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Boundary Representations

Definition

A locally compact group G is hyperbolic if it admits a proper
cocompact isometric action on a proper geodesic Gromov
hyperbolic metric space.

Examples

SL2(R), SL2(Qp), Discrete hyperbolic groups.

Given a left invariant metric d on G (with some mild
assumptions), one constructs a Patterson-Sullivan measure µd on
the Gromov boundary ∂G . One can then consider the Koopman
representation πd : G → U(L2(µd)).
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Classification of Boundary Representations

How are d and πd related?

Theorem (G. 2023)

Let G be locally compact, second countable, unimodular and
non-elementary hyperbolic then:

The representations πd are irreducible.

Two such representations πd1 and πd2 are unitarily equivalent
if and only if there exist L,C > 0 such that:
L · d2(g , h) − C ≤ d2(g , h) ≤ L · d2(g , h) + C.

This generalizes theorems by Garncarek [3] and by Bader, Muchnik
[1].
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Type I Groups

Definition

A locally compact group is of type I if any two weakly equivalent
irreducible unitary representations are unitarily equivalent.

Theorem (Caprace, Kalantar, Monod [2])

Any two left invariant metrics (with some mild assumptions) on a
locally compact, second countable, unimodular, non-elementary
hyperbolic group of type I are roughly similar.

Proof.

πd1 and πd2 are weakly equivalent =⇒ πd1 and πd2 are unitarily
equivalent =⇒ d1 and d2 are roughly similar.
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Thanks for Coming!
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