A model for random (hyp.) 3-manifolds

Anna Roig Sanchis

Sorbonne Université

Ventotene - September 11, 2023

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

RANDOM MANIFOLDS

 $\{ \text{ Set of manifolds } \} + \{ \text{ Probability measure } \} = (\Omega, \mathbb{P})$

 \Rightarrow What is the probability that a random manifold has a certain property?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Construction models in 3D

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

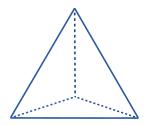
The principal models of construction of random manifolds in 3 dimensions are:

- 1. Random Heegaard Splittings.
- 2. Random mapping tori.
- 3. Random triangulation.

General idea: To construct manifolds by randomly gluing polyhedra together along their faces.

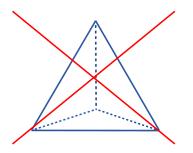
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1st attempt:



General idea: To construct manifolds by randomly gluing polyhedra together along their faces.

1st attempt:



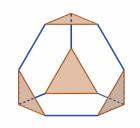
This doesn't work!

The neighbourhoods of the vertices are not typically homeomorphic to \mathbb{R}^3 .

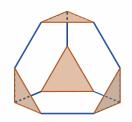
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Solution:



Solution:



By gluing them along their hexagonal faces **uniformly at random**, we obtain:

 \Rightarrow A compact 3-manifold with boundary M_N ,

where N is the number of tetrahedra.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hyperbolic 3-manifolds

THEOREM (PETRI-RAIMBAULT, 20) $\mathbb{P}[M_N \text{ is hyperbolic with totally geodesic boundary}] \xrightarrow{N \to \infty} 1.$

 $\Downarrow \mathsf{Mostow} \ \mathsf{rigidity}$

Its geometry can be understood from the combinatorics of the gluing.

The length spectrum

 $L \longrightarrow C_L(M_N) = # \{ \text{closed geodesics of length} \le L \text{ on } M_N \},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

THEOREM (WORK IN PROGRESS)

As $N \to \infty$, $C_L(M_N)$ converges in distribution to a Poisson random variable $C_L(M)$ with explicit parameter $\lambda(L)$.

The length spectrum

 $L \longrightarrow C_L(M_N) = # \{ \text{closed geodesics of length} \le L \text{ on } M_N \},$

THEOREM (WORK IN PROGRESS)

As $N \to \infty$, $C_L(M_N)$ converges in distribution to a Poisson random variable $C_L(M)$ with explicit parameter $\lambda(L)$.

THANK YOU!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●