Improving Acylindrical Actions on Trees Higher Dimensional Hyperbolic Geometry

William D. Cohen

University of Cambridge

September 2025

Acylindrical Actions on Trees

Examples of Acylindrical Actions on Trees

Examples

► Virtually free and free products of groups.

Examples of Acylindrical Actions on Trees

Examples

- Virtually free and free products of groups.
- Quasi-convex splittings (Gitik-Mj-Rips-Sageev 1998),e.g.
 JSJ-decompositions of hyperbolic groups.

Examples of Acylindrical Actions on Trees

Examples

- Virtually free and free products of groups.
- Quasi-convex splittings (Gitik-Mj-Rips-Sageev 1998),e.g.
 JSJ-decompositions of hyperbolic groups.
- ► Fundamental groups of **non-geometric** closed and orientable 3-manifolds (Wilton–Zalesskii 2013).

 Combination Theorems — Many interesting properties are inherited from the vertex stabilisers of an acylindrical splitting, for example

- ▶ Combination Theorems Many interesting properties are inherited from the vertex stabilisers of an acylindrical splitting, for example
 - Hyperbolicity (Bestvina and Feighn 1992, Kapovich 2000), when edge stabilisers are quasi-convex in their neighbouring vertex stabilisers.

- Combination Theorems Many interesting properties are inherited from the vertex stabilisers of an acylindrical splitting, for example
 - Hyperbolicity (Bestvina and Feighn 1992, Kapovich 2000), when edge stabilisers are quasi-convex in their neighbouring vertex stabilisers.
 - ► A positive answer to the Farrell-Jones Conjecture (Knopf, 2019)

- Combination Theorems Many interesting properties are inherited from the vertex stabilisers of an acylindrical splitting, for example
 - Hyperbolicity (Bestvina and Feighn 1992, Kapovich 2000), when edge stabilisers are quasi-convex in their neighbouring vertex stabilisers.
 - ► A positive answer to the Farrell-Jones Conjecture (Knopf, 2019)
 - ► Tits Alternative and Wise's Power Alternative (Hagen–Martin–Sartori 2025)

- Combination Theorems Many interesting properties are inherited from the vertex stabilisers of an acylindrical splitting, for example
 - Hyperbolicity (Bestvina and Feighn 1992, Kapovich 2000), when edge stabilisers are quasi-convex in their neighbouring vertex stabilisers.
 - ► A positive answer to the Farrell-Jones Conjecture (Knopf, 2019)
 - ► Tits Alternative and Wise's Power Alternative (Hagen–Martin–Sartori 2025)
- We therefore want control over vertex stabilisers!

Definition

A subgroup $H \leq G$ has *finite height* if there exists n such that any intersection of at least n conjugates of H is finite.

Definition

A subgroup $H \leq G$ has *finite height* if there exists n such that any intersection of at least n conjugates of H is finite.

Theorem (C. 2025)

Let G be a finitely presented group acting minimally, acylindrically and non-elementarily on a tree T.

Definition

A subgroup $H \leq G$ has *finite height* if there exists n such that any intersection of at least n conjugates of H is finite.

Theorem (C. 2025)

Let G be a finitely presented group acting minimally, acylindrically and non-elementarily on a tree T.

► All vertex stabilisers of the action of *G* on *T* are *locally finite height* (e.g. free).

Definition

A subgroup $H \leq G$ has *finite height* if there exists n such that any intersection of at least n conjugates of H is finite.

Theorem (C. 2025)

Let G be a finitely presented group acting minimally, acylindrically and non-elementarily on a tree T.

▶ All vertex stabilisers of the action of *G* on *T* are *locally finite height* (e.g. free).

Definition

A subgroup $H \leq G$ has *finite height* if there exists n such that any intersection of at least n conjugates of H is finite.

Theorem (C. 2025)

Let G be a finitely presented group acting minimally, acylindrically and non-elementarily on a tree T.

▶ All vertex stabilisers of the action of *G* on *T* are *locally finite height* (e.g. free).

► *G* admits a non-elementary acylindrical splitting with finitely generated finite height edge stabilisers.

Consequences

Corollary (C. 2025)

Every finitely presented acylindrical graph of (possibly infinitely generated) free groups is hyperbolic and virtually compact special.

Consequences

Corollary (C. 2025)

Every finitely presented acylindrical graph of (possibly infinitely generated) free groups is hyperbolic and virtually compact special.

Conjecture (Bestvina's Problem List)

Every finitely generated finite height subgroup of a hyperbolic group is quasi-convex.

Consequences

Corollary (C. 2025)

Every finitely presented acylindrical graph of (possibly infinitely generated) free groups is hyperbolic and virtually compact special.

Conjecture (Bestvina's Problem List)

Every finitely generated finite height subgroup of a hyperbolic group is quasi-convex.

Corollary (C. 2025)

Let H be a finitely generated subgroup of a one-relator group with an acylindrical Magnus hierarchy. If we assume this conjecture then H is virtually compact special.