{l f}(M, \mathbb{R})$ with the ℓ^{1}-norm.

Simplicial volume of open manifolds

Setting: M oriented open connected n-manifold without boundary. Fact: $H_{n}^{l f}(M, \mathbb{Z}) \simeq \mathbb{Z}$.

$$
\begin{aligned}
H_{n}^{l f}(M, \mathbb{Z}) & \longrightarrow H_{n}^{l f}(M, \mathbb{R}) \\
\quad[M]_{\mathbb{Z}} & \longrightarrow[M]_{\mathbb{R}}
\end{aligned}
$$

We endow $C_{n}^{l f}(M, \mathbb{R})$ with the ℓ^{1}-norm.

Definition (Gromov, 1982)

$$
\|M\|:=\inf \left\{\left\|c=\sum a_{i} \sigma_{i}\right\|_{1} \mid[c]=[M]_{\mathbb{R}} \in H_{n}^{l f}(M, \mathbb{R})\right\}
$$

Simplicial volume of open manifolds

Setting: M oriented open connected n-manifold without boundary. Fact: $H_{n}^{l f}(M, \mathbb{Z}) \simeq \mathbb{Z}$.

$$
\begin{aligned}
H_{n}^{l f}(M, \mathbb{Z}) & \longrightarrow H_{n}^{l f}(M, \mathbb{R}) \\
\quad[M]_{\mathbb{Z}} & \longrightarrow[M]_{\mathbb{R}}
\end{aligned}
$$

We endow $C_{n}^{l f}(M, \mathbb{R})$ with the ℓ^{1}-norm.

Definition (Gromov, 1982)

$$
\|M\|:=\inf \left\{\left\|c=\sum a_{i} \sigma_{i}\right\|_{1} \mid[c]=[M]_{\mathbb{R}} \in H_{n}^{l f}(M, \mathbb{R})\right\}
$$

Finiteness criterion (Löh, 2007)

If $M \cong N \backslash \partial N$, and $\pi_{1}(\partial N)$ is amenable, then $\|M\|<+\infty$.

Fundamental group at infinity

Fundamental group at infinity

Figure: Nested neighborhoods of infinity.

$$
\pi_{1}^{\infty}(M):=\lim _{\longleftarrow} \pi_{1}\left(U_{i}\right)
$$

Question: is it true that $\pi_{1}^{\infty}(M)$ amenable $\Rightarrow\|M\|<\infty$?

Question: is it true that $\pi_{1}^{\infty}(M)$ amenable $\Rightarrow\|M\|<\infty$?

Theorem (B., 2022)

Let M^{n} be an open n-manifold, with $n \neq 1,4$.

- If M is inward tame and $\pi_{1}^{\infty}(M)$ is amenable then $\|M\|<+\infty$.

Question: is it true that $\pi_{1}^{\infty}(M)$ amenable $\Rightarrow\|M\|<\infty$?

Theorem (B., 2022)

Let M^{n} be an open n-manifold, with $n \neq 1,4$.

- If M is inward tame and $\pi_{1}^{\infty}(M)$ is amenable then $\|M\|<+\infty$.
- If M has finitely many ends and is simply connected at infinity then $\|M\|<+\infty$.

Thank you for the attention!

