Embedding problems between L^p and ℓ^p spaces.

Krzysztof Święcicki

Wrocław University of Science and Technology

Groups and Rigidity Around the Zimmer Program September 11, 2023

э

• $\ell_p = \{(x_n)_{n \in \mathbb{N}} : \sum_n |x_n|^p < \infty\}.$ • $L_p = \{f : \mathbb{R} \to \mathbb{R} \text{ Lebesgue measurable} : \int_{\mathbb{R}} |f|^p \ d\mu < +\infty\} / \sim$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

Linear embeddings

A linear map $T: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ between normed vector spaces is a linear embedding if there exists a constant M > 0 s.t. for all $x \in X$:

 $1/M \|x\|_X \le \|T(x)\|_Y \le M \|x\|_X.$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

$$l_p = \{(x_n)_{n\in\mathbb{N}}: \sum_n |x_n|^p < \infty \}.$$

$$@ L_p = \{f: \mathbb{R} \to \mathbb{R} \text{ Lebesgue measurable} : \int_{\mathbb{R}} |f|^p \ d\mu < +\infty\} / \sim \\$$

Linear embeddings

A linear map $T: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ between normed vector spaces is a linear embedding if there exists a constant M > 0 s.t. for all $x \in X$:

$$1/M||x||_X \le ||T(x)||_Y \le M||x||_X.$$

Consequence of Pitt's theorem

There is no linear embedding from L_p into ℓ_q unless p = q = 2.

伺 ト イヨト イヨト

э.

$$l_p = \{(x_n)_{n\in\mathbb{N}} : \sum_n |x_n|^p < \infty \}.$$

$$@ L_p = \{f: \mathbb{R} \to \mathbb{R} \text{ Lebesgue measurable} : \int_{\mathbb{R}} |f|^p \ d\mu < +\infty\} / \sim \\$$

Linear embeddings

A linear map $T: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ between normed vector spaces is a linear embedding if there exists a constant M > 0 s.t. for all $x \in X$:

 $1/M \|x\|_X \le ||T(x)||_Y \le M \|x\|_X.$

Consequence of Pitt's theorem

There is no linear embedding from L_p into ℓ_q unless p = q = 2.

Bi-Lipschitz embeddings

A map $f: (X, d_X) \to (Y, d_Y)$ is called a bi-Lipschitz embedding if there exist constants s > 0 and $D \ge 1$ such that for any $x_1, x_2 \in X$ the following inequalities hold.

 $sd_X(x_1, x_2) \leq d_Y(f(x_1), f(x_2)) \leq sDd_X(x_1, x_2).$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

$$l_p = \{(x_n)_{n\in\mathbb{N}}: \sum_n |x_n|^p < \infty \}.$$

$$@ L_p = \{f: \mathbb{R} \to \mathbb{R} \text{ Lebesgue measurable} : \int_{\mathbb{R}} |f|^p \ d\mu < +\infty\} / \sim \\$$

Linear embeddings

A linear map $T: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ between normed vector spaces is a linear embedding if there exists a constant M > 0 s.t. for all $x \in X$:

 $1/M \|x\|_X \le \|T(x)\|_Y \le M \|x\|_X.$

Consequence of Pitt's theorem

There is no linear embedding from L_p into ℓ_q unless p = q = 2.

Bi-Lipschitz embeddings

A map $f: (X, d_X) \to (Y, d_Y)$ is called a bi-Lipschitz embedding if there exist constants s > 0 and $D \ge 1$ such that for any $x_1, x_2 \in X$ the following inequalities hold.

$$sd_X(x_1, x_2) \le d_Y(f(x_1), f(x_2)) \le sDd_X(x_1, x_2).$$

Heinrich and Mankiewicz using Rademacher's differentiability theorem

There is no bi-Lipschitz embedding from L_p into ℓ_q unless p = q = 2.

A map $f: (X, d_X) \to (Y, d_Y)$ is a a coarse embedding if there exist non decreasing functions $\rho_-, \rho_+: [0, \infty) \to [0, \infty)$ such that $\lim_{t \to \infty} \rho_-(t) = \infty$ and for any $x_1, x_2 \in X$ the following inequalities hold.

 $\rho_{-}(d_X(x_1,x_2)) \leq d_Y(f(x_1),f(x_2)) \leq \rho_{+}(d_X(x_1,x_2)).$

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � � �

A map $f: (X, d_X) \to (Y, d_Y)$ is a a coarse embedding if there exist non decreasing functions $\rho_-, \rho_+: [0, \infty) \to [0, \infty)$ such that $\lim_{t \to \infty} \rho_-(t) = \infty$ and for any $x_1, x_2 \in X$ the following inequalities hold.

$$\rho_{-}(d_X(x_1, x_2)) \leq d_Y(f(x_1), f(x_2)) \leq \rho_{+}(d_X(x_1, x_2)).$$

Mendel and Naor

For $1 \leq p < 2$ L_p does embed into ℓ_p .

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

A map $f: (X, d_X) \to (Y, d_Y)$ is a a coarse embedding if there exist non decreasing functions $\rho_-, \rho_+: [0, \infty) \to [0, \infty)$ such that $\lim_{t \to \infty} \rho_-(t) = \infty$ and for any $x_1, x_2 \in X$ the following inequalities hold.

$$\rho_{-}(d_X(x_1, x_2)) \leq d_Y(f(x_1), f(x_2)) \leq \rho_{+}(d_X(x_1, x_2)).$$

Mendel and Naor

For $1 \leq p < 2 L_p$ does embed into ℓ_p .

Proposition

Let G be a finitely generated group that admits a proper, affine, isometric action on a normed vector space V, with a cocycle b. Then b is a coarse embedding of G into V.

伺 ト イヨト イヨト

A map $f: (X, d_X) \to (Y, d_Y)$ is a a coarse embedding if there exist non decreasing functions $\rho_-, \rho_+: [0, \infty) \to [0, \infty)$ such that $\lim_{t \to \infty} \rho_-(t) = \infty$ and for any $x_1, x_2 \in X$ the following inequalities hold.

$$\rho_{-}(d_X(x_1, x_2)) \leq d_Y(f(x_1), f(x_2)) \leq \rho_{+}(d_X(x_1, x_2)).$$

Mendel and Naor

For $1 \leq p < 2 L_p$ does embed into ℓ_p .

Proposition

Let G be a finitely generated group that admits a proper, affine, isometric action on a normed vector space V, with a cocycle b. Then b is a coarse embedding of G into V.

Equivariant coarse embeddings

Because of the above one can view proper, affine, isometric actions on V as a special version of a coarse embedding. Admitting such an action can be called an equivariant coarse embedding into V.

・ 同 ト ・ ヨ ト ・ ヨ ト

If a normed vector space (V, +) admits an equivariant coarse embedding into ℓ_p then it also embeds in a bi-Lipschitz way into ℓ_p .

▲ 臣 ▶ | ▲ 臣 ▶ | |

If a normed vector space (V, +) admits an equivariant coarse embedding into ℓ_p then it also embeds in a bi-Lipschitz way into ℓ_p .

Corollary

There is no equivariant coarse embedding of L_p into ℓ_p for $p \neq 2$.

글 🖌 🖌 글 🛌

э

If a normed vector space (V, +) admits an equivariant coarse embedding into ℓ_p then it also embeds in a bi-Lipschitz way into ℓ_p .

Corollary

There is no equivariant coarse embedding of L_p into ℓ_p for $p \neq 2$.

Theorem (Cornulier, Tessera, Valette)

Let G be a locally compact, compactly generated, amenable group. If G coarsely embeds into the Hilbert space, then there exists an equivariant coarse embedding of G into Hilbert space

э

If a normed vector space (V, +) admits an equivariant coarse embedding into ℓ_p then it also embeds in a bi-Lipschitz way into ℓ_p .

Corollary

There is no equivariant coarse embedding of L_p into ℓ_p for $p \neq 2$.

Theorem (Cornulier, Tessera, Valette)

Let G be a locally compact, compactly generated, amenable group. If G coarsely embeds into the Hilbert space, then there exists an equivariant coarse embedding of G into Hilbert space

Question

Can we use similar techniques to reduce the coarse embedding problem of L_p into ℓ_p to the equivariant coarse embedding case that we've already solved?

A B M A B M

1) Y. de Cornulier, R. Tessera, A. Valette, Isometric group actions on Hilbert spaces: growth of cocycles, A. GAFA, Geom. funct. anal. (2007) 17: 770.

2) S. Heinrich, P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Stud. Math. 73, 225-251 (1982).

3) M. Mendel and A. Naor, Euclidean quotients of finite metric spaces, Adv. Math. 189 (2004), 451–494.

4) H. Pitt, A note on bilinear forms, J. Lond. Math. Soc, vol 11, 174-180, 1932.

3) K. Święcicki, There is no equivariant coarse embedding of L_p into ℓ_p , preprint available on arXiv:2012.00097.