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Consider a fiber bundle p : X — S! such that p~1(x) = R?/f(x)Z>.

[ =SLy(Z) ~ T?
Proposition 1.

=

I ~ X fiberwise
The action of T on X is u-stiff (for many 1 € Prob(I")), that is, for any
v € Prob(X):
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G).
Pontryagin dual

Ch(H(2)) =
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Why study random walks for this action?

This implies rigidity properties on the semidirect product SL2(Z) x H(Z)
All of the above can be generalized as follows:
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. Something about C*-algs and von Neumann algs.
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