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Calculus I

Question: does there exists a function f : [0, 1] → R such that f is
continuous exactly on the irrational points?

Answer: yes.

f (x) =

{
1
q x = p

q ∈ Q
0 x /∈ Q
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Consider a fiber bundle p : X → S1 such that p−1(x) = R2/f (x)Z2.

X :=

Γ = SL2(Z) ↷ T2 ⇒ Γ ↷ X fiberwise

Proposition 1.
The action of Γ on X is µ-stiff (for many µ ∈ Prob(Γ)), that is, for any
ν ∈ Prob(X ): ∑

γ∈Γ
µ(γ)γ.ν = ν ⇒ ∀γ ∈ Γ : γ.ν = ν
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In the next 3 min I will address the following questions

▶ What is this weird space?

▶ Where does this SL2(Z)-action come from??
▶ Why study random walks for this action???
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What is this weird space?

Definition 2.
A character on a group G is a positive-definite conjugation-invariant
normalized function φ : G → C, which is irreducible/extremal.

Denote the space of all characters by Ch(G ).
Example: If G is abelian then Ch(G ) = Ĝ Pontryagin dual.
For the discrete Heisenberg group H(Z):

Ch(H(Z)) =
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Why study random walks for this action?

This implies rigidity properties on the semidirect product SL2(Z)⋉ H(Z)
All of the above can be generalized as follows:



Results [Bader-V 23’]
Rad(Γ) = the maximal amenable normal subgroup of Γ

Theorem 3.
Let Γ be any arithmetic group (e.g SLn(Z)⋉Zn, Sp2n(Z)⋉Hn(Z),..). Then
the action of Γ ↷ Ch(Rad(Γ)) is stiff.

Theorem 4.
If the semisimple part of the arithmetic group Γ is of higher rank, then Γ is
“charmenable”. In particular:

1. Every normal subgroup is either amenable or co-amenable.

2. Every trace is either amenable or supported on Rad(Γ).

3. Every IRS with spectral gap is either amenable or co-amenable.

4. Every URS is either contained in the space of subgroups of Rad(Γ) or it
admits a Γ-invariant probability measure

5. Every unitary representation is either amenable or weakly contains a
representation which is induced from Rad(Γ).

6. Something about C ∗-algs and von Neumann algs.
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Thank you
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